JP3465699B2 - Silica-based composite oxide fiber and method for producing the same - Google Patents

Silica-based composite oxide fiber and method for producing the same

Info

Publication number
JP3465699B2
JP3465699B2 JP2001171956A JP2001171956A JP3465699B2 JP 3465699 B2 JP3465699 B2 JP 3465699B2 JP 2001171956 A JP2001171956 A JP 2001171956A JP 2001171956 A JP2001171956 A JP 2001171956A JP 3465699 B2 JP3465699 B2 JP 3465699B2
Authority
JP
Japan
Prior art keywords
phase
fiber
silica
composite oxide
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001171956A
Other languages
Japanese (ja)
Other versions
JP2002371436A (en
Inventor
敏弘 石川
義勝 原田
英邦 林
紳二 梶井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2001171956A priority Critical patent/JP3465699B2/en
Publication of JP2002371436A publication Critical patent/JP2002371436A/en
Application granted granted Critical
Publication of JP3465699B2 publication Critical patent/JP3465699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、優れた光触媒機
能、電気的機能及び/又は熱的触媒機能を有する高強度
なシリカ基複合酸化物繊維並びにその製造方法に関す
る。詳しくは、力学的特性を負担する中心部(シリカ
相)と各種機能を負担する表層並びにその近傍層の酸化
物相からなり、なお且つ表層に向かった傾斜組成を有す
る繊維並びにその製造方法に関する。
TECHNICAL FIELD The present invention relates to a high-strength silica-based composite oxide fiber having an excellent photocatalytic function, electrical function and / or thermal catalytic function, and a method for producing the same. More specifically, the present invention relates to a fiber having a central portion (silica phase) that bears mechanical properties, an oxide layer of a surface layer that bears various functions, and an oxide phase of a layer in the vicinity thereof, and having a gradient composition toward the surface layer and a method for producing the same.

【0002】[0002]

【従来の技術】二酸化チタンに代表される半導体の光触
媒効果については、水の分解反応をはじめとして、19
70年代の後半から多くの研究がなされてきた。これま
で同触媒機能を利用する際、チタニア結晶粒を基板上に
固定化させて用いられてきたが、接着方法に多くの問題
が生じてきたことから、近年では、固定化に伴う問題が
発生しないチタニア繊維への感心が高まってきている。
2. Description of the Related Art Regarding the photocatalytic effect of semiconductors represented by titanium dioxide, 19
Much research has been done since the late 70's. Until now, when using the same catalytic function, titania crystal grains have been used by immobilizing them on the substrate, but since many problems have arisen in the bonding method, problems with immobilization have occurred in recent years. There is growing interest in titania fibers.

【0003】例えば、特開平5−184923号公報に
は、チタンアルコキシドとバナジウム化合物をアルコー
ルに溶解させ、加水分解させて調整したゾル状物を繊維
形状に成形した後ゲル化し、200〜700℃の範囲で
熱処理して、アナターゼ型チタニアと酸化バナジウムの
結晶からなる繊維を合成する方法が開示されている。本
公開特許公報の実施例では、チタニアとバナジア以外に
多くのシリカ成分が含有された繊維が主として記載され
ており、この繊維を用いた織物としての触媒活性も、シ
リカからなるEガラスに同繊維を僅か20%だけ混紡さ
れたものについてのみ示されているに過ぎない。
For example, in Japanese Unexamined Patent Publication (Kokai) No. 5-184923, a sol-like substance prepared by dissolving a titanium alkoxide and a vanadium compound in alcohol and hydrolyzing the mixture is molded into a fibrous shape and then gelled to obtain a gel at 200 to 700 ° C. A method of synthesizing a fiber composed of crystals of anatase-type titania and vanadium oxide by heat treatment in a range is disclosed. In the examples of this publication, fibers containing many silica components in addition to titania and vanadia are mainly described, and the catalytic activity as a woven fabric using these fibers is the same as that of E glass made of silica. Is only shown for a blend of only 20%.

【0004】従来からゾル−ゲル法により合成されるチ
タニア繊維は極めて脆弱であることが知られており、そ
の強度を向上させる研究として、例えば、「窯業協会
誌」第94巻(12)、第1243〜1245ページ
(1986年)には、シリカ成分を共存させることが述
べられている。上記、特開平5−184923号公報の
実施例に記載されている方法は、正にこの手法を採用し
ているのに他ならない。また、特開平11−5036号
公報には、ゾル−ゲル法による光触媒用シリカーチタニ
ア繊維とその製造方法について開示されているが、この
場合の繊維強度も0.1〜1.0GPaと極めて低いもの
であった。
It has been conventionally known that the titania fiber synthesized by the sol-gel method is extremely fragile, and as a study for improving the strength thereof, for example, “Ceramics Association Magazine” Vol. 94 (12), No. Pages 1243 to 1245 (1986) describe coexistence of a silica component. The method described in the above-mentioned embodiment of Japanese Patent Laid-Open No. 5-184923 is exactly the same as this method. Further, Japanese Patent Laid-Open No. 11-5036 discloses a silica-titania fiber for photocatalyst by a sol-gel method and a method for producing the same, but the fiber strength in this case is also extremely low at 0.1 to 1.0 GPa. It was a thing.

【0005】上記以外にも、チタニアの製造方法として
以下のような報告がなされている。例えば、Journal of
Material Science Letters 5 (1986) 402-404には、チ
タンアルコキシドのアルコール溶液中に塩酸を共存さ
せ、加水分解することにより得られるコロイド状物を紡
糸し、加湿雰囲気下での加熱後、空気中で昇温してゲル
状のチタニア繊維(アナターゼ)を合成する方法が記載
されている。また、The American Ceramic Society Bul
letin, May 1998, 61-65には、チタニアの微粒子に水を
加えて得たスラリーを ビスコースと混合して調製され
た粘性流体を繊維状に成形した後、高温の空気中で加熱
焼成してチタニア繊維を得る方法が報告されている。
In addition to the above, the following reports have been made as a method for producing titania. For example, Journal of
In Material Science Letters 5 (1986) 402-404, hydrochloric acid is allowed to coexist in an alcohol solution of titanium alkoxide, and a colloidal product obtained by hydrolysis is spun, heated in a humidified atmosphere, and then in air. A method for synthesizing a gel-like titania fiber (anatase) by heating is described. Also, The American Ceramic Society Bul
letin, May 1998, 61-65, a viscous fluid prepared by mixing water with fine particles of titania and viscose was formed into a fibrous form, which was then heated and baked in high temperature air. A method for obtaining titania fiber has been reported.

【0006】[0006]

【発明が解決しようとする課題】これらの繊維は、いず
れもチタニアの1次粒子の凝集過程を経て繊維化される
ことから、繊維内部に大きな欠陥が残存しており、光触
媒機能は認められたとしても極めて脆弱で、実用化には
多くの問題点解決が必要とされている。また、強度向上
を目的としてシリカ成分を共存させた系では、チタニア
とシリカが混在した状態で存在していることから、チタ
ニア単独に比べて十分な光触媒活性が得られるものでは
なく、これも実用化を阻む大きな問題点となっている。
光触媒繊維をフィルターとして使用する場合、高速の気
体流に長時間曝されることから、繊維強度が高い方が望
ましいことは当然で、特に航空機エンジンや自動車エン
ジンから排出されるガスへの適用も考えればこれまでの
常識を超えた高強度の光触媒機能或いは熱触媒機能を有
する繊維の開発が強く望まれている。
Since all of these fibers are made into fibers through the agglomeration process of primary particles of titania, large defects remain inside the fibers, and the photocatalytic function was recognized. However, it is extremely vulnerable, and many problems must be solved before it can be put to practical use. Further, in the system in which a silica component coexists for the purpose of improving strength, since titania and silica are present in a mixed state, it is not possible to obtain sufficient photocatalytic activity as compared with titania alone, which is also practical. It is a big problem that prevents the change.
When using photocatalyst fiber as a filter, it is naturally desirable to have a high fiber strength because it is exposed to a high-speed gas flow for a long time, and in particular, it may be applied to gas discharged from aircraft engines and automobile engines. For example, there is a strong demand for the development of fibers having a high-strength photocatalytic function or thermocatalytic function that exceeds conventional wisdom.

【0007】[0007]

【課題を解決するための手段】本発明者等は、有機ケイ
素重合体からなる前駆体繊維を熱処理した後、高温の空
気中で焼成することにより緻密で高強度なシリカ繊維が
得られることを見出した。その後、同有機ケイ素重合体
中に、低分子量の有機金属化合物或いは低分子量有機ケ
イ素重合体と低分子量の有機金属化合物との反応物が共
存している場合、紡糸後の熱処理過程において、上記有
機金属化合物成分を含む低分子量物が繊維表面に選択的
に移行(ブリードアウト)し、熱処理後の空気中焼成に
より、同低分子量物に由来する酸化物層(目的とする触
媒機能を有する酸化物層)が繊維表面に効果的に生成し
ていることを見出した。また、この方法により得られた
繊維は、極めて緻密で高強度を有していることをも見出
した。
The inventors of the present invention have found that a dense and high-strength silica fiber can be obtained by heat-treating a precursor fiber made of an organosilicon polymer and then firing it in air at high temperature. I found it. Then, in the same organosilicon polymer, when a low molecular weight organometallic compound or a reaction product of a low molecular weight organosilicon compound and a low molecular weight organometallic compound coexists, in the heat treatment process after spinning, A low molecular weight substance containing a metal compound component selectively migrates (bleeds out) to the fiber surface, and is fired in air after heat treatment to form an oxide layer derived from the low molecular weight substance (an oxide having a desired catalytic function). It has been found that the layer) is effectively generated on the fiber surface. It has also been found that the fibers obtained by this method are extremely dense and have high strength.

【0008】有機ケイ素重合体を出発原料としてシリカ
を生成させる過程では、ケイ素−炭素結合がケイ素−酸
素結合に変換される酸化過程が含まれており、この過程
では約1.37倍の体積増が見込まれる。この変化が6
00℃以上の比較的低温で達成されることから、焼成に
より緻密なシリカ基複合繊維が効果的に得られ、上述の
ような高強度化が達成出来たと考えられる。
The process of forming silica from an organosilicon polymer as a starting material includes an oxidation process in which a silicon-carbon bond is converted into a silicon-oxygen bond. In this process, a volume increase of about 1.37 times is included. Is expected. This change is 6
Since it is achieved at a relatively low temperature of 00 ° C. or higher, it is considered that the dense silica-based composite fiber was effectively obtained by firing and the above-mentioned high strength could be achieved.

【0009】すなわち、本発明は、シリカ成分を主体と
する酸化物相(第1相)とシリカ以外の金属酸化物相
(第2相)との複合酸化物相からなる繊維であって、
2相を構成する金属酸化物が所定の機能を発揮するもの
であり、かつ、繊維の表層に向かって第2相を構成する
金属酸化物の少なくとも1つの金属元素の存在割合が傾
斜的に増大していることを特徴とするシリカ基複合酸化
物繊維に関するものである。
Accordingly, the present invention provides a fiber comprising a composite oxide phase of the oxide phase made mainly of silica component (first phase) and silica other than the metal oxide phase (second phase), the
Those in which the metal oxides that make up the two phases exert a specified function
, And the and relates silica-based composite oxide fiber characterized by existence ratio of at least one metal element of the metal oxide constituting the second phase toward the surface of the fibers is increased inclinatorily Is.

【0010】本発明において、シリカ成分を主体とする
酸化物相(第1相)とは、非晶質であっても結晶質であ
っても良く、またシリカと固溶体或いは共融点化合物を
形成し得る金属元素或いは金属酸化物を含有していても
良い。シリカと固溶体を形成し得る金属元素(A)ある
いはその酸化物がシリカと特定組成の化合物を形成し得
る金属元素(B)としては特に限定されるものではない
が、例えば(A)としてチタン、また(B)としてアル
ミニウム、ジルコニウム、イットリウム、リチウム、ナ
トリウム、バリウム、カルシウム、ホウ素、亜鉛、ニッ
ケル、マンガン、マグネシウム、鉄等があげられる。
In the present invention, the oxide phase (first phase) containing a silica component as a main component may be amorphous or crystalline, and forms a solid solution or a eutectic point compound with silica. The obtained metal element or metal oxide may be contained. The metal element (A) capable of forming a solid solution with silica or the metal element (B) whose oxide can form a compound having a specific composition with silica is not particularly limited, but, for example, titanium as (A), Examples of (B) include aluminum, zirconium, yttrium, lithium, sodium, barium, calcium, boron, zinc, nickel, manganese, magnesium and iron.

【0011】この第1相は、本発明で得られる繊維の内
部相を形成しており、力学的特性を負担する重要な役割
を演じている。繊維全体に対する第1相の存在割合は9
8〜40重量%であることが好ましく、目的とする第2
相の機能を十分に発現させ、なお且つ高い力学的特性を
も発現させるためには、第1相の存在割合を50〜95
重量%の範囲内に制御することが好ましい。
This first phase forms the internal phase of the fibers obtained according to the invention and plays an important role in bearing the mechanical properties. The ratio of the first phase to the whole fiber is 9
It is preferably 8 to 40% by weight, and the target second
In order to fully express the function of the phase and also to express the high mechanical characteristics, the existence ratio of the first phase is 50 to 95.
It is preferable to control within the range of weight%.

【0012】一方、第2相を構成する金属酸化物は、本
発明では目的とする機能を発現させる上で重要な役割を
演じるものであるが、その機能に応じて選択されるもの
である。例えば、光又は熱的触媒機能が要求される場合
には、チタニア或いはその共融点化合物やある特定元素
により置換型の固溶体を形成したもの等が選択され、ま
た圧電特性が期待される場合には、鉛/ジルコニウム/
チタン系酸化物等が選択される。光又は熱的触媒機能が
要求される場合の第2相を構成する金属酸化物の結晶粒
径は、15nm以下、特に10nm以下が好ましい。こ
の繊維の表層部を構成する第2相の存在割合は、酸化物
の種類により異なるが、2〜60重量%が好ましく、そ
の機能を十分に発現させ、また高強度をも同時に発現さ
せるには5〜50重量%の範囲内に制御することが好ま
しい。
On the other hand, the metal oxide constituting the second phase plays an important role in developing the intended function in the present invention, but is selected according to the function. For example, when a photocatalytic or thermal catalytic function is required, titania or its eutectic compound or a substitutional solid solution formed by a specific element is selected, and when piezoelectric characteristics are expected, , Lead / zirconium /
A titanium oxide or the like is selected. When the photocatalytic function or the thermal catalytic function is required, the crystal grain size of the metal oxide constituting the second phase is preferably 15 nm or less, particularly preferably 10 nm or less. The proportion of the second phase constituting the surface layer portion of the fiber varies depending on the type of oxide, but is preferably 2 to 60% by weight, and in order to sufficiently exhibit its function and also to exhibit high strength at the same time. It is preferable to control the content within the range of 5 to 50% by weight.

【0013】この第2相を構成する金属酸化物の少なく
とも1つの金属元素の存在割合は、繊維の表面に向って
傾斜的に増大しており、その組成の傾斜が明らかに認め
られる領域の厚さは5〜500nmの範囲に制御するこ
とが好ましいが、その傾斜領域は、繊維直径の約1/3
に及んでも良い。尚、本発明において、第1相及び第2
相の「存在割合」とは、第1相を構成する金属酸化物と
第2相を構成する金属酸化物全体、即ち繊維全体に対す
る第1相の金属酸化物及び第2相の金属酸化物の重量%
を意味している。
The abundance ratio of at least one metal element in the metal oxide forming the second phase increases in a gradient toward the surface of the fiber, and the thickness of the region where the composition gradient is clearly recognized. The thickness is preferably controlled in the range of 5 to 500 nm, but the inclined region is about 1/3 of the fiber diameter.
May extend to In the present invention, the first phase and the second phase
"Abundance ratio" of a phase means the metal oxide of the first phase and the metal oxide of the second phase, that is, the metal oxide of the first phase and the metal oxide of the second phase with respect to the whole fiber. weight%
Means

【0014】次に、本発明で得られる傾斜構造を有する
シリカ基複合酸化物繊維の製造方法について説明する。
本発明においては、主として一般式
Next, a method for producing the silica-based composite oxide fiber having a graded structure obtained by the present invention will be described.
In the present invention, the general formula

【化2】 (但し、式中のRは水素原子、低級アルキル基又はフェ
ニル基を示す。)で表される主鎖骨格を有する数平均分
子量が200〜10,000のポリカルボシランを、有
機金属化合物で修飾した構造を有する変性ポリカルボシ
ラン、或いは変性ポリカルボシランと有機金属化合物と
の混合物を溶融紡糸し、不融化処理後、空気中又は酸素
中で焼成することにより、シリカ基複合酸化物繊維を製
造することができる。
[Chemical 2] (However, R in the formula represents a hydrogen atom, a lower alkyl group or a phenyl group.) Polycarbosilane having a main chain skeleton and a number average molecular weight of 200 to 10,000 is modified with an organometallic compound. The modified polycarbosilane having the above structure, or a mixture of the modified polycarbosilane and the organometallic compound is melt-spun, and after the infusibilization treatment, the silica-based composite oxide fiber is produced by firing in air or oxygen. can do.

【0015】本発明の方法の第1工程は、シリカ基複合
繊維を製造するための出発原料として使用する数平均分
子量が1,000〜50,000の変性ポリカルボシラ
ンを製造する工程である。上記変性ポリカルボシランの
基本的な製造方法は、特開昭56−74126号に極め
て類似しているが、本発明では、その中に記載されてい
る官能基の結合状態を注意深く制御する必要がある。こ
れについて以下に概説する。
The first step of the method of the present invention is a step of producing a modified polycarbosilane having a number average molecular weight of 1,000 to 50,000 used as a starting material for producing a silica-based composite fiber. The basic method for producing the modified polycarbosilane is very similar to that in JP-A-56-74126, but in the present invention, it is necessary to carefully control the bonding state of the functional groups described therein. is there. This is outlined below.

【0016】出発原料である変性ポリカルボシランは、
主として一般式 (但し、式中のRは水素原子、低級アルキル基又はフェ
ニル基を示す。)で表される主査骨格を有する数平均分
子量が200〜10,000のポリカルボシランと、一
般式、M(OR')n或いはMR''m(Mは金属元素、R'は
炭素原子数1〜20個を有するアルキル基またはフェニ
ル基、R"はアセチルアセトナート、mとnは1より大
きい整数)を基本構造とする有機金属化合物とから誘導
されるものである。
The modified polycarbosilane which is the starting material is
Mainly general formula (However, R in the formula represents a hydrogen atom, a lower alkyl group or a phenyl group.) A polycarbosilane having a main skeleton represented by a number average molecular weight of 200 to 10,000 and a general formula, M (OR ') n or MR''m (M is a metal element, R'is an alkyl or phenyl group having 1 to 20 carbon atoms, R'is acetylacetonate, m and n are integers greater than 1) It is derived from an organic metal compound having a structure.

【0017】ここで、本発明の傾斜組成を有する繊維を
製造するには、上記有機金属化合物がポリカルボシラン
と1官能性重合体を形成し、かつ有機金属化合物の一部
のみがポリカルボシランと結合を形成する緩慢な反応条
件を選択する必要がある。その為には280℃以下、好
ましくは250℃以下の温度で不活性ガス中で反応させ
る必要がある。この反応条件では、上記有機金属化合物
はポリカルボシランと反応したとしても、1官能性重合
体として結合(即ちペンダント状に結合)しており、大
幅な分子量の増大は起こらない。この有機金属化合物が
一部に結合した変性ポリカルボシランは、ポリカルボシ
ランと有機金属化合物の相溶性を向上させる上で重要な
役割を演じる。
Here, in order to produce the fiber having the graded composition of the present invention, the organometallic compound forms a monofunctional polymer with polycarbosilane, and only a part of the organometallic compound is polycarbosilane. It is necessary to select slow reaction conditions that form a bond with. For that purpose, it is necessary to react in an inert gas at a temperature of 280 ° C. or lower, preferably 250 ° C. or lower. Under this reaction condition, even if the organometallic compound is reacted with polycarbosilane, it is bonded (that is, pendantly bonded) as a monofunctional polymer, and a large increase in molecular weight does not occur. The modified polycarbosilane partially bonded with the organometallic compound plays an important role in improving the compatibility between the polycarbosilane and the organometallic compound.

【0018】尚、2官能以上の多くの官能基が結合した
場合は、ポリカルボシランの橋掛け構造が形成されると
共に顕著な分子量の増大が認められる。この場合は、反
応中に急激な発熱と溶融粘度の上昇が起こる。一方、上
記1官能性重合体であり、かつ未反応の有機金属化合物
が残存している場合は、逆に溶融粘度の低下が観察され
る。
When a large number of bifunctional or higher functional groups are bonded, a polycarbosilane bridge structure is formed and a marked increase in the molecular weight is observed. In this case, a rapid heat generation and a rise in melt viscosity occur during the reaction. On the other hand, when it is the above-mentioned monofunctional polymer and unreacted organometallic compound remains, on the contrary, a decrease in melt viscosity is observed.

【0019】本発明では、未反応の有機金属化合物を意
図的に残存させる条件を選択することが望ましい。本発
明では、主として上記変性ポリカルボシランと未反応状
態の有機金属化合物或いは2〜3量体程度の有機金属化
合物が共存したものを出発原料として用いるが、変性ポ
リカルボシランのみでも、極めて低分子量の変性ポリカ
ルボシラン成分が含まれる場合は、同様に本発明の出発
原料として使用できる。
In the present invention, it is desirable to select conditions under which the unreacted organometallic compound is intentionally left. In the present invention, the above modified polycarbosilane and an unreacted organometallic compound or an organometallic compound in the range of about 2-3 trimers are mainly used as a starting material, but the modified polycarbosilane alone has an extremely low molecular weight. When the modified polycarbosilane component of 1 is contained, it can be similarly used as the starting material of the present invention.

【0020】本発明の方法の第2工程においては、前記
第1工程で得られた変性ポリカルボシラン、或いは変性
ポリカルボシランと低分子量の有機金属化合物の混合物
を溶融させて紡糸原液を造り、場合によってはこれをろ
過してミクロゲル、不純物等の紡糸に際して有害となる
物質を除去し、これを通常用いられる合成繊維紡糸用装
置により紡糸する。紡糸する際の紡糸原液の温度は原料
の変性ポリカルボシランの軟化温度によって異なるが、
50〜200℃の温度範囲が有利である。上記紡糸装置
において、必要に応じてノズル下部に加湿加熱筒を設け
ても良い。尚、繊維径は、ノズルからの吐出量と紡糸機
下部に設置された高速巻き取り装置の巻き取り速度を変
えることにより調整される。
In the second step of the method of the present invention, the modified polycarbosilane obtained in the first step or a mixture of the modified polycarbosilane and a low molecular weight organometallic compound is melted to prepare a spinning solution. In some cases, this is filtered to remove substances that are harmful to the spinning, such as microgels and impurities, and this is spun by a commonly used synthetic fiber spinning device. Although the temperature of the spinning dope during spinning depends on the softening temperature of the modified polycarbosilane as the raw material,
A temperature range of 50 to 200 ° C. is advantageous. In the above spinning device, a humidification heating cylinder may be provided below the nozzle, if necessary. The fiber diameter is adjusted by changing the discharge amount from the nozzle and the winding speed of a high-speed winding device installed below the spinning machine.

【0021】本発明の方法第2工程は、前記溶融紡糸の
他に、前記第1工程で得られた変性ポリカルボシラン、
或いは変性ポリカルボシランと低分子量の有機金属化合
物の混合物を、例えばベンゼン、トルエン、キシレンあ
るいはその他該変性ポリカルボシランと低分子量有機金
属化合物を溶融することのできる溶媒に溶解させ、紡糸
原液を造り、場合によってはこれをろ過してマクロゲ
ル、不純物等紡糸に際して有害な物質を除去した後、前
記紡糸原液を通常用いられる合成繊維紡糸装置により乾
式紡糸法により紡糸し、巻き取り速度を制御して目的と
する繊維を得ることができる。
In the second step of the method of the present invention, in addition to the melt spinning, the modified polycarbosilane obtained in the first step,
Alternatively, a mixture of the modified polycarbosilane and the low molecular weight organometallic compound is dissolved in, for example, benzene, toluene, xylene or another solvent capable of melting the modified polycarbosilane and the low molecular weight organometallic compound to prepare a spinning solution. In some cases, this is filtered to remove harmful substances such as macrogels and impurities during spinning, and then the spinning solution is spun by a dry spinning method using a synthetic fiber spinning device usually used to control the winding speed. The fiber can be obtained.

【0022】これらの紡糸工程において、必用ならば、
紡糸装置に紡糸筒を取り付け、その筒内の雰囲気を前記
溶媒のうち少なくとも1つの気体との混合雰囲気とする
か、或いは空気、不活性ガス、熱空気、熱不活性ガス、
スチーム、アンモニアガス、炭化水素ガス、有機ケイ素
化合物ガスの雰囲気とすることにより、紡糸筒中の繊維
の固化を制御することができる。
In these spinning steps, if necessary,
A spinning cylinder is attached to the spinning device, and the atmosphere in the cylinder is a mixed atmosphere with at least one gas of the solvents, or air, an inert gas, hot air, a heat inert gas,
By setting the atmosphere of steam, ammonia gas, hydrocarbon gas, and organosilicon compound gas, the solidification of the fibers in the spinning cylinder can be controlled.

【0023】次に本発明の方法の第3工程においては、
前記紡糸繊維を酸化雰囲気中で、張力または無張力の作
用の下で予備加熱を行い、前記紡糸繊維の不融化を行
う。この工程は、後工程の焼成の際に繊維が溶融せず、
且つ隣接繊維と接着しないことを目的として行うもので
ある。処理温度並びに処理時間は、組成により異なり、
特に規定しないが、一般に50〜400℃の範囲内で、
数時間〜30時間の処理上条件が選択される。また、上
記酸化雰囲気中には、水分、窒素酸化物、オゾン等、紡
糸繊維の酸化力を高めるものが含まれていても良く、酸
素分圧を意図的に変えても良い。
Next, in the third step of the method of the present invention,
The spun fiber is preheated in an oxidizing atmosphere under the action of tension or no tension to infusibilize the spun fiber. In this step, the fibers do not melt during firing in the subsequent step,
In addition, the purpose is not to adhere to adjacent fibers. Treatment temperature and treatment time vary depending on the composition,
Although not particularly specified, in general, in the range of 50 to 400 ° C,
Processing conditions of several hours to 30 hours are selected. The oxidizing atmosphere may contain water, nitrogen oxides, ozone, etc. that enhance the oxidizing power of the spun fiber, and the oxygen partial pressure may be intentionally changed.

【0024】ところで、原料中に含まれる低分子量物の
割合によっては、紡糸繊維の軟化温度が50℃を下回る
場合もあり、その場合は、あらかじめ上記処理温度より
も低い温度で、繊維表面の酸化を促進する処理を施す場
合もある。尚、同第3工程並びに第2工程の際に、原料
中に含まれている低分子量化合物の繊維表面へのブリー
ドアウトが進行し、目的とする傾斜組成の下地が形成さ
れるものと考えている。
By the way, depending on the proportion of low molecular weight substances contained in the raw material, the softening temperature of the spun fiber may be lower than 50 ° C. In that case, the fiber surface is previously oxidized at a temperature lower than the above treatment temperature. In some cases, a process for promoting It is considered that, in the third step and the second step, bleeding out of the low molecular weight compound contained in the raw material to the fiber surface progresses to form an underlayer having a desired gradient composition. There is.

【0025】次に本発明の方法の第4工程においては、
前記不融化した繊維を、張力または無張力下で、500
〜1800℃の温度範囲で酸化雰囲気中において焼成
し、目的とする、シリカ成分を主体とする酸化物相(第
1相)とシリカ以外の金属酸化物相(第2相)との複合
酸化物相からなり、表層に向かって第2相を構成する金
属酸化物の少なくとも1つの金属元素の存在割合が傾斜
的に増大するシリカ基複合酸化物繊維を得る。この工程
において、不融化繊維中に含まれる有機物成分は基本的
には酸化されるが、選択する条件によっては、炭素や炭
化物として繊維中に残存する場合もある。このような状
態でも、目的とする機能に支障を来さない場合はそのま
ま使用されるが、支障を来す場合は、更なる酸化処理が
施される。その際、目的とする傾斜組成並びに結晶構造
に問題が生じない温度、処理時間が選択されなければな
らない。
Next, in the fourth step of the method of the present invention,
The infusibilized fiber is subjected to 500
To 1800 ° C. in a temperature range of 1800 ° C., and is a target composite oxide of an oxide phase mainly containing a silica component (first phase) and a metal oxide phase other than silica (second phase). A silica-based composite oxide fiber that is composed of a phase and in which the abundance ratio of at least one metal element of the metal oxide that constitutes the second phase is gradually increased toward the surface layer is obtained. In this step, the organic component contained in the infusibilized fiber is basically oxidized, but it may remain in the fiber as carbon or carbide depending on the selected conditions. Even in such a state, if the intended function is not hindered, it is used as it is, but if it is hindered, further oxidation treatment is performed. At that time, the temperature and the treatment time must be selected so that the intended graded composition and crystal structure do not cause any problems.

【0026】本発明により、目的とする傾斜組成からな
る酸化物繊維の生成過程を、図1に模式的に示す。
FIG. 1 schematically shows a process of producing oxide fibers having a desired gradient composition according to the present invention.

【0027】[0027]

【実施例】以下、本発明を実施例により説明する。 参考例1 5リットルの三口フラスコに無水トルエン2.5リット
ルと金属ナトリウム400gとを入れ窒素ガス気流下で
トルエンの沸点まで加熱し、ジメチルジクロロシラン1
リットルを1時間かけて滴下した。滴下終了後、10時
間加熱還流し沈殿物を生成させた。この沈殿をろ過し、
まずメタノールで洗浄した後、水で洗浄して、白色粉末
のポリジメチルシラン420gを得た。ポリジメチルシ
ラン250gを水冷還流器を備えた三口フラスコ中に仕
込み、窒素気流下、420℃で30時間加熱反応させて
数平均分子量が1200のポリカルボシランを得た。
EXAMPLES The present invention will be described below with reference to examples. Reference Example 1 2.5 liters of anhydrous toluene and 400 g of sodium metal were placed in a 5 liter three-necked flask and heated to the boiling point of toluene under a nitrogen gas stream, and dimethyldichlorosilane 1 was added.
L was added dropwise over 1 hour. After completion of dropping, the mixture was heated under reflux for 10 hours to generate a precipitate. This precipitate is filtered,
First, it was washed with methanol and then with water to obtain 420 g of white powdery polydimethylsilane. 250 g of polydimethylsilane was charged into a three-necked flask equipped with a water-cooled reflux device, and heated and reacted at 420 ° C. for 30 hours under a nitrogen stream to obtain polycarbosilane having a number average molecular weight of 1200.

【0028】実施例1 参考例1の方法により合成されたポリカルボシラン45
gにキシレン400gとテトラブトキシチタン(TBT)
50gを加え、100℃で1時間予備加熱させた後、1
90℃までゆっくり昇温してキシレンを留去させてその
まま5時間反応させ、変性ポリカルボシランを合成し
た。この変性ポリカルボシランの分子量分布をゲルパー
ミエイションクロマトグラフィー(GPC)により測定し
た結果、仕込んだTBTの約8割以上が未反応のモノマー
状態で残存していることが確認できた。
Example 1 Polycarbosilane 45 synthesized by the method of Reference Example 1
400 g xylene and tetrabutoxy titanium (TBT)
After adding 50 g and preheating at 100 ° C. for 1 hour, 1
The temperature was slowly raised to 90 ° C., xylene was distilled off, and the reaction was continued for 5 hours to synthesize modified polycarbosilane. As a result of measuring the molecular weight distribution of this modified polycarbosilane by gel permeation chromatography (GPC), it was confirmed that about 80% or more of the charged TBT remained in an unreacted monomer state.

【0029】この変性ポリカルボシランをキシレンに溶
解させたのちガラス製の紡糸装置に仕込み、内部を十分
に窒素置換してから昇温してキシレンを留去させて、1
55℃で溶融紡糸を行った。紡糸繊維を、空気中、段階
的に135℃まで加熱して不融化させた後、1300℃
の空気中で1時間焼成を行いチタニア/シリカ繊維を得
た。
After the modified polycarbosilane was dissolved in xylene, it was charged into a glass spinning apparatus, the inside was sufficiently replaced with nitrogen, and then the temperature was raised to distill off xylene.
Melt spinning was performed at 55 ° C. The spun fiber is heated in air stepwise to 135 ° C. to make it infusible and then 1300 ° C.
Was fired in the air for 1 hour to obtain a titania / silica fiber.

【0030】得られた繊維(平均直径:10μm)は、
X線回折の結果、非晶質シリカとアナターゼのチタニア
からなっていた。この繊維の表面から内部に向っての組
成の変化をオージェ電子分光スペクトルにより調べた結
果を図2に示す。これより、同繊維は、表面から約60
nmの範囲において表面に向ってチタンが傾斜的に増大し
ていることがわかる。また、PHILIPS製の全自動蛍光X
線分析装置(PW2400)を用いて測定した繊維全体におけ
る酸化チタンの存在割合は15重量%であった。繊維表
面の酸化チタンの結晶粒径をTEMにより測定したとこ
ろ、平均8nmであった。
The obtained fibers (average diameter: 10 μm) are
As a result of X-ray diffraction, it consisted of amorphous silica and titania of anatase. FIG. 2 shows the result of examining the composition change from the surface to the inside of the fiber by Auger electron spectroscopy. From this, the fiber is about 60 from the surface.
It can be seen that titanium gradually increases toward the surface in the range of nm. Also, fully automatic fluorescent X made by PHILIPS
The abundance ratio of titanium oxide in the whole fiber measured by a line analyzer (PW2400) was 15% by weight. When the crystal grain size of titanium oxide on the fiber surface was measured by TEM, the average was 8 nm.

【0031】次に、この繊維の光触媒活性について、以
下のように大腸菌の死滅活性を調べることにより確認し
た。1ミリリットル当たりに10万匹の大腸菌を含む水
溶液20ミリリットル中に上記繊維を0.2g入れたも
のに、ブラックライトを用いて0.2mW/cm2の紫外光を
照射し、液中に生存している大腸菌の数を経時的に測定
した結果を図3に示す。尚、この実験では、比較の為、
繊維を入れない状態で上記紫外光のみを照射したものに
ついても調べた。この結果から、同繊維を入れたものの
殺菌効果が極めて優れていることがわかる。
Next, the photocatalytic activity of this fiber was confirmed by examining the killing activity of E. coli as follows. To 20 ml of an aqueous solution containing 100,000 Escherichia coli per milliliter, 0.2 g of the above fiber was irradiated with 0.2 mW / cm 2 of ultraviolet light using a black light to survive in the liquid. The results of measuring the number of Escherichia coli present over time are shown in FIG. In this experiment, for comparison,
The thing which irradiated only the said ultraviolet light in the state which does not insert a fiber was also investigated. From this result, it can be seen that the sterilizing effect of the product containing the same fiber is extremely excellent.

【0032】実施例2 参考例1の方法により合成されたポリカルボシラン16
gにトルエン100gとテトラブトキシチタン64gを
加え、100℃で1時間予備加熱させた後、150℃ま
でゆっくり昇温してトルエンを留去させてそのまま5時
間反応させ、更に250℃まで昇温して5時間反応して
変性ポリカルボシランを合成した。この変性ポリカルボ
シランに意図的に低分子量の有機金属化合物を共存させ
る目的で5gのテトラブトキシチタンを加えて、変性ポ
リカルボシランと低分子量有機金属化合物の混合物を得
た。
Example 2 Polycarbosilane 16 synthesized by the method of Reference Example 1
To 100 g of toluene, 100 g of toluene and 64 g of tetrabutoxytitanium were added, preheated at 100 ° C. for 1 hour, then slowly heated to 150 ° C., toluene was distilled off, the reaction was continued for 5 hours, and further heated to 250 ° C. And reacted for 5 hours to synthesize a modified polycarbosilane. To this modified polycarbosilane, 5 g of tetrabutoxytitanium was intentionally added for the purpose of allowing a low-molecular weight organometallic compound to coexist to obtain a mixture of the modified polycarbosilane and the low-molecular weight organometallic compound.

【0033】この変性ポリカルボシランと低分子量有機
金属化合物の混合物をトルエンに溶解させたのちガラス
製の紡糸装置に仕込み、内部を十分に窒素置換してから
昇温してトルエンを留去させて、180℃で溶融紡糸を
行った。紡糸繊維を、空気中、段階的に150℃まで加
熱し不融化させた後、1200℃の空気中で1時間焼成
を行いチタニア/シリカ繊維を得た。
A mixture of this modified polycarbosilane and a low molecular weight organometallic compound was dissolved in toluene and charged into a glass spinning device, and the inside was sufficiently replaced with nitrogen, and then the temperature was raised to distill off the toluene. Melt spinning was performed at 180 ° C. The spun fiber was heated in air stepwise to 150 ° C. to make it infusible and then fired in air at 1200 ° C. for 1 hour to obtain a titania / silica fiber.

【0034】得られた繊維(平均直径:13μm)は、
X線回折の結果、非晶質シリカとアナターゼのチタニア
からなっており、繊維全体のTi/Si(モル比)は
0.17であった。また、EPMAによる構成原子の分
布状態を調べたところ、最外周部から1μmの領域でT
i/Si(モル比)=0.87、最外周から3〜4μm
の領域でTi/Si(モル比)=0.15、中心部でT
i/Si(モル比)=0.04と、表面に向ってチタン
が増大する傾斜組成になっていることを確認した。同繊
維の引張り強度は1.5GPaで、従来しられているゾ
ルゲル法により得られたアナターゼ型チタニア/シリカ
繊維に比べて極めて高強度を示すものであった。また、
PHILIPS製の全自動蛍光X線分析装置(PW2400)を用い
て測定した繊維全体における酸化チタンの存在割合は4
6重量%であった。繊維表面の酸化チタンの結晶粒径を
TEMにより測定したところ、平均8nmであった。同
繊維表面に付着した食用油は、300〜400nmの紫
外光を照射することにより効果的に分解し、同繊維の光
触媒機能が確認できた。
The obtained fibers (average diameter: 13 μm) are
As a result of X-ray diffraction, it consisted of amorphous silica and titania of anatase, and the Ti / Si (molar ratio) of the whole fiber was 0.17. Moreover, when the distribution state of constituent atoms by EPMA was examined, it was found that T
i / Si (molar ratio) = 0.87, 3 to 4 μm from the outermost periphery
In the region of Ti / Si (molar ratio) = 0.15, T in the center
It was confirmed that i / Si (molar ratio) = 0.04 and the composition was graded such that titanium increased toward the surface. The tensile strength of the fiber was 1.5 GPa, which was significantly higher than that of the anatase-type titania / silica fiber obtained by the conventional sol-gel method. Also,
The existence ratio of titanium oxide in the whole fiber measured by using a fully automatic fluorescent X-ray analyzer (PW2400) manufactured by PHILIPS is 4
It was 6% by weight. When the crystal grain size of titanium oxide on the fiber surface was measured by TEM, the average was 8 nm. The edible oil adhered to the surface of the fiber was effectively decomposed by irradiating it with ultraviolet light of 300 to 400 nm, and the photocatalytic function of the fiber could be confirmed.

【0035】比較例1 実施例2と同様にして合成した変性ポリカルボシランを
トルエンに溶解し、エタノール中に沈殿させて低分子量
物を除去した。そして、実施例2の記載にあるような低
分子量の有機金属化合物の添加を行わず、そのまま22
0℃で溶融紡糸を行った。この紡糸繊維を実施例2と同
様にして不融化した後、1200℃の空気中で焼成して
チタニア/シリカ繊維を得た。
Comparative Example 1 The modified polycarbosilane synthesized in the same manner as in Example 2 was dissolved in toluene and precipitated in ethanol to remove low molecular weight substances. Then, without adding the low-molecular weight organometallic compound as described in Example 2,
Melt spinning was performed at 0 ° C. This spun fiber was infusibilized in the same manner as in Example 2 and then fired in air at 1200 ° C. to obtain a titania / silica fiber.

【0036】得られた繊維(平均直径:13μm)は、
X線回折の結果、非晶質シリカとアナターゼのチタニア
からなっており、繊維全体のTi/Si(モル比)は
0.04であった。また、EPMAによる構成原子の分
布状態を調べたところ、最外周部から100nmの領域
でTi/Si(モル比)=0.05、最外周から3〜4
μmの領域でTi/Si(モル比)=0.04、中心部
でTi/Si(モル比)=0.05と、傾斜組成にはな
っておらず均一な組成分布を示していた。同繊維の引張
り強度は1.6GPaと、従来しられているゾルゲル法
により得られたアナターゼ型チタニア/シリカ繊維に比
べて極めて高強度を示したものの、表面近傍のチタニア
成分が少ないことから、実施例2に示したような光触媒
機能は示さなかった。
The obtained fiber (average diameter: 13 μm) is
As a result of X-ray diffraction, it was composed of amorphous silica and titania of anatase, and the Ti / Si (molar ratio) of the whole fiber was 0.04. Moreover, when the distribution state of the constituent atoms by EPMA was examined, Ti / Si (molar ratio) = 0.05 in the region of 100 nm from the outermost periphery and 3 to 4 from the outermost periphery.
Ti / Si (molar ratio) = 0.04 in the region of μm and Ti / Si (molar ratio) = 0.05 in the central portion, showing a uniform composition distribution without a graded composition. The tensile strength of this fiber was 1.6 GPa, which was extremely high as compared with the anatase-type titania / silica fiber obtained by the conventional sol-gel method, but the amount of titania component near the surface was small. It did not show the photocatalytic function as shown in Example 2.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明における目的とする傾斜組成か
らなる酸化物繊維の生成過程を模式的に示す図である。
FIG. 1 is a diagram schematically showing a production process of an oxide fiber having a target gradient composition in the present invention.

【図2】図2は、本発明の実施例2で得られた繊維の表
面から内部に向っての組成の変化をオージェ電子分光ス
ペクトルにより調べた結果を示す図である。
[Fig. 2] Fig. 2 is a diagram showing a result of examining a change in composition from the surface to the inside of the fiber obtained in Example 2 of the present invention by Auger electron spectroscopy.

【図3】図3は、本発明の実施例2で得られた繊維につ
いての大腸菌死滅実験の結果を示す図である。
FIG. 3 is a diagram showing the results of an Escherichia coli killing experiment on the fiber obtained in Example 2 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−101427(JP,A) 特開 平10−130962(JP,A) 特開2000−192336(JP,A) 特開 昭61−28072(JP,A) 特開 平11−269725(JP,A) 特開2000−176246(JP,A) (58)調査した分野(Int.Cl.7,DB名) D01F 9/08 - 9/10 C03C 13/02 B01J 21/00 - 38/74 ─────────────────────────────────────────────────── --- Continued from the front page (56) References JP-A 61-101427 (JP, A) JP-A 10-130962 (JP, A) JP-A 2000-192336 (JP, A) JP-A 61-28072 (JP, A) JP 11-269725 (JP, A) JP 2000-176246 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) D01F 9/08-9/10 C03C 13/02 B01J 21/00-38/74

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シリカ成分を主体とする酸化物相(第1
相)とシリカ以外の金属酸化物相(第2相)との複合酸
化物相からなる繊維であって、第2相を構成する金属酸
化物が所定の機能を発揮するものであり、かつ、繊維の
表層に向かって第2相を構成する金属酸化物の少なくと
も1つの金属元素の存在割合が傾斜的に増大しているこ
とを特徴とするシリカ基複合酸化物繊維。
1. An oxide phase mainly comprising a silica component (first
Phase) and a metal oxide phase which is a composite oxide phase of a metal oxide phase other than silica (second phase) and which constitutes the second phase.
The compound exhibits a predetermined function, and the abundance ratio of at least one metal element of the metal oxide forming the second phase gradually increases toward the surface layer of the fiber. Silica-based composite oxide fiber.
【請求項2】繊維全体に対する第1相の存在割合が98
〜40重量%、第2相の存在割合が2〜60重量%であ
る請求項1に記載のシリカ基複合酸化物繊維。
2. The abundance ratio of the first phase to the whole fiber is 98.
The silica-based composite oxide fiber according to claim 1, wherein the silica-based complex oxide fiber has a content of the second phase of 2 to 60% by weight.
【請求項3】第2相を構成する金属酸化物の少なくとも
1つの金属元素の存在割合の傾斜が、繊維表面から5〜
500nmの深さで存在する請求項1〜2に記載のシリ
カ基複合酸化物繊維。
3. The gradient of the abundance ratio of at least one metal element of the metal oxide constituting the second phase is 5 to 5 from the fiber surface.
The silica-based composite oxide fiber according to claim 1, which is present at a depth of 500 nm.
【請求項4】第2相の金属酸化物がチタニアであり、そ
の結晶粒径が15nm以下であり、光及び/又は熱的触
媒機能を有することを特徴とする請求項1〜3に記載の
シリカ基複合酸化物繊維。
4. The second-phase metal oxide is titania, which has a crystal grain size of 15 nm or less and has a photocatalytic and / or thermal catalytic function. Silica-based complex oxide fiber.
【請求項5】主として一般式 【化1】 (但し、式中のRは水素原子、低級アルキル基又はフェ
ニル基を示す。)で表される主鎖骨格を有する数平均分
子量が200〜10,000のポリカルボシランを、有
機金属化合物で修飾した構造を有する変性ポリカルボシ
ラン、或いは変性ポリカルボシランと有機金属化合物と
の混合物を溶融紡糸し、不融化処理後、空気中又は酸素
中で焼成することを特徴とする請求項1に記載のシリカ
基複合酸化物繊維の製造方法。
5. A general formula: (However, R in the formula represents a hydrogen atom, a lower alkyl group or a phenyl group.) Polycarbosilane having a main chain skeleton and a number average molecular weight of 200 to 10,000 is modified with an organometallic compound. The modified polycarbosilane having the above structure, or a mixture of the modified polycarbosilane and the organometallic compound is melt-spun, infusibilized, and then fired in air or oxygen. Method for producing silica-based composite oxide fiber.
【請求項6】有機金属化合物が、一般式、M(OR')n或
いはMR''m(Mは金属元素、R'は炭素原子数1〜20
個を有するアルキル基またはフェニル基、R"はアセチ
ルアセトナート、mとnは1より大きい整数)を基本構
造とする化合物である請求項4に記載のシリカ基複合酸
化物繊維の製造方法。
6. The organometallic compound is represented by the general formula M (OR ') n or MR "m (M is a metal element, R'is a carbon atom having 1 to 20 carbon atoms).
5. The method for producing a silica-based composite oxide fiber according to claim 4, wherein the compound has a basic structure of an alkyl group or a phenyl group having R, R "is acetylacetonate, and m and n are integers greater than 1. 5.
JP2001171956A 2000-06-13 2001-06-07 Silica-based composite oxide fiber and method for producing the same Expired - Fee Related JP3465699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001171956A JP3465699B2 (en) 2000-06-13 2001-06-07 Silica-based composite oxide fiber and method for producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000176377 2000-06-13
JP2001-113585 2001-04-12
JP2000-176377 2001-04-12
JP2001113585 2001-04-12
JP2001171956A JP3465699B2 (en) 2000-06-13 2001-06-07 Silica-based composite oxide fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002371436A JP2002371436A (en) 2002-12-26
JP3465699B2 true JP3465699B2 (en) 2003-11-10

Family

ID=27343708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001171956A Expired - Fee Related JP3465699B2 (en) 2000-06-13 2001-06-07 Silica-based composite oxide fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP3465699B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038529A1 (en) 2006-09-27 2008-04-03 Ube Industries, Ltd. Silica base composite photocatalyst and process for producing the same
WO2008114597A1 (en) 2007-03-19 2008-09-25 Ube Industries, Ltd. Silica-based composite oxide fiber, catalyst fiber comprising the same, and process for producing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008111609A1 (en) * 2007-03-14 2010-06-24 日東紡績株式会社 Method for producing silica fiber
JP5246926B2 (en) * 2008-07-22 2013-07-24 信越石英株式会社 Fibrous photocatalyst and purification device
JP5520346B2 (en) * 2012-07-24 2014-06-11 信越石英株式会社 Method for producing fibrous photocatalyst
KR102600617B1 (en) * 2020-11-23 2023-11-10 주식회사 휴비스 Surface-heated Polyphenylene Sulfide Fiber Capable Of Removing Nitrogen Oxides

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038529A1 (en) 2006-09-27 2008-04-03 Ube Industries, Ltd. Silica base composite photocatalyst and process for producing the same
JPWO2008038529A1 (en) * 2006-09-27 2010-01-28 宇部興産株式会社 Silica-based composite photocatalyst and method for producing the same
JP5077236B2 (en) * 2006-09-27 2012-11-21 宇部興産株式会社 Silica-based composite photocatalyst and method for producing the same
WO2008114597A1 (en) 2007-03-19 2008-09-25 Ube Industries, Ltd. Silica-based composite oxide fiber, catalyst fiber comprising the same, and process for producing the same
JPWO2008114597A1 (en) * 2007-03-19 2010-07-01 宇部興産株式会社 Silica-based composite oxide fiber, catalyst fiber using the same, and production method thereof

Also Published As

Publication number Publication date
JP2002371436A (en) 2002-12-26

Similar Documents

Publication Publication Date Title
JP3465706B1 (en) Silica-based photocatalytic fiber having visible light activity and method for producing the same
KR101041208B1 (en) Silicon carbide fibers essentially devoid of whiskers and method for preparation thereof
KR100684648B1 (en) Manufacturing method of semi-crystallized silicon carbide fiber made from polycarbosilane
JPH0541727B2 (en)
JP5077236B2 (en) Silica-based composite photocatalyst and method for producing the same
JP3465699B2 (en) Silica-based composite oxide fiber and method for producing the same
EP1164212B1 (en) Silica-group composite oxide fiber and process for the production thereof
JP2005501984A (en) Zirconium / metal oxide fiber
JP4924709B2 (en) Silica-based composite oxide fiber, catalyst fiber using the same, and production method thereof
US6881693B2 (en) Zirconia-containing inorganic fiber and process for the production thereof
KR100684649B1 (en) Manufacturing method of metal doped polycarbosilane and manufacturing method of nano-crystallized silicon carbide fiber comprising the smae, and sic fiber thereby
JP3815392B2 (en) Nonwoven fabric and method for producing the same
JP3812481B2 (en) Hazardous substance removal filter
JPH04263615A (en) Production of viscous aluminosilicate sol
JP2672106B2 (en) Silicon nitride inorganic fiber and method for producing the same
JP4081752B2 (en) Hydrazine decomposition catalyst
JPH02264017A (en) Production of silicon ceramic fiber of high performance by radioactive radiation
JP2003226582A (en) Ceramic having surface layer with gradient composition and method of producing the same
JP4082062B2 (en) Zirconia-containing inorganic fiber and method for producing the same
JPH076091B2 (en) Method for producing silica-alumina fiber

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3465699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees