KR101014625B1 - Method for preparing composition comprising norbornadiene dimers and method for controling production ratio of norbornadiene dimers - Google Patents

Method for preparing composition comprising norbornadiene dimers and method for controling production ratio of norbornadiene dimers Download PDF

Info

Publication number
KR101014625B1
KR101014625B1 KR1020080102224A KR20080102224A KR101014625B1 KR 101014625 B1 KR101014625 B1 KR 101014625B1 KR 1020080102224 A KR1020080102224 A KR 1020080102224A KR 20080102224 A KR20080102224 A KR 20080102224A KR 101014625 B1 KR101014625 B1 KR 101014625B1
Authority
KR
South Korea
Prior art keywords
norbornadiene
nbd
dimer
catalyst
hexacyclo
Prior art date
Application number
KR1020080102224A
Other languages
Korean (ko)
Other versions
KR20100042979A (en
Inventor
정병훈
한정식
김훈식
Original Assignee
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국방과학연구소 filed Critical 국방과학연구소
Priority to KR1020080102224A priority Critical patent/KR101014625B1/en
Publication of KR20100042979A publication Critical patent/KR20100042979A/en
Application granted granted Critical
Publication of KR101014625B1 publication Critical patent/KR101014625B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • C07C2/82Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling
    • C07C2/84Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling catalytic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/62Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • C07C2531/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 노르보나디엔의 이량화 반응에 의하여, 노르보나디엔의 이량체인 헥사사이클로[7.2.1.02,8.13,7.15,13.14,6]테트라데스-10-엔, 헥사사이클로[7.2.1.02,8. 13,7.15,13. 14,6]테트라데스-10-엔 및 펜타사이클로[8.2.1.02,9.03,8.14,7]테트라데카-5,11-디엔을 중량비로 각각 52∼94%, 2∼25% 및 1∼21%의 양으로 함유하는 조성물을 제조하는 방법 및 노르보나디엔 이량체의 생성비 조절 방법에 관한 것이다. 본 발명에서는 1회 반응에 의하여 3종의 성체를 위와 같은 비율로 함유하는 조성물을 제조할 수 있으므로, 매우 효율적이고 경제적이다.The present invention relates to hexacyclo [7.2.1.0 2,8 .1 3,7 .1 5,13 .1 4,6 ] tetrades -10-ene by dimerization of norbonadiene. , Hexacyclo [7.2.1.0 2,8 . 1 3,7 .1 5,13 . 1 4,6 ] tetrades-10-ene and pentacyclo [8.2.1.0 2,9 3,8 .1 4,7 ] tetradeca-5,11-diene in weight ratio 52-94%, 2 A method for producing a composition containing in an amount of ˜25% and 1 to 21% and a method for regulating the production ratio of norbornadiene dimer. In the present invention, since a composition containing three adult species in the same ratio can be produced by one reaction, it is very efficient and economical.

노르보르나디엔, 노르보르나디엔 이량체, 엔도-엔도 육각 고리 노르보르나디엔 이량체, 엔도-엑소 육각 고리 노르보르나디엔 이량체, 엑소-트랜스-엑소 오각 고리 노르보르나디엔 이량체 Norbornadiene, Norbornadiene Dimer, Endo-Endo Hexagonal Ring Norbornenadiene Dimer, Endo-Exo Hexagonal Ring Norbornadiene Dimer, Exo-Trans-Exo Pentacyclic Ring Norborneadiene Dimer

Description

노르보나디엔 이량체를 함유하는 조성물의 제조 방법 및 생성비 조절 방법{METHOD FOR PREPARING COMPOSITION COMPRISING NORBORNADIENE DIMERS AND METHOD FOR CONTROLING PRODUCTION RATIO OF NORBORNADIENE DIMERS}METHOD FOR PREPARING COMPOSITION COMPRISING NORBORNADIENE DIMERS AND METHOD FOR CONTROLING PRODUCTION RATIO OF NORBORNADIENE DIMERS}

본 발명은 노르보나디엔 (norbornadiene)의 이량체 조성물의 제조 방법 및 노르보나디엔 이량체의 생성비 조절 방법에 관한 것이다. The present invention relates to a method for producing a dimer composition of norbornadiene and a method for controlling the production ratio of norbornadiene dimer.

석유화학 제품으로부터 유도되는 화합물 중 하나인 노르보나디엔 (바이사이클로[2.2.1]헵타-2,5-디엔, 이하에서 "NBD"라 지칭되기도 함)을 이량화하면, 다중 고리 화합물인 이량체가 생성된다. 이러한 이량체는 분자구조상 스트레인(strain) 에너지가 높아서 분해 시에 에너지를 방출하는 것으로 알려져 있다. 종래에 이러한 화합물에 대하여 많은 연구가 진행되었는데, NBD를 이량화하면, 이론적으로는 아래에 나타낸 것과 같은 14개의 이량체가 생성된다고 발표되었다 (미국특허 제4,207,080호). When dimerizing one of the compounds derived from petrochemicals, norbornadiene (bicyclo [2.2.1] hepta-2,5-diene, hereinafter referred to as "NBD"), the dicyclic polymer Is generated. These dimers are known to release energy upon decomposition due to their high strain energy due to their molecular structure. Many studies have been conducted on these compounds in the past, and it has been reported that dimerization of NBD yields 14 dimers, theoretically shown below (US Pat. No. 4,207,080).

Figure 112008072446612-pat00001
Figure 112008072446612-pat00001

상기 이량체 중에서, 엔도-엔도 (endo-endo) 이성체인 헥사사이클로[7.2.1.02,8.13,7.15,13.14,6]테트라데스-10-엔 (hexacyclo[7.2.1.02,8.13,7.15,13.04,6] tetradec-10-ene, 이하 "HNN"이라 함), 엑소-엔도 (exo-endo) 이성체인 헥사사이클로[7.2.1.02,8.13,7.15,13.14,6]테트라데스-10-엔 (hexacyclo[7.2.1.02,8.13,7.15,13.14,6] tetradec-10-ene, 이하 "HXN"이라 함) 및 엑소-트랜스-엑소 (exo-trans-exo) 이성체인 펜타사이클로[8.2.1.02,9.03,8.14,7]테트라데카-5,11-디엔 (pentacyclo[8.2.1. 02,9.03,8.14,7]tetradeca-5,11-diene, 이하, "Pxtx"라 함)이 고성능 연료로서 유용하게 사용되고 있고, 각각을 제조하는 방법 역시 알려져 있다.Among the dimers, hexacyclo [7.2.1.0 2,8 .1 3,7 .1 5,13 .1 4,6 ] tetrades -10-ene (hexacyclo [7.2) is an endo-endo isomer. .1.0 2,8 .1 3,7 .1 5,13 .0 4,6 ] tetradec-10-ene, hereinafter referred to as "HNN"), exocyclo hexacyclo [7.2. 1.0 2,8 .1 3,7 .1 5,13 .1 4,6 ] tetrades -10-ene (hexacyclo [7.2.1.0 2,8 .1 3,7 .1 5,13 .1 4,6 ] tetradec-10-ene (hereinafter referred to as "HXN") and the exo-trans-exo isomer pentacyclo [8.2.1.0 2,9 3,8 .1 4,7 ] tetra Deca-5,11-diene (pentacyclo [8.2.1.0 2,9 .0 3,8 .1 4,7 ] tetradeca-5,11-diene, hereinafter referred to as "Pxtx") is useful as a high performance fuel. And methods of making each are also known.

미국특허 제4,094,916호는 하기 반응식 1에 나타낸 바와 같이, 주촉매, 안정화 촉매 및 환원 촉매로서 각각 철 아세틸아세토네이트 [iron acetylacetonate (FeAA3)], 트리페닐포스핀 (TPP) 및 디에틸염화알루미늄 (DEAC)을 사용하여 NBD를 이량화하는 경우, 80%의 수율로 HNN을 얻을 수 있다고 보고하였다. US Pat. No. 4,094,916 discloses iron acetylacetonate (FeAA 3 ), triphenylphosphine (TPP) and diethylaluminum chloride as main catalyst, stabilizing catalyst and reducing catalyst, respectively, as shown in Scheme 1 below. When dimerizing NBD using DEAC), it was reported that HNN can be obtained with a yield of 80%.

Figure 112008072446612-pat00002
Figure 112008072446612-pat00002

한편, 미국특허 제4,275,254호는 하기 반응식 2에 나타낸 바와 같이, 주촉매와 환원 촉매로서 각각 로듐 아세틸아세토네이트 [rhodium acetylacetonate (RhAA3)]와 디에틸염화알루미늄 (DEAC)을 사용하여 NBD를 이량화하는 경우, HXN이 76%의 수율로 생성되지만, HNN과 삼량체 (trimer)도 각각 13%와 9%씩 생성된다고 보고하였다. 그러나, 주 촉매인 RhAA3의 가격이 높기 때문에 이 공정은 비경제적이다. US Pat. No. 4,275,254, on the other hand, dimerizes NBD using rhodium acetylacetonate (RhAA 3 ) and diethylaluminum chloride (DEAC) as main catalysts and reduction catalysts, respectively, as shown in Scheme 2 below. In the case of HXN, 76% yield was reported, but HNN and trimer (trimer) were reported to be produced by 13% and 9%, respectively. However, this process is uneconomical because the price of the main catalyst RhAA 3 is high.

Figure 112008072446612-pat00003
Figure 112008072446612-pat00003

또한, 미국특허 제3,258,502호는 니켈 화합물을 주촉매로 사용하는 경우, 아래의 반응식 3에 나타낸 바와 같이, Pxtx를 포함하는 오각 고리 (pentacyclic) 이성체 혼합물이 제조된다고 보고하였다. In addition, U.S. Patent No. 3,258,502 reports that when a nickel compound is used as the main catalyst, a pentacyclic isomeric mixture comprising Pxtx is prepared, as shown in Scheme 3 below.

Figure 112008072446612-pat00004
Figure 112008072446612-pat00004

위와 같이 제조된 각각의 순수한 NBD 이량체뿐 아니라, 이들 사이의 비율을 조절하여 특성을 조절한 조성물도 특수한 용도의 연료로 사용되고 있다. 그 중에서 HNN, HXN 및 Pxtx의 3종이 중량비로 각각 55 내지 75%, 16 내지 22% 및 9 내지 20%의 비율로 혼합되어 있는 물질은 Shelldyne-H라는 제품명으로 알려져 있다. 이 물질은 고성능 연료로 사용되기에 적합한 최적의 특성, 즉 적정한 밀도, 높은 발열량 및 낮은 점도 특성을 갖는 최적화된 연료 조성물이다. Shelldyne-H는 각각 제조한 3종의 이량체를 혼합하여 제조되는데, 이 물질을 이용하는 새로운 연료 조성물이 다수 발표되었다 (미국특허 제4,087,257호, 제4,099,931호, 제4,165,969호, 제4,410,749호, 제4,367,351호 등 참조).As well as each pure NBD dimer prepared as described above, the composition is adjusted by adjusting the ratio between them is also used as fuel for special purposes. Among them, three substances of HNN, HXN and Pxtx are mixed at a weight ratio of 55 to 75%, 16 to 22% and 9 to 20%, respectively, and are known under the product name Shelldyne-H. This material is an optimized fuel composition with optimum properties suitable for use as a high performance fuel, ie, moderate density, high calorific value and low viscosity properties. Shelldyne-H is prepared by mixing three dimers, each of which has been produced. A number of new fuel compositions using this material have been published (US Pat. Nos. 4,087,257, 4,099,931, 4,165,969, 4,410,749, 4,367,351). See et al.).

그러나, HNN, HXN 및 Pxtx 각각을 별도로 제조하여 혼합하는 방법은 RhAA3 등 가격이 비싼 촉매의 사용, 3개의 별도 반응기 및 공정, 혼합 과정 등이 필요하여 비효율적이고, 생산 가격이 높다는 단점이 있으므로, 개선이 시급한 실정이다. However, the method of separately preparing and mixing HNN, HXN, and Pxtx separately requires the use of expensive catalysts such as RhAA 3 , three separate reactors and processes, and a mixing process. Improvement is urgent.

미국특허 제4,207,080호는 이러한 3종의 이량체의 혼합물을 1회의 이량화 반응에 의하여 얻은 예를 보고하였다. 이 문헌에 의하면, HXX를 제조하기 위하여 주촉매, 안정화 촉매 및 환원 촉매로서 각각 철 아세틸아세토네이트 (FeAA3), 비스(1,2-디페닐포스피노)에탄 [bis(1,2-diphenylphosphino)ethane] 및 트리에틸알루미늄 (TEA)을 사용하였더니 HNN, HXN 및 Pxtx의 혼합물이 생성되었다고 보고하였으나, 수율이 각각 14%, 13% 및 17%로 매우 낮았고, 생성비 조절이 되지 않아 실용적인 방법이 될 수 없었다.U.S. Patent No. 4,207,080 reports an example of a mixture of these three dimers obtained by one dimerization reaction. According to this document, iron acetylacetonate (FeAA 3 ), bis (1,2-diphenylphosphino) ethane [bis (1,2-diphenylphosphino) as main catalysts, stabilization catalysts and reduction catalysts for the production of HXX, respectively. ethane] and triethylaluminum (TEA) were reported to produce a mixture of HNN, HXN and Pxtx, but yields were very low at 14%, 13% and 17%, respectively. Could not be.

따라서 아래의 반응식 4에 나타낸 것과 같은 1회의 반응에 의하여, HNN, HXN 및 Pxtx를 함유하는 조성물을 경제적이고 효율적으로 제조하기 위해서는, 적절한 촉매를 선택하여, 이량체의 전체적인 수율을 높이는 것, 나아가 HNN, HXN 및 Pxtx 사이의 생성비를 조절하는 것이 필요하다.Therefore, in order to economically and efficiently prepare a composition containing HNN, HXN and Pxtx by one reaction as shown in Scheme 4 below, by selecting an appropriate catalyst, the overall yield of the dimer is increased, and further, HNN , It is necessary to adjust the production ratio between HXN and Pxtx.

Figure 112008072446612-pat00005
Figure 112008072446612-pat00005

본 발명의 목적은 1회의 노르보나디엔 (NBD)의 이량화 반응에 의하여 헥사사이클로[7.2.1.02,8.13,7.15,13.14,6]테트라데스-10-엔 (HNN), 헥사사이클로[7.2.1.02,8. 13,7.15,13.14,6]테트라데스-10-엔 (HXN) 및 펜타사이클로[8.2.1.02,9.03,8.14,7]테트라데카-5,11-디엔 (Pxtx)의 생성 비율이 중량비로 각각 52∼94%, 2∼25% 및 1∼21%로 조절된 조성물을 경제적이고 효율적으로 제조하는 방법을 제공하는 것이다.It is an object of the present invention to provide hexacyclo [7.2.1.0 2,8 .1 3,7 .1 5,13 .1 4,6 ] tetrades -10-ene by one dimerization of norbornadiene (NBD). (HNN), hexacyclo [7.2.1.0 2,8 . 1 3,7 .1 5,13 .1 4,6 ] tetrades -10-ene (HXN) and pentacyclo [8.2.1.0 2,9 3,8 .1 4,7 ] tetradeca-5, It is to provide a method for economically and efficiently producing a composition in which the production rate of 11-diene (Pxtx) is adjusted to 52 to 94%, 2 to 25% and 1 to 21% by weight, respectively.

또한, 본 발명의 목적은 노르보나디엔 (NBD)의 이량화 반응 생성물 중의 HNN, HXN 및 Pxtx의 생성비를 중량비로 각각 52∼94%, 2∼25% 및 1∼21%로 조절하는 방법을 제공하는 것이다. It is also an object of the present invention to control the method of adjusting the production ratio of HNN, HXN and Pxtx in the dimerization reaction product of norbornadiene (NBD) to 52 to 94%, 2 to 25% and 1 to 21% by weight, respectively. To provide.

상기 본 발명의 목적은 NBD의 이량화 반응에 있어서 환원 촉매로서 디알킬알루미늄 하이드라이드를 사용하고, 필요에 따라 촉매 활성 증진제를 첨가하여, HNN, HXN 및 Pxtx의 생성비가 중량비로 각각 52∼94%, 2∼25% 및 1∼21% 범위로 되도록 하는 것에 의하여 달성된다.The object of the present invention is to use a dialkylaluminum hydride as a reduction catalyst in the dimerization reaction of NBD, and to add a catalytic activity enhancer as necessary, whereby the production ratio of HNN, HXN and Pxtx is 52 to 94% by weight. , 2 to 25% and 1 to 21% in the range.

따라서, 본 발명은 환원 촉매로서 디알킬알루미늄 하이드라이드를 사용하여 NBD를 이량화 반응시키는 단계를 포함하는, HNN, HXN 및 Pxtx를 중량비로 각각 52∼94%, 2∼25% 및 1∼21% 범위로 함유하는 조성물을 제조하는 방법에 관한 것이다. Accordingly, the present invention comprises the dimerization reaction of NBD using dialkylaluminum hydride as the reduction catalyst, wherein HNN, HXN and Pxtx are 52 to 94%, 2 to 25% and 1 to 21% by weight, respectively. It relates to a method for producing a composition containing in the range.

또한, 본 발명은 환원 촉매로서 디알킬알루미늄 하이드라이드를 사용하여, NBD의 이량화 반응 생성물 중의 HNN, HXN 및 Pxtx의 비율을 중량비로 각각 52∼94%, 2∼25% 및 1∼21% 범위로 조절하는 방법에 관한 것이다. In addition, the present invention uses dialkylaluminum hydride as the reduction catalyst, and the ratio of HNN, HXN and Pxtx in the dimerization reaction product of NBD is in the range of 52 to 94%, 2 to 25% and 1 to 21% by weight, respectively. It is about how to adjust.

본 발명에 따라 NBD를 이량화 반응시키는 1회의 반응에 의하여, HNN, HXN 및 Pxtx를 중량비로 각각 52∼94%, 2∼25% 및 1∼21% 범위로 함유하는 조성물을 제조하는 방법 및 NBD의 이량화 반응 생성물 중의 HNN, HXN 및 Pxtx의 비율을 중량비로 각각 52∼94%, 2∼25% 및 1∼21% 범위로 조절하는 방법이 제공되었다. Method for producing a composition containing HNN, HXN and Pxtx in the range of 52 to 94%, 2 to 25% and 1 to 21% by weight, by one reaction for dimerizing NBD according to the present invention and NBD A method of adjusting the ratio of HNN, HXN and Pxtx in the dimerization reaction product in the range of 52 to 94%, 2 to 25% and 1 to 21% by weight, respectively.

본 발명에서는 HNN, HXN 및 Pxtx를 각각 제조하여 혼합하지 않고, 3종의 이량체를 각각 제조하여 혼합한 조성물과 조성이 동일한, 최적화된 조성물을 1회의 반응으로 제조할 수 있으므로, 본 발명에 따른 HNN, HXN 및 Pxtx의 조성물의 제조 방법 및 NBD 이량체의 생성비 조절 방법은 매우 효율적이고 경제적이다.In the present invention, instead of preparing and mixing HNN, HXN, and Pxtx, respectively, the optimized composition having the same composition as that of the three dimers prepared and mixed can be prepared in one reaction. The method for preparing the composition of HNN, HXN and Pxtx and the method for controlling the production ratio of NBD dimer are very efficient and economical.

본 발명에 따른 HNN, HXN 및 Pxtx의 조성물의 제조 방법 및 NBD 이량체의 생성비 조절 방법은 NBD의 이량화 반응을 위한 환원 촉매로서 디알킬알루미늄 하이드 라이드를 사용하고, 필요에 따라 촉매 활성 증진제를 추가로 사용하는 것을 특징으로 한다.The method for preparing the composition of HNN, HXN, and Pxtx and the method for controlling the production ratio of NBD dimer according to the present invention uses a dialkylaluminum hydride as a reduction catalyst for the dimerization reaction of NBD, It is characterized by further using.

NBD의 이량화 반응을 위한 주촉매로는 철 아세틸아세토네이트 (FeAA3)를, 생성물 안정제로는 트리페닐포스핀 (TPP)을 각각 사용한다.Iron acetylacetonate (FeAA 3 ) is used as a main catalyst for dimerization of NBD, and triphenylphosphine (TPP) is used as a product stabilizer, respectively.

상기 디알킬알루미늄 하이드라이드의 가장 바람직한 예는 디이소부틸알루미늄 하이드라이드 (diisobutylaluminum hydride, DIBAL)이며, 상기 촉매 활성 증진제는 바람직하게는 할로겐화 알루미늄, 가장 바람직하게는 염화알루미늄 (AlCl3)이다.The most preferred example of the dialkylaluminum hydride is diisobutylaluminum hydride (DIBAL), and the catalytic activity enhancer is preferably aluminum halide, most preferably aluminum chloride (AlCl 3 ).

NBD의 이량화 반응에 있어서 반응물 및 촉매는 NBD 50∼500, 주촉매인 FeAA3 0.5∼2, 생성물 안정제인 트리페닐포스핀 1∼10, 환원 촉매인 DIBAL 1∼20, 촉매 활성 증진제인 AlCl3 0∼5의 몰비로 사용하는 것이 바람직하다. 반응 온도는 60∼100℃, 반응 시간은 1∼3시간인 것이 적당하고, 반응 용매로는 톨루엔, 테트라하이드로퓨란 (THF) 또는 이들의 혼합물을 사용할 수 있다. In the dimerization reaction of NBD, the reactants and catalyst are NBD 50 to 500, main catalyst FeAA 3 0.5 to 2, product stabilizer triphenylphosphine 1 to 10, reduction catalyst DIBAL 1 to 20, catalyst activity enhancer AlCl 3 It is preferable to use it in the molar ratio of 0-5. It is preferable that reaction temperature is 60-100 degreeC, and reaction time is 1 to 3 hours, and toluene, tetrahydrofuran (THF), or a mixture thereof can be used as a reaction solvent.

실시예 Example

이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나 실시 예는 본 발명의 예시에 불과할 뿐, 본 발명의 범위가 이에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples. However, the embodiments are only examples of the present invention, and the scope of the present invention is not limited thereto.

아래의 표 1은 종래 기술의 방법에 의한 NBD의 이량화 반응 (비교예 1 내지 5)에 있어서의 반응물과 촉매의 몰비, 용매의 종류, 반응 온도 및 반응 시간 등의 반응 조건과, 본 발명의 방법에 의한 NBD의 이량화 반응 (실시예 1 내지 3)에 있어 서의 반응물과 촉매의 몰비, 용매의 종류, 반응 온도 및 반응 시간 등의 반응 조건을 각각 나타낸 것이다. Table 1 below shows the reaction conditions such as the molar ratio of the reactant and the catalyst in the dimerization reaction of NBD (Comparative Examples 1 to 5) by the method of the prior art, the type of the solvent, the reaction temperature and the reaction time, and the In the dimerization reaction of NBD by the method (Examples 1 to 3), the reaction conditions such as the molar ratio of the reactant and the catalyst, the kind of the solvent, the reaction temperature and the reaction time are shown.

Figure 112008072446612-pat00006
Figure 112008072446612-pat00006

위 표 1에 나타낸 반응 조건으로 이하에 설명된 절차에 따라 NBD의 이량화 반응을 실시하여 NBD의 이량체 조성물을 제조하였다. The dimer composition of NBD was prepared by performing a dimerization reaction of NBD according to the procedure described below under the reaction conditions shown in Table 1 above.

먼저, 공기와 접촉하지 않는 질소 기류 하에서 환류식 응축기가 장착된 250 mL의 2구 플라스크에 촉매 (주촉매, 생성물 안정제, 환원 촉매 및/또는 촉매 활성 증진제) 및 용매를 넣고, 주사기 또는 정량 주입 펌프를 이용하여 NBD를 서서히 주입하였다. First, a catalyst (main catalyst, product stabilizer, reduction catalyst and / or catalytic activity enhancer) and solvent are placed in a 250 mL two-necked flask equipped with a reflux condenser under a nitrogen stream that is not in contact with air, and then a syringe or metering pump NBD was slowly injected using.

NBD 주입이 끝난 후 질소 기류 하에서 오일 중탕 (oil bath)을 이용하여 반응 용기의 온도를 올려서 NBD의 이량화 반응이 일어나도록 하였다. 반응이 완결되었을 때, 생성물을 1N NaHCO3 수용액으로 세척하여 중화하고, 실리카겔 충전 칼럼을 통과시켜 불순물을 제거하였다. After NBD injection, the reaction vessel was heated in an oil bath under a nitrogen stream to allow the dimerization reaction of NBD to occur. When the reaction was complete, the product was washed with 1N NaHCO 3 aqueous solution to neutralize and passed through a silica gel packed column to remove impurities.

얻어진 최종 생성물을 기체 크로마토그라피 (모델명: Agilent 6890N, 검출기: FID, 칼럼: HP-5 (30mㅧ0.32mmㅧ0.25μm), 오븐 온도: 240℃)로 분석하고, 얻어진 피크에 해당하는 화합물의 핵자기 공명 분석으로 HNN, HXN 및 Pxtx 화합물을 확인하고, 각각의 피크 면적을 중량 백분율로 환산하여 생성물의 조성비를 구하였다. The obtained final product was analyzed by gas chromatography (model name: Agilent 6890N, detector: FID, column: HP-5 (30m ㅧ 0.32mm ㅧ 0.25μm), oven temperature: 240 ° C), and the nucleus of the compound corresponding to the obtained peak. Magnetic resonance analysis confirmed HNN, HXN and Pxtx compounds, and calculated the composition ratio of the product by converting each peak area in weight percentage.

비교예 1 내지 3은 이량체 HNN을 제조하는 방법에 관한 것으로서, 주촉매로서 FeAA3을, 생성물 안정제로서 TPP를, 환원 촉매로서 DEAC를, 촉매 활성 증진제로서 AlCl3를 사용하였는데, NBD 250몰에 대하여 FeAA3, TPP 및 DEAC를 각각 1몰, 8몰 및 20몰의 양으로 사용하고, AlCl3을 0 내지 2.5몰 범위로 사용하였다. Comparative Examples 1 to 3 relate to a process for preparing dimer HNN, using FeAA 3 as the main catalyst, TPP as the product stabilizer, DEAC as the reducing catalyst, and AlCl 3 as the catalytic activity enhancer. FeAA 3 , TPP and DEAC were used in amounts of 1 mol, 8 mol and 20 mol, respectively, and AlCl 3 was used in the range of 0 to 2.5 mol.

비교예 4는 이량체 HXN을 제조하는 방법에 관한 것으로서, 주촉매로서 RhAA3을, 환원 촉매로서 DEAC를 사용하였는데, NBD 500몰에 대하여 RhAA3 및 DEAC를 각각 1몰 및 10몰의 양으로 사용하였다, Comparative Example 4 relates to a method for preparing dimer HXN, using RhAA 3 as the main catalyst and DEAC as the reducing catalyst, using RhAA 3 and DEAC in an amount of 1 mol and 10 mol, respectively, relative to 500 mol of NBD. Was,

비교예 5는 이량체 Pxtx를 제조하는 방법에 관한 것으로서, NBD 40몰에 대하여 주촉매로서 NiBr2/Zn을 2/15의 몰비로 사용하고, 생성물 안정제, 환원 촉매 또는 촉매 활성 증진제는 사용하지 않았다. Comparative Example 5 relates to a method for preparing the dimer Pxtx, using NiBr 2 / Zn in a molar ratio of 2/15 as the main catalyst to 40 moles of NBD, and no product stabilizer, reduction catalyst or catalyst activity enhancer. .

실시예 1 내지 3은 3종의 NBD 이량체인 HNN, HXN 및 Pxtx가 일정한 비율로 혼합되어 있는 조성물을 제조하는 방법에 관한 것으로서, 주촉매로서 FeAA3을, 생성물 안정제로서 TPP를, 환원 촉매로서 DIBAL을 사용하고, AlCl3를 추가로 사용하거나 사용하지 않았다. 반응물 및 촉매는 NBD 250몰에 대하여 FeAA3, TPP, DIBAL을 각각 1몰, 8몰 및 10몰의 양으로 사용하고, AlCl3을 0 내지 2.5몰 범위로 사용하였다. Examples 1 to 3 relate to a method for producing a composition in which three types of NBD dimers, HNN, HXN and Pxtx, are mixed at a constant ratio, wherein FeAA 3 is used as the main catalyst, TPP is used as the product stabilizer, and DIBAL is the reduction catalyst. Was used, with or without additional AlCl 3 . The reactants and catalysts were used in amounts of 1 mole, 8 moles and 10 moles of FeAA 3 , TPP, DIBAL, respectively, and 250 moles of NBD, and AlCl 3 in the range of 0 to 2.5 moles relative to 250 moles of NBD.

아래의 표 2에는 표 1에 나타낸 반응 조건에 따라 NBD를 이량화 반응시켜 얻어진 생성물의 분석 결과로부터 계산된 NBD 이량체 조성물의 조성을 나타내었다.Table 2 below shows the composition of the NBD dimer composition calculated from the analysis results of the product obtained by dimerizing the NBD according to the reaction conditions shown in Table 1.

Figure 112008072446612-pat00007
Figure 112008072446612-pat00007

표 2에서 보는 바와 같이, 기존의 환원 촉매인 DEAC 사용한 비교예 1 내지 3에서는 NBD의 전환율이 90% 정도로 낮을 뿐 아니라, AlCl3의 사용량 변화에 따른 생성물 중의 HNN, HXN 및 Pxtx의 함량이 중량비로 각각 73 내지 75%, 6 내지 9% 및 9 내지 10% 범위이다. 따라서, 이 혼합물은 점도가 높고 연로서의 성능이 낮아서 고성능 연료 조성물로서 사용하기에는 적합하지 않다. 따라서, 비교예 1 내지 3의 반응 조건으로는 NBD 이량체의 생성비를 원하는 값으로 조절하는 것이 불가능하다는 것이 확인되었다. As shown in Table 2, in Comparative Examples 1 to 3 using DEAC, which is a conventional reducing catalyst, the conversion rate of NBD was low as much as 90%, and the content of HNN, HXN, and Pxtx in the product according to the change in the amount of AlCl 3 was used as a weight ratio. Respectively 73 to 75%, 6 to 9% and 9 to 10%. Therefore, this mixture has a high viscosity and low performance as lead and is not suitable for use as a high performance fuel composition. Therefore, it was confirmed that it is impossible to adjust the production | generation ratio of NBD dimer to a desired value on the reaction conditions of Comparative Examples 1-3.

비교예 4에서는 HNN과 HXN만이 중량비로 각각 9% 및 62% 얻어졌고, 비교예 5에서는 Pxtx만이 중량비로 61% 얻어졌다. 따라서, 비교예 4 및 5의 방법에 의해서는 HNN, HXN 및 Pxtx를 원하는 비율로 함유하는 조성물을 제조하는 것이 불가능하다는 것을 알 수 있다. In Comparative Example 4, only HNN and HXN were obtained by weight ratio of 9% and 62%, respectively, and in Comparative Example 5, only Pxtx was obtained by weight ratio of 61%. Therefore, it can be seen that it is impossible to produce a composition containing HNN, HXN and Pxtx in a desired ratio by the methods of Comparative Examples 4 and 5.

이에 비하여, 본 발명에 따른 실시예인 실시예 1 내지 3에서는 DEAC 대신에 DIBAL을 사용함으로써 NBD의 전환율이 97% 이상으로 증가하였고, AlCl3의 몰비 변화에 따라 HNN, HXN 및 Pxtx가 중량비로 각각 52∼94%, 2∼25%, 1∼21%의 범위로 생성된 것을 알 수 있다. In contrast, in Examples 1 to 3 according to the present invention, the conversion of NBD was increased to 97% or more by using DIBAL instead of DEAC, and HNN, HXN, and Pxtx were respectively 52 by weight as the molar ratio of AlCl 3 was changed. It turns out that it was produced in the range of -94%, 2-25%, and 1-21%.

도 1은 실시예 1 내지 3과 비교예 1 내지 3의 결과를 비교하여 도시한 것이다. 도 1에서 보는 바와 같이, 실시예 1 내지 3에서는 AlCl3/DIBAL의 몰비가 0/10, 1/10 및 2.5/10으로 변화할 때 이량체 생성물 중의 HNN, HXN 및 Pxtx의 비율이 중량비로 각각 52∼94%, 2∼25% 및 1∼21%로 조절되었다. Figure 1 shows the comparison of the results of Examples 1 to 3 and Comparative Examples 1 to 3. As shown in Fig. 1, in Examples 1 to 3, when the molar ratio of AlCl 3 / DIBAL was changed to 0/10, 1/10, and 2.5 / 10, the ratios of HNN, HXN, and Pxtx in the dimer product were represented by weight ratio, respectively. 52 to 94%, 2 to 25% and 1 to 21%.

이에 비하여, 비교예 1 내지 3에서는 AlCl3/DEAC의 몰비가 0/10, 1/10 및 2.5/10으로 변화하여도 이량체 생성물 중의 HNN, HXN 및 Pxtx의 중량비가 각각 73∼75%, 6∼9% 및 9∼10%로서, 이량체의 생성비 조절이 거의 되지 않았다.On the other hand, in Comparative Examples 1 to 3, even when the molar ratio of AlCl 3 / DEAC was changed to 0/10, 1/10 and 2.5 / 10, the weight ratio of HNN, HXN and Pxtx in the dimer product was 73 to 75% and 6, respectively. As 9% and 9%-10, the production | generation ratio of dimer was hardly controlled.

따라서, 본 발명에 따라 주촉매로서 FeAA3을, 생성물 안정제로서 TPP를, 환원 촉매로서 DIBAL을 사용하고, 촉매 활성 증진제로서 AlCl3의 사용량을 조절하면, NBD의 이량화 반응 생성물인 HNN, HXN 및 Pxtx의 생성비를 각각 52∼94%, 2∼25%, 1∼21% 범위로 조절할 수 있다는 것이 확인되었다. Therefore, according to the present invention, by using FeAA 3 as the main catalyst, TPP as the product stabilizer, DIBAL as the reduction catalyst, and the amount of AlCl 3 used as the catalyst activity enhancer, the dimerization reaction products of NBD, HNN, HXN and It was confirmed that the generation ratio of Pxtx can be adjusted in the range of 52 to 94%, 2 to 25%, and 1 to 21%, respectively.

도 1은 AlCl3/DIBAL의 몰비 (실시예 1 내지 3) 또는 AlCl3/DEAC의 몰비 (비교예 1 내지 3)에 따른 NBD 이량화 생성물인 헥사사이클로[7.2.1.02,8.13,7.15,13.14,6]테트라데스-10-엔 (HNN), 헥사사이클로[7.2.1.02,8. 13,7.15,13.14,6]테트라데스-10-엔 (HXN) 및 펜타사이클로[8.2.1.02,9.03,8.14,7]테트라데카-5,11-디엔 (Pxtx)의 생성 비율 변화를 중량 백분율로 나타낸 것이다.1 shows hexacyclo [7.2.1.0 2,8 .1 3, which is an NBD dimerization product according to the molar ratio of AlCl 3 / DIBAL (Examples 1 to 3) or the molar ratio of AlCl 3 / DEAC (Comparative Examples 1 to 3). 7 .1 5,13 .1 4,6 ] tetrades -10-ene (HNN), hexacyclo [7.2.1.0 2,8 . 1 3,7 .1 5,13 .1 4,6 ] tetrades -10-ene (HXN) and pentacyclo [8.2.1.0 2,9 3,8 .1 4,7 ] tetradeca-5, The change in production rate of 11-diene (Pxtx) is expressed as weight percentage.

Claims (18)

환원 촉매로서 디이소부틸알루미늄 하이드라이드를 사용하여 노르보나디엔을 이량화 반응시키는 단계를 포함하는, 헥사사이클로[7.2.1.02,8.13,7.15,13.14,6]테트라데스-10-엔, 헥사사이클로[7.2.1.02,8.13,7.15,13.14,6]테트라데스-10-엔 및 펜타사이클로 [8.2.1.02,9.03,8.14,7]테트라데카-5,11-디엔을 중량비로 각각 52∼94%, 2∼25% 및 1∼21%의 양으로 함유하는 조성물의 제조 방법. Hexacyclo [7.2.1.0 2,8 .1 3,7 .1 5,13 .1 4,6 ], comprising dimerizing norbornadiene using diisobutylaluminum hydride as the reduction catalyst. Tetrades-10-ene, hexacyclo [7.2.1.0 2,8 .1 3,7 .1 5,13 .1 4,6 ] tetrades -10-ene and pentacyclo [8.2.1.0 2,9 .0 3,8 .4 4,7 ] The method for producing a composition containing tetradeca-5,11-diene in an amount of 52 to 94%, 2 to 25% and 1 to 21% by weight, respectively. 삭제delete 제1항에 있어서, 촉매 활성 증진제를 추가로 사용하는 것인 제조 방법.The method of claim 1, further comprising using a catalytic activity enhancer. 제3항에 있어서, 상기 촉매 활성 증진제는 할로겐화 알루미늄인 제조 방법.The method of claim 3, wherein the catalytic activity enhancer is aluminum halide. 제4항에 있어서, 상기 할로겐화 알루미늄은 염화알루미늄인 제조 방법.The method of claim 4, wherein the aluminum halide is aluminum chloride. 제3항에 있어서, 노르보나디엔 : 촉매 활성 증진제의 몰비를 50∼500 : 0∼5로 하는 것인 제조 방법. The production method according to claim 3, wherein the molar ratio of norbornadiene to catalytic activity enhancer is 50 to 500: 0 to 5. 제1항 또는 제3항에 있어서, 주촉매로서 철 아세틸아세토네이트를 사용하고, 생성물 안정제로서 트리페닐포스핀을 사용하는 것인 제조 방법.The production method according to claim 1 or 3, wherein iron acetylacetonate is used as a main catalyst and triphenylphosphine is used as a product stabilizer. 제7항에 있어서, 주촉매 : 생성물 안정제 : 환원 촉매를 0.5∼2 : 1∼10 : 1∼20의 몰비로 하는 것인 제조 방법.The production process according to claim 7, wherein the main catalyst: product stabilizer: reduction catalyst is set at a molar ratio of 0.5 to 2: 1 to 10: 1 to 20. 제1항에 있어서, 반응 용매로서 톨루엔, 테트라하이드로퓨란 또는 이들의 혼합물을 사용하는 것인 제조 방법. The process according to claim 1, wherein toluene, tetrahydrofuran or a mixture thereof is used as the reaction solvent. 제1항에 있어서, 반응 온도를 60∼100℃로 조절하여 1∼2시간 동안 반응시키는 것인 제조 방법. The method according to claim 1, wherein the reaction temperature is adjusted to 60 to 100 DEG C and reacted for 1 to 2 hours. 노르보나디엔의 이량화 반응을 위한 환원 촉매로서 디이소부틸알루미늄 하이드라이드를 사용하여 노르보나디엔의 이량체인 헥사사이클로[7.2.1.02,8.13,7.15,13.14,6]테트라데스-10-엔, 헥사사이클로[7.2.1.02,8.13,7.15,13.14,6]테트라데스-10-엔 및 펜타사이클로[8.2.1.02,9.03,8.14,7]테트라데카-5,11-디엔의 생성비를 중량비로 52∼94%, 2∼25% 및 1∼21% 범위로 조절하는 방법. Hexacyclo [7.2.1.0 2,8 .1 3,7 .1 5,13 .1 4, ] is a dimer of norbornadiene using diisobutylaluminum hydride as a reduction catalyst for the dimerization reaction of norbornadiene . 6 ] tetrades-10-ene, hexacyclo [7.2.1.0 2,8 .1 3,7 .1 5,13 .1 4,6 ] tetrades -10-ene and pentacyclo [8.2.1.0 2,9 .0 3,8 .1 4,7 ] The method of adjusting the production ratio of tetradeca-5,11-diene in the range of 52 to 94%, 2 to 25% and 1 to 21% by weight. 삭제delete 제11항에 있어서, 촉매 활성 증진제를 추가로 사용하는 것인 방법.The method of claim 11, further comprising using a catalytic activity enhancer. 제13항에 있어서, 상기 촉매 활성 증진제는 할로겐화 알루미늄인 방법.The method of claim 13, wherein the catalytic activity enhancer is aluminum halide. 제14항에 있어서, 상기 할로겐화 알루미늄은 염화알루미늄인 방법.The method of claim 14, wherein the aluminum halide is aluminum chloride. 제13항에 있어서, 노르보나디엔 : 촉매 활성 증진제의 몰비를 50∼500 : 0∼5로 하는 것인 방법. The method according to claim 13, wherein the molar ratio of norbornadiene to catalytic activity enhancer is 50 to 500: 0 to 5. 제11항 또는 제13항에 있어서, 주촉매로서 철 아세틸아세토네이트를 사용하고, 생성물 안정제로서 트리페닐포스핀을 사용하는 것인 방법.The process according to claim 11 or 13, wherein iron acetylacetonate is used as the main catalyst and triphenylphosphine is used as the product stabilizer. 제17항에 있어서, 주촉매 : 생성물 안정제 : 환원 촉매를 0.5∼2 : 1∼10 : 1∼20의 몰비로 하는 것인 방법.18. The process according to claim 17, wherein the main catalyst: product stabilizer: reduction catalyst is in a molar ratio of 0.5 to 2: 1 to 10: 1 to 20.
KR1020080102224A 2008-10-17 2008-10-17 Method for preparing composition comprising norbornadiene dimers and method for controling production ratio of norbornadiene dimers KR101014625B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080102224A KR101014625B1 (en) 2008-10-17 2008-10-17 Method for preparing composition comprising norbornadiene dimers and method for controling production ratio of norbornadiene dimers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080102224A KR101014625B1 (en) 2008-10-17 2008-10-17 Method for preparing composition comprising norbornadiene dimers and method for controling production ratio of norbornadiene dimers

Publications (2)

Publication Number Publication Date
KR20100042979A KR20100042979A (en) 2010-04-27
KR101014625B1 true KR101014625B1 (en) 2011-02-16

Family

ID=42218204

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080102224A KR101014625B1 (en) 2008-10-17 2008-10-17 Method for preparing composition comprising norbornadiene dimers and method for controling production ratio of norbornadiene dimers

Country Status (1)

Country Link
KR (1) KR101014625B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4094916A (en) 1977-02-10 1978-06-13 Suntech, Inc. Process for the production of endo-endo hexacyclic dimer of norbornadiene
US4207080A (en) 1975-12-11 1980-06-10 Suntech, Inc. Dimerization of norbornadiene to exo-exo hexacyclic dimer
US4275254A (en) 1975-12-11 1981-06-23 Suntech, Inc. Dimerization of norbornadiene to a mixture of exo-endo and endo-endo hexacyclic dimers
US6399726B1 (en) 1999-08-23 2002-06-04 Bayer Aktiengesellschaft Method for the copolymerization of conjugated diolefins (dienes) and vinyl-aromatic monomers with rare-earth catalysts and use of the copolymers in rubber mixtures for tire applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4207080A (en) 1975-12-11 1980-06-10 Suntech, Inc. Dimerization of norbornadiene to exo-exo hexacyclic dimer
US4275254A (en) 1975-12-11 1981-06-23 Suntech, Inc. Dimerization of norbornadiene to a mixture of exo-endo and endo-endo hexacyclic dimers
US4094916A (en) 1977-02-10 1978-06-13 Suntech, Inc. Process for the production of endo-endo hexacyclic dimer of norbornadiene
US6399726B1 (en) 1999-08-23 2002-06-04 Bayer Aktiengesellschaft Method for the copolymerization of conjugated diolefins (dienes) and vinyl-aromatic monomers with rare-earth catalysts and use of the copolymers in rubber mixtures for tire applications

Also Published As

Publication number Publication date
KR20100042979A (en) 2010-04-27

Similar Documents

Publication Publication Date Title
CA2588019A1 (en) Process for preparing cyclododecatriene
US3219716A (en) Production of oligomers of butadiene-(1,3)
CN108774130B (en) Method for preparing methyl acetate by synthesis gas one-step method
WO2014172534A1 (en) Metathesis catalysts and methods thereof
CN113416211A (en) Vinyl functional group phosphine ligand synthesis method, phosphine ligand and application
CN105837428B (en) Process for catalytic conversion of ketoacids and hydroprocessing to hydrocarbons via ketoacid dimer intermediates
US3954665A (en) Catalyst for the dimerization of diolefins using the reductive properties of metal carbonyls
US8759280B2 (en) Method for producing trimethylcyclododecatriene
KR101014625B1 (en) Method for preparing composition comprising norbornadiene dimers and method for controling production ratio of norbornadiene dimers
CN110938164B (en) One-pot method for tandem catalytic copolymerization of ethylene and 1, 2-disubstituted polar internal olefin and product thereof
CN110550993B (en) Preparation method of alkyl-substituted tetrahydrodicyclopentadiene dimer and application of alkyl-substituted tetrahydrodicyclopentadiene dimer as jet fuel
Yoshikawa et al. A novel dimerization of norbornadiene by nickel catalysts: Formation of exo-5-(o-tolyl)-2-norbornene
CN107266282B (en) Preparation method of 1, 4-dimethylnaphthalene
CN112142583B (en) Method for preparing neral from geranial
CN110694657B (en) Simple high-carbon aldehyde synthesis catalyst
US5545790A (en) Process for the catalytic cyclodimerization of cyclic olefins
WO2000001742A1 (en) Tetracyclododecene compositions and process for producing the same
CN114560761A (en) Method for synthesizing 2, 3-disubstituted indanone derivative in aqueous phase at one time
Li et al. Influence of the ligand structure on the properties of bidentate salicylaldimine nickel (II) complexes in ethylene oligomerization
CN108187758B (en) Catalyst for preparing butadiene from acetylene and preparation method and application thereof
KR20150005115A (en) Method for Preparing Binor-S Type Norbornadiene Dimer in High Yield
Gringolts et al. Catalytic transformations of mono-and bis-silyl substituted norbornadienes
CN111408411B (en) Catalyst composition, preparation method thereof and application thereof in reaction of synthesizing 1-butene by ethylene selective dimerization
CN111408412B (en) Catalyst composition, preparation method thereof and application thereof in reaction of synthesizing 1-butene by ethylene selective dimerization
RU2739242C1 (en) Method of producing high-density and high-energy rocket and aviation fuel component based on methyl-substituted 2,2'-bis (norbornanyl) (versions)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140204

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee