KR100936447B1 - Silica-based Photocatalyst Fiber Having Visible-light Activity And Process For The Production Thereof - Google Patents

Silica-based Photocatalyst Fiber Having Visible-light Activity And Process For The Production Thereof Download PDF

Info

Publication number
KR100936447B1
KR100936447B1 KR1020020070559A KR20020070559A KR100936447B1 KR 100936447 B1 KR100936447 B1 KR 100936447B1 KR 1020020070559 A KR1020020070559 A KR 1020020070559A KR 20020070559 A KR20020070559 A KR 20020070559A KR 100936447 B1 KR100936447 B1 KR 100936447B1
Authority
KR
South Korea
Prior art keywords
phase
fiber
silica
fibers
based photocatalyst
Prior art date
Application number
KR1020020070559A
Other languages
Korean (ko)
Other versions
KR20030086211A (en
Inventor
야마오카히로유키
하라다요시카스
후지이테루아키
Original Assignee
우베 고산 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 우베 고산 가부시키가이샤 filed Critical 우베 고산 가부시키가이샤
Publication of KR20030086211A publication Critical patent/KR20030086211A/en
Application granted granted Critical
Publication of KR100936447B1 publication Critical patent/KR100936447B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J35/39
    • B01J35/58
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/6224Fibres based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/62259Fibres based on titanium oxide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • C04B2235/3291Silver oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/75Products with a concentration gradient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/609Cross-sectional configuration of strand or fiber material is specified

Abstract

실리카 성분을 주체로 하는 산화물 상(제 1상) 및 티타니아 상(제 2상)을 포함하여 이루어지는 복합 산화물상을 포함하며, 이때 상기 제 2상은 티타늄 이외의 다른 금속원소를 함유하며, 제 2상의 존재비율이 섬유의 표면을 향하여 경사적으로 증가되는 가시광선 활성을 갖는 실리카-기초 광촉매 섬유 및 이들의 제조방법에 관한 것이다.A composite oxide phase comprising an oxide phase (first phase) and a titania phase (second phase) mainly composed of a silica component, wherein the second phase contains a metal element other than titanium, and the second phase A silica-based photocatalyst fiber having visible light activity in which the abundance is increased obliquely toward the surface of the fiber and a method for producing the same.

실리카-기초 광촉매 섬유, 가시광선 활성, 경사조성Silica-based photocatalyst fibers, visible light activity, gradient composition

Description

가시광 활성을 갖는 실리카-기초 광촉매 섬유 및 그 제조방법{Silica-based Photocatalyst Fiber Having Visible-light Activity And Process For The Production Thereof} Silica-based Photocatalyst Fiber Having Visible-light Activity And Process For The Production Thereof}             

도 1은 본 발명에 의해 제공되는 경사조성으로 된 산화물 섬유의 생성과정을 나타내는 도면이며,1 is a view showing the production process of the oxide fiber of the gradient composition provided by the present invention,

도 2는 본 발명의 실시예 1 및 비교예 1에서 얻어진 섬유의 흡수 스펙트럼을 나타내는 다이아그램이다.
2 is a diagram showing the absorption spectra of the fibers obtained in Example 1 and Comparative Example 1 of the present invention.

본 발명은 매우 우수한 광촉매 기능을 갖는 고-강도 무기 섬유 및 이들의 제조방법에 관한 것이다. 특히, 가시광선 조사에 의해 매우 우수한 광촉매 활성을 나타내는 무기 섬유 및 이들의 제조방법에 관한 것이다.The present invention relates to high-strength inorganic fibers having very good photocatalytic function and methods of making them. In particular, it is related with the inorganic fiber which shows the very outstanding photocatalytic activity by visible light irradiation, and its manufacturing method.

티타늄 디옥사이드에 의해 특징을 나타내는 반도체의 광촉매 효과를 사용하여 다양한 환경오염물을 분해 및 정화하기 위한 여러가지 시도가 있었다. 상기 광 촉매효과가 사용되는 경우, 통상적으로 티타니아 결정 입자는 기질에 고정된다. 그러나, 결합방법에 있어 여러가지 문제가 발생하며, 이로인해 최근 고정화에 문제가 없는 티타니아 섬유가 주목을 받고 있다.Various attempts have been made to decompose and purify various environmental pollutants using the photocatalytic effect of semiconductors characterized by titanium dioxide. When the photocatalytic effect is used, the titania crystal particles are usually fixed to the substrate. However, various problems arise in the bonding method, and thus, titania fibers that have no problem in immobilization have recently attracted attention.

예를 들어, JP-A-5-184923에서는 애너테이스(anatase) 형 티타니아 및 바나듐 옥사이드의 결정으로 구성되는 섬유를 합성하는 방법이 개시되고 있으며, 상기 방법은 알콜에 티타늄 알콕사이드 및 바나듐 화합물을 용해하는 단계, 졸-형 물질을 제조하기 위해 가수분해를 수행하는 단계, 졸-형 물질을 섬유-형 물질로 형성하는 단계, 섬유-형 물질을 겔화하는 단계 그리고 200~700℃의 범위에서 겔을 열-처리하는 단계를 포함한다. 상기 JP-A-5-184923의 예는 주로 티타니아 및 바나디아를 함유하며 나아가 다량의 실리카 성분을 함유하는 섬유를 개시하고 있다. 상기 섬유(fiber)를 이용한 직물(fabric)로서의 촉매활성에 관하여, JP-A-5-184923에서는 실리카로 제조된 E 글라스내로 상기 섬유의 20%만을 혼합하여 얻어진 섬유의 촉매활성만을 나타내고 있다. For example, JP-A-5-184923 discloses a method for synthesizing fibers composed of crystals of anatease titania and vanadium oxide, which dissolve titanium alkoxides and vanadium compounds in alcohol. Performing the hydrolysis to prepare the sol-type material, forming the sol-type material into the fiber-type material, gelling the fiber-type material and gels in the range of 200 to 700 ° C. Heat-treating. The example of JP-A-5-184923 discloses a fiber mainly containing titania and vanadia and further containing a large amount of silica components. Regarding catalytic activity as a fabric using the fiber, JP-A-5-184923 shows only the catalytic activity of a fiber obtained by mixing only 20% of the fiber into an E glass made of silica.

통상적으로, 졸-겔 방법으로 합성된 티타니아 섬유는 취약한 것으로 알려져 있다. 이들의 강도를 증가시키기 위한 연구로서, 예를 들어, "Yogyo-Kyokai-shi", vol 94(12), p 1,243~1,245(1986)에서는 실리카 성분의 공존을 개시하고 있다. 상기 방법은 이러한 방법을 정확하게 이용하는 JP-A-5-184923의 실시예에서 개시되어 있다. 나아가, JP-A-11-5036 공보에서는 졸-겔 방법에 따른 광촉매용 실리카-티타니아 섬유 및 이들의 제조방법을 개시하고 있다. 이러한 경우에, 또한 상기 섬유는 0.1~1.0 GPa의 매우 낮은 강도를 갖는다. Typically, titania fibers synthesized by the sol-gel method are known to be fragile. As a study for increasing their strength, for example, "Yogyo-Kyokai-shi", vol 94 (12), p 1,243-1,245 (1986) disclose the coexistence of silica components. The method is disclosed in the embodiment of JP-A-5-184923 which uses this method correctly. Furthermore, JP-A-11-5036 discloses a photocatalytic silica-titania fiber according to the sol-gel method and a method for producing the same. In this case, the fiber also has a very low strength of 0.1-1.0 GPa.                         

상기 방법 뿐만 아니라, 다음의 보고서는 티타니아의 제조방법에 대하여 개시하고 있다. 예를 들어, "Journal of Material Science Letters" 5 (1986) 402-404에서는 겔-형 티타니아 섬유(애너테이스)의 합성방법을 보고하고 있으며, 상기 방법에서 염산이 티타늄 알콕시드의 알콜 용액중에 공존하며, 가수분해를 수행하여 콜로이달 물질을 얻고, 콜로이달 물질을 스핀하고 스핀된 섬유가 가습 분위기에서 가열된 후, 공기중에서 온도를-증가시켜 겔-형 티타니아 섬유를 얻었다.In addition to the above method, the following report discloses a process for producing titania. For example, "Journal of Material Science Letters" 5 (1986) 402-404 reports a method for the synthesis of gel-type titania fibers (anatates), in which hydrochloric acid coexists in an alcohol solution of titanium alkoxide. Hydrolysis was performed to obtain a colloidal material, the colloidal material was spun and the spun fibers were heated in a humidified atmosphere, followed by temperature-increasing in air to obtain gel-type titania fibers.

나아가, "The American Ceramic Society Bulletin" 1998 5, 61-65에서는 슬러리를 얻기 위해 티타니아의 미세 입자에 물을 첨가하고, 점성유체를 제조하기 위해 비스코스(viscose)와 함께 슬러리를 혼합하고, 점성유체를 섬유로 형성하고 고온 가열하의 공기중에서 섬유를 소성함으로써 티타니아 섬유를 제조하는 방법을 보고하고 있다. Furthermore, in "The American Ceramic Society Bulletin" 1998 5, 61-65, water was added to the fine particles of titania to obtain a slurry, the slurry was mixed with viscose to produce a viscous fluid, and the viscous fluid was It has been reported to form titania fibers by forming the fibers and firing the fibers in air under high temperature heating.

상기 각 섬유는 티타니아의 일차입자의 응집단계를 통해 형성되며 이로인해 각 섬유 내부에는 심각한 결함이 존재한다. 광촉매 기능이 인정된다 하더라도 매우 취약하다. 따라서, 실용화를 위한 여러가지 문제점의 해결이 요구된다. 나아가, 강도 향상을 목적으로 실리카 성분이 공존하는 시스템에서, 티타니아 및 실리카는 혼재된 상태로 존재하며 이로인해 티타니아 단독과 비교하여 충분한 광촉매 활성이 얻어지지 않는다. 이는 또한 실용화에 장애가 되는 중요한 문제이다.Each fiber is formed through agglomeration of primary particles of titania, thereby causing serious defects inside each fiber. Even if the photocatalytic function is recognized, it is very vulnerable. Therefore, it is required to solve various problems for practical use. Furthermore, in a system in which silica components coexist for the purpose of improving strength, titania and silica are present in a mixed state, whereby sufficient photocatalytic activity is not obtained in comparison with titania alone. This is also an important problem that impedes practical use.

광촉매 섬유가 필터로 사용되는 경우, 광촉매 섬유가 장시간동안 고속 가스 흐름에 노출되기 때문에 보다 높은 섬유 강도를 갖는 것이 바람직하다. 특히, 항공기 엔진 혹은 자동차 엔진에서 배출되는 가스에 대한 이들의 적용을 고려하여, 통 상적인 범위를 초월하는 고-강도 광촉매 기능 혹은 열-촉매 기능을 갖는 섬유의 개발이 매우 요구된다. When photocatalytic fibers are used as filters, it is desirable to have higher fiber strength because the photocatalytic fibers are exposed to a high velocity gas stream for a long time. In particular, considering their application to gases emitted from aircraft engines or automobile engines, the development of fibers with high-intensity photocatalytic or thermal-catalytic functions beyond the conventional range is highly desired.

한편, 티타니아가 광촉매 기능을 발현함에 있어서, 400nm이하의 자외선 조사가 필수적이다. 지구의 표면에서 얻어질 수 있는 태양광선의 스펙트럼 분포는 자외선 영역(400nm이하)은 약 5%이며, 가시영역(400~750nm)이 약 43% 그리고 적외선 영역(750nm이상)이 약 52%이다. 그러므로, 태양광을 효율적으로 이용함에 있어서 가시광선 영역에서 광촉매 기능을 발현하는 광촉매가 바람직하다.On the other hand, when titania expresses a photocatalytic function, ultraviolet irradiation of 400 nm or less is essential. The spectral distribution of sunlight that can be obtained from the Earth's surface is about 5% in the ultraviolet region (below 400nm), about 43% in the visible region (400-750nm) and about 52% in the infrared region (750nm and above). Therefore, a photocatalyst which expresses a photocatalytic function in the visible light region is preferable in efficiently utilizing sunlight.

상기의 방법으로써, 예를 들어, JP-A-9-192496에서는 V,Cr,Mn,Fe,Co,Ni,Cu등과 같은 금속원소를 티타늄 옥사이드에 도핑하는 방법을 개시하고 있다. 상기 방법에서는 상기 도펀트(dopant) 혹은 이의 전구체를 티타늄 옥사이드 혹은 그 전구체, 예를들어 수산화물, 염화물, 혹은 질산염등에 첨가하고, 건조 소성하여 광촉매를 제조한다. 그러나, 티타늄 옥사이드 중에 도픈트 금속을 균일하고 높은 분산도로 도입하는 것이 어렵기 때문에 충분한 가시광선 활성이 얻어질 수 없다는 문제점이 있다.As the above method, for example, JP-A-9-192496 discloses a method of doping titanium oxide with metal elements such as V, Cr, Mn, Fe, Co, Ni, Cu, and the like. In the above method, the dopant or a precursor thereof is added to titanium oxide or a precursor thereof, such as a hydroxide, chloride, or nitrate, and dried and calcined to produce a photocatalyst. However, there is a problem that sufficient visible light activity cannot be obtained because it is difficult to introduce the dopant metal in the titanium oxide with uniform and high dispersion.

나아가, JP-A-9-262482에서는 Cr,V,Cu 혹은 Fe등의 금속이온을 높은 에너지로 가속하여 산화 티타늄에 조사시켜 금속이온을 산화 티타늄에 도입하는 방법을 개시하고 있다. 이러한 방법에 따라, 금속 이온은 티타늄 옥사이드내로 균일하며 높은 분산성으로 도입될 수 있다. 그러나, 대-규모 제조장비가 필요하기 때문에 제조 비용이 매우 높다. 그러므로, 대량생산에 적합하지 않다는 문제가 있다.
Furthermore, JP-A-9-262482 discloses a method in which metal ions such as Cr, V, Cu or Fe are accelerated to high energy and irradiated to titanium oxide to introduce metal ions into titanium oxide. According to this method, metal ions can be introduced into the titanium oxide uniformly and with high dispersibility. However, manufacturing costs are very high because large-scale manufacturing equipment is required. Therefore, there is a problem that it is not suitable for mass production.

본 발명의 목적은 가시광선 조사에 의해 우수한 광촉매 활성을 갖는 고-강도 무기 섬유 및 이의 제조방법을 제공하는 것이다.
It is an object of the present invention to provide a high-strength inorganic fiber having excellent photocatalytic activity by visible light irradiation and a method for producing the same.

본 발명에 따라, 가시-광선 활성을 갖는 실리카-기초 광촉매 섬유가 제공되며, 상기 섬유는 주로 실리카 성분을 주체로 하여 구성되는 산화물상(제 1상) 및 티타니아상(제 2상)으로된 복합 산화물상을 포함하며, 이때 상기 제 2상은 티타늄 이외의 다른 금속원소를 함유하며, 제 2상의 존재 비율은 섬유의 표면을 향하여 경사적으로(slopingly) 증가되는 실리카-기초 광촉매 섬유가 제공된다.According to the present invention, silica-based photocatalyst fibers having visible-ray activity are provided, which fibers are composed mainly of an oxide phase (first phase) and a titania phase (second phase) mainly composed of a silica component. A silica-based photocatalyst fiber is provided which comprises an oxide phase, wherein the second phase contains other metal elements than titanium, and the proportion of the second phase is increased slopingly towards the surface of the fiber.

나아가, 본 발명에 따라, 나아가 실리카-기초 광촉매 섬유의 제조방법이 제공되며, 이는Furthermore, according to the present invention, there is further provided a method for producing silica-based photocatalyst fibers, which

방사된 섬유를 얻기 위하여, 다음 화학식으로 나타내어지는 주사슬 구조를 갖으며 수평균 분자량이 200~10,000인 폴리카르보실란을 유기 금속 화합물로 변성(modifying)함으로써 얻을 수 있는 변성된 폴리카르보실란을 용융-방사(melt-spinning)하거나 혹은In order to obtain the spun fiber, the modified polycarbosilane having a main chain structure represented by the following formula and obtained by modifying a polycarbosilane having a number average molecular weight of 200 to 10,000 with an organometallic compound is melted. Melt-spinning or

Figure 112002037524670-pat00001
Figure 112002037524670-pat00001

(단, 상기 식중 R은 수소원자, 저급 알킬기 혹은 페닐기이다.) (Wherein R is a hydrogen atom, a lower alkyl group or a phenyl group)                     

변성 폴리카르보실란과 유기 금속화합물의 혼합물을 용융-방사하는 단계;Melt-spinning a mixture of the modified polycarbosilane and the organometallic compound;

방사된 섬유를 불용화하는 단계(infusibilizing); 및Insolubilizing the spun fibers; And

공기중 혹은 산소중에서 불용화된 섬유를 소성하는 단계(calcining)를 포함한다.Calcining the insoluble fibers in air or oxygen.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명자들은 유기 실리콘 중합체로 제조된 전구체 섬유를 열-처리한 다음 고온의 공기중에서 열처리된 전구체 섬유를 소성(calcining)함으로써 치밀한 고강도의 실리카 섬유를 얻을 수 있다는 것을 발견하였다. 그 후, 본 발명자들은 상기 유기 실리콘 중합체 중에 저분자량 유기금속 화합물 혹은 저분자량 유기실리콘 중합체와 저분자량 유기 금속 화합물의 반응물질이 공존하는 경우, 방사 후에 열처리 단계에서 브리딩(bleeding)하여 상기 유기금속 화합물 성분을 포함하는 저분자량 물질이 섬유 표면으로 선택적으로 이동되며(bleedout) 열처리후에 공기중에서 소성함으로써 상기 저분자량 물질로부터 유도된 산화물층(목적하는 촉매기능을 갖는 산화물층)이 섬유 표면에 효과적으로 생성됨을 발견하였다. 게다가, 또한 상기 방법에 따라 얻어진 섬유는 매우 치밀하고 고강도를 갖는다는 것을 발견하였다. 유기실리콘 중합체를 출발물질로 하여 실리카를 제조하는 단계에서는 실리콘-탄소 결합을 실리콘-산소 결합으로 전환하는 산화단계를 포함한다. 상기 단계에서, 이의 부피는 약 1.37배 증가할 것으로 예상된다. 이러한 변화는 최소 600℃의 상대적으로 낮은 온도에서 달성됨으로, 소성함으로써 치밀한 실리카-기초 복합섬유가 효과적으로 얻어진다. 따라서 상기한 고강도화가 달성되는 것으로 여겨진다. The inventors have found that dense high strength silica fibers can be obtained by heat-treating precursor fibers made of organic silicone polymers and then calcining the precursor fibers heat treated in hot air. Then, the inventors of the present invention, when the low molecular weight organometallic compound or the reactant of the low molecular weight organosilicon polymer and the low molecular weight organometallic compound coexist in the organic silicone polymer, the organic metal compound by bleeding in the heat treatment step after spinning The low molecular weight material comprising the component is selectively bleed out to the fiber surface and calcined in air after heat treatment to effectively produce an oxide layer derived from the low molecular weight material (an oxide layer having a desired catalytic function) on the fiber surface. Found. In addition, it has also been found that the fibers obtained according to the method are very dense and have high strength. The step of preparing silica using the organosilicon polymer as a starting material includes an oxidation step of converting a silicon-carbon bond into a silicon-oxygen bond. In this step, its volume is expected to increase by about 1.37 times. This change is achieved at a relatively low temperature of at least 600 ° C., so that by firing, dense silica-based composite fibers are effectively obtained. Thus, it is believed that the above-mentioned high strength is achieved.                     

나아가 다음을 발견하였다. 티타늄 화합물과 티타늄 이외의 다른 금속원소의 화합물이 유기금속 화합물로 사용되는 경우, 생성된 산화물층은 티타늄 상에 티타늄 이외의 금속이 균일하며 높은 분산성으로 도입된 층이다. 그 결과, 얻어진 광촉매 섬유는 우수한 가시광 활성을 발휘함을 발견하였다.Furthermore, I found the following: When a compound of a titanium compound and a metal element other than titanium is used as the organometallic compound, the resulting oxide layer is a layer in which a metal other than titanium is uniformly introduced on the titanium with high dispersibility. As a result, it was found that the obtained photocatalyst fiber exhibited excellent visible light activity.

즉, 본 발명은 실리카 성분을 주체로한 산화물상(제 1상) 및 티타니아상(제 2상)을 포함하여 이루어지는 복합 산화물상으로 형성된 실리카-기초 광촉매 섬유에 관한 것이며, 상기 섬유는 제 2상이 티타늄 이외의 다른 금속원소를 함유하며 상기 제 2상의 존재비율이 상기 섬유의 표면층을 향하여 경사적으로 증가함을 특징으로 한다. That is, the present invention relates to a silica-based photocatalyst fiber formed of a composite oxide phase comprising an oxide phase (first phase) and a titania phase (second phase) mainly composed of a silica component, wherein the fiber is a second phase. It contains other metal elements other than titanium and is characterized by an increase in the abundance of the second phase towards the surface layer of the fiber.

본 발명에 있어서, 실리카 성분을 주체로 하는 산화물 상(제 1상)은 비결정질 혹은 결정질일 수 있다. 나아가, 이는 실리카와 고용체(solid solution) 혹은 공융 화합물(eutectic compound)을 형성할 수 있는 금속 원소 혹은 금속화합물을 함유할 수 있다. 실리카와 고용체를 형성할 수 있는 금속 원소(A) 혹은 그 산화물이 실리카와 특정한 구조를 갖는 화합물을 형성할 수 있는 금속원소 (B)는 특별히 제한되는 것은 아니나, 예를 들어, (A)로는 티타늄을 포함하며 (B)로는 알루미늄, 지르코늄, 이트륨, 리튬, 소디움, 바륨, 칼슘, 붕소, 아연, 니켈, 망간, 마그네슘 및 철을 포함한다.In the present invention, the oxide phase (first phase) mainly composed of the silica component may be amorphous or crystalline. Furthermore, it may contain metallic elements or metal compounds capable of forming a solid solution or eutectic compound with silica. The metal element (A) capable of forming a solid solution with silica or the metal element (B) capable of forming a compound having a specific structure with silica is not particularly limited, but for example, (A) is titanium And (B) includes aluminum, zirconium, yttrium, lithium, sodium, barium, calcium, boron, zinc, nickel, manganese, magnesium and iron.

상기 제 1상은 본 발명에 의해 얻어지는 섬유의 내부상을 형성하며 이는 기계적 특성을 포함하는 중요한 역할을 한다. 전체 섬유에 대하여 제 1상의 존재비율은 98중량%에서 40중량%가 바람직하다. 목적하는 제 2상의 기능과 동시에 높은 기 계적 특성을 발휘하도록 제 1상의 존재비율을 95중량% ~ 50중량% 범위로 조절하는 것이 바람직하다. The first phase forms the inner phase of the fiber obtained by the present invention, which plays an important role including mechanical properties. The abundance ratio of the first phase relative to the total fibers is preferably 98% by weight to 40% by weight. It is preferable to adjust the abundance ratio of the first phase in the range of 95% by weight to 50% by weight so as to exert high mechanical properties at the same time as the desired second phase.

다른 한편으로, 상기 제 2상을 구성하는 티타니아상은 본 발명에서 의도하는 광촉매 기능 발휘에 중요한 역할을 한다. 상기 섬유의 표면층 부분을 구성하는 제 2상의 존재비율은 2~60중량%가 바람직하다. 충분한 기능 및 이와 동시에 높은 강도를 위해 발휘하도록 하기 위해 제 2상의 존재비율을 5~50중량%의 범위로 조절하는 것이 바람직하다.On the other hand, the titania phase constituting the second phase plays an important role in exhibiting the photocatalytic function intended in the present invention. As for the abundance ratio of the 2nd phase which comprises the surface layer part of the said fiber, 2 to 60 weight% is preferable. It is preferable to adjust the abundance ratio of the second phase in the range of 5 to 50% by weight in order to exhibit sufficient function and at the same time for high strength.

나아가, 가시광선 활성을 발현시키기 위해 제 2상에서 티타늄 이외의 다른 금속원소를 함유시키는 것이 필수적이다. 이러한 금속원소로는, Fe,W,Bi,V,Cr,Mn, Co,Ni,Cu,Mg,Ag,Pd,Pt,Zn,Ru,Ce 및 Rh로 부터 선택되는 최소 하나의 금속 원소가 사용된다. 의도하는 가시광선 활성을 충분히 나타내기 위해서, 제 2상에서 티타늄 이외의 다른 금속원소의 비율은 제 2상 전체에 대하여 산화물 환가로서 5~40중량%가 바람직하다.Furthermore, it is essential to contain metal elements other than titanium in the second phase to express visible light activity. As the metal element, at least one metal element selected from Fe, W, Bi, V, Cr, Mn, Co, Ni, Cu, Mg, Ag, Pd, Pt, Zn, Ru, Ce and Rh is used. do. In order to sufficiently exhibit the intended visible light activity, the ratio of metal elements other than titanium in the second phase is preferably 5 to 40% by weight as oxide valency with respect to the entire second phase.

제 2상의 존재비율 즉, 제 2상의 구성성분인 미세 결정 입자의 존재비율은 섬유표면을 향하여 경사적으로 증가한다. 조성경사가 명백하게 인정되는 영역의 두께는 5~500nm의 범위로 제어되는 것이 바람직하다. 경사(slope) 영역은 섬유 직경의 약 1/3에 도달할 수 있다. 본 발명에 있어서, 나아가, 제 1상 및 제 2상의 각 "존재비율"은, 제 1상을 구성하는 금속 산화물 및 제 2상을 구성하는 금속산화물을 구성하는 전체 금속 산화물 즉, 섬유 전체에 대한 제 1상의 금속 산화물 혹은 제 2상의 금속 산화물의 "중량%"를 칭한다. The abundance of the second phase, that is, the abundance of the fine crystal grains that are components of the second phase, increases obliquely toward the fiber surface. It is preferable that the thickness of the region where the composition gradient is clearly recognized is controlled in the range of 5 to 500 nm. The slope region may reach about one third of the fiber diameter. In the present invention, further, each "presence ratio" of the first phase and the second phase refers to all metal oxides constituting the metal oxide constituting the first phase and the metal oxide constituting the second phase, that is, the entire fiber. The "weight%" of the metal oxide of a 1st phase or a metal oxide of a 2nd phase is called.                     

본 발명에 의해 제공되는 경사 구조를 갖는 실리카-기초 광촉매 섬유의 제조방법에 대하여 설명한다.The manufacturing method of the silica-based photocatalyst fiber which has the diagonal structure provided by this invention is demonstrated.

방사된 섬유를 얻기 위해, 다음의 화학식으로 나타내어지는 주사슬 구조를 가지며 수평균 분자량이 200~10,000인 폴리카르보실란을 유기금속 화합물로 변성(modifying)하여 얻을 수 있는 변성 폴리카르보실란을 용융-방사하거나 혹은To obtain the spun fiber, melt-spun modified polycarbosilane having a main chain structure represented by the following formula and obtained by modifying a polycarbosilane having a number average molecular weight of 200 to 10,000 with an organometallic compound Or

Figure 112002037524670-pat00002
Figure 112002037524670-pat00002

(상기 식중에서 R은 수소원자, 저급 알킬기, 바람직하게는 1~4의 탄소수를 갖는 저급알킬기 혹은 페닐기, 바람직하게는 n이 1-30의 정수이다.) (Wherein R is a hydrogen atom, a lower alkyl group, preferably a lower alkyl group or phenyl group having 1 to 4 carbon atoms, preferably n is an integer of 1-30.)

변성 폴리카르보실란과 유기금속 화합물의 혼합물이 용융-방사되며; 방사된 섬유가 불용화되며; 그 후, 불용화된 섬유가 공기중 혹은 산소중에서 소성되어, 실리카-기초 광촉매 섬유가 제조될 수 있다.
The mixture of the modified polycarbosilane and the organometallic compound is melt-spun; Spun fibers are insolubilized; The insolubilized fibers can then be calcined in air or oxygen to produce silica-based photocatalyst fibers.

본 발명에 의한 방법의 제 1단계는 실리카-기초 광촉매 섬유 제조에 출발물질로 사용되는 수평균 분자량이 1,000~50,000인 변성 폴리카르보실란을 제조하는 단계이다. 상기 변성 폴리카르보실란의 기본적인 제조방법은 JP-A-56-74126의 제조방법과 매우 유사하다. 그러나, 본 발명에서 JP-A-56-74126에 개시된 작용기의 결합상태를 주의깊게 조절하는 것이 요구된다. 이들의 일반적인 사항은 후술한다.The first step of the process according to the invention is to prepare a modified polycarbosilane having a number average molecular weight of 1,000 to 50,000 used as a starting material for producing silica-based photocatalyst fibers. The basic manufacturing method of the modified polycarbosilane is very similar to that of JP-A-56-74126. However, in the present invention, it is required to carefully control the binding state of the functional group disclosed in JP-A-56-74126. These general matters are mentioned later.

출발물질로서 변성 폴리카르보실란은 하기 화학식으로 나타내어지는 주사슬 구조를 갖으며, 수평균 분자량이 200~10,000인 폴리카르보실란 및As a starting material, the modified polycarbosilane has a main chain structure represented by the following chemical formula, and has a number average molecular weight of 200 to 10,000 polycarbosilane and

Figure 112002037524670-pat00003
Figure 112002037524670-pat00003

(단, 상기 식중에서 R은 수소원자, 저급알킬기 혹은 페닐기이다.)(Wherein R is a hydrogen atom, a lower alkyl group or a phenyl group)

화학식 M(OR')n 혹은 MR"m(단, M은 금속원소, R'은 1~20개의 탄소원자를 갖는 알킬기 혹은 페닐기, R"는 아세틸아세토네이트 그리고 m 및 n은 각각 1보다 큰 정수이며, 바람직하게는 1보다 크고 6보다 작은 정수이다.)의 기본 구조를 갖는 유기금속 화합물로부터 주로 유도된다.M (OR ') n or MR "m (wherein M is a metal element, R' is an alkyl or phenyl group having 1 to 20 carbon atoms, R" is acetylacetonate and m and n are each an integer greater than 1) Is preferably an integer greater than 1 and less than 6).

본 발명에 의해 제공되는 경사 구조를 갖는 섬유를 제조하기 위해, 유기금속 화합물의 일부만이 폴리카르보실란과 결합을 형성하는 완만한 반응 조건을 선택하는 것이 요구된다. 상기의 목적을 위해서, 불활성 가스중에서 280℃이하, 바람직하게는 250℃이하의 온도에서 반응을 행하는 것이 요구된다. 상기 반응조건하에서, 상기 유기금속 화합물이 폴리카르보실란과 반응하더라도, 이는 일작용성 중합체(즉, 펜던트-형 결합)로서 결합하며 대폭적인 분자량 증가는 일어나지 않는다. 이와 같이 얻어진 유기금속 화합물이 부분적으로 결합된 변성 폴리카르보실란은 폴리카르보실란과 유기금속 화합물 사이의 상용성을 향상시키는 중요한 역할을 한다.In order to produce fibers having a warp structure provided by the present invention, it is required to select gentle reaction conditions in which only a part of the organometallic compound forms a bond with polycarbosilane. For the above purpose, it is required to carry out the reaction at a temperature of 280 ° C. or lower, preferably 250 ° C. or lower in an inert gas. Under the above reaction conditions, even if the organometallic compound reacts with the polycarbosilane, it binds as a monofunctional polymer (ie, pendant-type bond) and no significant molecular weight increase occurs. The modified polycarbosilane in which the organometallic compound thus obtained is partially bonded plays an important role in improving compatibility between the polycarbosilane and the organometallic compound.

둘이상의 작용기가 결합되는 경우, 상기 폴리카르보실란은 가교 구조를 형성하며 현저한 분자량 증가가 관찰된다. 이러한 경우에, 반응시 급열발생과 용융 점성 증가가 일어난다. 반면에, 단지 하나의 작용기가 상기한 바와 같이 반응되고 미 반응 유기금속 화합물이 잔존하는 경우에는, 반대로 용융 점성도의 감소가 관찰된다. When two or more functional groups are bonded, the polycarbosilane forms a crosslinked structure and a marked increase in molecular weight is observed. In this case, rapid reactions and increased melt viscosity occur during the reaction. On the other hand, when only one functional group is reacted as described above and an unreacted organometallic compound remains, on the contrary, a decrease in melt viscosity is observed.

본 발명에 있어서, 미반응 유기금속 화합물이 의도적으로 남도록 하는 반응조건을 선택하는 것이 바람직하다. 본 발명은 출발물질로서, 상기 변성 폴리카르보실란과 미반응 상태의 유기금속 화합물 혹은 이합체, 삼합체등인 유기금속 화합물이 공존하는 물질을 주로 사용한다. 그러나, 변성 폴리카르보실란이 매우 분자량이 적은 변성 폴리카르보실란 성분을 함유하는 경우에 변성 폴리카르보실란은 출발물질로 단독으로 비슷하게 사용될 수 있다. In the present invention, it is preferable to select reaction conditions such that the unreacted organometallic compound is intentionally left. The present invention mainly uses a substance in which the modified polycarbosilane and an organometallic compound such as an unreacted organometallic compound or a dimer, trimer, and the like coexist. However, when the modified polycarbosilane contains a very low molecular weight modified polycarbosilane component, the modified polycarbosilane can be similarly used alone as a starting material.

본 발명에 의한 방법의 제 2단계에서, 상기 제 1단계에서 얻어진 변성 폴리카르보실란 혹은 변성 폴리카르보실란과 저분자량 유기금속 화합물의 혼합물을 용융시켜 방사용액을 제조하며, 경우에 따라서 방사(spinning) 용액을 여과하여 마이크로겔 혹은 불순물과 같은 방사시에 유해한 물질을 제거하고, 방사 용액은 일반적으로 사용되는 합성섬유-방사용 장치로 방사한다. 방사시 방사 용액의 온도는 원료물질인 변성 폴리카르보실란의 연화온도에 따라 다르며, 50~200℃의 온도범위를 선택하는 것이 이롭다. 상기 방사장치는 필요에 따라 노즐 하부에 가습 및 가열 실린더가 제공될 수 있다. 섬유의 직경은 노즐로부터의 토출양 및 방사장치의 하부에 설치된 고속 권취 유니트의 권취 속도를 변화시킴으로서 조절된다. 나아가, 용융-블로우(melt-blow)법 혹은 스핀-결합법으로, 노즐로부터 토출된 섬유를 권취하지 않고 펠트(felt)형상으로 바로 성형할 수 있다. In the second step of the method according to the invention, a spinning solution is prepared by melting the modified polycarbosilane or the mixture of the modified polycarbosilane and the low molecular weight organometallic compound obtained in the first step, and spinning in some cases. The solution is filtered to remove harmful substances during spinning, such as microgels or impurities, and the spinning solution is spun onto commonly used synthetic fiber-spinning devices. The temperature of spinning solution during spinning depends on the softening temperature of the modified polycarbosilane, which is a raw material, and it is advantageous to select a temperature range of 50 to 200 ° C. The spinning device may be provided with a humidification and heating cylinder under the nozzle as needed. The diameter of the fiber is adjusted by changing the amount of discharge from the nozzle and the winding speed of the high speed winding unit installed at the bottom of the spinning apparatus. Furthermore, by the melt-blow method or the spin-bonding method, the fiber discharged from the nozzle can be directly formed into a felt shape without winding up.

상기 개시된 용융-방사 뿐만 아니라, 본 발명에 의한 방법의 제 2단계는 방 사 용액을 형성하기 위해 제 1단계에서 얻어진 변성 폴리카르보실란 혹은 변성 폴리카르보실란과 저분자량 유기금속 화합물의 혼합물을 예를 들어, 벤젠, 톨루엔, 자일렌 혹은 변성 폴리카르보실란 및 저분자량 유기금속 화합물을 용해할 수 있는 용매에 용해하고, 경우에 따라, 마이크로겔 혹은 불순물과 같은 방사시의 유해물질을 제거하기 위해 방사 용액을 여과하고, 방사 용액을 일반적으로 사용되는 합성 섬유-방사장치를 사용하여 건조 방사법으로 방사하며, 권취속도를 제어하여 목적하는 섬유를 얻을 수 있다. In addition to the melt-spinning described above, the second step of the process according to the invention takes an example of a modified polycarbosilane or a mixture of a modified polycarbosilane and a low molecular weight organometallic compound obtained in the first step to form a spinning solution. Spinning solutions, for example, to dissolve benzene, toluene, xylene or modified polycarbosilanes and low molecular weight organometallic compounds in a solvent capable of dissolving and, in some cases, to remove harmful substances during spinning such as microgels or impurities The spinning solution can be spun by dry spinning method using a synthetic fiber-spinning device which is generally used, and the winding speed can be controlled to obtain a desired fiber.

