KR100935292B1 - A Methode For A Compound metal of A Nano-Copper - Google Patents

A Methode For A Compound metal of A Nano-Copper Download PDF

Info

Publication number
KR100935292B1
KR100935292B1 KR1020070141471A KR20070141471A KR100935292B1 KR 100935292 B1 KR100935292 B1 KR 100935292B1 KR 1020070141471 A KR1020070141471 A KR 1020070141471A KR 20070141471 A KR20070141471 A KR 20070141471A KR 100935292 B1 KR100935292 B1 KR 100935292B1
Authority
KR
South Korea
Prior art keywords
copper
dmf
solution
cnt
nano
Prior art date
Application number
KR1020070141471A
Other languages
Korean (ko)
Other versions
KR20090073506A (en
Inventor
백영채
Original Assignee
백영채
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 백영채 filed Critical 백영채
Priority to KR1020070141471A priority Critical patent/KR100935292B1/en
Publication of KR20090073506A publication Critical patent/KR20090073506A/en
Application granted granted Critical
Publication of KR100935292B1 publication Critical patent/KR100935292B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1026Alloys containing non-metals starting from a solution or a suspension of (a) compound(s) of at least one of the alloy constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • C22C1/1015Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Abstract

본 발명은 전자개폐기, 고압차단기 등과 같은 전기전자 부품에 사용되는 접촉자의 접촉부분을 구성하는데 적합하도록 된 구리나노합금을 제조하할 수 있도록 독극성용매액인 DMF용액에 탄소나노튜브를 투입하여 혼합하는 제1단계와; 상기 제1단계공정을 통해 DMF용액에 탄소나노튜브가 혼합되면 24시간동안 초음파처리하여 DMF-CNT혼합액을 생성하는 제2단계와; 상기 제2단계를 통해 제조되는 DMF-CNT혼합액을 내부에 일정한 크기의 공간부를 가지는 구리관에 충진하고 구리관의 상하부를 밀봉하는 제3단계와; 상기 제3단계를 통해 DMF-CNT혼합액이 충진된 구리관과 일정량의 구리를 유도가열로에 투입하여 1080-1100℃상태에서 20-30분동안 가열하여 DMF-CNT혼합액 중 DMF용액은 증발시켜 제거되고 DMF-CNT혼합액 중 CNT입자는 구리와 구리관의 융해로 인해 생성되는 구리융해액에 침투하여 구리합금액을 생성시키는 제4단계와; 상기 제4단계를 통해 생성되는 구리합금액을 주조틀에 주입하고, 구리합금액이 주입된 주조틀을 600-800℃상태에서 24시간 가열하여 구리와 탄소나노튜브입자가 안정된 상태에서 일정한 형상으로 성형되도록 된 제5단계를 포함하고 있는 구리나노합금의 제조방법을 제공한다.In the present invention, carbon nanotubes are added to a DMF solution, which is a polar solvent, so as to prepare a copper nano alloy suitable for forming a contact portion of a contactor used in an electronic component such as an electronic switch and a high voltage circuit breaker. A first step of doing; A second step of generating a DMF-CNT mixture by sonicating for 24 hours when carbon nanotubes are mixed with the DMF solution through the first step process; A third step of filling the DMF-CNT mixture prepared in the second step into a copper pipe having a space portion of a predetermined size and sealing the upper and lower parts of the copper pipe; In the third step, the copper tube filled with the DMF-CNT mixture and a predetermined amount of copper were introduced into an induction furnace, heated at 1080-1100 ° C. for 20-30 minutes, and the DMF solution in the DMF-CNT mixture was evaporated and removed. And a fourth step in which the CNT particles in the DMF-CNT mixture are infiltrated into the copper melt generated by the melting of the copper and the copper pipe to generate a copper mixture solution; Injecting the copper alloy solution generated in the fourth step into the casting mold, and the casting mold in which the copper alloy solution is injected is heated for 24 hours at 600-800 ℃ state in a stable shape of copper and carbon nanotube particles It provides a method for producing a copper nano alloy comprising a fifth step to be molded.

구리나노, 나노, 전자개폐기, 탄소나노튜브, 구리합금. Copper nano, nano, electron switch, carbon nano tube, copper alloy.

Description

구리나노합금의 제조방법{A Methode For A Compound metal of A Nano-Copper}A Method for A Compound metal of A Nano-Copper

본 발명은 구리나노합금의 제조방법에 관한 것으로서, 보다 상세하게는 전자개폐기, 고압차단기 등과 같은 전기전자 부품에 사용되는 접촉자의 접촉부분을 구성하는 구리나노합금을 제조하는데 있어, 보다 스파크를 줄이어 수명을 연장시키고, 부피를 줄일 수 있도록 하여 경제적인 구리나노합금을 제조하는 구리합금의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a copper nano alloy, and more particularly, to produce a copper nano alloy constituting a contact portion of a contactor used in an electrical and electronic component such as an electronic switchgear, a high-voltage circuit breaker, The present invention relates to a method for producing a copper alloy for producing an economical copper nano alloy by extending the life and reducing the volume.

일반적으로 전자개폐기에서 사용되는 접촉자의 접촉부분을 은을 스폿(spot)용접으로 부착고정하고 있다.In general, the contact portion of the contactor used in the electronic switch is fixed by spot welding.

상기와 같이 접촉자의 접촉부분에 적용되는 은은 강도가 약하고 수명이 짧아 제품의 수명을 단명시키는데 일조를 하고 있는 실정이다.As described above, the silver applied to the contact portion of the contactor has a weak strength and a short lifespan, thus contributing to shortening the life of the product.

또한 고압 고전류개폐기 및 고압차단기에서는 접촉자를 황동을 이용하여 사용되고 있으며, 도전률이 순수구리 및 나노보다 적어 스파크가 종종 일어나며 수명이 줄어드는 문제점이 있고, 부피가 커서 자체중량이 증가하고 있는 실정이다.In addition, the high pressure high current breaker and the high voltage circuit breaker are used for the contactor using brass, the conductivity is less than pure copper and nano sparks often occur, there is a problem that the life is shortened, the volume is large, its own weight is increasing.

근자에 이르러 상기와 같은 전자개폐기, 고압차단기 등에 사용되는 접촉자 및 접촉부위에 적용되는 금속을 보다 도전률이 높으며, 강도가 강하여 수명이 증대되도록 된 금속으로 대체하고자 활발한 연구가 진행되고 있는 실정이다.In recent years, active researches are being conducted to replace metals applied to the contactor and the contact portion used in the above-described electronic switchgear, high voltage circuit breaker, etc. with a metal having a higher conductivity and a higher strength.

상기와 같은 대체 금속으로 각광을 받는 것은 나노신기술을 이용하여 순수구리의 강도를 보강함은 물론 도전률을 100%에 근접되도록 함으로써 수명의 증대와 더불어 부피를 줄일 수 있도록 된 새로은 나노 합금을 제조하는 방법에 대한 연구가 진행중으로 있는 실정이다.The spotlight as the alternative metal as described above is to use the new nano-technology to strengthen the strength of the pure copper as well as the electrical conductivity to close to 100% to increase the service life and to reduce the volume of the new nano-alloy Research on the method is in progress.

상기와 같은 새로운 금속으로는 도전률이 99.6%인 순수구리를 이용하여 도전률을 증대시키도록 하는 것이 가장 바람직하나 순수구리의 경도가 90-95(HV)으로 경도가 약하여 수명이 줄어드는 문제가 있었다.As the new metal, it is most preferable to increase the conductivity by using pure copper having a conductivity of 99.6%. However, the hardness of the pure copper is 90-95 (HV), which has a problem of shortening the lifespan. .

이에 따라 상기와 같은 순수구리의 문제점을 해결하고자 경도가 크며 도전률이 100%인 탄소나노튜브(Cabon Nano Tube: C.N.T)를 침투시켜 구리나노합금으로 제조하여 전자개폐기, 고압차단기 등에 사용되는 접촉자 및 접촉부위에 적용되는 금속으로 적합하게 이용될 수 있도록 하는 것이 새로운 대안으로 부상하고 있는 실정이다.Accordingly, in order to solve the problems of pure copper as described above, a contactor used in an electronic switchgear, a high voltage circuit breaker, and the like is made of copper nanoalloy by penetrating a carbon nanotube (CNT) having a high hardness and a conductivity of 100%. It is emerging as a new alternative to be suitably used as a metal applied to the contact portion.

그러나 상기와 같은 종래의 기술로써는 구리에 나노를 침투하여 구리나노합금을 제조하는 것은 구리의 용융온도인 1080℃로써 탄소나노튜브의 용융온도인 2000℃ 이상으로써 탄소나노튜브를 용융하고자 2000℃ 이상에서 합금화 시킬 경우 구리가 증발하여 합금으로 제조되기 어려운 문제점들이 있었다.However, according to the conventional technique as described above, manufacturing a copper nanoalloy by infiltrating nanoparticles in copper is performed at a temperature of 2000 ° C or higher to melt carbon nanotubes at a temperature of at least 2000 ° C, which is a melting temperature of copper, at a temperature of 1080 ° C. When alloying, there was a problem that copper was difficult to be produced by evaporation of the alloy.

또한 구리의 용융온도인 1080℃로 합금화 시킬 경우 탄소나노튜브가 분말상태로 침투되어 원하는 합금으로의 제조가 이루어지기 힘든 문제점이 있었다.In addition, when alloying at the melting temperature of copper at 1080 ℃ carbon nanotubes are infiltrated into a powder state there was a problem that it is difficult to produce a desired alloy.

본 발명은 상기와 같은 종래의 문제점들을 해결하고자 안출된 것으로서, 본 발명의 목적은 전자개폐기, 고압차단기 등에 사용되는 접촉자 및 접촉부위에 적용되는 금속에 적합하도록 되어 강도가 커서 수명이 증대되고 도전률이 좋아 스파크 등과 같은 위험요소를 일으키지 않으면서 적은 량으로 대체될 수 있도록 하여 자체중량을 줄임으로써 경제적인 구리나노합금의 제조시에 탄소나노튜브가 구리에 고르게 침투하여 원하는 경도와 도전률을 가지는 구리나노합금을 제조하는 구리나노합금의 제조방법을 제공하는데 있다.The present invention has been made to solve the conventional problems as described above, the object of the present invention is to be suitable for the contactor and the metal applied to the contact portion used in the electronic switchgear, high-voltage circuit breaker, etc., the strength is large, the life is increased and the conductivity It can be replaced with a small amount without causing risks such as sparks, thereby reducing its own weight, so that carbon nanotubes penetrate evenly into copper during the production of economical copper nanoalloy, and thus have copper with the desired hardness and conductivity. It is to provide a method for producing a copper nano alloy to produce a nano alloy.

상기와 같은 본 발명의 목적을 달성하기 위한 본 발명의 구리나노합금의 제조방법은 독극성용매액인 DMF(N.N-Dimethylformde)용액에 탄소나노튜브(CNT: Cabon Nano Tube)를 투입하여 혼합하는 제1단계와; 상기 제1단계공정을 통해 DMF용액에 탄소나노튜브가 혼합되면 24시간동안 초음파처리하여 DMF-CNT혼합액을 생성하는 제2단계와; 상기 제2단계를 통해 제조되는 DMF-CNT혼합액을 내부에 일정한 크기의 공간부를 가지는 구리관에 충진하고 구리관의 상하부를 밀봉하는 제3단계와; 상기 제3단계를 통해 DMF-CNT혼합액이 충진된 구리관과 일정량의 구리를 유도가열로에 투입하여 1080-1100℃상태에서 20-30분동안 가열하여 DMF-CNT혼합액 중 DMF용액은 증발시켜 제거되고 DMF-CNT혼합액 중 CNT입자는 구리와 구리관의 융해로 인해 생성되는 구리융해액에 침투하여 구리합금액을 생성시키는 제4단계와; 상기 제4단계를 통해 생성되는 구리합금액을 주조틀에 주입하고, 구리합금액이 주입된 주조틀을 600-800℃상태에서 24시간 가열하여 구리와 탄소나노튜브입자가 안정된 상태에서 일정한 형상으로 성형되도록 된 제5단계를 포함하고 있는 것을 특징으로 한다.The method for producing a copper nano alloy of the present invention for achieving the object of the present invention as described above is to add a carbon nanotube (CNT: Cabon Nano Tube) to the mixed solvent DMF (NN-Dimethylformde) is a polar solvent Step 1; A second step of generating a DMF-CNT mixture by sonicating for 24 hours when carbon nanotubes are mixed with the DMF solution through the first step process; A third step of filling the DMF-CNT mixture prepared in the second step into a copper pipe having a space portion of a predetermined size and sealing the upper and lower parts of the copper pipe; In the third step, the copper tube filled with the DMF-CNT mixture and a predetermined amount of copper were introduced into an induction furnace, heated at 1080-1100 ° C. for 20-30 minutes, and the DMF solution in the DMF-CNT mixture was evaporated and removed. And a fourth step in which the CNT particles in the DMF-CNT mixture are infiltrated into the copper melt generated by the melting of the copper and the copper pipe to generate a copper mixture solution; Injecting the copper alloy solution generated in the fourth step into the casting mold, and the casting mold in which the copper alloy solution is injected is heated for 24 hours at 600-800 ℃ state in a stable shape of copper and carbon nanotube particles It characterized in that it comprises a fifth step to be molded.

상기한 제4단계공정에서 생성되는 구리합금액을 1080-1100℃ 상태에서 5분동안 홀딩하여 탄소나노튜브가 구리융해액에 침투된 상태를 안정화시키도록 된 것을 특징으로 하고 있다.The copper alloy solution generated in the fourth step is held at 1080-1100 ° C. for 5 minutes to stabilize the carbon nanotubes infiltrated into the copper melt.

상기한 제1단계공정에서 DMF용액 80㎖당 탄소나노튜브 0.01-0.05g을 혼합하고, 상기 제4단계공정에서 유도가열로에 구리와 구리관의 총량이 2㎏을 투입하도록 된 것을 특징으로 하고있다.In the first step, the carbon nanotubes 0.01-0.05g per 80ml of DMF solution are mixed, and the total amount of copper and copper pipes is introduced into the induction furnace in the fourth step. have.

상기한 바와 같이 본 발명의 구리나노합금의 제조방법은 용융온도가 다른 구리와 탄소나노튜브를 결합하는데 있어, 탄소나노튜브를 DMF용액으로 미립자로 분해하고, 탄소나노투브가 분해되어 혼합된 DMF-CNT혼합액을 구리와 함께 융해되도록 하여 불필요한 DMF용액은 증발하여 제거하면서 구리에 미립자로 분해된 탄소나노튜 브가 긴밀하고 균일하게 침투되도록 하여 구리나노합금을 제조할 수 있도록 되어있어 전자개폐기, 고압차단기 등에 사용되는 접촉자 및 접촉부위에 적용되는 금속에 적합하도록 경도 및 인장강도를 증대시켜 전기재료의 수명을 증진 시키고 도전률을 향상시켜 스파크 등과 같은 위험요소를 일으키지 않으면서 적은 량으로 대체될 수 있도록 하여 자체중량을 줄임으로써 경제적인 효과를 가지고 있다.As described above, in the method for producing a copper nanoalloy of the present invention, in combining copper and carbon nanotubes having different melting temperatures, the carbon nanotubes are decomposed into fine particles with a DMF solution, and the carbon nanotubes are decomposed and mixed. The CNT mixture is melted together with copper, and the DMF solution is evaporated and removed while the carbon nanotubes decomposed into fine particles into the copper can be intimately and uniformly penetrated to produce copper nano alloys. By increasing the hardness and tensile strength to be suitable for the contactor and the metal applied to the contact part, the life of the electric material can be increased and the conductivity can be improved so that it can be replaced in a small amount without causing a hazard such as a spark. It has an economic effect by reducing its own weight.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예의 구리나노합금의제조방법을 상세히 설명하면 다음과 같다.Hereinafter, a method of manufacturing a copper nano alloy of a preferred embodiment of the present invention with reference to the accompanying drawings in detail as follows.

도 1 및 도 2는 본 발명에 따른 일 실시예에 의한 구리나노합금의제조방법을 보인 도면으로서, 본 실시예의 구리나노합금의 제조방법은 독극성용매액인 DMF(N.N-Dimethylformde)용액에 탄소나노튜브(CNT: Cabon Nano Tube)를 투입하여 혼합하는 제1단계와; 상기 제1단계공정을 통해 DMF용액에 탄소나노튜브가 혼합되면 24시간동안 초음파처리하여 DMF-CNT혼합액(L)을 생성하는 제2단계와; 상기 제2단계를 통해 제조되는 DMF-CNT혼합액(L)을 내부에 일정한 크기의 공간부를 가지는 구리관(T)에 충진하고 구리관(T)의 상하부를 밀봉하는 제3단계와; 상기 제3단계를 통해 DMF-CNT혼합액(L)이 충진된 구리관(T)과 일정량의 구리를 유도가열로에 투입하여 1080-1100℃상태에서 20-30분동안 가열하여 DMF-CNT혼합액 중 DMF용액은 증발시켜 제거되고 DMF-CNT혼합액 중 CNT입자는 구리와 구리관(T)의 융해로 인해 생성되는 구리융해액에 침투하여 구리합금액을 생성시키는 제4단계와; 상기 제4단계를 통해 생성되는 구리합금액을 주조틀에 주입하고, 구리합금액이 주입된 주조틀을 600-800℃상태에서 24시간 가열하여 구리와 탄소나노튜브입자가 안정된 상태에서 일정한 형상으로 성형되도록 된 제5단계를 포함하고 있다.1 and 2 are views showing a method of manufacturing a copper nano alloy according to an embodiment according to the present invention, the method of manufacturing a copper nano alloy of the present embodiment is carbon in a DMF (NN-Dimethylformde) solution which is a polar solvent A first step of mixing by adding nanotubes (CNT: Cabon Nano Tube); A second step of generating a DMF-CNT mixture (L) by sonicating for 24 hours when the carbon nanotubes are mixed with the DMF solution through the first step process; A third step of filling the DMF-CNT mixture (L) prepared through the second step into a copper pipe (T) having a space portion of a predetermined size and sealing the upper and lower parts of the copper pipe (T); In the third step, the copper tube (T) filled with the DMF-CNT mixture (L) and a predetermined amount of copper were introduced into an induction furnace, and heated for 20-30 minutes at a temperature of 1080-1100 ° C. in the DMF-CNT mixture. A fourth step in which the DMF solution is removed by evaporation and the CNT particles in the DMF-CNT mixture are infiltrated into the copper melt formed by the melting of the copper and the copper pipe (T) to generate a copper alloy solution; Injecting the copper alloy solution generated in the fourth step into the casting mold, and the casting mold in which the copper alloy solution is injected is heated for 24 hours at 600-800 ℃ state in a stable shape of copper and carbon nanotube particles And a fifth step to be molded.

상기한 제1단계공정에서 DMF용액 80㎖당 탄소나노튜브 0.01-0.05g을 혼합하도록 되어있으며, DMF용액에 투입된 탄소나노튜브는 상기한 제2단계공정에서 초음파처리되어 미립자로 분해되면서 DMF용액 중에 균일하게 분포되도록 되어 있다.In the first step, the carbon nanotubes 0.01-0.05 g per 80 ml of the DMF solution are mixed, and the carbon nanotubes introduced into the DMF solution are sonicated in the second step and decomposed into fine particles, and then, in the DMF solution. It is distributed uniformly.

상기한 제3단계공정에서 DMF-CNT혼합액(L)은 먼저 구리관(T)의 하단을 TIG용접하여 밀봉한 상태에서 구리관의 공간부에 DMF-CNT혼합액(L)을 주입하여 충진시키고 구리관의 상단을 TIG용접하여 밀봉함으로써 DMF-CNT혼합액(L) 중 DMF용액이 증발하는 것을 방지하도록 되어있다.In the third step, the DMF-CNT mixture (L) is filled by injecting the DMF-CNT mixture (L) into the space of the copper tube while sealing the lower end of the copper tube (T) by TIG welding. The upper end of the tube is sealed by TIG welding to prevent evaporation of the DMF solution in the DMF-CNT mixture (L).

상기한 5단계 공정에서 구리합금액이 주입되는 주조틀은 구리합금액이 주입되기 전에 건조로에서 600~800℃의 상태로 예열처리되도록 되어있다.In the five-step process, the casting mold into which the copper alloy solution is injected is preheated to 600 to 800 ° C. in a drying furnace before the copper alloy solution is injected.

상기한 제4단계공정에서 유도가열로에 투입되는 구리는 구리관(T)의 량과 합하여 탄소나노튜브 0.01-0.05g당 2㎏이 되도록 투입하며, 투입되는 구리와 구리관(T)은 유도가열로에서 1080-1100℃ 상태로 가열되면 10분여시간이 경과되면 서서히 융해가 시작된다.In the fourth step, the copper introduced into the induction furnace is added in an amount of 2 kg per 0.01-0.05 g of carbon nanotubes in combination with the amount of copper pipe (T), and the copper and copper pipe (T) introduced are induced. When heated to 1080-1100 ℃ state in the furnace after about 10 minutes has passed the melting slowly begins.

상기와 같이 융해가 시작되는 구리와 구리관(T)은 구리관(T)의 융해로 외부로 누출되는 DMF-CNT혼합액(L) 중 CNT입자가 구리융해액으로 침투하여 구리합금액으로 되며, DMF-CNT혼합액(L) 중 DMF용액은 증발되어 제거가 된다.As described above, the copper and the copper pipe (T) where the melting starts, the CNT particles in the DMF-CNT mixture (L) leaked to the outside due to the melting of the copper pipe (T) penetrates into the copper melting solution to form a copper alloy solution, The DMF solution in the DMF-CNT mixture (L) is evaporated and removed.

상기와 같이 제4단계공정에서 생성되는 구리합금액을 1080-1100℃ 상태에서 5분동안 홀딩하여 탄소나노튜브 입자가 구리융해액에 균일하게 침투된 상태를 안정 화시키도록 되어 있다As described above, the copper alloy solution generated in the fourth step is held at 1080-1100 ° C. for 5 minutes to stabilize the carbon nanotube particles uniformly infiltrated into the copper melt.

상기한 바와 같이 본 실시예의 구리나노합금의 제조방법에서 DMF용액 80㎖당 탄소나노튜브는 0.01-0.05g을 혼합하고, 구리는 구리관의 량을 포함하여 2㎏이 혼합되도록 되어있다.As described above, in the manufacturing method of the copper nanoalloy of the present embodiment, carbon nanotubes per 80 ml of DMF solution are mixed with 0.01-0.05 g, and copper is mixed with 2 kg including the amount of copper pipe.

상기와 같이 이루어지는 본 실시예의 구리나노합금은 경도가 136-180(HV)이며, 인장강도는 35-40(kgf/㎟)이며, 순구리의 경도 90-95(HV)와 인장강도 20(kgf/㎟)에 비하여 현저하게 증대된다.The copper nano alloy of the present embodiment made as described above has a hardness of 136-180 (HV), a tensile strength of 35-40 (kgf / mm 2), a hardness of 90-95 (HV) and a tensile strength of 20 (kgf) of pure copper. / Mm 2) is significantly increased.

상기에서 DMF용액 80㎖당 탄소나노튜브는 0.01g을 혼합하고, 구리는 구리관의 량을 포함하여 2㎏이 혼합되면 구리나노합금의 경도는 136(HV)이며,In the above, the carbon nanotubes per 80 ml of DMF solution are mixed with 0.01 g, and copper is mixed with 2 kg including the amount of copper tube, and the hardness of the copper nano alloy is 136 (HV),

상기에서 DMF용액 80㎖당 탄소나노튜브는 0.03g을 혼합하고, 구리는 구리관의 량을 포함하여 2㎏이 혼합되면 구리나노합금의 경도는 153(HV)이고,In the above, the carbon nanotubes per 80 ml of DMF solution are mixed with 0.03 g, and copper is mixed with 2 kg, including the amount of copper pipe, and the hardness of the copper nano alloy is 153 (HV),

상기에서 DMF용액 80㎖당 탄소나노튜브는 0.05g을 혼합하고, 구리는 구리관의 량을 포함하여 2㎏이 혼합되면 구리나노합금의 경도는 180(HV)을 가지고 있도록 되어 있다.In the above, the carbon nanotubes per 80 ml of DMF solution are mixed with 0.05 g, and the copper has a hardness of 180 (HV) when 2 kg is mixed, including the amount of copper pipe.

상술한 바와 같이 본 발명의 구리합금의 제조방법은 용융온도가 다른 구리와 탄소나노튜브를 결합하는데 있어, 탄소나노튜브를 DMF용액으로 미립자로 분해하고, 탄소나노투브가 분해되어 혼합된 DMF-CNT혼합액을 구리와 한께 융해되도록 하여 불필요한 DMF용액은 증발하여 제거하면서 구리에 미립자로 분해된 탄소나노튜브가 긴밀하고 균일하게 침투되도록 하여 구리나노합금을 제조할 수 있도록 되어있는 것으로, 본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위내에 있게 된다.As described above, in the method for producing a copper alloy of the present invention, in combining copper and carbon nanotubes having different melting temperatures, carbon nanotubes are decomposed into fine particles with DMF solution, and carbon nanotubes are decomposed and mixed with DMF-CNT. By melting the mixed solution with copper, the unnecessary DMF solution is evaporated to remove the carbon nanotubes, which are decomposed into fine particles, into the copper, so that the copper nanoalloy can be produced in a tight and uniform manner. It is not limited to one particular preferred embodiment, and any person of ordinary skill in the art without departing from the gist of the invention claimed in the claims that various modifications are possible, of course, Such changes are intended to fall within the scope of the claims.

도 1은 본 발명에 따른 일 실시예에 의한 구리나노합금의 제조방법을 보인 개략도,1 is a schematic view showing a method of manufacturing a copper nano alloy according to an embodiment of the present invention,

도 2는 일부 단면예시도,2 is a partial cross-sectional view,

[도면중 중요한 부분에대한 부호의 설명][Explanation of symbols for important parts of the drawings]

T : 구리관, L : DMF-CNT혼합액T: copper tube, L: DMF-CNT mixture

Claims (3)

독극성용매액인 DMF(N.N-Dimethylformde)용액에 탄소나노튜브(CNT: Cabon Nano Tube)를 투입하여 혼합하는 제1단계와;A first step of mixing by mixing carbon nanotubes (CNT) into a DMF (N.N-Dimethylformde) solution, which is a polar solvent; 상기 제1단계공정을 통해 DMF용액에 탄소나노튜브가 혼합되면 24시간동안 초음파처리하여 DMF-CNT혼합액을 생성하는 제2단계와;A second step of generating a DMF-CNT mixture by sonicating for 24 hours when carbon nanotubes are mixed with the DMF solution through the first step process; 상기 제2단계를 통해 제조되는 DMF-CNT혼합액을 내부에 일정한 크기의 공간부를 가지는 구리관에 충진하고 구리관의 상하부를 밀봉하는 제3단계와;A third step of filling the DMF-CNT mixture prepared in the second step into a copper pipe having a space portion of a predetermined size and sealing the upper and lower parts of the copper pipe; 상기 제3단계를 통해 DMF-CNT혼합액이 충진된 구리관과 일정량의 구리를 유도가열로에 투입하여 1080-1100℃상태에서 20-30분동안 가열하여 DMF-CNT혼합액 중 DMF용액은 증발시켜 제거되고 DMF-CNT혼합액 중 CNT입자는 구리와 구리관의 융해로 인해 생성되는 구리융해액에 침투하여 구리합금액을 생성시키는 제4단계와;In the third step, the copper tube filled with the DMF-CNT mixture and a predetermined amount of copper were introduced into an induction furnace, heated at 1080-1100 ° C. for 20-30 minutes, and the DMF solution in the DMF-CNT mixture was evaporated and removed. And a fourth step in which the CNT particles in the DMF-CNT mixture are infiltrated into the copper melt generated by the melting of the copper and the copper pipe to generate a copper mixture solution; 상기 제4단계를 통해 생성되는 구리합금액을 주조틀에 주입하고, 구리합금액이 주입된 주조틀을 600-800℃상태에서 24시간 가열하여 구리와 탄소나노튜브입자가 안정된 상태에서 일정한 형상으로 성형되도록 된 제5단계를 포함하고 있는 것을 특징으로 하는 구리나노합금의 제조방법Injecting the copper alloy solution generated in the fourth step into the casting mold, and the casting mold in which the copper alloy solution is injected is heated for 24 hours at 600-800 ℃ state in a stable shape of copper and carbon nanotube particles Method for producing a copper nano alloy comprising a fifth step to be molded 제 1항에 있어서;The method of claim 1; 상기한 제4단계공정에서 생성되는 구리합금액을 1080-1100℃ 상태에서 5분동안 홀딩하여 탄소나노튜브가 구리융해액에 침투된 상태를 안정화시키도록 된 것을 특징으로 하고 있는 구리나노합금의 제조방법The copper nanoalloy produced in the fourth step process is held for 5 minutes at 1080-1100 ℃ state to stabilize the state in which the carbon nanotubes infiltrated into the copper melt liquid Way 제 1항에 있어서;The method of claim 1; 상기한 제1단계공정에서 DMF용액 80㎖당 탄소나노튜브 0.01-0.05g을 혼합하고, 상기 제4단계공정에서 유도가열로에 구리와 구리관의 총량이 2㎏을 투입하도록 된 것을 특징으로 하고 있는 구리나노합금의 제조방법In the first step, the carbon nanotubes 0.01-0.05g per 80ml of DMF solution are mixed, and the total amount of copper and copper pipes is introduced into the induction furnace in the fourth step. Of copper nano alloys
KR1020070141471A 2007-12-31 2007-12-31 A Methode For A Compound metal of A Nano-Copper KR100935292B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070141471A KR100935292B1 (en) 2007-12-31 2007-12-31 A Methode For A Compound metal of A Nano-Copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070141471A KR100935292B1 (en) 2007-12-31 2007-12-31 A Methode For A Compound metal of A Nano-Copper

Publications (2)

Publication Number Publication Date
KR20090073506A KR20090073506A (en) 2009-07-03
KR100935292B1 true KR100935292B1 (en) 2010-01-06

Family

ID=41330650

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070141471A KR100935292B1 (en) 2007-12-31 2007-12-31 A Methode For A Compound metal of A Nano-Copper

Country Status (1)

Country Link
KR (1) KR100935292B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282628B (en) * 2016-08-31 2018-04-17 北京理工大学 A kind of preparation method of carbon nanotube reinforced copper-base composite material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346136B1 (en) * 2000-03-31 2002-02-12 Ping Chen Process for forming metal nanoparticles and fibers
KR100556978B1 (en) * 2003-10-20 2006-03-03 한국과학기술원 Method for fabricating carbon nanotubes/metal nanocomposite materials using metal nanopowders
KR100758341B1 (en) * 2006-06-16 2007-09-14 주식회사 어플라이드카본나노 Conductive polymer matrix composites in which metal-nanofiber mixture is dispersed and its fabrication methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346136B1 (en) * 2000-03-31 2002-02-12 Ping Chen Process for forming metal nanoparticles and fibers
KR100556978B1 (en) * 2003-10-20 2006-03-03 한국과학기술원 Method for fabricating carbon nanotubes/metal nanocomposite materials using metal nanopowders
KR100758341B1 (en) * 2006-06-16 2007-09-14 주식회사 어플라이드카본나노 Conductive polymer matrix composites in which metal-nanofiber mixture is dispersed and its fabrication methods

Also Published As

Publication number Publication date
KR20090073506A (en) 2009-07-03

Similar Documents

Publication Publication Date Title
CN108950279B (en) Method for synergistically improving arc ablation performance of CuW contact material
Long et al. Enhanced arc erosion resistance of TiB2/Cu composites reinforced with the carbon nanotube network structure
US20100327233A1 (en) Copper-Carbon Composition
US10633722B2 (en) Multi-phase covetic and methods of synthesis thereof
KR20110064036A (en) Method for manufacture of high purity copper powder use of plasma
CN106282640B (en) A kind of silver nickel electric contact material and preparation method thereof
KR100935292B1 (en) A Methode For A Compound metal of A Nano-Copper
JPWO2012053334A1 (en) Carbon nanofiber manufacturing method, carbon composite, and manufacturing method thereof
CN104051054A (en) Silver-based and titanium-carbide-based contact material and preparation method thereof
JP4579348B1 (en) Electrical contact material
KR101563095B1 (en) Carbon nanofibers encapsulting metal cobalt, and production method therefor
JP4620071B2 (en) Contact materials for vacuum circuit breakers
JP6253494B2 (en) Contact material for vacuum valve and vacuum valve
CN105695792A (en) Preparation method for graphene/silver nickel electrical contact material
CN105761956A (en) Contact material, vacuum arc-extinguishing chamber contact and manufacturing method thereof
Wang et al. In-situ synthesized silver-graphene nanocomposite with enhanced electrical and mechanical properties
JP2018103349A (en) Low-consumable electrode for electrical discharge machining
CN113593992A (en) CuW-CuCr integral electrical contact with ultra-low chromium content and preparation method thereof
Li et al. Simultaneously enhanced mechanical and electrical performance of Cu-10wt.% Mo contact material by the addition of graphite
KR20120066648A (en) Copper alloy and method for producing same
JP2009291806A (en) Carbon electrode for gouging and manufacturing method thereof
Liu et al. The Wear and Electrical Performance of Cu-CNTs Composites with Network Structure CNTs Fabricated by Multi-Directional Forging
KR102311541B1 (en) Silver-carbon nano composite particles, method for preparation thereof, and electric contact material comprising the same
US896144A (en) Electrode.
Li et al. Enhanced anti-welding and arc erosion performance of Ag-8 wt% SnO2 contact material with different addition of graphene nanoplatelets

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee