KR100928302B1 - Method for manufacturing solar cell of tricrystalline silicon using surfactant and acid solution wet etching method - Google Patents

Method for manufacturing solar cell of tricrystalline silicon using surfactant and acid solution wet etching method Download PDF

Info

Publication number
KR100928302B1
KR100928302B1 KR1020070070784A KR20070070784A KR100928302B1 KR 100928302 B1 KR100928302 B1 KR 100928302B1 KR 1020070070784 A KR1020070070784 A KR 1020070070784A KR 20070070784 A KR20070070784 A KR 20070070784A KR 100928302 B1 KR100928302 B1 KR 100928302B1
Authority
KR
South Korea
Prior art keywords
surfactant
acid solution
surface structure
silicon
silicon substrate
Prior art date
Application number
KR1020070070784A
Other languages
Korean (ko)
Other versions
KR20090007127A (en
KR100928302B9 (en
Inventor
준 신 이
주민규
한규민
김영국
문인용
이경수
김희재
김경해
Original Assignee
주식회사 케이피이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이피이 filed Critical 주식회사 케이피이
Priority to KR1020070070784A priority Critical patent/KR100928302B1/en
Publication of KR20090007127A publication Critical patent/KR20090007127A/en
Application granted granted Critical
Publication of KR100928302B1 publication Critical patent/KR100928302B1/en
Publication of KR100928302B9 publication Critical patent/KR100928302B9/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Weting (AREA)

Abstract

계면활성제를 이용하여 표면 구조를 개선(Texture)하여 삼결정 실리콘의 태양전지의 광-전변환 효율을 높게 달성 할 수 있도록 하기 위한 계면 활성제 및 산 용액 습식식각 방법을 이용한 삼결정 실리콘의 태양전지 제조방법이 개시된다. 본 발명은 불산(HF): 질산(HNO3)을 1:1~1:15로 혼합한 혼합용액에 식각 속도 조절용 물(H2O)을 적량 첨가하여 산용액을 제조하고, 산용액에 계면활성제인 트라이톤(Triton)을 500~10000ppm를 첨가하여 표면 구조 개선을 위한 식각용액을 제조하며, 식각용액에 실리콘 기판을 5초~2분 동안 침지시키는 표면 구조 개선 단계; 표면 구조 개선 단계 후에 실리콘 기판의 전면에 n-형 불순물을 도핑 한 다음, 도핑된 n-형 불순물의 전면에 반사방지막을 형성하는 도핑 및 반사방지막 형성 단계; 도핑 및 반사방지막 형성 단계 후에 실리콘 기판의 후면에 알루미늄을 증착하여 후면 금속전극을 형성한 다음 열처리를 하여 P+층과 후면 금속전극을 형성시키는 후면전극 형성 단계; 그리고, 후면전극 형성 단계 후에 실리콘 기판의 전면부에 은(Ag)을 이용하여 전면 금속전극을 형성하는 것이다. Fabrication of solar cell of tricrystalline silicon using surfactant and acid solution wet etching method to achieve high photo-electric conversion efficiency of solar cell of tricrystalline silicon by improving surface structure by using surfactant The method is disclosed. In the present invention, an acid solution is prepared by adding an appropriate amount of water for etching rate (H 2 O) to a mixed solution containing hydrofluoric acid (HF): nitric acid (HNO 3) in a ratio of 1: 1 to 1:15, and triton which is a surfactant in an acid solution. (Triton) by adding 500 ~ 10000ppm to prepare an etching solution for improving the surface structure, surface structure improvement step of immersing the silicon substrate in the etching solution for 5 seconds to 2 minutes; A doping and antireflection film forming step of doping an n-type impurity on the entire surface of the silicon substrate after the surface structure improvement step, and then forming an antireflection film on the entire surface of the doped n-type impurity; Forming a back metal electrode by depositing aluminum on the back surface of the silicon substrate after the doping and anti-reflection film forming step, and then performing a heat treatment to form a P + layer and a back metal electrode; After the back electrode forming step, the front metal electrode is formed using silver (Ag) on the front surface of the silicon substrate.

Description

계면 활성제 및 산 용액 습식식각 방법을 이용한 삼결정 실리콘의 태양전지 제조방법{Method of manufacture of Tri-crystalline Si solar cell with surfactant and acid texture}Method for manufacture of tricrystalline silicon solar cell with surfactant and acid texture}

본 발명은 계면 활성제 및 산 용액 습식식각 방법을 이용한 삼결정 실리콘의 태양전지 제조방법에 관한 것으로, 특히 계면활성제를 이용하여 표면 구조를 개선(Texture)하여 삼결정 실리콘의 태양전지의 광-전변환 효율을 높게 달성 할 수 있도록 하기 위한 계면 활성제 및 산 용액 습식식각 방법을 이용한 삼결정 실리콘의 태양전지 제조방법에 관한 것이다. The present invention relates to a method of manufacturing a tricrystalline silicon solar cell using a surfactant and an acid solution wet etching method, and in particular, photo-electric conversion of a tricrystalline silicon solar cell by improving the surface structure using a surfactant. It relates to a solar cell manufacturing method of tricrystalline silicon using a surfactant and an acid solution wet etching method to achieve a high efficiency.

최근 미래 에너지원의 개발필요성이 심각하게 대두됨에 따라 그 대체에너지로서 무한정, 무공해의 태양전지를 이용하는 기술에 관한 연구가 세계적으로 진행되고 있다. Recently, as the need for the development of future energy sources is serious, research on the technology using solar cells of unlimited, pollution-free solar energy as the alternative energy is being conducted worldwide.

광원을 전기에너지로 변환하는 광-전변환 소자인 태양전지는 조사된 빛을 실리콘이 흡수하여 전자-정공쌍을 생성한다. 생성된 전자-정공쌍을 분리하기 위해서 전기적으로 음극성에 가까운 p-형 반도체와 전기적으로 양극성인 n-형 반도체를 접합시켜 전기의 높낮이를 형성한다. 빛에 의하여 생성된 전자-정공쌍은 p-n 접합 전 위 차이에 의하여 분리되고 분리된 전자와 정공은 전극을 통해서 외부로 전력을 공급하는 것이다. A photovoltaic device that converts a light source into electrical energy, a solar cell absorbs irradiated light to generate electron-hole pairs. In order to separate the generated electron-hole pairs, p-type semiconductors that are close to the negative polarity and n-type semiconductors that are electrically positive are joined to form a height of electricity. The electron-hole pairs generated by light are separated by the p-n junction potential difference, and the separated electrons and holes supply power to the outside through the electrodes.

자연친화적이고 청정한 전기생성 소자인 태양전지는 다양한 전자제품의 전력공급원으로 사용 가능하다. 이러한 태양전지 관련 기술은 광에너지의 효과적인 흡수, 광생성전하의 효과적인 분리, 분리된 전하의 손실을 최소화한 상태로 수집하는 기술, 고효율화 방법으로 연구가 진행중이다. Solar cells, which are nature-friendly and clean electricity generating devices, can be used as power sources for various electronic products. Such solar cell-related technologies are being researched as an efficient absorption method of light energy, an effective separation of photogenerated charges, a collection method with minimal loss of separated charges, and a high efficiency method.

태양전지의 효율을 개선하기 위해서는 입사되는 빛의 반사를 줄여야 한다. 이러한 반사를 줄이기 위해서 표면 구조를 개선하는 방법과 반사방지막을 사용하는 두가지 방법이 있다. In order to improve the efficiency of solar cells, the reflection of incident light should be reduced. To reduce this reflection, there are two methods of improving the surface structure and using an anti-reflection film.

일반적으로 단결정 실리콘에서는 표면 구조 개선(Texture; 텍스쳐)의 방법이 이미 잘 확립되어 있지만 다결정 실리콘에서는 여러 가지 방법을 통하여 표면 구조 개선을 시도하고 있으나, 아직 완전하게 표면 구조 개선을 이루지는 못하였다. In general, the surface structure (texture) method has already been well established in monocrystalline silicon, but in the case of polycrystalline silicon, various methods have been used to improve the surface structure, but the surface structure has not been completely improved.

실리콘의 표면 구조 개선을 위한 종래의 방법에는 건식식각을 이용하는 방법과 습식시각을 이용하는 방법이 있다. 특히 습식식각 방법은 산(acid) 용액을 이용하여 표면 구조 개선을 함으로써 빛의 반사를 감소시키는 방법이다.Conventional methods for improving the surface structure of silicon include a method using dry etching and a method using wet vision. In particular, the wet etching method is a method of reducing the reflection of light by improving the surface structure using an acid solution.

종래의 삼결정 실리콘의 표면구조개선 방법은 삼결정 실리콘의 산용액 식각은 불산(HF)과 질산(HNO3) 및 물(H2O)을 이용하였다. 산용액은 불산(HF)과 질산(HNO3)의 비율이 15:1~1:1 사이에서 선택하며 질산보다 불산이 비율이 높도록 용액을 만들고, 물(H2O)은 에칭 속도 조절에 사용하였다. 산 용액에 포함된 불산(HF)과 질산(HNO2) 비율에 표면 구조가 개선되며, 표면의 작은 구멍들로 인해 반사도가 줄어드는 것이다. In the conventional method of improving the surface structure of tricrystalline silicon, acid solution etching of tricrystalline silicon used hydrofluoric acid (HF), nitric acid (HNO 3), and water (H 2 O). The acid solution was selected from 15: 1 to 1: 1 ratio of hydrofluoric acid (HF) and nitric acid (HNO3). The solution was made to have a higher hydrofluoric acid ratio than nitric acid, and water (H2O) was used to control the etching rate. The surface structure is improved in the ratio of hydrofluoric acid (HF) and nitric acid (HNO2) contained in the acid solution, and the small holes in the surface reduce the reflectivity.

도 1은 산 용액으로 표면구조 개선된 삼결정 실리콘 단면이다. 표면 구조 개선을 통한 반사도의 한계를 극복하기 위해서는 반사도를 줄일 수 있는 구조가 필요하다. 불산(HF)과 질산(HNO3) 농도를 조절하더라도 삼결정을 포함하는 다결정 실리콘의 경우에도 산 용액을 이용한 식각시 20% 이상의 반사도를 나타내고 있다. 1 is a cross-sectional view of tricrystalline silicon having an improved surface structure with an acid solution. In order to overcome the limitation of reflectivity by improving the surface structure, a structure that can reduce the reflectivity is required. Even if the concentration of hydrofluoric acid (HF) and nitric acid (HNO 3) is adjusted, the polycrystalline silicon containing tricrystal shows more than 20% reflectivity when etching with acid solution.

종래의 산 용액을 이용한 삼결정 실리콘 표면구조개선에서는 20% 이하의 반사도를 얻기가 어려운 문제점이 있으며, 건식식각 방법을 이용해서는 반사도를 개선 할 수 있지만 고가의 장비를 사용하는 것과 고가의 공정가격으로 인해 양산하는데 있어서는 어려움이 있다.In the improvement of tricrystalline silicon surface structure using the acid solution, it is difficult to obtain reflectance of 20% or less, and the dry etching method can improve the reflectivity, but using expensive equipment and expensive fair price There is a difficulty in mass production.

본 발명은 상기의 문제점을 해소하기 위하여 발명된 것으로, 본 발명은 산용액을 이용하여 표면구조개선 할 때에 계면 활성제를 첨가하여 빛의 반사도를 더 감소시킴으로서 실리콘 내에서 원활한 전자-전공쌍의 생성 및 흐름을 이루어서 태양전지 변환 효율의 향상을 가져오기 위한 계면 활성제 및 산 용액 습식식각 방법을 이용한 삼결정 실리콘의 태양전지 제조방법을 제공하는 데 그 목적이 있다. The present invention has been invented to solve the above problems, the present invention is to create a smooth electron-electron pair in silicon by further reducing the reflectivity of light by adding a surfactant when improving the surface structure using an acid solution and It is an object of the present invention to provide a method for manufacturing a solar cell of tricrystalline silicon using a surfactant and an acid solution wet etching method to achieve an improvement in solar cell conversion efficiency.

불산(HF): 질산(HNO3)을 1:1~1:15로 혼합한 혼합용액에 식각 속도 조절용 물(H2O)을 적량 첨가하여 산용액을 제조하고, 산용액에 계면활성제인 트라이톤(Triton)을 500~10000ppm를 첨가하여 표면 구조 개선을 위한 식각용액을 제조하 며, 식각용액에 실리콘 기판을 5초~2분 동안 침지시키는 표면 구조 개선 단계; Hydrofluoric acid (HF): An acid solution is prepared by adding an appropriate amount of water for etching rate (H 2 O) to a mixed solution containing nitric acid (HNO 3) in a ratio of 1: 1 to 1:15, and triton which is a surfactant in the acid solution. To prepare an etching solution for improving the surface structure by adding 500 ~ 10000ppm, surface structure improvement step of immersing the silicon substrate in the etching solution for 5 seconds ~ 2 minutes;

표면 구조 개선 단계 후에 실리콘 기판의 전면에 n-형 불순물을 도핑 한 다음, 도핑된 n-형 불순물의 전면에 반사방지막을 형성하는 도핑 및 반사방지막 형성 단계; A doping and antireflection film forming step of doping an n-type impurity on the entire surface of the silicon substrate after the surface structure improvement step, and then forming an antireflection film on the entire surface of the doped n-type impurity;

도핑 및 반사방지막 형성 단계 후에 실리콘 기판의 후면에 알루미늄을 증착하여 후면 금속전극을 형성한 다음 열처리를 하여 P+층과 후면 금속전극을 형성시키는 후면전극 형성 단계; 그리고, Forming a back metal electrode by depositing aluminum on the back surface of the silicon substrate after the doping and anti-reflection film forming step, and then performing a heat treatment to form a P + layer and a back metal electrode; And,

후면전극 형성 단계 후에 실리콘 기판의 전면부에 은(Ag)을 이용하여 전면 금속전극을 형성하는 것이다. After the back electrode forming step, the front metal electrode is formed using silver (Ag) on the front surface of the silicon substrate.

상술한 바와 같이, 본 발명에 따른 태양전지는 반사도의 감소로 광생성을 통한 전류량을 증가시키며, 기존 실리콘 태양전지에 적용하면 변환효율이 15%에서부터 16%까지 상승된다. 따라서, 태양전지를 응용한 가전제품, 건설현장, 그리고 태양광 발전소 등에서 저가로 사용할 수 있게 되어 환경 친화적이고 경제적인 전기를 얻을 수 있으며, 향후 화석연료의 사용 제한 조치등으로 구매 잠재력은 매우 크므로 많은 수의 관련 업체 및 고용창출 효과가 있다.As described above, the solar cell according to the present invention increases the amount of current through light generation by reducing the reflectivity, and when applied to the existing silicon solar cell, the conversion efficiency is increased from 15% to 16%. Therefore, it can be used at low cost in home appliances, construction sites, and photovoltaic power plants that use solar cells, so that it is possible to obtain eco-friendly and economical electricity. There are a large number of related companies and job creation effects.

첨부된 도 2는 본 발명에 따른 계면 활성제 및 산 용액 습식식각 방법에 따른 습식 식각된 실리콘의 표면 구조를 보여주기 위한 단면도이고, 도 3은 본 발명에 따른 계면 활성제 및 산 용액 습식식각 방법에서 투입되는 계면활성제의 양에 따른 삼결정 실리콘 웨이퍼의 반사도를 나타내는 그래프이다. 2 is a cross-sectional view showing the surface structure of the wet etched silicon according to the surfactant and acid solution wet etching method according to the present invention, Figure 3 is a surfactant and acid solution in the wet etching method according to the present invention It is a graph showing the reflectivity of the tricrystalline silicon wafer according to the amount of the surfactant.

본 발명은 태양전지의 효율을 높이기 위해 빛의 반사도를 20% 이하로 낮추게 된다. 불산(HF)과 질산(HNO3)을 주성분으로 하는 산 용액에 의해 실리콘 표면의 표면 구조 개선을 할 경우 질산(HNO3)은 실리콘 표면을 산화 시키고, 불산(HF)을 이용하여 산화막을 제거한다. 이때에 물(H2O)을 희석 조절제로 사용한다. 이러한 화학 반응시 수소(H2)가 발생하는 데 발생된 수소는 산 용액 밖으로 나가게 된다.The present invention is to lower the reflectivity of light to 20% or less to increase the efficiency of the solar cell. When the surface structure of the silicon surface is improved by using an acid solution mainly composed of hydrofluoric acid (HF) and nitric acid (HNO 3), nitric acid (HNO 3) oxidizes the silicon surface and removes an oxide film using hydrofluoric acid (HF). At this time, water (H 2 O) is used as a dilution regulator. In this chemical reaction, hydrogen (H 2) is generated, and the generated hydrogen goes out of the acid solution.

도 4는 종래의 산 용액으로 표면구조가 개선된 실리콘 표면의 전자 현미경 사진이고, 도 5는 본 발명에 따른 계면활성제 및 산 용액으로 표면구조가 개선된 실리콘 표면의 전자 현미경 사진이며, 도 6은 본 발명에 따른 삼결정 실리콘 태양전지의 제조공정을 보여주기 위한 도면이다. 4 is an electron micrograph of a silicon surface of which the surface structure is improved with a conventional acid solution, and FIG. 5 is an electron micrograph of a silicon surface whose surface structure is improved with a surfactant and an acid solution according to the present invention. 3 is a view showing a manufacturing process of a tricrystalline silicon solar cell according to the present invention.

본 발명은 발생된 수소 가스가 계면 활성제에 포획되어, 수소가스가 실리콘 웨이퍼 표면에 붙어서 부분적으로 실리콘 웨이퍼의 식각을 방해하도록 하는 것이다. 게면활성제가 수소를 포획하여 실리콘 웨이퍼의 식각을 방해하면 도 5에서 보는 바와 같이 표면 구조가 도4의 기존 산용액을 이용한 표면구조개선의 표면 구조보다 더 빛의 반사를 낮추는 구조를 가지게 된다. In the present invention, the generated hydrogen gas is trapped by the surfactant, so that the hydrogen gas adheres to the silicon wafer surface and partially interferes with the etching of the silicon wafer. When the surfactant absorbs hydrogen and interferes with the etching of the silicon wafer, as shown in FIG. 5, the surface structure has a structure that lowers the reflection of light more than the surface structure of surface improvement using the existing acid solution of FIG. 4.

즉, 도 3에서 보는 바와 같이 본 발명에 따른 계면 활성제를 사용하지 않았을 때의 반사도 값이 23.4%를 나타내고 있으나, 계면 활성제를 사용 했을 때에S,S 사용된 계면 활성제의 양에 따라서 반사도 값이 저하됨을 볼 수 있다. That is, as shown in FIG. 3, the reflectance value when the surfactant according to the present invention is not used is 23.4%, but when the surfactant is used, the reflectance value is lowered depending on the amount of the surfactant used. Can be seen.

본 발명에 따른 습식식각방법은 실리콘 웨이퍼의 표면구조개선을 위하여 불산(HF): 질산(HNO3)의 비율을 1:1~1:15의 범위내에서 선택하며, 여기에 식각속도 조절용 물(H2O)을 적량 첨가하여 산용액을 제조한다. 제조된 산 용액에 계면활성제인 트라이톤(Triton)을 500~10000ppm를 첨가하여 표면 구조 개선을 위한 식각용액을 제조하고, 표면구조 개선을 위한 실리콘 웨이퍼를 식각용액에 5초~2분 동안 침지시키는 것이다.The wet etching method according to the present invention selects a ratio of hydrofluoric acid (HF): nitric acid (HNO 3) in the range of 1: 1 to 1:15 to improve the surface structure of the silicon wafer, and here, water for etching rate control (H 2 O). An appropriate amount is added to prepare an acid solution. 500 to 10,000 ppm of triton, a surfactant, is added to the prepared acid solution to prepare an etching solution for improving the surface structure, and a silicon wafer for improving the surface structure is immersed in the etching solution for 5 seconds to 2 minutes. .

도 2의 a는 본 발명에 따른 식각용액을 이용하여 표면구조를 개선하기 전의 실리콘 기판(10)을 나타내며, 도 2의 b는 본 발명에 따라 계면활성제를 첨가하여 표면구조개선 한 후의 실리콘 기판(10)를 나타내고 있으며 도 2의 c는 표면구조가 개선된 후의 실리콘 기판(10)의 단면을 나타내고 있다.Figure 2a shows a silicon substrate 10 before improving the surface structure by using the etching solution according to the present invention, Figure 2b shows a silicon substrate after improving the surface structure by adding a surfactant according to the present invention ( 10 and c in FIG. 2 shows a cross section of the silicon substrate 10 after the surface structure is improved.

본 발명에 따른 식각방법을 이용하여 태양전지를 제조하는 방법을 설명하면 도 6에서 보는 바와 같이 불산(HF): 질산(HNO3)의 비율이 1:1~1:15의 범위내에서 선택되며, 식각 속도 조절용 물(H2O)을 적량 첨가된 산용액에 계면활성제인 트라이톤(Triton)을 500~10000ppm를 첨가하여 표면 구조 개선을 위한 식각용액을 제조하고, p-형 삼결정 실리콘 기판(10)을 제조된 식각용액에 5초~2분 동안 침지시킨다. Referring to the method of manufacturing a solar cell using an etching method according to the invention as shown in Figure 6, the ratio of hydrofluoric acid (HF): nitric acid (HNO3) is selected in the range of 1: 1 ~ 1:15, 500 to 10,000 ppm of Triton, a surfactant, was added to an acid solution to which an appropriate amount of etching rate control water (H 2 O) was added to prepare an etching solution for improving the surface structure, and a p-type tricrystalline silicon substrate 10 was prepared. Immerse the prepared etching solution for 5 seconds to 2 minutes.

5~2분 동안 침지된 p-형 삼결정 실리콘 기판(10)의 전면에 n-형 불순물(20)을 도핑(doping)처리 한 다음, 도핑된 n-형 불순물(20)의 전면에 플라즈마 화학 증착법이나(PECVD), 상압 화학 증착법(APCVD), 스프레이, 확산법(evaporation) 및 스핀코팅중 어느 하나의 방법에 의하여 반사방지막(30)을 형성한다. Doping n-type impurities 20 on the front surface of the p-type tricrystalline silicon substrate 10 immersed for 5 to 2 minutes, and then plasma chemistry on the front surface of the doped n-type impurities 20. The antireflection film 30 is formed by any one of a vapor deposition method (PECVD), atmospheric chemical vapor deposition (APCVD), spraying, evaporation, and spin coating.

반사방지막(30)이 형성되고 나서 삼결정 실리콘 기판(10)의 후면에 알루미늄(Aluminum)을 증착하여 후면 금속전극(40)을 형성한 다음 열처리를 하여 P+층(42)과 후면 금속전극(40)을 형성시킨다.After the anti-reflection film 30 is formed, aluminum is deposited on the rear surface of the tricrystalline silicon substrate 10 to form the rear metal electrode 40, and then subjected to heat treatment to form the P + layer 42 and the rear metal electrode 40. ).

이후에 삼결정 실리콘 기판(10)의 전면부에 은(Ag)을 이용하여 전면 금속전극(50)을 형성하는 것이다.Thereafter, the front metal electrode 50 is formed by using silver (Ag) on the front surface of the tricrystalline silicon substrate 10.

본 발명은 삼결정 실리콘의 태양전지의 광-전변환 효율을 높게 달성 할 수 있도록 계면활성제 트라이톤(Triton) 500~10000ppm를 이용하여 습식 식각하여 표면 구조 개선을 수행한다. In order to achieve high photo-electric conversion efficiency of a tricrystalline silicon solar cell, the present invention performs surface structure improvement by wet etching using a surfactant Triton (500 to 10,000 ppm).

본 발명에 따른 식각방법을 이용하여 제조된 태양전지의 실리콘 표면은 18%이하의 낮은 반사도를 가지는 반면에, 종래의 산 용액을 이용하여 습식 식각된 실리콘 표면은 20-22%의 반사도를 가진다. 따라서 계면 활성제 트라이톤(Triton) 500~10000ppm를 첨가한 산 용액을 이용하여 표면구조개선 했을 때에는 기존의 삼결정 실리콘 태양전지 변환 효율보다 0.5~1%의 향상된다. The silicon surface of the solar cell manufactured using the etching method according to the present invention has a low reflectivity of 18% or less, while the wet surface of the silicon wafer wetted using a conventional acid solution has a reflectivity of 20-22%. Therefore, when the surface structure is improved by using an acid solution containing 500 to 10,000 ppm of Triton, tri-silicon solar cell conversion efficiency is improved by 0.5 to 1%.

본 발명의 장점은 기존의 태양전지 보다 에너지 변환효율이 개선된다. 즉, 기존의 태양전지 보다 개선된 반사도 감소, 에너지 변환효율 16% 이상의 태양전지 양산화가 가능하며 전류량을 증가하여 태양전지 변환효율을 향상시킨다. 또한, 태양전지의 변환효율을 향상시키면 기존의 태양전지보다 높은 전력을 얻을 수 있어 와트당 단가를 하락하여 태양전지 저가화가 가능하다. Advantages of the present invention is improved energy conversion efficiency than conventional solar cells. In other words, it is possible to mass-produce more than 16% of the solar cell and improve the efficiency of solar cell conversion. In addition, if the conversion efficiency of the solar cell is improved, it is possible to obtain higher power than the conventional solar cell, thereby lowering the unit cost per watt, thereby lowering the solar cell cost.

본 발명으로 태양전지의 변환효율을 향상시키면 기존의 태양전지보다 높은 전력을 얻을 수 있어 와트당 단가를 하락하여 태양전지 저가화가 가능하며, 태양전지를 응용한 가전제품, 건설현장, 그리고 태양광 발전소 등에서 저가로 사용할 수 있게 되어 환경 친화적이고 경제적인 전기를 얻을 수 있다. 또한, 향후 환경 규 제 등으로 인한 화석연료의 사용이 제한되기 때문에 본 발명의 적용으로 많은 수의 관련 업체 및 고용창출 효과가 있을 뿐 아니라, 환경보존을 중시하는 외국으로의 수출이 용이한 기술 및 품목이므로 커다란 해외 판매망을 구축할 수 있다. When the conversion efficiency of the solar cell is improved by the present invention, it is possible to obtain higher power than the conventional solar cell, thereby lowering the unit cost per watt, thereby lowering the cost of the solar cell. It can be used at low cost on the back, so that it is possible to obtain environmentally friendly and economical electricity. In addition, since the use of fossil fuels due to environmental regulations in the future is limited, the application of the present invention not only has a large number of related companies and job creation effects, but also makes it easy to export to foreign countries that emphasize environmental preservation and As it is an item, you can build a large overseas sales network.

이상에서 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하였으나, 본 발명은 이에 한정되는 것이 아니며 본 발명의 기술적 사상의 범위내에서 당업자에 의해 그 개량이나 변형이 가능하다.Although the preferred embodiments of the present invention have been described in detail with reference to the accompanying drawings, the present invention is not limited thereto and may be improved or modified by those skilled in the art within the scope of the technical idea of the present invention.

도 1은 종래의 삼결정 실리콘의 표면구조개선된 실리콘의 표면 구조를 보여주기 위한 단면도이다. 1 is a cross-sectional view showing the surface structure of a conventional silicon improved surface structure of tricrystalline silicon.

도 2는 본 발명에 따른 계면 활성제 및 산 용액 습식식각 방법에 따른 습식 식각방법을 설명하기 위한 도면이다. 2 is a view for explaining a wet etching method according to the surfactant and acid solution wet etching method according to the present invention.

도 3은 본 발명에 따른 계면 활성제 및 산 용액 습식식각 방법에서 투입되는 계면활성제의 양에 따른 삼결정 실리콘 웨이퍼의 반사도를 나타내는 그래프이다. 3 is a graph showing the reflectivity of the tricrystalline silicon wafer according to the amount of the surfactant added in the surfactant and the acid solution wet etching method according to the present invention.

도 4는 종래의 산 용액으로 표면구조가 개선된 실리콘 표면의 전자 현미경 사진이다.4 is an electron micrograph of a silicon surface having improved surface structure with a conventional acid solution.

도 5는 본 발명에 따른 계면활성제 및 산 용액으로 표면구조가 개선된 실리콘 표면의 전자 현미경 사진이다.5 is an electron micrograph of a silicon surface having a surface structure improved with a surfactant and an acid solution according to the present invention.

도 6은 본 발명에 따른 삼결정 실리콘 태양전지의 제조공정을 보여주기 위한 도면이다. 6 is a view showing a manufacturing process of a tricrystalline silicon solar cell according to the present invention.

Claims (2)

ⅰ)불산(HF): 질산(HNO3)을 1:1~1:15로 혼합한 혼합용액에 식각 속도 조절용 물(H2O)을 적량 첨가하여 산용액을 제조하고, 상기 산용액에 계면활성제인 트라이톤(Triton)을 500~10000ppm를 첨가하여 표면 구조 개선을 위한 식각용액을 제조하며, 상기 식각용액에 실리콘 기판을 5초~2분 동안 침지시키는 표면 구조 개선 단계; (Iii) hydrofluoric acid (HF): an acid solution is prepared by adding an appropriate amount of water for etching rate (H 2 O) to a mixed solution containing nitric acid (HNO 3) in a ratio of 1: 1 to 1:15, and triton which is a surfactant in the acid solution. (Triton) to prepare an etching solution for improving the surface structure by adding 500 ~ 10,000ppm, surface structure improvement step of immersing the silicon substrate in the etching solution for 5 seconds to 2 minutes; ⅱ)상기 표면 구조 개선 단계 후에 상기 실리콘 기판의 전면에 n-형 불순물을 도핑 한 다음, 상기 도핑된 n-형 불순물의 전면에 반사방지막을 형성하는 도핑 및 반사방지막 형성 단계; Ii) a doping and antireflection film forming step of doping an n-type impurity on the entire surface of the silicon substrate after the surface structure improvement step, and then forming an antireflection film on the entire surface of the doped n-type impurity; ⅲ) 상기 도핑 및 반사방지막 형성 단계 후에 상기 실리콘 기판의 후면에 알루미늄을 증착하여 후면 금속전극을 형성한 다음 열처리를 하여 P+층과 후면 금속전극을 형성시키는 후면전극 형성 단계; 그리고, Iv) forming a back metal electrode by depositing aluminum on the back surface of the silicon substrate after the doping and anti-reflection film forming step and then performing a heat treatment to form a P + layer and a back metal electrode; And, ⅳ)상기 후면전극 형성 단계 후에 상기 실리콘 기판의 전면부에 은(Ag)을 이용하여 전면 금속전극을 형성하는 전면 전극 형성단계를 포함하는 계면 활성제 및 산 용액 습식식각 방법을 이용한 삼결정 실리콘의 태양전지 제조방법. Iii) An aspect of tricrystalline silicon using a surfactant and an acid solution wet etching method comprising a front electrode forming step of forming a front metal electrode using silver (Ag) on a front surface of the silicon substrate after the back electrode forming step. Battery manufacturing method. 삭제delete
KR1020070070784A 2007-07-13 2007-07-13 Method for manufacturing solar cell of tricrystalline silicon using surfactant and acid solution wet etching method KR100928302B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070070784A KR100928302B1 (en) 2007-07-13 2007-07-13 Method for manufacturing solar cell of tricrystalline silicon using surfactant and acid solution wet etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070070784A KR100928302B1 (en) 2007-07-13 2007-07-13 Method for manufacturing solar cell of tricrystalline silicon using surfactant and acid solution wet etching method

Publications (3)

Publication Number Publication Date
KR20090007127A KR20090007127A (en) 2009-01-16
KR100928302B1 true KR100928302B1 (en) 2009-11-25
KR100928302B9 KR100928302B9 (en) 2021-09-14

Family

ID=40488107

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070070784A KR100928302B1 (en) 2007-07-13 2007-07-13 Method for manufacturing solar cell of tricrystalline silicon using surfactant and acid solution wet etching method

Country Status (1)

Country Link
KR (1) KR100928302B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137782A (en) * 2011-12-01 2013-06-05 浚鑫科技股份有限公司 Method for separating P-N junction in monocrystal silicon battery piece and method for manufacturing solar battery

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101348752B1 (en) * 2010-05-10 2014-01-10 삼성디스플레이 주식회사 Solar cell and method for manufacturing the same
WO2012022476A1 (en) * 2010-08-19 2012-02-23 Avantor Performance Materials B.V. Chemical solutions for texturing microcrystalline silicon wafers for solar cell manufacturing
MY157203A (en) 2010-09-01 2016-05-13 Basf Se Aqueous acidic solution and etching solution and method for texturing the surface of single crystal and polycrystal silicon substrates
TWI431797B (en) 2010-10-19 2014-03-21 Ind Tech Res Inst Solar cell with selective emitter and fabrications thereof
KR101366737B1 (en) * 2012-10-25 2014-02-26 한국생산기술연구원 Method for fabricating solar cell with increased reflection characteristic of silicon nano and micro structure through removing bundle and solar cell thereof
KR101375781B1 (en) * 2012-10-25 2014-03-19 한국생산기술연구원 Method for fabricating solar cell with increase carrier life through sod doping and passivation lf nano and micro silicon complex structure and solar cell thereof
KR101462563B1 (en) * 2014-04-22 2014-11-18 주식회사 디씨티 Crystalline Silicon Wafer Solar Cell Etching Method and Apparatus using SiFx Barrier, Method and Apparatus for Fabricating Solar Cell using the same
KR20160027325A (en) 2014-08-28 2016-03-10 전자부품연구원 A chemical and mechnical etching method for reuse a solar cell
CN107887458A (en) * 2017-10-11 2018-04-06 昆明理工大学 A kind of method that copper catalysis etching silicon prepares morphology controllable matte
KR102168582B1 (en) 2019-04-24 2020-10-22 주식회사 에스씨엘 Emotional lighting system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050022100A (en) * 2003-08-26 2005-03-07 고등기술연구원연구조합 Chemical Composition for Removal Solution of Smut on Aluminum Materials and the Method for Removing the Same
KR20050117045A (en) * 2004-06-09 2005-12-14 주식회사 엔에이치에스 Spinal interlaminal fixation orthosis by surface treatment method and such method of orthosis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050022100A (en) * 2003-08-26 2005-03-07 고등기술연구원연구조합 Chemical Composition for Removal Solution of Smut on Aluminum Materials and the Method for Removing the Same
KR20050117045A (en) * 2004-06-09 2005-12-14 주식회사 엔에이치에스 Spinal interlaminal fixation orthosis by surface treatment method and such method of orthosis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137782A (en) * 2011-12-01 2013-06-05 浚鑫科技股份有限公司 Method for separating P-N junction in monocrystal silicon battery piece and method for manufacturing solar battery

Also Published As

Publication number Publication date
KR20090007127A (en) 2009-01-16
KR100928302B9 (en) 2021-09-14

Similar Documents

Publication Publication Date Title
KR100928302B1 (en) Method for manufacturing solar cell of tricrystalline silicon using surfactant and acid solution wet etching method
Xiao et al. High-efficiency silicon solar cells—materials and devices physics
KR101000064B1 (en) Hetero-junction silicon solar cell and fabrication method thereof
Moreno et al. A comparative study of wet and dry texturing processes of c-Si wafers for the fabrication of solar cells
JP5490231B2 (en) SOLAR CELL DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE
CN110690297A (en) P-type tunneling oxide passivation contact solar cell and preparation method thereof
KR20110075200A (en) Method for fabricating back contact solar cell
KR20130092494A (en) Solar cell and method of manufacturing the same
CN109545868A (en) Graphene quantum dot/black silicon heterogenous solar battery and preparation method thereof
CN102931278A (en) Back local contact structure of solar battery, manufacture method of structure, corresponding solar battery and manufacture method of solar battery
CN112133774A (en) Back-junction back-contact solar cell and manufacturing method thereof
CN107268020B (en) A kind of Ta3N5The preparation method and Ta of film3N5The application of film
US7829782B2 (en) Photovoltaic conversion device, optical power generator and manufacturing method of photovoltaic conversion device
CN103746006A (en) Passivating layer of crystalline silicon solar cell and passivating process thereof
Gudovskikh et al. Multijunction a-Si: H/c-Si solar cells with vertically-aligned architecture based on silicon nanowires
JP2011243855A (en) Solar cell element and method of manufacturing the same and solar cell module
US20130288421A1 (en) Method of fabricating a differential doped solar cell
US20120255608A1 (en) Back-surface-field type of heterojunction solar cell and a production method therefor
Hwang et al. Making silicon solar cells in a green, low-hazardous, and inexpensive way
KR20110078638A (en) Method for surface treatment of solar cell with h2 plasma
Xiao et al. Status and progress of high-efficiency silicon solar cells
KR101345430B1 (en) Tendam structure and manufacture for solar cell
KR101115104B1 (en) Solar cell and method for fabricating the same
Aziz Simulation, fabrication and characterization of multilyer coated solar cells
KR101127303B1 (en) Method for fabricating solar cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121116

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130830

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140901

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181001

Year of fee payment: 10

R401 Registration of restoration
G170 Publication of correction