KR100935908B1 - Stiffener for distributing stress - Google Patents

Stiffener for distributing stress Download PDF

Info

Publication number
KR100935908B1
KR100935908B1 KR1020070082594A KR20070082594A KR100935908B1 KR 100935908 B1 KR100935908 B1 KR 100935908B1 KR 1020070082594 A KR1020070082594 A KR 1020070082594A KR 20070082594 A KR20070082594 A KR 20070082594A KR 100935908 B1 KR100935908 B1 KR 100935908B1
Authority
KR
South Korea
Prior art keywords
stress
convex portion
reinforcement
present
fixed
Prior art date
Application number
KR1020070082594A
Other languages
Korean (ko)
Other versions
KR20090018275A (en
Inventor
전상언
김대호
Original Assignee
삼성중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성중공업 주식회사 filed Critical 삼성중공업 주식회사
Priority to KR1020070082594A priority Critical patent/KR100935908B1/en
Publication of KR20090018275A publication Critical patent/KR20090018275A/en
Application granted granted Critical
Publication of KR100935908B1 publication Critical patent/KR100935908B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B73/00Building or assembling vessels or marine structures, e.g. hulls or offshore platforms
    • B63B73/60Building or assembling vessels or marine structures, e.g. hulls or offshore platforms characterised by the use of specific tools or equipment; characterised by automation, e.g. use of robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/002Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for goods other than bulk goods
    • B63B25/004Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for goods other than bulk goods for containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B3/70Reinforcements for carrying localised loads, e.g. propulsion plant, guns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B73/00Building or assembling vessels or marine structures, e.g. hulls or offshore platforms
    • B63B73/50Building or assembling vessels or marine structures, e.g. hulls or offshore platforms characterised by forming methods, e.g. manufacturing of curved blocks
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Robotics (AREA)
  • Civil Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

본 발명은 응력 분산 보강재에 관한 것으로서, 일측을 제외한 가장자리 부분이 구조물에 고정되고, 일측 중심부에 곡률을 가지고서 돌출되는 제 1 볼록부가 형성되며, 제 1 볼록부의 양측에 곡률을 가지고서 삽입되는 오목부가 연장 형성된다. 따라서, 본 발명은 하중이 인가되는 구조물에 설치시 구조물에 고정되지 아니한 일측 중심부에 대한 응력을 분산시켜 최대 응력값을 감소시킴으로써 응력 집중으로 발생되는 크랙 등과 같은 파괴를 억제하여 구조물의 변형이나 손상을 최소화하고, 크기를 줄일 수 있도록 함으로써 강재의 사용량을 감소시킴과 아울러 볼록부와 오목부의 공존으로 인해 제작시 발생하는 잔재량을 줄임으로써 제조 단가를 감소시키는 효과를 가지고 있다.The present invention relates to a stress dispersion reinforcing material, the edge portion except for one side is fixed to the structure, the first convex portion protruding with curvature is formed in the central portion on one side, the concave portion inserted with curvature on both sides of the first convex portion is extended Is formed. Accordingly, the present invention is to prevent the deformation or damage of the structure by dispersing the stress such as cracks generated by stress concentration by reducing the maximum stress value by dispersing the stress on the central portion that is not fixed to the structure when installed in the structure to which the load is applied By minimizing and reducing the size, the amount of steel used is reduced, and the manufacturing cost is reduced by reducing the amount of residue generated during manufacturing due to the coexistence of the convex portion and the concave portion.

보강재, 볼록부, 오목부, 응력 분산, 크랙 Reinforcement, Convex, Concave, Stress Dissipation, Crack

Description

응력 분산 보강재{STIFFENER FOR DISTRIBUTING STRESS}Stress Dispersion Reinforcement {STIFFENER FOR DISTRIBUTING STRESS}

본 발명은 응력의 집중을 억제하여 최대 응력값을 감소시키고, 제작에 소요되는 비용을 절감할 수 있는 응력 분산 보강재에 관한 것이다.The present invention relates to a stress dispersion reinforcing material that can suppress the concentration of stress, reduce the maximum stress value, and reduce the cost required for fabrication.