상기 방사 단계에서, 방사 실린더는 필요에 따라 방사장치에 부착될 수 있다. 실린더내의 분위기는 상기 용매로부터 선택되는 최소 하나의 가스와 혼합된 혼합 분위기로 교체되거나 혹은 공기, 불활성 가스, 가열된 공기, 가열된 불활성 가스, 스팀, 암모니아 가스, 탄화수소 가스 혹은 유기실리콘 화합물 가스 분위기로 대체되며 이에 따라 방사 실리더내에서 섬유의 고화가 제어될 수 있다. In the spinning step, the spinning cylinder can be attached to the spinning device as needed. The atmosphere in the cylinder is replaced with a mixed atmosphere mixed with at least one gas selected from the above solvents or with an atmosphere of air, inert gas, heated air, heated inert gas, steam, ammonia gas, hydrocarbon gas or organosilicon compound gas. And thus solidification of the fibers in the spinning cylinder can be controlled.

그 후, 본 발명의 방법의 제 3단계에서는, 상기 방사 섬유를 산화분위기 중에서 장력을 가하거나 혹은 장력을 가하지 않으면서 예비가열하여 상기 방사 섬유를 불용화한다. 상기 단계의 목적은 후소성 단계에서 섬유가 용융되는 것을 방지하며 인접한 섬유가 서로 접착되는 것을 방지하기 위한 것이다. 처리온도 및 처리시간은 조성에 따라 다르다. 특별히 제한되지는 않으나, 일반적으로 수시간에서 30시간동안 50~400℃의 범위에서 처리된다. 상기 산화 분위기중에는 수분, 질소 산화물, 오존등 방사 섬유의 산화강도를 증가시키는 물질을 함유할 수 있으며, 산소분압은 의도적으로 변화될 수 있다. Thereafter, in the third step of the method of the present invention, the spun fiber is preheated with or without tension in the oxidizing atmosphere to insolubilize the spun fiber. The purpose of this step is to prevent the fibers from melting in the post-firing step and to prevent adjacent fibers from adhering to each other. Treatment temperature and treatment time depend on the composition. Although not particularly limited, it is generally treated in the range of 50 to 400 ° C. for several hours to 30 hours. The oxidizing atmosphere may contain a substance that increases the oxidation strength of spinning fibers such as moisture, nitrogen oxides, and ozone, and the oxygen partial pressure may be intentionally changed.                     

몇몇의 경우에 있어서, 원료물질중의 저분자량 물질의 비율에 따라 방사된 섬유의 연화점 온도가 50℃미만이 되기도 한다. 이러한 경우에 있어서, 섬유 표면의 산화를 촉진하는 처리는 몇몇 경우에 상기 처리온도보다 낮은 온도에서 미리 수행된다. 제 3단계 및 제 2단계에서, 원료물질에 함유되어 있는 저분자량 유기금속 화합물이 먼저 섬유 표면으로 유출(bleedout)된다. 이에 따라 목적하는 경사 조성의 하지(ground)가 형성되는 것으로 여겨진다.In some cases, depending on the proportion of low molecular weight substances in the raw materials, the softening point temperature of the spun fibers may be less than 50 ° C. In this case, the treatment which promotes oxidation of the fiber surface is performed in advance in some cases at a temperature lower than the treatment temperature. In the third and second stages, the low molecular weight organometallic compounds contained in the raw material are first bleed out to the fiber surface. It is thus believed that a ground of the desired gradient composition is formed.

본 발명의 방법의 제 4단계에서, 상기 불용화된 섬유는 장력(tension)을 가하거나 혹은 장력을 가하지 않고 500~1,800℃의 온도범위로 산화분위기 중에서 소성하여 실리카 성분을 주체로 하는 산화물상 (제 1상)과 티타니아상(제 2상)을 포함하는 복합 산화물상이 형성되며, 상기 제 2상은 티타늄 이외의 다른 금속원소를 함유하며, 제 2상의 존재비율이 섬유의 표면층을 향하여 경사적으로 증가되는 실리카-기초 광촉매 섬유가 얻어진다. 상기 단계에서, 불용화 섬유중에 함유되어 있는 유기성분은 기본적으로 산화된다. 그러나, 몇몇의 경우에 유기성분은 선택된 조건에 따라 탄소 혹은 탄화물(carbide)로서 섬유중에 잔존하는 경우도 있다. 이러한 경우에도 목적하는 기능에 지장을 초래하지 않는 한 그대로 사용되나, 지장을 초래하는 경우에는 더욱 산화처리를 행한다. 이러한 경우에, 목적하는 경사조성 및 목적하는 결정구조에 문제를 일으키지 않는 온도 및 처리시간을 선택하는 것이 요구된다.In the fourth step of the method of the present invention, the insoluble fibers are subjected to an oxide phase mainly composed of silica by firing in an oxidizing atmosphere at a temperature range of 500 to 1,800 ° C with or without tension. A composite oxide phase comprising a first phase) and a titania phase (second phase) is formed, wherein the second phase contains other metal elements than titanium, and the abundance of the second phase increases obliquely toward the surface layer of the fiber. Silica-based photocatalyst fibers are obtained. In this step, the organic components contained in the insoluble fiber are basically oxidized. However, in some cases, the organic component may remain in the fiber as carbon or carbide depending on the conditions chosen. Even in such a case, it is used as long as it does not interfere with the desired function, but in the case of causing a problem, further oxidation treatment is performed. In such a case, it is required to select a temperature and a treatment time which do not cause problems with the desired gradient composition and the desired crystal structure.

도 1은 본 발명의 의해 제공되는 목적하는 경사조성을 갖는 산화물 섬유의 생성 단계를 나타낸다. 1 shows the step of producing an oxide fiber having the desired gradient composition provided by the present invention.                     

실시예Example

본 발명은 실시예를 통하여 보다 상세하게 설명된다.
The invention is explained in more detail by way of examples.

참고예 1Reference Example 1

무수 톨루엔 2.5리터 및 금속 소디움 400g을 5리터 3-구 플라스크에 장입하고, 혼합물을 질소가스의 기류하에서 톨루엔의 끓는점까지 가열하고 디메틸디클로로실란 1리터를 1시간에 걸쳐 적가하였다. 첨가 완료후에, 혼합물을 10시간동안 가열환류하여 침전물을 얻었다. 침전물을 여과하여 회수하고 메탄올로 세척한 다음, 물로 세척하여 백색 분말의 폴리디메틸실란 420g을 얻었다.2.5 liters of anhydrous toluene and 400 g of metal sodium were charged into a 5 liter 3-necked flask, the mixture was heated to the boiling point of toluene under a stream of nitrogen gas and 1 liter of dimethyldichlorosilane was added dropwise over 1 hour. After the addition was completed, the mixture was heated to reflux for 10 hours to obtain a precipitate. The precipitate was collected by filtration, washed with methanol and then washed with water to give 420 g of a white powder of polydimethylsilane.

폴리디메틸실란 250g을 수냉 환류 장치가 구비된 3-구 플라스크에 장입하고 질소가스 기류하에서 420℃로 30시간동안 가열 반응시켜 수평균 분자량이 1,200인 폴리카르보실란을 얻었다.
250 g of polydimethylsilane was charged to a three-necked flask equipped with a water cooling reflux device and heated at 420 ° C. for 30 hours under a nitrogen gas stream to obtain a polycarbosilane having a number average molecular weight of 1,200.

실시예 1Example 1

톨루엔 100g, 테트라부톡시티타늄 50g, 및 철(Ⅲ)아세틸아세토네이트 5g을 참고예 1에 따라 합성된 폴리카르보실란 50g에 첨가하고, 혼합물을 100℃에서 1시간동안 예비 가열한 후, 혼합물을 150℃까지 천천히 승온시켜 톨루엔을 증류제거하고, 결과 혼합물을 상기 온도에서 5시간동안 반응시킨 다음 반응 혼합물을 추가로 250℃까지 승온시키고 이 온도에서 5시간동안 반응시켜 변성 폴리카르보실란을 얻었다. 의도적으로 저분자량 유기금속 화합물을 공존시키기 위한 목적으로 테트라부 톡시티타늄 5g을 변성 폴리카르보실란에 첨가하여 변성 폴리카르보실란과 저분자량 유기금속 화합물의 혼합물을 얻었다. 100 g of toluene, 50 g of tetrabutoxytitanium, and 5 g of iron (III) acetylacetonate were added to 50 g of polycarbosilane synthesized according to Reference Example 1, and the mixture was preheated at 100 ° C. for 1 hour, and then the mixture was 150 The toluene was distilled off slowly by increasing the temperature to 0 ° C., and the resultant mixture was reacted at this temperature for 5 hours, and then the reaction mixture was further heated to 250 ° C. and reacted at this temperature for 5 hours to obtain a modified polycarbosilane. Tetrabutoxytitanium 5g was added to the modified polycarbosilane for the purpose of intentionally coexisting the low molecular weight organometallic compound to obtain a mixture of the modified polycarbosilane and the low molecular weight organometallic compound.

변성 폴리카르보실란과 저분자량 유기금속 화합물의 혼합물을 톨루엔에 용해하고, 결과 용액을 유리로 제조된 방사장치에 장입하고, 충분히 질소 치환하고 온도를 승온시켜 톨루엔을 증류제거하고 결과물질을 180℃에서 용융 방사하였다.The mixture of the modified polycarbosilane and the low molecular weight organometallic compound is dissolved in toluene, the resulting solution is charged into a spinning apparatus made of glass, nitrogen-substituted sufficiently and the temperature is raised to distill off the toluene, and the resultant is heated at 180 ° C. Melt spun.

방사된 섬유를 공기중에서 150℃까지 단계적으로 가열하여 불용화 섬유를 형성하고 1,200℃로 공기중에서 1시간동안 소성하여 실리카-기초 광촉매 섬유를 얻었다.The spun fibers were heated stepwise to 150 ° C. in air to form insoluble fibers and calcined at 1,200 ° C. for 1 hour in air to obtain silica-based photocatalyst fibers.

얻어진 섬유(평균 직경: 13㎛)는 형광 X-선을 사용하여 각 원소의 함유된 비율을 분석하였다. 산화물 환가로 실리카의 양은 80중량%, 티타니아의 양은 17중량% 그리고 철 산화물의 양은 3중량%이었다. 나아가, 섬유는 EPMA(전자 탐침 미량분석)으로 구성 원자의 분산상태를 조사하였다. 최외주부로 부터 1㎛ 깊이까지의 영역에서 Ti/Si의 몰비율은 0.87이며, 최외주로부터 3~4㎛의 깊이의 영역에서 Ti/Si의 몰비율은 0.15이며, 중심부분에서 Ti/Si의 몰비율은 0.04였다. 따라서, 섬유는 표면을 향하여 티타늄이 증가하는 경사 조성을 갖음을 확인하였다. 마찬가지로, 최외주부로 부터 1㎛깊이까지의 영역에서 Fe/Si의 몰비율은 0.08이며, 최외주로 부터 3~4㎛의 깊이의 영역에서 Fe/Si의 몰비율은 0.02이며, 중심부분에서 Fe/Si의 몰비율은 0.01이었다. 따라서, 섬유는 표면으로 갈수록 철이 증가하는 경사조성을 갖음을 확인하였다. 상기 섬유는 1.7GPa의 인장강도를 가졌다. 상기 섬유의 인장강도는 통상의 졸-겔법으로 얻어지는 애너테이스형 티타니아/실리카 섬유의 인장강도보다 현저 하게 컸다.The obtained fiber (average diameter: 13 µm) was analyzed for the content of each element by using fluorescent X-rays. In terms of oxide value, the amount of silica was 80% by weight, the amount of titania was 17% by weight, and the amount of iron oxide was 3% by weight. Further, the fibers were examined for the dispersion state of constituent atoms by EPMA (electron probe microanalysis). The molar ratio of Ti / Si is 0.87 in the region from the outermost periphery to 1 µm deep, and the molar ratio of Ti / Si is 0.15 in the region 3 to 4 µm deep from the outermost periphery. The molar ratio was 0.04. Thus, the fiber was found to have a tilting composition with increasing titanium towards the surface. Similarly, the molar ratio of Fe / Si in the region from the outermost circumference to 1 탆 depth is 0.08, the molar ratio of Fe / Si in the region of 3 to 4 탆 depth from the outermost circumference is 0.02, and the Fe in the central portion is Fe. The molar ratio of / Si was 0.01. Therefore, it was confirmed that the fiber has a gradient composition in which iron increases toward the surface. The fiber had a tensile strength of 1.7 GPa. The tensile strength of the fibers was significantly greater than that of the anateis titania / silica fibers obtained by the conventional sol-gel method.

나아가, 상기 섬유의 흡수 스펙트럼을 측정하였으며, 도 2에 결과를 나타내었다.Furthermore, the absorption spectrum of the fiber was measured and the results are shown in FIG.

상기 섬유 0.2g을 직경이 60mm인 샤레에 놓았다. 밀리리터 당 1,000,000의 대장균수를 갖는 물 20밀리리터를 샤레에 첨가하였다. 상기 물에 샤레의 상부로부터 파장이 420nm이하인 빛을 자르는 필터가 장착된 제논 램프로 24시간동안 조사하였다. 조사후에, 샤레에서 대장균 용액을 취하고 한천 배지에서에서 배양하였다. 그 후, 잔류 대장균의 수를 조사하였다. 잔류 대장균의 수는 0이었다. 가시광 조사에 의한 광촉매 활성이 확인되었다.
0.2 g of the fiber was placed in a 60 mm diameter curry. 20 milliliters of water with 1,000,000 coliforms per milliliter was added to the curry. The water was irradiated with a xenon lamp equipped with a filter for cutting light having a wavelength of 420 nm or less from the top of the saree for 24 hours. After irradiation, E. coli solution was taken from the sare and incubated in agar medium. Thereafter, the number of residual E. coli was examined. The number of residual E. coli was zero. Photocatalytic activity by visible light irradiation was confirmed.

실시예 2Example 2

톨루엔 100g, 테트라부톡시티타늄 50g 및 텅스텐 에톡사이드 3g을 참고예 1에 따라 합성된 폴리카르보실란 50g에 첨가하고, 혼합물을 1시간동안 100℃로 예비 가열한 후, 혼합물을 천천히 150℃까지 승온시켜 톨루엔을 증류제거하고, 결과 혼합물을 5시간동안 상기 온도에서 반응시킨 다음 반응 혼합물을 250℃까지 승온시키고 이 온도에서 5시간동안 반응시켜 변성 폴리카르보실란을 얻었다. 의도하는 저분자량 유기금속 화합물이 공존하도록 하기 위해 테트라부톡시티타늄 5g을 변성 폴리카르보실란에 첨가하여 변성 폴리카르보실란과 저분자량의 유기금속 화합물의 혼합물을 얻었다.100 g of toluene, 50 g of tetrabutoxytitanium and 3 g of tungsten ethoxide were added to 50 g of polycarbosilane synthesized according to Reference Example 1, the mixture was preheated to 100 ° C. for 1 hour, and then the mixture was slowly heated to 150 ° C. Toluene was distilled off, and the resulting mixture was reacted at this temperature for 5 hours, and then the reaction mixture was heated up to 250 ° C. and reacted at this temperature for 5 hours to obtain a modified polycarbosilane. In order to coexist the intended low molecular weight organometallic compound, 5 g of tetrabutoxytitanium was added to the modified polycarbosilane to obtain a mixture of the modified polycarbosilane and the low molecular weight organometallic compound.

변성된 폴리카르보실란과 저분자량 유기금속 화합물의 혼합물을 톨루엔에 용 해하고, 결과 혼합물을 유리로 제조된 방사 장치에 장입하고, 충분히 질소 치환하고 승온시켜 톨루엔을 증류제거하고 결과 물질은 180℃에서 용융-방사되었다.The mixture of the modified polycarbosilane and the low molecular weight organometallic compound is dissolved in toluene, the resultant mixture is charged into a spinning apparatus made of glass, nitrogen-substituted and warmed up, and the toluene is distilled off, and the resulting material is at 180 ° C. Melt-spun.

방사 섬유는 공기중에서 단계적으로 150℃까지 가열하여 불용화 섬유를 형성하고, 불용화 섬유를 1,200℃의 공기중에서 1시간동안 소성하여 실리카-기초 광촉매 섬유를 얻었다.Spinning fibers were heated stepwise to 150 ° C. in air to form insoluble fibers, and the insoluble fibers were calcined for 1 hour in 1,200 ° C. air to obtain silica-based photocatalyst fibers.

얻어진 섬유(직경:13㎛)는 형광 X-선을 사용하여 각 원소가 함유된 비율을 분석하였다. 산화물 환산으로 실리카의 양은 80중량%, 티타니아의 양은 15중량%, 텅스텐 산화물의 양은 5중량%이었다. 나아가, 섬유는 EPMA으로 구성원자의 분산상태를 조사하였다. 최외주부로 부터 1㎛깊이의 영역에서 Ti/Si의 몰비율은 0.85, 최외주로 부터 3~4㎛ 깊이 영역에서 Ti/Si의 몰비율은 0.13이며, 중심부분의 Ti/Si의 몰비율은 0.04이었다. 따라서, 섬유는 표면을 향하여 티타늄이 증가되는 경사조성을 갖음을 확인하였다. 마찬가지로, 최외주부로 부터 1㎛의 깊이의 영역에서 W/Si의 몰비율은 0.07이며, 최외주로부터 3~4㎛ 깊이영역에서 W/Si의 몰비율은 0.02이며, 중심부분의 영역에서 W/Si의 몰비율은 0.01이었다. 따라서, 상기 섬유는 표면을 향하여 텅스텐이 증가되는 경사조성을 갖음을 확인하였다. 상기 섬유는 1.6GPa의 인장강도를 가졌다. 상기 섬유의 인장강도는 통상의 졸-겔법으로 얻어지는 에너테이스형 티타니아/실리카의 인장강도보다 현저하게 컸다. The obtained fiber (diameter: 13 micrometers) analyzed the ratio which contained each element using the fluorescent X-ray. The amount of silica in terms of oxide was 80% by weight, the amount of titania was 15% by weight, and the amount of tungsten oxide was 5% by weight. Further, the fibers were examined for the dispersion state of the members by EPMA. The molar ratio of Ti / Si is 0.85 in the region of 1 µm deep from the outermost periphery, and the molar ratio of Ti / Si is 0.13 in the region of 3-4 µm deep from the outermost periphery. 0.04. Therefore, it was confirmed that the fiber had an inclined composition in which titanium was increased toward the surface. Similarly, the molar ratio of W / Si is 0.07 in the region of 1 탆 depth from the outermost circumference, the molar ratio of W / Si is 0.02 in the region of 3-4 탆 depth from the outermost circumference, and W / Si in the region of the central portion. The molar ratio of Si was 0.01. Therefore, it was confirmed that the fiber had an inclined composition in which tungsten was increased toward the surface. The fiber had a tensile strength of 1.6 GPa. The tensile strength of the fibers was significantly greater than that of the enanthate titania / silica obtained by the conventional sol-gel method.

상기 섬유 0.2g을 직경이 60mm인 샤레에 놓았다. 밀리리터 당 1,000,000의 대장균수를 갖는 물 20밀리리터를 샤레에 첨가하였다. 상기 물에 샤레의 상부로부터 파장이 420nm이하인 빛을 자르는 필터가 장착된 제논 램프로 24시간동안 조사 하였다. 조사후에, 샤레에서 대장균 용액을 취하고 한천배지에서 배양하였다. 그 후, 잔류 대장균의 수를 조사하였다. 잔류 대장균의 수는 0이었다. 가시광 조사에 의한 광촉매 활성이 확인되었다.
0.2 g of the fiber was placed in a 60 mm diameter curry. 20 milliliters of water with 1,000,000 coliforms per milliliter was added to the curry. The water was irradiated for 24 hours with a xenon lamp equipped with a filter that cuts light having a wavelength of 420 nm or less from the top of the saree. After irradiation, E. coli solution was taken from the sare and incubated in agar medium. Thereafter, the number of residual E. coli was examined. The number of residual E. coli was zero. Photocatalytic activity by visible light irradiation was confirmed.

비교예 1Comparative Example 1

톨루엔 100g과 테트라부톡시티타늄 50g을 참고예 1에 따라 합성된 폴리카르보실란 50g에 첨가하고, 혼합물을 1시간동안 100℃에서 예비 가열한 다음, 혼합물을 150℃까지 천천히 승온시켜 톨루엔을 증류 제거하고, 결과 혼합물을 상기 온도에서 5시간동안 반응시킨 다음 반응 혼합물을 250℃까지 승온시키고 이 온도에서 5시간동안 반응시켜 변성 폴리카르보실란을 얻었다. 의도적으로 저분자량 유기금속 화합물을 공존하도록 하기 위한 목적으로 테트라부톡시티타늄 5g을 폴리카르보실란에 첨가하여 변성 폴리카르보실란과 저분자량 유기금속 화합물의 혼합물을 얻었다.100 g of toluene and 50 g of tetrabutoxytitanium were added to 50 g of polycarbosilane synthesized according to Reference Example 1, the mixture was preheated at 100 ° C for 1 hour, and then the mixture was slowly heated to 150 ° C to distill off the toluene. The resulting mixture was allowed to react at this temperature for 5 hours, and then the reaction mixture was heated up to 250 ° C. and reacted at this temperature for 5 hours to obtain modified polycarbosilane. Tetrabutoxytitanium 5g was added to the polycarbosilane for the purpose of intentionally coexisting the low molecular weight organometallic compound to obtain a mixture of the modified polycarbosilane and the low molecular weight organometallic compound.

변성 폴리카르보실란과 저분자량 유기금속 화합물의 혼합물을 톨루엔에 용해하고, 결과 용액을 유리로 제조된 방사장치에 장입하고, 충분히 질소 치환하고 온도를 상승시켜 톨루엔을 증류제거하고 결과물질은 180℃에서 용융-방사하였다.The mixture of the modified polycarbosilane and the low molecular weight organometallic compound is dissolved in toluene, the resulting solution is charged into a spinning machine made of glass, nitrogen-substituted sufficiently and the temperature is raised to distill off the toluene, and the resultant is 180 ° C. Melt-spinning.

방사 섬유를 공기중에서 150℃로 단계적으로 가열하여 불용화 섬유를 형성하고 불용화 섬유는 1,200℃로 공기중에서 1시간동안 소성하여 티타니아/실리카 섬유를 얻었다.The spinning fibers were gradually heated to 150 ° C. in air to form insoluble fibers, and the insoluble fibers were calcined at 1,200 ° C. in air for 1 hour to obtain titania / silica fibers.

얻어진 섬유(평균 직경: 13㎛)는 형광 X-선을 사용하여 각 원소의 함유된 비율을 분석하였다. 산화물 환가로, 실리카의 양은 83중량%, 티타니아의 양은 17중량%였다. 나아가, 상기 섬유는 EPMA으로 구성 원자의 분산상태를 조사하였다. 최외주부로부터 1㎛깊이의 영역에서 Ti/Si의 몰비율은 0.85, 최외주로부터 3~4㎛의 깊이의 영역에서 Ti/Si의 몰비율은 0.13이며, 중심부분의 Ti/Si의 몰비율은 0.04이었다. 따라서, 섬유는 표면을 향하여 티타늄이 경사조성을 갖음을 확인하였다. 상기 섬유는 1.8GPa의 인장강도를 가졌다. 상기 섬유의 인장강도는 통상의 졸-겔법으로 얻어지는 에너테이스형 티타니아/실리카의 인장강도보다 현저히 높았다. The obtained fiber (average diameter: 13 µm) was analyzed for the content of each element by using fluorescent X-rays. In terms of oxide valency, the amount of silica was 83% by weight and the amount of titania was 17% by weight. Furthermore, the fibers were examined for dispersion state of constituent atoms with EPMA. The molar ratio of Ti / Si is 0.85 in the region of 1 μm deep from the outermost periphery, and the molar ratio of Ti / Si is 0.13 in the region of 3-4 μm deep from the outermost periphery. 0.04. Therefore, it was confirmed that the titanium has a gradient composition toward the surface. The fiber had a tensile strength of 1.8 GPa. The tensile strength of the fibers was significantly higher than that of the enanthate titania / silica obtained by the conventional sol-gel method.

나아가, 상기 섬유의 흡수 스펙트럼을 측정하였으며, 도 2에 결과를 나타내었다. Furthermore, the absorption spectrum of the fiber was measured and the results are shown in FIG.

상기 섬유 0.2g을 직경이 60mm인 샤레에 놓았다. 밀리리터 당 1,000,000의 대장균수를 갖는 물 20밀리리터를 샤레에 첨가하였다. 상기 물에 샤레의 상부로부터 파장이 420nm이하인 빛을 자르는 필터가 장착된 제논 램프로 24시간동안 조사하였다. 조사후에, 샤레에서 대장균 용액을 취하고 한천배지에서 배양하였다. 그 후, 잔류 대장균의 수를 조사하였다. 대장균의 수가 100,000,000로 증가된다는 것을 발견하였다. 가시광 조사에 의한 광촉매 활성이 확인되지 않았다.0.2 g of the fiber was placed in a 60 mm diameter curry. 20 milliliters of water with 1,000,000 coliforms per milliliter was added to the curry. The water was irradiated with a xenon lamp equipped with a filter for cutting light having a wavelength of 420 nm or less from the top of the saree for 24 hours. After irradiation, E. coli solution was taken from the sare and incubated in agar medium. Thereafter, the number of residual E. coli was examined. It was found that the number of E. coli increased to 100,000,000. Photocatalytic activity by visible light irradiation was not confirmed.

본 발명의 실리카-기초 광촉매 섬유는 우수한 가시광선 활성을 갖는다.The silica-based photocatalyst fibers of the present invention have good visible light activity.

Claims (6)

실리카 성분을 주체로 하는 산화물상(제 1상) 및 티타니아 상(제 2상)을 포함하여 이루어지는 복합 산화물을 포함하며, 상기 제 2상은 티타늄 이외의 다른 금속원소를 함유하며, 제 2상의 존재비율은 섬유의 표면을 향하여 경사적으로 증가하는 가시광 활성을 갖는 실리카-기초 광촉매 섬유.A composite oxide comprising an oxide phase (first phase) and a titania phase (second phase) mainly composed of a silica component, wherein the second phase contains a metal element other than titanium, and an abundance ratio of the second phase A silica-based photocatalyst fiber having visible light activity that increases obliquely toward the surface of silver fibers. 제 1항에 있어서, 섬유 전체에 대한 상기 제 1상의 존재 비율은 98~40중량%이며, 섬유 전체에 대한 상기 제 2상의 존재비율은 2~60중량%임을 특징으로 하는 실리카-기초 광촉매 섬유.The silica-based photocatalyst fiber according to claim 1, wherein the proportion of the first phase to the fiber is 98 to 40% by weight, and the proportion of the second phase to the fiber is 2 to 60% by weight. 제 2항에 있어서, 제 2상에서 티타늄 이외의 다른 금속원소의 존재비율은 제 2상 전체에 대하여 산화물 환가로 5~40중량%임을 특징으로 하는 실리카-기초 광촉매 섬유.3. The silica-based photocatalyst fiber according to claim 2, wherein the abundance ratio of metal elements other than titanium in the second phase is 5 to 40% by weight in terms of oxide relative to the entire second phase. 제 1항에 있어서, 제 2상에서 티타늄 이외의 다른 금속원소는 Fe,W,Bi,V,Cr,Mn, Co,Ni,Cu,Mg,Ag,Pd,Pt,Zn,Ru,Ce, 및 Rh로 구성되는 그룹으로부터 선택되는 최소 하나의 금속원소임을 특징으로 하는 실리카-기초 광촉매 섬유.The metal phase of claim 1 wherein the metal elements other than titanium in the second phase are Fe, W, Bi, V, Cr, Mn, Co, Ni, Cu, Mg, Ag, Pd, Pt, Zn, Ru, Ce, and Rh. Silica-based photocatalyst fibers, characterized in that at least one metal element selected from the group consisting of. 방사된 섬유를 얻기위해, 다음 화학식으로 나타내어지는 주사슬 구조를 가지 며, 수평균 분자량이 200~10,000인 폴리카르보실란을 유기금속 화합물로 변성시켜 얻어지는 변성 폴리카르보실란을 용융-방사하거나 혹은 In order to obtain the spun fiber, the modified polycarbosilane having a main chain structure represented by the following formula and obtained by modifying a polycarbosilane having a number average molecular weight of 200 to 10,000 with an organometallic compound, or
Figure 112002037524670-pat00004
Figure 112002037524670-pat00004
(단, 상기 식중 R은 수소원자, 저급 알킬기 혹은 페닐기이다.)(Wherein R is a hydrogen atom, a lower alkyl group or a phenyl group) 변성 폴리카르보실란과 유기금속 화합물의 혼합물을 용융-방사하는 단계;Melt-spinning a mixture of the modified polycarbosilane and the organometallic compound; 방사된 섬유를 불용화하는 단계; 및Insolubilizing the spun fibers; And 공기중에서 혹은 산소중에서 불용화된 섬유를 소성하는 단계;Calcining the fibers insolubilized in air or in oxygen; 를 포함하는 청구항 1항의 실리카-기초 광촉매 섬유의 제조방법.Method for producing a silica-based photocatalyst fiber of claim 1 comprising a.
제 5항에 있어서, 상기 유기금속 화합물은 화학식 M(OR')n' 혹은 MR"m의 기본 구조를 갖는 화합물이며, 이때 M은 Fe, W, Bi, V, Cr, Mn, Co, Ni, Cu, Mg, Ag, Pd, Pt, Zn, Ru, Ce, 및 Rh로 구성되는 그룹으로부터 선택되는 최소 하나의 금속원소, R'은 1~20개의 탄소 원자를 갖는 알킬기 혹은 페닐기, R"는 아세틸 아세토네이트이며, m 및 n'는 각각 1보다 크고 6 보다 작은 정수임을 특징으로 하는 방법.The method of claim 5, wherein the organometallic compound is a compound having a basic structure of the formula M (OR ') n' or MR "m, wherein M is Fe, W, Bi, V, Cr, Mn, Co, Ni, At least one metal element selected from the group consisting of Cu, Mg, Ag, Pd, Pt, Zn, Ru, Ce, and Rh, R 'is an alkyl or phenyl group having from 1 to 20 carbon atoms, and R "is acetyl Acetonate, wherein m and n 'are integers greater than 1 and less than 6, respectively.
KR1020020070559A 2002-05-01 2002-11-14 Silica-based Photocatalyst Fiber Having Visible-light Activity And Process For The Production Thereof KR100936447B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2002-00129590 2002-05-01
JP2002129590A JP3465706B1 (en) 2002-05-01 2002-05-01 Silica-based photocatalytic fiber having visible light activity and method for producing the same

Publications (2)

Publication Number Publication Date
KR20030086211A KR20030086211A (en) 2003-11-07
KR100936447B1 true KR100936447B1 (en) 2010-01-13

Family

ID=29208228

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020070559A KR100936447B1 (en) 2002-05-01 2002-11-14 Silica-based Photocatalyst Fiber Having Visible-light Activity And Process For The Production Thereof

Country Status (6)

Country Link
US (1) US6753292B2 (en)
EP (1) EP1359237B1 (en)
JP (1) JP3465706B1 (en)
KR (1) KR100936447B1 (en)
DE (1) DE60219424T2 (en)
TW (1) TWI245822B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7030053B2 (en) * 2002-11-06 2006-04-18 Conocophillips Company Catalyst composition comprising ruthenium and a treated silica support component and processes therefor and therewith for preparing high molecular weight hydrocarbons such as polymethylene
CN100342963C (en) * 2005-01-07 2007-10-17 中南大学 Method for preparing composite photocatalysis material of titanium dioxide
KR100737968B1 (en) * 2005-08-12 2007-07-12 캉 나 흐시웅 엔터프라이즈 캄파니, 리미티드 Fluid cleaning system and method for cleaning a fluid
CA2624092C (en) * 2005-09-29 2011-04-26 Sumitomo Metal Industries, Ltd. Titanium oxide photocatalyst, method for producing same and use thereof
WO2008038529A1 (en) 2006-09-27 2008-04-03 Ube Industries, Ltd. Silica base composite photocatalyst and process for producing the same
JPWO2008111609A1 (en) * 2007-03-14 2010-06-24 日東紡績株式会社 Method for producing silica fiber
CN101680129B (en) * 2007-03-19 2012-04-11 宇部兴产株式会社 Silica-based composite oxide fiber, catalyst fiber comprising the same, and process for producing the same
JP5246926B2 (en) * 2008-07-22 2013-07-24 信越石英株式会社 Fibrous photocatalyst and purification device
WO2011122234A1 (en) * 2010-03-31 2011-10-06 宇部興産株式会社 Photocatalyst fibers and method for producing the same
CN101884917A (en) * 2010-06-29 2010-11-17 于建强 Method for preparing composite fiber material for visible light photocatalytic degradation of organic pollutants
RU2603136C2 (en) 2011-02-07 2016-11-20 Вилосис Текнолоджиз Лимитед Catalysts
JP5520346B2 (en) * 2012-07-24 2014-06-11 信越石英株式会社 Method for producing fibrous photocatalyst
GB201214122D0 (en) 2012-08-07 2012-09-19 Oxford Catalysts Ltd Treating of catalyst support
KR101866521B1 (en) * 2016-07-28 2018-06-12 신동수 Polyester fiber having antimicrobial effect
CN114507941B (en) * 2022-02-15 2023-07-07 肇庆学院 Fiber membrane for visible light catalytic sterilization and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033564A1 (en) * 1997-12-23 1999-07-08 Studiengesellschaft Kohle Mbh Highly porous photocatalyst for utilising visible light
EP1164212A2 (en) * 2000-06-13 2001-12-19 Ube Industries, Ltd. Silica-group composite oxide fiber and process for the production thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224752A (en) * 1984-04-20 1985-11-09 Ube Ind Ltd Metal composite material reinforced by inorganic fiber
DE3774939D1 (en) * 1986-06-17 1992-01-16 Toyoda Chuo Kenkyusho Kk FIBERS FOR COMPOSITE MATERIALS, COMPOSITE MATERIALS USING SUCH FIBERS AND METHOD FOR THEIR PRODUCTION.
US4770935A (en) * 1986-08-08 1988-09-13 Ube Industries, Ltd. Inorganic fibrous material as reinforcement for composite materials and process for production thereof
US5240888A (en) * 1991-04-19 1993-08-31 Ube Industries, Ltd. Inorganic fiber and process for the production thereof
ES2110381T3 (en) * 1995-10-30 2004-10-16 Unifrax Corporation GLASS FIBER RESISTANT TO HIGH TEMPERATURES.
DE60225158T2 (en) * 2001-04-05 2009-02-26 Ube Industries, Ltd., Ube Zirconia containing inorganic fiber and method for making same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033564A1 (en) * 1997-12-23 1999-07-08 Studiengesellschaft Kohle Mbh Highly porous photocatalyst for utilising visible light
EP1164212A2 (en) * 2000-06-13 2001-12-19 Ube Industries, Ltd. Silica-group composite oxide fiber and process for the production thereof

Also Published As

Publication number Publication date
TWI245822B (en) 2005-12-21
US6753292B2 (en) 2004-06-22
US20030207758A1 (en) 2003-11-06
TW200306366A (en) 2003-11-16
JP3465706B1 (en) 2003-11-10
KR20030086211A (en) 2003-11-07
EP1359237B1 (en) 2007-04-11
DE60219424T2 (en) 2007-12-20
DE60219424D1 (en) 2007-05-24
EP1359237A1 (en) 2003-11-05
JP2003328236A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
KR100936447B1 (en) Silica-based Photocatalyst Fiber Having Visible-light Activity And Process For The Production Thereof
KR101410454B1 (en) Silica base composite photocatalyst and process for producing the same
EP1164212B1 (en) Silica-group composite oxide fiber and process for the production thereof
JP4924709B2 (en) Silica-based composite oxide fiber, catalyst fiber using the same, and production method thereof
JP3465699B2 (en) Silica-based composite oxide fiber and method for producing the same
EP1431431B1 (en) Zirconia-containing inorganic fiber and method for production thereof
JP3436267B2 (en) Purification device and photocatalyst cartridge
EP2554261A1 (en) Photocatalyst fibers and method for producing the same
JP3812481B2 (en) Hazardous substance removal filter
JP3815392B2 (en) Nonwoven fabric and method for producing the same
JP2013202491A (en) Photocatalytic filter cartridge, method for manufacturing the same and purification device using the same
KR100942186B1 (en) Manufacturing method of polycarbosilane using alumina powder as catalyst and manufacturing method of silicon carbide from polycarbosilane
JP2003226582A (en) Ceramic having surface layer with gradient composition and method of producing the same
JP2003055842A (en) Zirconia-containing inorganic fiber and method for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121227

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131218

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20151217

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20161221

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20171219

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee