KR100932223B1 - Method for preparing 5-vinyl-2-norbornene using aprotic polar solvent - Google Patents

Method for preparing 5-vinyl-2-norbornene using aprotic polar solvent Download PDF

Info

Publication number
KR100932223B1
KR100932223B1 KR1020070125122A KR20070125122A KR100932223B1 KR 100932223 B1 KR100932223 B1 KR 100932223B1 KR 1020070125122 A KR1020070125122 A KR 1020070125122A KR 20070125122 A KR20070125122 A KR 20070125122A KR 100932223 B1 KR100932223 B1 KR 100932223B1
Authority
KR
South Korea
Prior art keywords
reaction
vinyl
norbornene
cyclopentadiene
aprotic polar
Prior art date
Application number
KR1020070125122A
Other languages
Korean (ko)
Other versions
KR20090058375A (en
Inventor
이현주
안병성
민병권
한정식
성익경
황운성
Original Assignee
한국과학기술연구원
주식회사 코오롱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원, 주식회사 코오롱 filed Critical 한국과학기술연구원
Priority to KR1020070125122A priority Critical patent/KR100932223B1/en
Publication of KR20090058375A publication Critical patent/KR20090058375A/en
Application granted granted Critical
Publication of KR100932223B1 publication Critical patent/KR100932223B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/50Diels-Alder conversion
    • C07C2/52Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/39Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with a bicyclo ring system containing seven carbon atoms
    • C07C13/42Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with a bicyclo ring system containing seven carbon atoms with a bicycloheptene ring structure
    • C07C13/43Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with a bicyclo ring system containing seven carbon atoms with a bicycloheptene ring structure substituted by unsaturated acyclic hydrocarbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/20Use of additives, e.g. for stabilisation

Abstract

본 발명은 비양성자성 극성화합물을 이용하여 5-비닐-2-노보넨을 제조하는 방법에 관한 것으로, 더욱 상세하게는 사이클로펜타디엔과 1,3-부타디엔의 딜즈-알더(Diels-Alder) 반응으로 5-비닐-2-노보넨을 제조하는 반응에 촉매겸 용매로 비양성자성 극성화합물을 사용함으로서, 사이클로펜타디엔의 전환율 향상 및 부산물의 생성을 억제하여 높은 수율로 5-비닐-2-노보넨을 제조하는 방법에 관한 것이다.The present invention relates to a method of preparing 5-vinyl-2-norbornene using an aprotic polar compound, and more particularly, to a Diels-Alder reaction of cyclopentadiene and 1,3-butadiene. By using an aprotic polar compound as both a catalyst and a solvent in the reaction for preparing 5-vinyl-2-norbornene, the conversion of cyclopentadiene and the formation of by-products are suppressed, thereby increasing the yield of 5-vinyl-2-norbornene. It relates to a process for producing nene.

사이클로펜타디엔, 1,3-부타디엔, 비양성자성 극성화합물, 5-비닐-2-노보넨 Cyclopentadiene, 1,3-butadiene, aprotic polar compounds, 5-vinyl-2-norbornene

Description

비양성자성 극성 용매를 이용한 5-비닐-2-노보넨의 제조방법{Preparation method of 5-vinyl-2-norbornene using polar aprotic solvent}Preparation method of 5-vinyl-2-norbornene using aprotic polar solvent {Preparation method of 5-vinyl-2-norbornene using polar aprotic solvent}

본 발명은 비양성자성 극성 화합물을 사용하여 사이클로펜타디엔과 1,3-부타디엔의 딜즈-알더(Diels-Alder) 반응으로 5-비닐-2-노보넨을 제조하는 방법에 관한 것이다.The present invention relates to a process for preparing 5-vinyl-2-norbornene by Diels-Alder reaction of cyclopentadiene with 1,3-butadiene using an aprotic polar compound.

5-비닐-2-노보넨(5-vinyl-2-norbornene, 이하 'VNB'라 함)은 에틸렌-프로필렌-디엔 공중합체(ethylene-propylene-diene copolymer, 이하 'EPDM'이라 함) 고무의 제3물질로 사용되는 5-에틸리덴-2-노보넨(5-ethylidene-2-norbornen, 이하 'ENB'이라 함)의 원료로 다음 반응식 1과 같이 사이클로펜타디엔(이하, 'CPD'이라 함)과 1,3-부타디엔(이하, 'BD'이라 함)의 딜즈-알더(Diels-Alder) 반응을 통하여 제조될 수 있다.5-vinyl-2-norbornene (hereinafter referred to as 'VNB') is made of ethylene-propylene-diene copolymer (hereinafter referred to as 'EPDM') rubber. It is a raw material of 5-ethylidene-2-norbornene (hereinafter referred to as 'ENB'), which is used as three substances, and cyclopentadiene (hereinafter, referred to as 'CPD') as shown in Scheme 1 below. And 1,3-butadiene (hereinafter referred to as 'BD') can be prepared through the Diels-Alder reaction.

Figure 112007087359519-pat00001
Figure 112007087359519-pat00001

딜즈알더 반응은 CPD와 같은 디엔과 디에노파일의 반응으로 이루어지는데. 일반적으로 디엔에는 전자주게(electron-donating) 그룹이, 디에노파일에는 전자 당김(electron-withdrawing) 그룹이 존재할 때 반응이 용이하게 일어난다. The Diels Alder reaction is a reaction between dienes and dienophiles such as CPD. In general, a reaction occurs easily when an electron-donating group is present in the diene and an electron-withdrawing group is present in the dienophile.

VNB 제조 반응의 경우 사이클로펜타디엔이 디엔으로 1,3-부타디엔이 디에노파일로 작용하는 경우로 이 화합물들의 경우 전자밀도에 영향을 줄 수 있는 치환기의 부재로 반응은 높은 온도에서 진행되고 그 수율도 낮다. 특히, 1,3-부타디엔의 경우 시소이드(cisoid) 및 트렌소이드(transoid) 구조로 인하여 디엔 및 디엔노파일로의 작용이 가능하므로, VNB 뿐만 아니라 CPD가 디엔노파일으로, 1,3-부타디엔이 디엔으로 작용하므로써 만들어지는 3a, 4, 7, 7a-테트라하이드로인덴(3a, 4, 7, 7a-tetrahydroindene, 이하 THI)가 과량으로 생성된다[반응식 2]. 또한 1,3-부타디엔 두 분자가 디엔 및 디에노파일로 작용하여 생성되는 4-비닐사이클로헥센(4-vinylcyclohexene) 등도 본 반응의 부생산물로 생성된다[반응식 3].In the case of the VNB reaction, cyclopentadiene acts as a diene and 1,3-butadiene acts as a dienophile. In the case of these compounds, the reaction proceeds at a high temperature due to the absence of substituents that may affect the electron density. Is also low. In particular, in the case of 1,3-butadiene can act as a diene and a dienophile due to the sisoid (cisoid) and the transoid structure (transoid) structure, not only VNB but also CPD as a dienopropyl, 1,3- An excess of 3a, 4, 7, 7a-tetrahydroindene (THI), produced by butadiene acting as a diene (Scheme 2). In addition, 4-vinylcyclohexene, which is produced by the action of two molecules of 1,3-butadiene as dienes and dienopropyl, is also produced as a by-product of the reaction [Scheme 3].

Figure 112007087359519-pat00002
Figure 112007087359519-pat00002

Figure 112007087359519-pat00003
Figure 112007087359519-pat00003

또한, 문헌에 의하면 생성된 VNB는 고온에서 이성화 반응을 통하여 THI로 변환된다고 알려져 있다[T. Maeda 외, Journal of Chemical Society of Japan, 1974 (8), 1587-9]It is also known from the literature that the resulting VNB is converted to THI through an isomerization reaction at high temperature [T. Maeda et al., Journal of Chemical Society of Japan, 1974 (8), 1587-9]

이와 같이 VNB에 대한 낮은 수율을 극복하고자 알칼리금속과 같은 촉매를 사용하거나[한국특허공개 제1999-017713호], 타이타니아 계 촉매를 사용하여 VNB 제조에 응용하고 있지만[미국특허 제4,891,460호] 반응 원료 중 작용기의 부재로 인하여 그 효과는 크지 않다. In order to overcome the low yield of VNB, a catalyst such as an alkali metal is used [Korean Patent Publication No. 1999-017713] or a titania-based catalyst is used for the production of VNB [US Pat. No. 4,891,460]. The effect is not great due to the absence of heavy functional groups.

일본특허 소49-25665호에는 탄소수 5 ∼ 7개의 탄화수소 화합물 혹은 탄소수 2 ∼ 7의 에스테르화합물을 용매로 사용하여 VNB를 제조하는 방법에 대해서 보고하고 있다. 또한, 미국특허 제4,219,688호에서는 분자굴절율(RD, Molecular Reflective Index)이 30 이상인 데카하이로나프탈렌(cis-decahydronaphthalene) 혹은 클로로나프탈렌(alpha-chloronaphthalene) 등을 용매로 하여 VNB 및 THI의 수율을 증대시키는 방법에 대하여 기재되어 있다. Japanese Patent No. 49-25665 reports a method for producing a VNB using a hydrocarbon compound having 5 to 7 carbon atoms or an ester compound having 2 to 7 carbon atoms as a solvent. In addition, US Patent No. 4,219,688 discloses a method of increasing the yield of VNB and THI by using decayronaphthalene (cis-decahydronaphthalene) or chloronaphthalene (alpha-chloronaphthalene) having a molecular refractive index (RD) of 30 or more as a solvent. Is described.

그러나, 이상에서 제시되고 있는 방법은 용매가 고가이고, THI 및 고분자 화합물 등의 반응 부산물의 생성량이 많으며, 대부분 200 ℃ 이상의 높은 끓는점을 갖고 있거나 100 ℃ 이하의 낮은 끓는점을 갖고 있어 상용화 공정에서 용매의 정제가 비 경제적이라는 단점이 있어 이를 개선하기 위한 새로운 시도가 요구되고 있는 실정이다.However, the above-mentioned methods have high solvents, have a large amount of reaction by-products such as THI and polymer compounds, and most of them have a high boiling point of 200 ° C. or higher and a low boiling point of 100 ° C. or lower. There is a drawback that the purification is uneconomical, a new attempt to improve it is required.

본 발명은 5-비닐-2-노보넨(VNB)을 보다 효율적으로 제조하는 방법을 제조하고자 하였다. 즉, 사이클로펜타디엔과 1,3-부타디엔의 딜즈-알더(Diels-Alder) 반응을 보다 효과적으로 수행하여 사이클로펜타디엔의 전환율, 부산물의 생성 억제 및 5-비닐-2-노보넨(VNB)의 수율을 향상시키는 방법을 제시하고자 한다.The present invention was to prepare a method for producing 5-vinyl-2-norbornene (VNB) more efficiently. That is, the Diels-Alder reaction of cyclopentadiene and 1,3-butadiene can be more effectively performed to convert cyclopentadiene, inhibit the formation of by-products, and yield of 5-vinyl-2-norbornene (VNB). I would like to present a way to improve this.

본 발명은 사이클로펜타디엔과 1,3-부타디엔을 딜즈-알더(Diels-Alder) 반응시켜 5-비닐-2-노보넨을 제조하는 방법에 있어서, 상기 반응촉매 및 용매로 비양성자성 극성 화합물을 사용하는 5-비닐-2-노보넨의 제조방법에 그 특징이 있다.The present invention is a method for preparing 5-vinyl-2-norbornene by reacting cyclopentadiene and 1,3-butadiene with Diels-Alder, wherein the aprotic polar compound is reacted with the reaction catalyst and solvent. The manufacturing method of 5-vinyl-2-norbornene used has the characteristics.

본 발명에 따른 제조방법은 종래에 비해 낮은 단가를 갖는 비양성자성 극성화합물을 반응용매 및 촉매로 사용하여 사이클로펜타디엔의 높은 전환율과, 선택성 및 고수율로 5-비닐-2-노보넨의 제조가 가능하다. 또한, 상기 비양성자성 극성화합물의 목적물로부터의 분리 회수가 용이하여 보다 경제적으로 5-비닐-2-노보넨의 제조가 가능하다.In the production method according to the present invention, the production of 5-vinyl-2-norbornene with high conversion, selectivity and high yield of cyclopentadiene using aprotic polar compounds having a lower cost as a reaction solvent and a catalyst than in the related art. Is possible. In addition, the separation and recovery of the aprotic polar compound from the target product is easy, and economical production of 5-vinyl-2-norbornene is possible.

본 발명은 사이클로펜타디엔(cyclopentadiene, CPD)과 1,3-부타디엔(1,3-butadiene, BD)을 반응 시 촉매 겸 반응용매로 비양성자성 극성화합물을 사용하여 5-비닐-2-노보넨의 제조방법을 특징으로 한다.In the present invention, 5-vinyl-2-norbornene is prepared by using aprotic polar compound as a catalyst and a reaction solvent when cyclopentadiene (CPD) and 1,3-butadiene (1,3-butadiene, BD) are reacted. Characterized in that the manufacturing method.

이하 본 발명을 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

본 발명의 반응물질로 사용되는 본 발명에 사용되는 사이클로펜타디엔은 당 분야에서 일반적으로 알려져 있는 디사이클로펜타디엔(DCPD)의 열분해 증류법으로 제조할 수 있으나, 이의 경우에는 상온에서 다시 자발적으로 DCPD로 전환되므로, 제조한 즉시 -20 ℃에서 보관하여 실제 실험에는 그 순도가 95% 이상인 상태의 사이클로펜타디엔을 사용하는 것이 바람직하다.The cyclopentadiene used in the present invention, which is used as the reactant of the present invention, may be prepared by pyrolysis distillation of dicyclopentadiene (DCPD), which is generally known in the art. Since it is converted, it is preferable to use the cyclopentadiene in the state of purity of 95% or more in actual experiments stored at -20 ℃ immediately.

본 발명은 사이클로펜타디엔과 1,3-부타디엔의 딜즈-알더(Diels-Alder) 반응을 수행하여 5-비닐-2-노보넨을 제조하는 바, 상기 1,3-부타디엔은 사이클로펜타디엔 1 몰에 대하여 1 ∼ 5 몰비, 바람직하기로는 3 ∼ 5 몰비를 사용하는 것이 좋다. 상기 사이클로펜타디엔과 1,3-부타디엔은 1:1 몰비의 정량반응으로 최소 1,3-부타디엔은 1 몰비를 유지하여야 하며, 5 몰비를 초과하여도 반응 수율과는 무관하며 오히려 경제적인 문제가 있으므로 상기 범위를 유지하는 것이 바람직하다.In the present invention, 5-vinyl-2-norbornene is prepared by performing a Diels-Alder reaction of cyclopentadiene and 1,3-butadiene, wherein 1,3-butadiene is 1 mole of cyclopentadiene. It is preferable to use 1 to 5 molar ratios, preferably 3 to 5 molar ratios. The cyclopentadiene and 1,3-butadiene should be maintained at a molar ratio of at least 1,3-butadiene in a 1: 1 molar ratio, and even if it exceeds 5 molar ratio, it is irrelevant to the reaction yield and is rather economical. Therefore, it is preferable to maintain the above range.

본 발명은 반응촉매 겸 용매로 비양성자성 극성화합물을 사용하는 것에 기술구성상의 특징이 있다.The present invention is characterized by the technical construction of using an aprotic polar compound as a reaction catalyst and a solvent.

비양성자성 극성화합물은 종래의 비극성 용매에 비하여 시클로펜타디엔과 1,3-부타디엔에 대한 용해도가 높아 결과적으로 반응용액 중 1,3-부타디엔의 농도를 증가시키는 효과가 있다. 또한, 딜즈알더 반응의 전이상태(transition state)를 안정화시켜 반응의 활성화에너지를 낮춤으로서 반응의 수율을 높이는 것으로 추측하고 있다. 결과적으로 이를 사이클로펜타디엔과 1,3-부타디엔의 딜즈-알더(Diels-Alder) 반응에 사용하는 경우 사이클로펜타디엔의 전환율 향상과 동시에 5-비닐-2-노보넨의 선택도를 향상시키게 된다.The aprotic polar compound has higher solubility in cyclopentadiene and 1,3-butadiene as compared to the conventional nonpolar solvent, resulting in an increase in the concentration of 1,3-butadiene in the reaction solution. In addition, it is assumed that the yield of the reaction is increased by stabilizing the transition state of the Diels-Alder reaction to lower the activation energy of the reaction. As a result, when used in the Diels-Alder reaction of cyclopentadiene and 1,3-butadiene, the conversion of cyclopentadiene and the selectivity of 5-vinyl-2-norbornene are improved.

즉, 본 발명의 비양성자성 극성화합물은 딜즈-알더 반응 자체에 영향을 미치지 않으면서, 반응 원료에 대한 용해도가 좋고 반응 생성물과의 분리를 위해 5-비닐-2-노보넨와의 끓는점이 차이가 나는 것을 사용하는 것이 좋다. 구체적으로 디메틸포름아마이드(DMF), 모노메틸포름아마이드(MF), 모노메틸아세트아마이드(MAC), 디메틸아세트아마이트(DMAC) 및 메틸피롤리디논(NMP) 등을 사용할 수 있다. 상기 화합물은 끓는점이 150 ∼ 200 ℃ 범위로 5-비닐-2-노보넨의 끓는점인 141 ℃와는 차이를 보여 분리가 용이하므로 반응 후에 단순 증류법 등을 이용하여 혼합물로부터 생성물을 쉽게 분리할 수 있으므로 재사용이 가능하다는 점에서 산업적인 유용성을 가진다.That is, the aprotic polar compound of the present invention does not affect the Diels-Alder reaction itself, but has a high solubility in the reaction raw material and a difference in boiling point from 5-vinyl-2-norbornene for separation from the reaction product. I like to use things. Specifically, dimethylformamide (DMF), monomethylformamide (MF), monomethylacetamide (MAC), dimethylacetamide (DMAC) and methylpyrrolidinone (NMP) may be used. The compound shows a difference from the boiling point of 141 ℃, which is a boiling point of 5-vinyl-2-norbornene, in the range of 150 to 200 ° C., so that the compound is easily separated, and thus the product can be easily separated from the mixture using a simple distillation method after the reaction. It has industrial utility in that it is possible.

이러한 비양성자성 극성화합물은 반응촉매 겸 용매로 사용되는 바, 촉매의 용도로 사용되는 경우에는 소량 사용될 수 있으나 용매와 동시에 촉매로 사용되는 경우에는 비교적 과량의 범위로 사용하는 것이 바람직하다. 구체적으로 사이클로펜타디엔에 대하여 10 ∼ 1000 중량%, 바람직하게는 50 ∼ 500 중량% 범위로 사용하는 바, 사용량이 10 중량% 미만이면 반응에 대한 효과가 미미할 뿐만 아니라 고분자성 부산물의 생성량이 많아지고, 1000 중량%를 초과하는 경우에는 반응의 속도가 느려지고 반응 후 생성된 5-비닐-2-노보넨을 분리하는데 비 경제적이다.Since the aprotic polar compound is used as a reaction catalyst and a solvent, it may be used in a small amount when used as a catalyst, but when used as a catalyst simultaneously with a solvent, it is preferable to use it in a relatively excessive range. Specifically, it is used in the range of 10 to 1000% by weight, preferably 50 to 500% by weight relative to the cyclopentadiene. When the amount is less than 10% by weight, the effect on the reaction is insignificant and the amount of polymer byproducts is increased. In the case of more than 1000% by weight, the reaction rate is slowed and it is not economical to separate 5-vinyl-2-norbornene produced after the reaction.

상기한 비양성자성 극성화합물을 사용하여 5-비닐-2-노보넨을 제조하는 반응은 교반기가 설치된 고압 반응기를 사용하여 수행할 수 있다.The reaction for preparing 5-vinyl-2-norbornene using the aprotic polar compound described above may be performed using a high pressure reactor equipped with a stirrer.

반응온도는 150 ∼ 280 ℃ 온도범위, 바람직하기로는 230 ∼ 280 ℃에서 수행하는 것이 좋으며, 특히 약 280 ℃의 고온에서 수행하는 것이 좋다. 그러나, 상기 반응온도가 150 ℃ 미만이면 반응성이 낮으며, 280 ℃를 초과하면 생성물인 5-비닐-2-노보넨이 3a,4,7,7a-테트라하이드로인덴(THI)로의 이성화가 빠르게 진행되며 반응원료의 중합에 의한 부산물의 생성량이 급격하게 증가하는 문제가 있다.The reaction temperature is preferably carried out at a temperature range of 150 to 280 ° C., preferably 230 to 280 ° C., and particularly at a high temperature of about 280 ° C. However, if the reaction temperature is less than 150 ℃, the reactivity is low, and if it exceeds 280 ℃ product is 5-vinyl-2- norbornene is rapidly isomerized to 3a, 4,7,7a-tetrahydroindene (THI) There is a problem that the amount of by-products generated by the polymerization of the reaction raw material increases rapidly.

반응압력은 200 ∼ 700 psig 압력범위, 바람직하기로는 500 ∼ 700 psig에서 수행하는 것이 좋으며, 특히 약 700 psig의 고압에서 수행하는 것이 좋다. 이때, 질소, 알곤 등의 불활성 기체를 사용하여 상기 범위의 압력을 유지한 상태에서 반응을 수행할 경우 상압에서 반응을 수행한 경우보다 반응 수율이 월등히 증가하게 된다. 그러나, 상기 반응압력이 200 psig 미만이면 용액 내에 1.3-부타디엔의 농도가 낮아 반응의 수율이 낮은 문제가 있으며, 700 psig을 초과하는 경우에는 한 문제가 1,3-부타디엔 간의 딜즈-알더 반응으로 생성되는 비닐 사이클로헥센(vinyl cyclohexene)의 생성량이 많아지므로 상기 범위를 유지하는 것이 바람직하다.The reaction pressure is preferably performed at a pressure range of 200 to 700 psig, preferably 500 to 700 psig, and particularly at a high pressure of about 700 psig. In this case, when the reaction is carried out using an inert gas such as nitrogen and argon in a state of maintaining the pressure in the above range, the reaction yield is significantly increased than when the reaction is performed at normal pressure. However, when the reaction pressure is less than 200 psig, there is a problem in that the yield of the reaction is low because the concentration of 1.3-butadiene in the solution is low, and when it exceeds 700 psig, one problem is generated by the Diels-Alder reaction between 1,3-butadiene. Since the amount of vinyl cyclohexene to be produced increases, it is preferable to maintain the above range.

반응시간은 10 ∼ 120 분, 바람직하기로는 90 ∼ 120 분 범위를 유지하는 것이 바람직하다. 이러한 반응시간은 반응물의 양, 반응물의 비율, 반응 온도에 따라 변화될 수 있으나 통상 상기 범위이면 바람직하다. 반응시간이 길어짐에 따라 전환율은 조금씩 증가하지만 부반응물의 생성량도 증가하게 되어 전반적으로 5-비닐-2-노보넨의 선택성이 감소되기 때문에 수율은 전반적으로 감소하게 된다.The reaction time is preferably 10 to 120 minutes, preferably 90 to 120 minutes. The reaction time may vary depending on the amount of reactants, the ratio of reactants, and the reaction temperature, but is usually in the above range. As the reaction time increases, the conversion is increased little by little, but the amount of side reactions is also increased, so that the overall selectivity of 5-vinyl-2-norbornene is reduced.

상술한 바와 같이, 본 발명에 따라 딜즈-알더(Diels-Alder) 반응으로 5-비닐-2-노보넨의 제조 시 촉매 겸 반응용매로 비양성자성 극성화합물을 사용하면 사이클로펜타디엔의 전환율 및 목적물인 5-비닐-2-노보넨의 선택성이 향상되고, 부생성물인 3a,4,7,7a-테트라하이드로인덴(THI), 디사이클로펜타디엔(DCPD) 및 올리고머의 형성을 억제하고 반응시간이 현저히 단축된다.As described above, when the aprotic polar compound is used as a catalyst and a reaction solvent in the production of 5-vinyl-2-norbornene by the Diels-Alder reaction according to the present invention, the conversion rate and the target product of cyclopentadiene Improved selectivity of phosphorus 5-vinyl-2-norbornene, inhibits the formation of byproducts 3a, 4,7,7a-tetrahydroindene (THI), dicyclopentadiene (DCPD) and oligomers This is significantly shortened.

이하, 실시예에 의거하여 본 발명을 구체적으로 설명하겠는바, 다음 실시예에 의하여 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited by the following Examples.

실시예 1 Example 1

100 mL의 고압 반응기내에 용매인 디메틸포름아마이드(DMF) 30 g, 사이클로펜타디엔(CPD) 5.0 g(76 mmol), 1,3-부타디엔(BD) 8.2 g(152 mmol)을 질소분위기하에서 첨가하였다. 반응기를 교반시키면서 온도를 200 ℃ 까지 상승시킨 후, 불활성가스인 질소가스를 반응기에 주입하여, 반응기내의 압력을 400 psig로 고정시킨 후 60 분 동안 반응을 수행하였다. In a 100 mL high pressure reactor, 30 g of solvent dimethylformamide (DMF), 5.0 g (76 mmol) of cyclopentadiene (CPD) and 8.2 g (152 mmol) of 1,3-butadiene (BD) were added under a nitrogen atmosphere. . After the temperature was raised to 200 ° C. while stirring the reactor, nitrogen gas as an inert gas was injected into the reactor, and the reaction was performed for 60 minutes after fixing the pressure in the reactor to 400 psig.

상기 반응 완료 후, 온도를 상온으로 낮추고 반응 생성물을 취하였으며, 반응물 내에 있는 유기용매층을 기체크로마토그래피를 사용하여 생성물을 분석하였 다. 그 결과, 사이클로펜타디엔(CPD)의 전환율은 95.3 %였고, 생성물의 조성은 5-비닐-2-노보덴(VNB) 42.5 중량%, 3a,4,7,7a-테트라하이드로인덴(THI) 5.6 중량% , 디사이클로펜타디엔(DCPD) 51.5 중량% 및 올리고머 0.4 중량% 였다. After completion of the reaction, the temperature was lowered to room temperature, the reaction product was taken, and the organic solvent layer in the reaction product was analyzed using gas chromatography. As a result, the conversion rate of cyclopentadiene (CPD) was 95.3%, and the composition of the product was 42.5% by weight of 5-vinyl-2-novodene (VNB), 3a, 4,7,7a-tetrahydroindene (THI). 5.6 wt%, dicyclopentadiene (DCPD) 51.5 wt% and oligomer 0.4 wt%.

실시예 2 ∼ 6 : 비양자성 극성화합물의 종류 변화Examples 2 to 6: Kind change of aprotic polar compound

상기 실시예 1과 동일하게 실시하되, 다음 표 1에 나타낸 바와 같이 비양자성 극성화합물의 종류를 변화시켜 반응을 수행하고, 그 결과를 다음 표 1에 나타내었다.In the same manner as in Example 1, the reaction was carried out by changing the type of aprotic polar compound as shown in Table 1 below, and the results are shown in Table 1 below.

Figure 112007087359519-pat00004
Figure 112007087359519-pat00004

실시예 7 ∼ 11 : 용매의 함량 변화Examples 7-11: Change in content of solvent

상기 실시예 1과 동일하게 실시하되, 비양자성 극성화합물로 DMF를 사용하고, 다음 표 2에 나타낸 함량으로 반응을 수행하고, 그 결과를 다음 표 2에 나타내었다.In the same manner as in Example 1, using DMF as an aprotic polar compound, the reaction was carried out in the content shown in Table 2, and the results are shown in Table 2 below.

Figure 112007087359519-pat00005
Figure 112007087359519-pat00005

실시예 12 ∼ 15 : 반응온도 변화Examples 12-15: Change of reaction temperature

상기 실시예 1과 동일하게 실시하되, 비양자성 극성화합물로 DMF를 사용하고, 다음 표 3에 나타낸 바와 같이 반응온도를 150 ∼ 280 ℃ 범위로 변화시키면서, 400 psig의 압력에서 1 시간 동안 반응을 수행하고, 그 결과를 다음 표 3에 나타내었다. In the same manner as in Example 1, using DMF as an aprotic polar compound, as shown in the following Table 3, the reaction was carried out at a pressure of 400 psig for 1 hour while changing the reaction temperature in the range of 150 ~ 280 ℃ The results are shown in Table 3 below.

Figure 112007087359519-pat00006
Figure 112007087359519-pat00006

실시예 16 ∼ 19 : 반응시간 변화Examples 16-19 Change in reaction time

상기 실시예 1과 동일하게 실시하되, 비양자성 극성화합물로 DMF를 사용하고, 반응온도 200 ℃, 반응압력 400 psig에서 다음 표 4에 나타낸 바와 같이 반응시간을 10 ∼ 120 분간 반응을 수행하여, 그 결과를 다음 표 4에 나타내었다. In the same manner as in Example 1, but using DMF as an aprotic polar compound, the reaction time is carried out for 10 to 120 minutes at 200 ℃ reaction temperature, 400 psig reaction time as shown in Table 4, The results are shown in Table 4 below.

Figure 112007087359519-pat00007
Figure 112007087359519-pat00007

실시예 20 ∼ 24 : 반응압력 변화Examples 20 to 24: change in reaction pressure

상기 실시예 1과 동일하게 실시하되, 비양자성 극성화합물로 DMF를 사용하고, 반응온도 200 ℃, 다음 표 5에 나타낸 바와 같이 반응압력을 200 ∼ 700 psig로 변화시키면서 60 분간 반응을 수행하여, 그 결과를 다음 표 5에 나타내었다.In the same manner as in Example 1, using DMF as an aprotic polar compound, the reaction temperature is 200 ℃, as shown in the following Table 5, the reaction is carried out for 60 minutes while changing the reaction pressure to 200 ~ 700 psig, The results are shown in Table 5 below.

Figure 112007087359519-pat00008
Figure 112007087359519-pat00008

실시예 25 ∼ 28 : 반응물질의 함량 변화Examples 25-28 Change in the Content of Reactants

상기 실시예 1과 동일하게 실시하되, CPD는 5.0 g, BD/CPD의 몰비율은 다은 표 6에 나타낸 바와 같이 1 ∼ 5로 변화시키면서 반응온도 200 ℃, 반응압력 400 psig, 60 분간 반응을 수행하여 그 결과를 다음 표 6에 나타내었다.In the same manner as in Example 1, the CPD is 5.0 g, the molar ratio of BD / CPD is changed to 1 to 5 as shown in Table 6, the reaction temperature 200 ℃, 400 psig, the reaction pressure is carried out for 60 minutes The results are shown in Table 6 below.

Figure 112007087359519-pat00009
Figure 112007087359519-pat00009

비교예 1Comparative Example 1

상기 실시예 1과 동일하게 실시하되, 반응용매를 사용하지 않고 반응을 수행하였다. 반응 완료 후, 온도를 상온으로 낮추고 반응 생성물을 취하였으며, 반응물 내에 있는 유기용매층을 기체크로마토그래피를 사용하여 생성물을 분석하였다.In the same manner as in Example 1, the reaction was performed without using a reaction solvent. After completion of the reaction, the temperature was lowered to room temperature, the reaction product was taken, and the organic solvent layer in the reaction product was analyzed using gas chromatography.

그 결과, CPD의 전환율은 90.4%였고, 생성물의 조성은 VNB 30.2 중량%, THI 13.8 중량%, DCPD 48.7 중량% 및 올리고머가 7.3 중량%였다As a result, the conversion of CPD was 90.4%, and the composition of the product was 30.2 wt% of VNB, 13.8 wt% of THI, 48.7 wt% of DCPD, and 7.3 wt% of oligomer.

비교예 2Comparative Example 2

상기 실시예 1과 동일하게 실시하되, 반응용매로 트리메틸벤젠(trimethyl benzene)을 사용하여 반응을 수행하였다. 반응 완료 후, 온도를 상온으로 낮추고 반응 생성물을 취하였으며, 반응물 내에 있는 유기용매층을 기체크로마토그래피를 사용하여 생성물을 분석하였다.The reaction was carried out in the same manner as in Example 1, using trimethyl benzene as the reaction solvent. After completion of the reaction, the temperature was lowered to room temperature, the reaction product was taken, and the organic solvent layer in the reaction product was analyzed using gas chromatography.

그 결과, CPD의 전환율은 92.8% 였고, 생성물의 조성은 VNB 32.4 중량%, THI 10.5 중량%, DCPD 53.4 중량%, 및 올리고머가 3.7 중량%였다.As a result, the conversion of CPD was 92.8%, and the composition of the product was 32.4 wt% of VNB, 10.5 wt% of THI, 53.4 wt% of DCPD, and 3.7 wt% of oligomer.

비교예 3Comparative Example 3

상기 실시예 1과 동일하게 실시하되, 반응용매로 종래에 사용하던 클로로나프탈렌을 사용하여 반응을 수행하였다. 반응 완료 후, 온도를 상온으로 낮추고 반응 생성물을 취하였으며, 반응물 내에 있는 유기용매층을 기체크로마토그래피를 사용하여 생성물을 분석하였다.The reaction was carried out in the same manner as in Example 1, using chloronaphthalene, which was conventionally used as a reaction solvent. After completion of the reaction, the temperature was lowered to room temperature, the reaction product was taken, and the organic solvent layer in the reaction product was analyzed using gas chromatography.

그 결과, CPD의 전환율은 88.4% 였고, 생성물의 조성은 VNB 30.1 중량%, THI 11.3 중량%, DCPD 52.1 중량%, 및 올리고머가 6.5 중량%였다.As a result, the conversion of CPD was 88.4%, and the composition of the product was 30.1 wt% of VNB, 11.3 wt% of THI, 52.1 wt% of DCPD, and 6.5 wt% of oligomer.

비교예 4Comparative Example 4

상기 실시예 1과 동일하게 실시하되, 반응용매로 종래에 사용하던 에틸아세테이트를 사용하여 반응을 수행하였다. 반응 완료 후, 온도를 상온으로 낮추고 반응 생성물을 취하였으며, 반응물 내에 있는 유기용매층을 기체크로마토그래피를 사용하여 생성물을 분석하였다.In the same manner as in Example 1, the reaction was carried out using ethyl acetate, which was conventionally used as a reaction solvent. After completion of the reaction, the temperature was lowered to room temperature, the reaction product was taken, and the organic solvent layer in the reaction product was analyzed using gas chromatography.

그 결과, CPD의 전환율은 92.5% 였고, 생성물의 조성은 VNB 31.6 중량%, THI 12.8 중량%, DCPD 50.2 중량%, 및 올리고머가 5.4 중량%였다.As a result, the conversion of CPD was 92.5%, and the composition of the product was 31.6 wt% of VNB, 12.8 wt% of THI, 50.2 wt% of DCPD, and 5.4 wt% of oligomer.

하기 표 7은 비교예 1 ∼ 4의 CPD의 전환율 및 생성물의 조성을 간략하게 정리하여 표로 나타낸 것이다.Table 7 below shows the conversion rate of the CPD and the composition of the product of Comparative Examples 1 to 4 in a brief summary.

Figure 112007087359519-pat00010
Figure 112007087359519-pat00010

상기 표 1 ∼ 표 6에 나타낸 바와 같이, 본 발명에 따라 비양성자성 극성 화합물을 사용한 반응은 사이클로펜타디엔의 전환율과 5-비닐-2-노보넨의 선택도이 우수하다는 것을 확인할 수 있었다.As shown in Table 1 to Table 6, the reaction using an aprotic polar compound according to the present invention was confirmed that the conversion of cyclopentadiene and selectivity of 5-vinyl-2-norbornene is excellent.

또한, 표 7에 나타낸 바와 같이, 종래의 방법으로 반응촉매 및 용매를 사용하지 않거나, 트리메틸벤젠, 클로로나프탈렌, 에틸아세테이트 등을 사용하는 비교예 1 ∼ 4의 경우, 사이클로펜타디엔의 전환율 낮고 부반응물의 선택도가 높아 상대적으로 본 발명이 목적으로 하는 5-비닐-2-노보넨의 선택도가 낮다는 것을 확인할 수 있었다. In addition, as shown in Table 7, in the case of Comparative Examples 1 to 4 using no reaction catalyst and solvent in the conventional method or using trimethylbenzene, chloronaphthalene, ethyl acetate and the like, the conversion rate of cyclopentadiene was low and the side reaction product was used. It was confirmed that the selectivity of the relatively low selectivity of 5-vinyl-2-norbornene for the present invention is high.

Claims (7)

사이클로펜타디엔과 1,3-부타디엔을 딜즈-알더(Diels-Alder) 반응시켜 5-비닐-2-노보넨을 제조하는 방법에 있어서,In a method of producing 5-vinyl-2-norbornene by reacting cyclopentadiene and 1,3-butadiene with Diels-Alder, 디메틸포름아마이드(DMF), 모노메틸포름아마이드(MMF), 모노메틸아세트아마이드(MMAC), 디메틸아세트아마이트(DMAC), 디메틸설폭사이드(DMSO) 및 메틸피롤리돈(NMP)로 이루어진 비양성자성 극성 화합물 중에서 선택된 단일 화합물 또는 2종 이상의 혼합물을 반응촉매 및 용매로 사용하는 것을 특징으로 하는 5-비닐-2-노보넨의 제조방법.An aprotic consisting of dimethylformamide (DMF), monomethylformamide (MMF), monomethylacetamide (MMAC), dimethylacetamide (DMAC), dimethylsulfoxide (DMSO) and methylpyrrolidone (NMP) A method for producing 5-vinyl-2-norbornene, comprising using a single compound or a mixture of two or more selected from polar compounds as a reaction catalyst and a solvent. 삭제delete 제 1 항에 있어서, 상기 비양성자성 극성 화합물은 사이클로펜타디엔에 대하여 10 ∼ 1000 중량% 범위로 사용하는 것을 특징으로 하는 제조방법.The method according to claim 1, wherein the aprotic polar compound is used in the range of 10 to 1000% by weight based on cyclopentadiene. 제 1 항에 있어서, 상기 1,3-부타디엔은 사이클로펜타디엔 1몰에 대하여 1 ∼ 5 몰 비로 사용하는 것을 특징으로 하는 제조방법.The method according to claim 1, wherein the 1,3-butadiene is used in an amount of 1 to 5 moles per 1 mole of cyclopentadiene. 제 1 항에 있어서, 상기 반응은 150 ∼ 280 ℃ 온도범위에서 수행되는 것을 특징으로 하는 제조방법.The method of claim 1, wherein the reaction is performed at a temperature in the range of 150 to 280 ° C. 제 1 항에 있어서, 상기 반응은 200 ∼ 700 psig 압력범위에서 수행되는 것을 특징으로 하는 제조방법.The method of claim 1, wherein the reaction is performed at a pressure in the range of 200 to 700 psig. 제 1 항에 있어서, 상기 반응은 10 ∼ 120 분 동안 수행되는 것을 특징으로 하는 제조방법.The method of claim 1, wherein the reaction is carried out for 10 to 120 minutes.
KR1020070125122A 2007-12-04 2007-12-04 Method for preparing 5-vinyl-2-norbornene using aprotic polar solvent KR100932223B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070125122A KR100932223B1 (en) 2007-12-04 2007-12-04 Method for preparing 5-vinyl-2-norbornene using aprotic polar solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070125122A KR100932223B1 (en) 2007-12-04 2007-12-04 Method for preparing 5-vinyl-2-norbornene using aprotic polar solvent

Publications (2)

Publication Number Publication Date
KR20090058375A KR20090058375A (en) 2009-06-09
KR100932223B1 true KR100932223B1 (en) 2009-12-16

Family

ID=40988863

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070125122A KR100932223B1 (en) 2007-12-04 2007-12-04 Method for preparing 5-vinyl-2-norbornene using aprotic polar solvent

Country Status (1)

Country Link
KR (1) KR100932223B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200062420A (en) 2018-11-26 2020-06-04 롯데케미칼 주식회사 Method of preparing 5-vinyl-2-norbornene through alkoxylation
KR20200064456A (en) 2018-11-29 2020-06-08 롯데케미칼 주식회사 Method for Production of 5-Vinyl-2-Norbornene

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4219688A (en) * 1978-09-06 1980-08-26 Japan Synthetic Rubber Co., Ltd. Process for producing vinylnorbornene and/or tetrahydroindene
KR100652922B1 (en) * 2005-12-07 2006-12-04 한국과학기술연구원 A process for preparing 5-vinyl-2-norbornene

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4219688A (en) * 1978-09-06 1980-08-26 Japan Synthetic Rubber Co., Ltd. Process for producing vinylnorbornene and/or tetrahydroindene
KR100652922B1 (en) * 2005-12-07 2006-12-04 한국과학기술연구원 A process for preparing 5-vinyl-2-norbornene

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200062420A (en) 2018-11-26 2020-06-04 롯데케미칼 주식회사 Method of preparing 5-vinyl-2-norbornene through alkoxylation
KR102594065B1 (en) 2018-11-26 2023-10-26 롯데케미칼 주식회사 Method of preparing 5-vinyl-2-norbornene through alkoxylation
KR20200064456A (en) 2018-11-29 2020-06-08 롯데케미칼 주식회사 Method for Production of 5-Vinyl-2-Norbornene

Also Published As

Publication number Publication date
KR20090058375A (en) 2009-06-09

Similar Documents

Publication Publication Date Title
CA2588019A1 (en) Process for preparing cyclododecatriene
US6294706B1 (en) Method for preparing norbornene and substituted derivatives of norbornene
KR100932223B1 (en) Method for preparing 5-vinyl-2-norbornene using aprotic polar solvent
McMahon et al. Preparation and Properties of Ethyl Vinyl Ketone and of Methyl Isopropenyl Ketone1
KR100652922B1 (en) A process for preparing 5-vinyl-2-norbornene
JPH069437A (en) Production of tetracyclododecene
US8143429B2 (en) Process for producing organic transition metal complex compound, metathesis catalyst produced by using the same, ring-opening metathesis polymer obtainable with the metathesis catalyst, and process for producing the polymer
KR100652921B1 (en) Preparation method of 5-vinyl-2-norbornene using supported catalysts containg fluoride compound
KR100424431B1 (en) Process for Preparing Exo-rich Norbornene Ester
KR20070109489A (en) Process for the selective production of 1-butene from 2-butene
KR102594065B1 (en) Method of preparing 5-vinyl-2-norbornene through alkoxylation
CA2127692C (en) Diels-alder process
Szilagyi et al. Perfluorotetramethylcyclopentadienone as a Diels-Alder diene
KR20130139733A (en) Crude reaction product comprising dianhydro sugar alcohol and method for preparing the same
KR20200064456A (en) Method for Production of 5-Vinyl-2-Norbornene
KR20200061602A (en) Method for Preparation of 5-Vinyl-2-Norbornene
JPS6136497B2 (en)
EP2895447A1 (en) Method for the manufacture of aromatic hydrocarbons
KR100258196B1 (en) Method for preparing 5-vinyl-2-norbornene using a ununiform catalyst
US7728180B2 (en) Method for producing ethers
KR101601493B1 (en) Catalyst for Ring Opening Polymerization of Cycloolefin Polymers and Method of Preparing Cycloolefin Polymers Using the Same
KR102019924B1 (en) Method for cycloaddition of dimethyl muconate
KR100523601B1 (en) Method of purification of dicyclopentadiene from C5 and C9+ fractions
KR101014625B1 (en) Method for preparing composition comprising norbornadiene dimers and method for controling production ratio of norbornadiene dimers
KR20230110942A (en) Continuous pyrolysis method of dicyclopentadiene

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120912

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131114

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141113

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20151116

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20161115

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20171110

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20181203

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20191203

Year of fee payment: 11