일반적으로, 하중이 인가되는 구조물은 변형 내지 좌굴 등의 파괴현상을 방지하기 위하여 하중의 종류 및 위치에 따라 다양한 형태를 가진 보강재를 설치하여 응력을 강화시킨다.In general, the structure to which the load is applied to reinforce the stress by installing a reinforcing material having a variety of forms according to the type and location of the load in order to prevent the deformation phenomenon such as deformation or buckling.

종래의 구조물에 설치되는 보강재를 첨부된 도면을 참조하여 설명하면 다음과 같다. Referring to the accompanying drawings, the reinforcing material is installed in a conventional structure as follows.

도 1 및 도 2는 종래의 기술에 따른 보강재가 설치되는 컨테이너 스텐션을 도시한 평면도 및 측면도이고, 도 3은 종래의 기술에 따른 보강재를 도시한 사시도이다. 도시된 바와 같이, 종래의 보강재(10)는 구조물인 컨테이너 스텐션(container stanchion; 20)의 내측면에 일측을 제외한 가장자리가 고정되며, 컨테이너 스텐션(20)에 고정되지 아니하는 일측에 곡률을 가지고서 삽입되는 오목부(11; 도 3에 도시)가 형성된다.1 and 2 are a plan view and a side view showing a container tension is installed reinforcement according to the prior art, Figure 3 is a perspective view showing a reinforcement according to the prior art. As shown, the conventional reinforcing material 10 is fixed to the inner side of the container side (container stanchion) 20 of the structure except for one side, the curvature on one side that is not fixed to the container stent (20) The recessed part 11 (shown in FIG. 3) to be inserted is formed.

컨테이너 스텐션(20)은 선박에서 컨테이너(container)가 안착되는 위치에 돌 출되도록 설치되는 본체(21)와, 컨테이너의 모서리마다 마련된 장착홈에 끼워지도록 본체(21) 상측에 마련되는 소켓(socket; 22)으로 이루어진다. 따라서, 컨테이너 스텐션(20)은 소켓(22)이 컨테이너의 장착홈에 끼워짐으로써 컨테이너를 고정시킨다.The container stent 20 is a socket 21 provided above the main body 21 so as to be fitted into a main body 21 installed to protrude at a position where the container is seated in the ship, and a mounting groove provided at each corner of the container. ; 22). Accordingly, the container stent 20 fixes the container by inserting the socket 22 into the mounting groove of the container.

보강재(10)는 본체(21)의 내부 공간에서 "

Figure 112007059374818-pat00001
"자 형태의 단면으로 이루어지는 상부에 세 변이 용접에 의해 고정되고, 본체(21)에 전달되는 하중의 크기에 따라 본체(21)의 내부 공간에 다수 개가 설치된다.The reinforcement 10 is formed in the inner space of the body 21.
Figure 112007059374818-pat00001
"Three sides are fixed to the upper part which consists of a cross section of a child shape by welding, and many pieces are installed in the internal space of the main body 21 according to the magnitude | size of the load transmitted to the main body 21. As shown in FIG.

이와 같은, 컨테이너 스텐션(20)은 본체(21)의 내부 공간에 설치되는 보강재(10)에 의해 응력이 강화되며, 이로 인해 본체(21)가 컨테이너의 하중을 지지하게 된다.As such, the container stent 20 is strengthened by the reinforcing material 10 installed in the inner space of the main body 21, which causes the main body 21 to support the load of the container.

상기한 바와 같이 종래의 기술에 따른 구조물의 보강재(10)는 구조물인 컨테이너 스텐션(20)에 하중이 작용 시 오목부(11)의 형상 특성상 수평 반력이 발생하게 되는데, 이 때, 오목부(11)에서 크랙(crack) 등과 같은 국부 파괴(local failure)가 쉽게 일어나게 됨으로써 컨테이너 스텐션(20)이 심하게 변형되거나 쉽게 파손되는 문제점을 가지고 있었다. As described above, the reinforcing member 10 of the structure according to the prior art generates a horizontal reaction force due to the shape characteristics of the recess 11 when a load is applied to the container stent 20, which is a structure, the recess ( 11, the local failure (crack) such as a crack (local crack) is easily generated, the container stent 20 has a problem that is severely deformed or easily broken.

즉, 도 3에 도시된 종래의 보강재(10)에서 오목부(11)의 중심부(12)에 응력이 집중되고, 이러한 오목부(11)의 중심부(12)는 컨테이너의 하중을 고려하면 최대 응력값이 300MPa에 도달하여 파괴가 가장 먼저 일어나게 된다.That is, in the conventional reinforcement 10 illustrated in FIG. 3, stress is concentrated in the central portion 12 of the recess 11, and the central portion 12 of the recess 11 is the maximum stress in consideration of the load of the container. The value reaches 300 MPa, which causes destruction first.

또한, 보강재(10)가 상기한 바와 같이 파괴됨으로 인해 이를 해소하기 위해 보강재(10)의 규격이 커지게 됨으로써 강재의 사용량이 증가할 뿐만 아니라 보강재(10)에 오목부(11)를 형성하게 됨으로써 제작시 발생하는 잔재량의 증가로 인해 원가 상승의 요인이 되는 문제점을 가지고 있었다.In addition, since the size of the reinforcing material 10 is increased in order to solve this problem due to the destruction of the reinforcing material 10 as described above, not only the amount of steel used is increased but also the recesses 11 are formed in the reinforcing material 10. Due to the increase in the amount of residue generated during manufacturing, there was a problem that the cost rises.

본 발명은 응력 집중 부위에 응력을 분산시키기 위한 구조를 가지도록 함으로써 최대 응력값을 줄여서 구조물의 보강 정도를 향상시키고, 제조 비용을 절감할 수 있도록 한다.The present invention is to have a structure for dispersing the stress in the stress concentration site to reduce the maximum stress value to improve the degree of reinforcement of the structure, and to reduce the manufacturing cost.

본 발명의 응력 분산 보강재는, 구조물에 설치되는 보강재에 있어서, 일측을 제외한 가장자리 부분이 구조물에 고정되고, 일측 중심부에 곡률을 가지고서 돌출되는 제 1 볼록부가 형성되며, 제 1 볼록부의 양측으로 연장 형성되는 오목부가 곡률을 가지고서 삽입되도록 형성되고, 일측의 양쪽 끝단에 곡률을 가지고서 돌출되는 제 2 볼록부가 오목부에 연장 형성되는 것을 특징으로 한다.In the stress distribution reinforcing member of the present invention, in the reinforcing member provided in the structure, the edge portion except for one side is fixed to the structure, the first convex portion protruding with curvature is formed in the central portion on one side, extending to both sides of the first convex portion formed The concave portion is formed so as to have a curvature, and the second convex portion protruding with the curvature at both ends of one side is formed to extend in the concave portion.

삭제delete

본 발명은 하중이 인가되는 구조물에 설치시 구조물에 고정되지 아니한 일측 중심부에 대한 응력을 분산시켜 최대 응력값을 감소시킴으로써 응력 집중으로 발생되는 크랙 등과 같은 파괴를 억제하여 구조물의 변형이나 손상을 최소화하고, 크기를 줄일 수 있도록 함으로써 강재의 사용량을 감소시킴과 아울러 볼록부와 오목부의 공존으로 인해 제작시 발생하는 잔재량을 줄임으로써 제조 단가를 감소시키는 효과를 가지고 있다.The present invention minimizes the deformation or damage of the structure by dispersing the stress such as cracks caused by stress concentration by dispersing the stress on the central portion that is not fixed to the structure when the load is applied to the structure to reduce the maximum stress value In addition, by reducing the size of the steel, the amount of steel used is reduced and the manufacturing cost is reduced by reducing the amount of residue generated during manufacturing due to the coexistence of the convex portion and the concave portion.

본 발명의 응력 분산 보강재는 구조물에 고정되지 아니한 일측 중심부에 응력을 분산시키기 위하여 곡률을 가지는 제 1 볼록부가 돌출 형성되며, 이로 인해 최대 응력값을 감소시킨다.The stress dispersion reinforcing member of the present invention is formed to project the first convex portion having a curvature so as to disperse the stress in the central portion that is not fixed to the structure, thereby reducing the maximum stress value.

이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명하기로 한다. 아울러 본 발명을 설명함에 있어서, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.

도 4는 본 발명의 제 1 실시예에 따른 응력 분산 보강재를 도시한 사시도이다. 도시된 바와 같이, 본 발명의 제 1 실시예에 따른 응력 분산 보강재(100)는 일측 중심부에 제 1 볼록부(120)가 형성되고, 제 1 볼록부(120)의 양측에 오목부(130)가 형성된다.4 is a perspective view showing a stress dispersion reinforcing material according to a first embodiment of the present invention. As shown, the stress dispersion reinforcing member 100 according to the first embodiment of the present invention, the first convex portion 120 is formed at one side central portion, the concave portion 130 on both sides of the first convex portion 120 Is formed.

본 실시예에서 보강재(100)는 판형의 본체(110)로 이루어지고, 컨테이너 스텐션(container stanchion; 20)(도 1 및 도 2에 도시)과 같은 구조물의 내부 공간에 삽입되어 본체(110)의 하측을 제외한 가장자리 부위가 내부 공간의 내측면에 용접의 방법으로 고정된다.In this embodiment, the reinforcing material 100 is made of a plate-shaped body 110, is inserted into the internal space of the structure, such as container stanchion (container stanchion) 20 (shown in Figures 1 and 2) the main body 110 The edge portion except the lower side of is fixed to the inner side of the inner space by the method of welding.

한편, 보강재(100)는 본체(110)가 구조물에 용접에 의해 고정될 수 있으나, 이에 한하지 않고, 볼트와 너트 등의 체결부재를 사용하여 고정될 수 있으며, 컨테이너 스텐션(20)(도 1 및 도 2에 도시)의 내부 공간뿐만 아니라 보강이 필요한 구조물에서 "

Figure 112007059374818-pat00002
"자 또는 이와 유사한 형태로 이루어지는 부위에 삽입되어 고정될 수 있다.On the other hand, the reinforcement 100 is the main body 110 may be fixed to the structure by welding, but not limited to this, can be fixed using fastening members such as bolts and nuts, container stent 20 (Fig. In structures that require reinforcement, as well as in the internal spaces of 1 and 2).
Figure 112007059374818-pat00002
"It can be inserted and fixed in a site made of a ruler or the like.

제 1 볼록부(120)는 본체(110)에서 구조물에 고정되지 아니하는 일측, 즉 하측의 중심부에 곡률을 가지고서 돌출되도록 형성되며, 본체(110)의 하측 중심부에 집중되는 응력을 분산시킨다.The first convex portion 120 is formed to protrude with curvature at one side, that is, the lower center of the body 110 is not fixed to the structure, and distributes the stress concentrated in the lower center of the body 110.

오목부(130)는 제 1 볼록부(120)의 양측으로부터 연장 형성되고, 곡률을 가지고서 삽입되도록 형성된다.The recess 130 is formed to extend from both sides of the first convex portion 120 and to be inserted with curvature.

도 5는 본 발명의 제 2 실시예에 따른 응력 분산 보강재를 도시한 정면도이 다. 도시된 바와 같이, 제 2 실시예에 따른 응력 분산 보강재(200)는 제 1 실시예와 마찬가지로 본체(210)에서 구조물에 고정되지 아니한 일측 중심부에 제 1 볼록부(220)가 형성되고, 제 1 볼록부(220)의 양측에 오목부(230)가 연장 형성된다. 따라서, 제 2 실시예에 따른 제 1 볼록부(220)와 오목부(230)는 제 1 실시예의 제 1 볼록부(120)와 오목부(130)와 동일하므로 그 설명을 생략하기로 하겠다.5 is a front view showing a stress dispersion reinforcing material according to a second embodiment of the present invention. As shown, the stress dispersion reinforcing member 200 according to the second embodiment is the first convex portion 220 is formed in the central portion that is not fixed to the structure in the body 210, as in the first embodiment, the first Concave portions 230 are formed on both sides of the convex portion 220. Therefore, since the first convex portion 220 and the concave portion 230 according to the second embodiment are the same as the first convex portion 120 and the concave portion 130 of the first embodiment, description thereof will be omitted.

제 2 실시예에 따른 응력 분산 보강재(200)는 구조물에 고정되지 아니하는 일측의 양쪽 끝단에 곡률을 가지고서 돌출되는 제 2 볼록부(240)가 오목부(230)에 연장 형성된다. 따라서, 오목부(230)와 구조물 고정부위의 경계부위에 발생하는 응력을 분산시킴으로써 이 부위에 응력이 집중되는 것을 억제한다.The stress dispersion reinforcing member 200 according to the second embodiment has a second convex portion 240 protruding with curvature at both ends of one side which is not fixed to the structure, and is formed to extend in the recess 230. Therefore, by dispersing the stress generated at the boundary between the recess 230 and the structure fixing portion, the concentration of stress in this portion is suppressed.

이와 같은 구성은 가지는 본 발명에 따른 응력 분산 보강재의 작용을 설명하면 다음과 같다.Such a configuration will be described below when the action of the stress dispersion reinforcement according to the present invention.

보강재(100,200)가 컨베이어 스텐션(20)(도 1 및 도 2에 도시)과 같은 구조물의 내측에 용접 등의 방법으로 고정시 구조물 상에 하중이 인가됨으로써 보강재(100,200)에 응력이 발생하고, 이 때, 구조물에 고정되지 아니한 하측의 중심부에 집중되는 응력은 볼록부(120,220)에 의해 분산되며, 이로 인해 최대 응력값이 감소하여 크랙 등과 같은 파괴가 일어남을 억제한다. When the reinforcement (100,200) is fixed to the inside of the structure, such as the conveyor stent 20 (shown in Figures 1 and 2) by a method such as welding, a load is applied to the structure to generate stresses in the reinforcement (100,200), At this time, the stress concentrated in the central portion of the lower side that is not fixed to the structure is dispersed by the convex portions (120, 220), thereby reducing the maximum stress value to suppress the occurrence of fracture, such as cracks.

즉, 제 1 실시예에 따른 보강재(100)를 예로 들면, 본 발명의 보강재(100)와 도 3에 도시된 종래의 보강재(10)에 동일한 하중을 인가시 종래의 보강재(10)에 대한 최대 응력값이 300MPa 인 경우 본 발명의 보강재(100)는 최대 응력값이 250MPa 이었다. 따라서, 본 발명에 따른 보강재(100)는 최대 응력값이 종래의 300MPa에서 250MPa를 나타냄으로써 기존에 비하여 16% 이상 감소된다.That is, taking the reinforcement 100 according to the first embodiment as an example, when the same load is applied to the reinforcement 100 of the present invention and the conventional reinforcement 10 shown in Figure 3 the maximum relative to the conventional reinforcement 10 When the stress value is 300 MPa, the reinforcing material 100 of the present invention had a maximum stress value of 250 MPa. Therefore, the reinforcing material 100 according to the present invention is reduced by more than 16% compared to the conventional by showing the maximum stress value of 250MPa in the conventional 300MPa.

또한, 본 발명에 따른 응력 분산 보강재(100,200)는 최대 응력값의 감소로 인해 높이(h1)를 종래 보강재(10)의 높이(h2)(도 3에 도시)에 비하여 낮출 수 있을 뿐만 아니라 보강재 상부 판 두께도 줄일 수 있기 때문에 사용되는 강재량을 줄일 수 있으며, 볼록부(120,220)와 오목부(130,230)가 공존하게 됨으로써 제작시 발생하는 잔재량을 상당히 줄임으로써 원가 절감에 크게 기여한다.Further, the stress distribution reinforcement (100,200) in accordance with the present invention not only lower than the height (h 2) (shown in Figure 3) up to the height (h 1) due to a decrease of the stress value the conventional reinforcement (10) Since the thickness of the upper plate of the reinforcement can also be reduced, the amount of steel used can be reduced, and the convex portions 120 and 220 and the concave portions 130 and 230 coexist, thereby significantly reducing the amount of residue generated during manufacturing, thereby greatly contributing to cost reduction.

그리고, 제 2 실시예에 따른 보강재(200)에서와 같이 구조물에 고정되지 아니한 일측의 양쪽 끝단에 오목부(230)에 연장되는 제 2 볼록부(240)를 돌출 형성함으로써 오목부(230)와 구조물 고정 부위의 경계 지점에 발생되는 응력 집중을 억제하여 이 부위에 대한 최대 응력값을 감소시킴과 아울러 크랙 등으로 인한 파괴를 억제한다.And, as in the reinforcing member 200 according to the second embodiment, by protruding forming the second convex portion 240 extending to the concave portion 230 at both ends of one side which is not fixed to the structure and the concave portion 230 and By suppressing the stress concentration occurring at the boundary point of the fixed part of the structure, it reduces the maximum stress value for this part and also prevents the fracture due to cracks.

이상에서와 같이, 본 발명의 상세한 설명에서 구체적인 실시예에 관해 설명하였으나, 본 발명의 기술이 당업자에 의하여 용이하게 변형 실시될 가능성이 자명하며, 이러한 변형된 실시예들은 본 발명의 특허청구범위에 기재된 기술사상에 포함된다 할 것이다.As described above, specific embodiments have been described in the detailed description of the present invention, but it is obvious that the technology of the present invention can be easily modified by those skilled in the art, and such modified embodiments are defined in the claims of the present invention. It will be included in the technical idea described.

도 1은 종래의 기술에 따른 보강재가 설치되는 컨테이너 스텐션을 도시한 평면도이고,1 is a plan view showing a container tension is installed reinforcement according to the prior art,

도 2는 종래의 기술에 따른 보강재가 설치된 컨테이너 스텐션을 도시한 측면도이고,Figure 2 is a side view showing a container tension installed reinforcement according to the prior art,

도 3은 종래의 기술에 따른 보강재를 도시한 사시도이고,3 is a perspective view showing a reinforcing material according to the prior art,

도 4는 본 발명의 제 1 실시예에 따른 응력 분산 보강재를 도시한 사시도이고,,4 is a perspective view showing a stress dispersion reinforcing material according to a first embodiment of the present invention,

도 5는 본 발명의 제 2 실시예에 따른 응력 분산 보강재를 도시한 정면도이다. 5 is a front view showing a stress dispersion reinforcing material according to a second embodiment of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

110,210 : 본체 120,220 : 제 1 볼록부110,210: main body 120,220: first convex portion

130,230 : 오목부 240 : 제 2 볼록부130,230 recessed portion 240 second convex portion

Claims (2)

구조물에 설치되는 보강재에 있어서,In the reinforcement installed in the structure, 일측을 제외한 가장자리 부분이 상기 구조물에 고정되고,An edge portion except one side is fixed to the structure, 상기 일측 중심부에 곡률을 가지고서 돌출되는 제 1 볼록부가 형성되며,A first convex portion protruding with a curvature is formed in the central portion of one side, 상기 제 1 볼록부의 양측으로 연장 형성되는 오목부가 곡률을 가지고서 삽입되도록 형성되고,The concave portions extending to both sides of the first convex portion are formed to be inserted with curvature, 상기 일측의 양쪽 끝단에 곡률을 가지고서 돌출되는 제 2 볼록부가 상기 오목부에 연장 형성되는 응력 분산 보강재.Stress reinforcement reinforcement is formed in the second convex portion protruding with curvature at both ends of the one side is formed in the recess. 삭제delete
KR1020070082594A 2007-08-17 2007-08-17 Stiffener for distributing stress KR100935908B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070082594A KR100935908B1 (en) 2007-08-17 2007-08-17 Stiffener for distributing stress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070082594A KR100935908B1 (en) 2007-08-17 2007-08-17 Stiffener for distributing stress

Publications (2)

Publication Number Publication Date
KR20090018275A KR20090018275A (en) 2009-02-20
KR100935908B1 true KR100935908B1 (en) 2010-01-06

Family

ID=40686567

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070082594A KR100935908B1 (en) 2007-08-17 2007-08-17 Stiffener for distributing stress

Country Status (1)

Country Link
KR (1) KR100935908B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101597283B1 (en) 2015-02-25 2016-02-24 서울대학교산학협력단 Clocking patch

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653393U (en) * 1993-01-07 1994-07-19 石川島播磨重工業株式会社 Reinforcement structure of longitudinal ribs for hulls and offshore structures
JPH06336186A (en) * 1993-05-27 1994-12-06 Kawasaki Heavy Ind Ltd Hull bracket structure
KR100457881B1 (en) 2001-11-19 2004-11-18 대우조선해양 주식회사 Method for disposing the support member to the anchoring bar of membrane type LNG ship

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653393U (en) * 1993-01-07 1994-07-19 石川島播磨重工業株式会社 Reinforcement structure of longitudinal ribs for hulls and offshore structures
JPH06336186A (en) * 1993-05-27 1994-12-06 Kawasaki Heavy Ind Ltd Hull bracket structure
KR100457881B1 (en) 2001-11-19 2004-11-18 대우조선해양 주식회사 Method for disposing the support member to the anchoring bar of membrane type LNG ship

Also Published As

Publication number Publication date
KR20090018275A (en) 2009-02-20

Similar Documents

Publication Publication Date Title
US10787142B2 (en) Supporting structure for underrun protector
US6751921B1 (en) Earthquake-proofing reinforcing metal fitting
US9206940B2 (en) Structure including a frame having four sides and a closed cross-section structural member
KR101204329B1 (en) Structure of bracket
US9487242B2 (en) Vehicle body lower portion structure
JP5440743B1 (en) Ship bulkhead
KR101714169B1 (en) Floor body for vehicle
KR100935908B1 (en) Stiffener for distributing stress
CN101304913B (en) Roof header structure
KR101186273B1 (en) Manufacturing method for preflex composite beam girder of reinforced stiffness
JP2010105779A (en) Passenger conveyer
CN213262294U (en) Mounting bracket of radar and vehicle that has it
JP6885370B2 (en) Steel beam and column-beam joint structure using the steel beam
ES2375229T3 (en) SYSTEM THAT INCLUDES A BEAM, A CORRUGATED SHEET AND A CONNECTOR.
CN215921839U (en) Vehicle door structure
JP6162457B2 (en) Displacement limiting device
CN217048812U (en) Vehicle floor structure
CN214402303U (en) Shear wall structure
JP5255556B2 (en) Fixed structure to the flange of the face plate
JP2008025196A (en) Cable-stayed bridge
US10865073B2 (en) Passenger conveyor
JP2011057153A (en) Beam
JP6274382B1 (en) Support structure for the underrun protector
JP5629626B2 (en) Side gutter lid for concrete roadway and side gutter lid structure
JP2008196125A (en) Mounting structure of wall panel

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121130

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131202

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee