KR100926128B1 - Magnetic nanocatalyst and method for the preparation thereof - Google Patents

Magnetic nanocatalyst and method for the preparation thereof Download PDF

Info

Publication number
KR100926128B1
KR100926128B1 KR1020070059741A KR20070059741A KR100926128B1 KR 100926128 B1 KR100926128 B1 KR 100926128B1 KR 1020070059741 A KR1020070059741 A KR 1020070059741A KR 20070059741 A KR20070059741 A KR 20070059741A KR 100926128 B1 KR100926128 B1 KR 100926128B1
Authority
KR
South Korea
Prior art keywords
magnetic
nanocatalyst
transition metal
reaction
nanoparticles
Prior art date
Application number
KR1020070059741A
Other languages
Korean (ko)
Other versions
KR20080111602A (en
Inventor
박재욱
권민석
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to KR1020070059741A priority Critical patent/KR100926128B1/en
Priority to PCT/KR2008/003485 priority patent/WO2008156320A1/en
Publication of KR20080111602A publication Critical patent/KR20080111602A/en
Application granted granted Critical
Publication of KR100926128B1 publication Critical patent/KR100926128B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 자성체 나노촉매 및 이의 제조방법에 관한 것으로서, 본 발명에 따른 전이금속 나노입자 및 자성체 나노입자가 담체에 지지된 자성체 나노촉매는, 다양한 유기 반응에서 우수한 반응성을 제공하고, 자기적 성질을 가져 반응 후 자석으로 분리 및 재활용이 가능하여 에폭시 화합물의 고리열림 반응, 알코올의 산화반응, 수소화 반응, 탄소-탄소 짝지음 반응 또는 알킬화 반응 등 다양한 반응에서 촉매로 유용하게 사용될 수 있다.The present invention relates to a magnetic nanocatalyst and a method for preparing the same, wherein the magnetic nanocatalyst supported by the transition metal nanoparticle and the magnetic nanoparticle according to the present invention provides excellent reactivity in various organic reactions, and exhibits magnetic properties. It can be separated and recycled to a magnet after the reaction, so that it can be usefully used as a catalyst in various reactions such as ring opening reaction of epoxy compound, oxidation reaction of alcohol, hydrogenation reaction, carbon-carbon coupling reaction or alkylation reaction.

Description

자성체 나노촉매 및 이의 제조 방법 {MAGNETIC NANOCATALYST AND METHOD FOR THE PREPARATION THEREOF}Magnetic nanocatalyst and its manufacturing method {MAGNETIC NANOCATALYST AND METHOD FOR THE PREPARATION THEREOF}

도 1은 본 발명의 실시예 1에서 제조된 팔라듐-산화철 나노촉매의 투과 전자 현미경(TEM) 사진을 나타내고;1 shows a transmission electron microscope (TEM) photograph of the palladium-iron oxide nanocatalyst prepared in Example 1 of the present invention;

도 2는 본 발명의 실시예 1에서 제조된 팔라듐-산화철 나노촉매의 초전도 양자 간섭 장치(SQUID)에 의한 자기적 특성 분석 결과이며, 2 is a magnetic characteristic analysis result of the superconducting quantum interference device (SQUID) of the palladium-iron oxide nanocatalyst prepared in Example 1 of the present invention,

도 3은 본 발명의 실시예 1에서 제조된 팔라듐-산화철 나노촉매를 이용한 에피클로린의 수소첨가 분해 반응의 실험과정 (a) 및 반응 후 촉매회수 방법 (b)을 나타낸 사진이다.Figure 3 is a photograph showing the experimental process (a) of the hydrocracking reaction of epichlorine using the palladium-iron oxide nanocatalyst prepared in Example 1 of the present invention and the catalyst recovery method (b) after the reaction.

본 발명은 다양한 유기반응에 촉매로 사용되며, 반응 후 자석으로 분리 및 재활용이 가능한 자성체 나노촉매 및 이의 제조방법에 관한 것이다.The present invention is used as a catalyst in various organic reactions, and relates to a magnetic nanocatalyst and a method for preparing the same, which can be separated and recycled into a magnet after the reaction.

나노촉매는 매우 큰 반응 표면적과 표면 특이성 때문에 기존의 통상적인 촉매와 차별적인 성질을 나타내며 다양한 유기반응에 사용되고 있다 (문헌 [Burda, C. 등, Chem. Rev. 2005, 105, 1025]; [Astruc, D. 등, Angew. Chem. Int. Ed. 2005, 44, 7852] 참조). 하지만, 이러한 나노촉매는 반응과정 중에 응집현상이 발생하여 반응성이 저하되거나 반응 후 혼합물로부터 분리가 어려워 공업적으로 적용하는데 어려움이 있다. 이러한 문제점들을 해결하기 위하여 대부분의 나노촉매들은 무기산화물, 유기고분자, 덴드리머 및 이온성 액체 등의 표면에 고정화하여 사용하고 있다 (문헌 [Corma, A. 등, Science 2006, 313, 332]; [Oyamada, H. 등, Chem. Commun. 2006, 4297]; [Song, H. 등, J. Am. Chem. Soc. 2006, 128, 3027]; [Yamada, Y. M. A. 등, Org. Lett. 2006, 8, 1375]; [Wu, L. 등, Org. Lett. 2006, 8, 3605]; 및 [Wang, Y. 등, Chem. Commun. 2006, 2545] 참조). 그러나 상기에 언급한 촉매들은 합성과정이 어렵거나 반응 후 별도의 여과과정을 통해 촉매를 분리해야 되는 문제점이 있다.Nanocatalysts are distinguished from conventional catalysts due to their very high reaction surface area and surface specificity and are used in various organic reactions (Burda, C. et al. , Chem. Rev. 2005 , 105 , 1025); [Astruc , D. et al. , Angew. Chem. Int. Ed. 2005 , 44 , 7852). However, such nanocatalysts are difficult to apply industrially due to the coagulation phenomenon during the reaction process, the reactivity is lowered or difficult to separate from the mixture after the reaction. In order to solve these problems, most nanocatalysts are used by immobilization on surfaces of inorganic oxides, organic polymers, dendrimers, and ionic liquids (Corma, A. et al., Science 2006 , 313 , 332; Oyamada; , H. et al. , Chem. Commun. 2006 , 4297; Song, H., et al. , J. Am. Chem. Soc. 2006 , 128 , 3027; Yamada, YMA et al . , Org. Lett. 2006 , 8 , 1375; see Wu, L. et al . , Org. Lett. 2006 , 8 , 3605; and Wang, Y. et al. , Chem. Commun. 2006 , 2545). However, the catalysts mentioned above have a problem in that the synthesis process is difficult or the catalyst must be separated through a separate filtration process after the reaction.

한편, 자성체 나노입자는 개별 입자가 단자구(single magnetic domain)가 되기 때문에 여러 개의 자구(magnetic domain)로 이루어진 기존의 덩어리 물질에 비하여 특이한 자기적 성질을 나타낸다. 이러한 자기적 성질을 이용하여 고밀도 자성저장장치, 약물 전달체 및 센서 등 여러 분야에서 중요한 가능성을 보이고 있다. 특히, 자성체 나노입자를 균일촉매의 지지체 (문헌 [Stevens, P. D. 등, Org. Lett. 2005, 7, 2085]; [Hu, A. 등, J. Am. Chem. Soc. 2005, 127, 12486] 참조) 혹은 불균일 촉매와 혼합하여 (문헌 [Kim, J. 등, Angew. Chem. Int. Ed. 2006, 45, 4789]; [Yi, D. K. 등, Chem. Mater. 2006, 18, 2459] 참조) 사용할 경우 별도의 여과과정 없이 외부 자석을 이용하여 반응 혼합물로부터 분리가 용이하기 때문에 최근에 많이 연구되고 있다. 그러나 대부분의 방법들은 낮은 반응성, 촉매의 분해, 표면 금속의 침출 그리고 어려운 합성방법 등에 문제점이 있다.On the other hand, the magnetic nanoparticles exhibit unique magnetic properties compared to the existing mass material consisting of a plurality of magnetic domains because the individual particles become a single magnetic domain. This magnetic property has shown important potential in many fields such as high density magnetic storage devices, drug carriers and sensors. In particular, magnetic nanoparticles may be prepared by a support of a homogeneous catalyst (Stevens, PD et al . , Org. Lett. 2005 , 7 , 2085; Hu, A. et al. , J. Am. Chem. Soc. 2005 , 127 , 12486). Or by mixing with a heterogeneous catalyst (see Kim, J. et al. , Angew. Chem. Int. Ed. 2006 , 45 , 4789; Yi, DK et al. , Chem. Mater. 2006 , 18 , 2459). Recently, many studies have been conducted because it is easy to separate from the reaction mixture using an external magnet without a separate filtration process. However, most methods suffer from low reactivity, decomposition of catalysts, leaching of surface metals, and difficult synthesis methods.

또한, 대한민국 특허공개 제 2003-71233호에는 유기-금속 착화합물이 자성체 나노입자 표면에 고정화된 재사용가능한 유기 금속 촉매가 개시되어 있으나, 촉매의 적용범위가 균일계 촉매로 제한되며, 별도의 기능성 유기 리간드를 합성하여 유기-금속 착화합물을 형성한 후 자성체 나노입자 표면에 고정화해야 되는 어려움이 있다.In addition, Korean Patent Publication No. 2003-71233 discloses a reusable organometallic catalyst in which an organo-metal complex is immobilized on a surface of a magnetic nanoparticle, but the scope of the catalyst is limited to a homogeneous catalyst, and a separate functional organic ligand. It is difficult to synthesize the organic-metal complex to form a complex on the surface of the magnetic nanoparticles.

따라서, 본 발명의 목적은 자석으로 분리 및 재활용이 가능하고 높은 반응성을 제공하는 자성체 나노촉매 및 이의 제조방법을 제공하는 것이다. Accordingly, it is an object of the present invention to provide a magnetic nanocatalyst and a method for preparing the same, which can be separated and recycled into a magnet and provide high reactivity.

상기 목적을 달성하기 위하여, 본 발명은 전이금속 나노입자 및 자성체 나노입자가 담체에 지지된 자성체 나노촉매를 제공한다. In order to achieve the above object, the present invention provides a magnetic nanocatalyst in which the transition metal nanoparticles and the magnetic nanoparticles are supported on a carrier.

또한, 본 발명은 (1) 전이금속 착물, 금속잡게 리간드 및 담체 전구체를 혼합하고 가열하여 전이금속 나노입자를 형성한 후, 생성된 전이금속 나노입자를 자성체 나노입자와 혼합하는 단계; 및 (2) 생성된 혼합물에 물을 가하여 졸-겔 반응 시키는 단계를 포함하는 자성체 나노촉매의 제조방법을 제공한다.In addition, the present invention comprises the steps of (1) mixing the transition metal complex, metal grasp ligand and carrier precursor to form a transition metal nanoparticles, and then mixing the resulting transition metal nanoparticles with magnetic nanoparticles; And (2) provides a method for producing a magnetic nanocatalyst comprising the step of sol-gel reaction by adding water to the resulting mixture.

이하 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따른 자성체 나노촉매는 전이금속 나노입자와 자성체 나노입자가 함께 담체에 지지되어 있는 것을 특징으로 하며, 이러한 특징을 갖는 본 발명의 자성체 나노촉매는 다양한 유기 반응에서 우수한 반응성을 제공하고, 자기적 성질을 가져 반응 후 자석으로 용이하게 분리회수가 가능하고, 회수된 촉매를 수회 내지 수십회 재활용하여 사용하여도 우수한 촉매 활성에 전혀 변화가 없으므로, 에폭시 화합물의 고리열림 반응, 알코올의 산화반응, 수소화 반응, 탄소-탄소 짝지음 반응 또는 알킬화 반응 등 다양한 반응에서 유용하게 이용될 수 있다. The magnetic nanocatalyst according to the present invention is characterized in that the transition metal nanoparticles and the magnetic nanoparticles are supported on a carrier together. The magnetic nanocatalyst of the present invention having such characteristics provides excellent reactivity in various organic reactions, and Due to its specific properties, it is easy to separate and recover with a magnet after the reaction, and there is no change in excellent catalytic activity even when the recovered catalyst is recycled for several to several tens of times. Therefore, ring opening reaction of epoxy compound, oxidation reaction of alcohol, It can be usefully used in various reactions such as hydrogenation reaction, carbon-carbon coupling reaction or alkylation reaction.

본 발명의 자성체 나노촉매는 전이금속 나노입자와 자성체 나노입자가 1: 0.1 내지 100의 비율로 담체에 지지되어 있으며, 전이금속 나노입자는 1 내지 100 nm의 입경범위를 갖고, 자성체 나노입자는 1 내지 500 nm의 입경범위를 갖는다. In the magnetic nanocatalyst of the present invention, the transition metal nanoparticles and the magnetic nanoparticles are supported on the carrier at a ratio of 1: 0.1 to 100, the transition metal nanoparticles have a particle size range of 1 to 100 nm, and the magnetic nanoparticles are 1 And a particle size range of 500 nm.

본 발명의 자성체 나노촉매는 전이금속 착물, 금속잡게 리간드, 및 담체 전구체를 혼합하고 가열하여 금속 나노입자를 형성하고, 생성된 금속 나노입자를 자성체 나노입자와 혼합한 다음, 생성된 혼합물에 물을 가하여 졸-겔 반응시킴으로써 얻을 수 있다.The magnetic nanocatalyst of the present invention forms a metal nanoparticle by mixing and heating a transition metal complex, a metal grasp ligand, and a carrier precursor, mixes the resulting metal nanoparticle with the magnetic nanoparticle, and then adds water to the resulting mixture. It can be obtained by addition and sol-gel reaction.

상기 전이금속 착물에 포함되는 전이금속으로는 바람직하게는 Pd, Pt, Ru, Os, Rh, Ir, Re, Mo, W, Cu, Ag, Au, Zn, Hf, Ta, Nb 및 V 등이 있으며, 더욱 바람직하게는 팔라듐(Pd)이다. 두 종류 이상의 전이금속 착물의 사용도 가능하며, 착물에 함유된 금속의 종류가 다를 수도 있다.Transition metals included in the transition metal complex are preferably Pd, Pt, Ru, Os, Rh, Ir, Re, Mo, W, Cu, Ag, Au, Zn, Hf, Ta, Nb and V, etc. More preferably palladium (Pd). Two or more kinds of transition metal complexes may be used, and the metals contained in the complex may be different.

착물 형성에 적합한 배위리간드로는 음이온성 리간드(formal anions), 중성성 리간드(formal neutrals)가 포함된다. 음이온성 리간드로는 하이드라이드(H-), 클로라이드(Cl-), 시아나이드(CN-) 또는 아세틸(CH3CO-) 등이 포함되며, 중성성 리간드로는 트리페닐포스핀(P(C6H5)3), 디벤질리덴아세톤(C6H5CH=CHCOCH=CHC6H5), 카르보닐(CO) 또는 디엔(CH2CHCHCH2) 등이 포함된다.Coordination ligands suitable for complex formation include anionic ligands (formal anions) and neutral neutrals (formal neutrals). The anionic ligands include hydride (H -), chloride (Cl -), cyanide (CN -) or an acetyl (CH 3 CO -) and the like are included, with a neutral property ligand is triphenylphosphine (P (C 6 H 5 ) 3 ), dibenzylideneacetone (C 6 H 5 CH = CHCOCH = CHC 6 H 5 ), carbonyl (CO) or diene (CH 2 CHCHCH 2 ), and the like.

특히, 팔라듐 착물의 예로는 팔라듐(Ⅱ) 아세테이트(Pd(OAc)2), 팔라듐(Ⅱ) 클로라이드(Pd(Ⅱ)Cl2), 팔라듐(Ⅱ) 나이트레이트(Pd(NO3)2), 테트라키스트리페닐포스핀팔라듐(0) (Pd[P(C6H5)3]4), 트리스디벨질리덴아세톤다이팔라듐(0) 클로로포름 어덕트((C6H5CH=CHCOCH=CHC6H5)3 Pd2CHCl3 또는 이들의 혼합물 등이 있으며, 바람직하게는 팔라듐(Ⅱ) 아세테이트(Pd(OAc)2)이다.In particular, examples of palladium complexes include palladium (II) acetate (Pd (OAc) 2 ), palladium (II) chloride (Pd (II) Cl 2 ), palladium (II) nitrate (Pd (NO 3 ) 2 ), tetra Keystriphenylphosphinepalladium (0) (Pd [P (C 6 H 5 ) 3 ] 4 ), trisdiglylideneacetonedipalladium (0) chloroform adduct ((C 6 H 5 CH = CHCOCH = CHC 6 H 5 ) 3 Pd 2 CHCl 3 or mixtures thereof, and preferably palladium (II) acetate (Pd (OAc) 2 ).

또한, 본 발명에서 금속잡게 리간드는 생성되는 금속 나노입자를 안정화시켜 일정한 크기의 나노입자가 형성되게 하는 물질을 말하며, 이러한 물질로는 통상적으로 사용되는 유기산(CnCOOH, Cn : 탄화수소, 7≤n≤30), 유기아민(CnNH2, Cn : 탄화수소, 7≤n≤30), 알칸 티올(CnSH, Cn : 탄화수소, 7≤n≤30), 포스핀(CnP, Cn : 탄화수소, 7≤n≤30), 또는 고분자(10,000≤Mn≤100,000) 등이 있으며, 올레산, 올레일 아민, 도데칸 티올, 트리페닐 포스핀, 폴리비닐 피롤리돈, 폴리에틸렌 글리콜 및 이들의 혼합물 등을 사용할 수 있다.In addition, the metal grab ligand in the present invention refers to a material that stabilizes the resulting metal nanoparticles to form a nanoparticle of a certain size, such materials are commonly used organic acids (C n COOH, C n : hydrocarbon, 7 ≦ n ≦ 30), organic amine (C n NH 2 , C n : hydrocarbon, 7 ≦ n ≦ 30), alkane thiol (C n SH, C n : hydrocarbon, 7 ≦ n ≦ 30), phosphine (C n P, C n : hydrocarbon, 7 ≦ n ≦ 30), or polymer (10,000 ≦ M n ≦ 100,000) and the like, oleic acid, oleyl amine, dodecane thiol, triphenyl phosphine, polyvinyl pyrrolidone, polyethylene Glycols and mixtures thereof, and the like.

상기 금속잡게 리간드는 전이금속 착물 1 몰을 기준으로 10 내지 1000 몰, 바람직하게는 20 내지 300 몰 범위의 양으로 사용할 수 있다.The metal ligne ligand may be used in an amount ranging from 10 to 1000 moles, preferably 20 to 300 moles, based on 1 mole of the transition metal complex.

본 발명에서는 전이금속 착물을 환원시키기 위한 환원제로서, 수소, 금속 하이드라이드, 알코올류이 사용가능하며, 바람직한 예로는 에탄올, n-부탄올, sec-부탄올 또는 i-부탄올 등이 있다.In the present invention, as a reducing agent for reducing the transition metal complex, hydrogen, metal hydrides, alcohols can be used, and preferred examples thereof include ethanol, n -butanol, sec -butanol or i -butanol.

한편, 상기 담체 전구체로는 통상 담체로 사용되는 금속 산화물의 알콕시드계 전구체일 수 있으며, 실리카, 티타니아, 알루미나, 지르코니아 또는 마그네시아의 전구체로서 각각 테트라알킬오르소실리케이트(Si(OR)4), 티타늄테트라알콕사이드(Ti(OR)4), 알루미늄트리알콕사이드(Al(OR)3), 지르코늄알콕사이드(Zr(OR)4), 마그네슘알콕사이드(Mg(OR)2) 또는 이들의 혼합물 등이 사용될 수 있으며, 상기 식에서, R은 메틸, 에틸, n-프로필, i-프로필, n-부틸, i-부틸 또는 s-부틸 등 탄소수 1 내지 4의 알킬기이다.Meanwhile, the carrier precursor may be an alkoxide precursor of a metal oxide that is commonly used as a carrier, and may be tetraalkyl orthosilicate (Si (OR) 4 ) or titanium tetra as a precursor of silica, titania, alumina, zirconia or magnesia, respectively. Alkoxide (Ti (OR) 4 ), Aluminum trialkoxide (Al (OR) 3 ), Zirconium alkoxide (Zr (OR) 4 ), Magnesium alkoxide (Mg (OR) 2 ) or a mixture thereof may be used, and the like. Wherein R is an alkyl group having 1 to 4 carbon atoms such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl or s-butyl.

상기 담체 전구체는 전이금속 착물 1 몰을 기준으로 10 내지 1000 몰, 바람직하게는 50 내지 300 몰 범위의 양으로 사용할 수 있다.The carrier precursor may be used in an amount ranging from 10 to 1000 moles, preferably 50 to 300 moles, based on 1 mole of the transition metal complex.

본 발명의 제조방법에서 금속 나노입자의 제조는 용매 중에서 수행하는 것이 바람직하며, 용매로는 전이금속착물을 녹일 수 있는 유기화합물로서 테트라하이드로퓨란(THF), 디클로로메탄, 클로로포름, 톨루엔, 에틸아세테이트 또는 이들의 혼 합물을 들 수 있다. In the preparation method of the present invention, the preparation of the metal nanoparticles is preferably carried out in a solvent. As a solvent, an organic compound capable of dissolving a transition metal complex is tetrahydrofuran (THF), dichloromethane, chloroform, toluene, ethyl acetate or And mixtures thereof.

본 발명에 있어서, 금속 나노입자를 제조하기 위한 상기 반응은 20 내지 500 ℃, 바람직하게는 20 내지 250 ℃의 온도범위에서 수행되는 것이 바람직하며, 반응 완결에 소요되는 시간은 반응온도, 사용되는 반응물들의 몰비에 따라 변할 수 있으나, 바람직하게는 약 5분 내지 20시간이다.In the present invention, the reaction for producing the metal nanoparticles is preferably carried out at a temperature range of 20 to 500 ℃, preferably 20 to 250 ℃, the time required to complete the reaction is the reaction temperature, the reactants used Depending on the molar ratio of these, but is preferably about 5 minutes to 20 hours.

이어서, 생성된 금속 나노입자에 자성체 나노입자를 혼합한다. 본 발명에 사용되는 자성체 나노입자는 통상의 방법, 예를 들어 문헌 [Deng, H. 등, Angew. Chem. Int. Ed. 2005, 44, 2782]에 기재된 방법에 의해 제조하여 사용할 수 있다. 상기 자성체 나노입자는 금속 나노입자 1 몰을 기준으로 0.1 내지 100 몰, 바람직하게는 0.5 내지 10 몰 범위의 양으로 사용하는 것이 바람직하다.Subsequently, magnetic nanoparticles are mixed with the produced metal nanoparticles. Magnetic nanoparticles used in the present invention can be prepared by conventional methods, for example, in Deng, H. et al. , Angew. Chem. Int. Ed. 2005 , 44 , 2782] can be produced and used by the method described. The magnetic nanoparticles are preferably used in an amount in the range of 0.1 to 100 moles, preferably 0.5 to 10 moles, based on 1 mole of the metal nanoparticles.

본 발명에서, 자성체 나노입자는 금속산화물 형태로서, 상기에 포함된 금속은 Fe, Co, Ni, Mn, Pt, Cu 또는 Zn 등이 있으며, 바람직하게는 Fe이다. 두 종류 이상의 자성체 나노입자의 사용도 가능하며, 자성체 나노입자에 함유된 금속의 종류가 다를 수도 있다. In the present invention, the magnetic nanoparticles are in the form of a metal oxide, and the metals included therein include Fe, Co, Ni, Mn, Pt, Cu, or Zn, and preferably Fe. It is also possible to use two or more kinds of magnetic nanoparticles, and the type of metal contained in the magnetic nanoparticles may be different.

상기 자성체 나노입자는 에탄올, 아세톤, 테트라히드로퓨란 또는 에틸아세테이트 등에 분산시켜 금속 나노입자에 혼합하여, 20 내지 500 ℃의 온도범위에서 약 5분 내지 20시간 동안 반응시키는 것이 바람직하다. The magnetic nanoparticles are preferably dispersed in ethanol, acetone, tetrahydrofuran or ethyl acetate, mixed with the metal nanoparticles, and reacted for about 5 minutes to 20 hours in a temperature range of 20 to 500 ° C.

그 다음, 상기 금속 나노입자와 자성체 나노입자의 혼합물에 물을 첨가하여 졸-겔화 반응을 수행하게 되는데, 이때 사용되는 물의 양은 사용된 담체 전구체 1몰을 기준으로 1 내지 100 몰, 바람직하게는 2 내지 10 몰 범위이다.Then, the sol-gelation reaction is performed by adding water to the mixture of the metal nanoparticles and the magnetic nanoparticles, wherein the amount of water used is 1 to 100 moles, preferably 2, based on 1 mole of the carrier precursor used. To 10 moles.

상기 졸-겔화 반응에서 반응 온도는 20 내지 500 ℃, 특히 20 내지 160 ℃가 바람직하며, 반응 완결에 소요되는 시간은 반응온도, 사용되는 반응물들의 몰비에 따라 변할 수 있으나, 10분 내지 20시간이다.In the sol-gelation reaction, the reaction temperature is preferably 20 to 500 ° C., particularly 20 to 160 ° C., and the time required for completion of the reaction may vary depending on the reaction temperature and the molar ratio of the reactants used, but is 10 minutes to 20 hours. .

상기 졸-겔화 반응생성물을 여과하여, 적절한 용매를 사용하여 세척하고 건조함으로써 본 발명에 따른 자석으로 분리 및 재사용이 가능한 자성체 나노촉매를 간단히 수득할 수 있다.The sol-gelation reaction product can be filtered, washed with an appropriate solvent and dried to obtain a magnetic nanocatalyst that can be separated and reused with a magnet according to the present invention.

상기 용매로는 아세톤, 테트라히드로퓨란, 에틸아세테이트, 디에틸에테르, 1,4-디옥산, 벤젠, 톨루엔, N,N-디메틸포름아미드, 디메틸설폭시드, 메탄올, 에탄올 또는 클로로포름 등을 사용할 수 있으며, 바람직한 용매로는 아세톤 또는 에틸아세테이트이다.Acetone, tetrahydrofuran, ethyl acetate, diethyl ether, 1,4-dioxane, benzene, toluene, N , N -dimethylformamide, dimethyl sulfoxide, methanol, ethanol or chloroform may be used as the solvent. Preferred solvents are acetone or ethyl acetate.

본 발명에 따르는 자성체 나노촉매는 비표면적이 약 50 내지 1000 m2g-1 이며, 상온에서 초상자성을 나타내는 고체분말이며, 다양한 유기 반응에서 우수한 반응성을 제공하고, 자기적 성질을 가져 도 3(b)에 나타낸 바와 같이, 반응 후 외부 자석을 이용하여 용이하게 분리회수가 가능하고, 회수된 촉매를 수회 내지 수십회 재활용하여 사용하여도 우수한 촉매 활성에 전혀 변화가 없으므로, 에폭시 화합물의 고리열림 반응, 알코올의 산화반응, 수소화 반응, 탄소-탄소 짝지음 반응 또는 알킬화 반응 등 다양한 반응에서 촉매로 유용하게 사용될 수 있다.The magnetic nanocatalyst according to the present invention has a specific surface area of about 50 to 1000 m 2 g −1 , is a solid powder exhibiting superparamagnetism at room temperature, provides excellent reactivity in various organic reactions, and has magnetic properties. As shown in b), after the reaction, the separation and recovery can be easily performed by using an external magnet, and even if the recovered catalyst is recycled for several to several tens of times, there is no change in the excellent catalytic activity. In addition, it can be usefully used as a catalyst in various reactions such as oxidation of alcohol, hydrogenation, carbon-carbon coupling or alkylation.

이하 본 발명을 하기 실시예에 의거하여 좀 더 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 한정하지는 않는다.Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are not intended to limit the invention only.

<촉매의 제조><Production of Catalyst>

실시예 1 : 수산화알루미늄에 고정화된 팔라듐-산화철 나노촉매 제조Example 1: Preparation of palladium-iron oxide nanocatalyst immobilized on aluminum hydroxide

(1-1) : 산화철 나노입자 제조(1-1): Preparation of Iron Oxide Nanoparticles

FeCl3·6H2O(540 mg, 2.00 mmol)와 에틸렌 글리콜 (16.0 g)을 냉각기가 장착된 100 mL 반응 용기에 넣고 상온에서 10분 동안 교반하였다. 이어서, 반응 용기에 소듐아세테이트(1.60 g)와 폴리에틸렌 글리콜(400 mg, Mn = 400)을 첨가하여 200 ℃에서 6시간 동안 가열하여 산화철 나노입자를 형성하였다. 반응온도를 상온으로 낮추고 생성된 고체를 원심분리한 다음, 에탄올(10 mL)로 3회 씻어주었다. 수득된 고체를 감압하에서 건조하여 평균 100 nm 크기의 산화철 나노입자 182 mg을 수득하였다. 상기 산화철 나노입자의 제조방법은 보고된 자료(문헌 [Deng, H. 등, Angew. Chem. Int. Ed. 2005, 44, 2782])를 참조하였다.FeCl 3 · 6H 2 O (540 mg, 2.00 mmol) and ethylene glycol (16.0 g) were placed in a 100 mL reaction vessel equipped with a cooler and stirred at room temperature for 10 minutes. Subsequently, sodium acetate (1.60 g) and polyethylene glycol (400 mg, Mn = 400) were added to the reaction vessel and heated at 200 ° C. for 6 hours to form iron oxide nanoparticles. The reaction temperature was lowered to room temperature and the resulting solid was centrifuged and washed three times with ethanol (10 mL). The solid obtained was dried under reduced pressure to yield 182 mg of iron oxide nanoparticles having an average size of 100 nm. The manufacturing method of the iron oxide nanoparticles was referred to the reported data (Deng, H. et al. , Angew. Chem. Int. Ed. 2005 , 44 , 2782).

(1-2) : 수산화 알루미늄에 고정화된 팔라듐-산화철 나노촉매의 제조(1-2): Preparation of Palladium-Iron Oxide Nanocatalyst Immobilized on Aluminum Hydroxide

팔라듐(Ⅱ) 아세테이트 (115 mg, 0.512 mmol)와 테트라히드로퓨란 (1.00 mL)을 50 mL 반응 용기에 넣고, 상온 및 공기 중에서 10분 동안 교반하였다. 이어서, 상기 반응 용기에 알루미늄 트리-sec-부톡사이드 (4.00 g, 16.2 mmol)와 2-부탄올 (1.00 mL)을 첨가하여 50 ℃에서 20분 동안 가열하여 팔라듐 나노입자를 형성시켰다. 이 반응기에 상기 (1-1)에서 얻은 산화철 나노입자 (100 mg)를 에탄올 (2.00 mL)에 분산시켜 천천히 첨가하고 동일 온도에서 10분 동안 교반하였다. 반응 용기에 물 (3.00 mL)을 첨가한 다음 연속하여 동일 온도에서 30분 동안 가열하였다. 반응 온도를 상온으로 낮추고 생성된 고체를 아세톤 (10 mL)으로 3회 씻어준 다음, 수득된 고체를 120 ℃에서 5시간 건조하여 수산화 알루미늄에 고정화된 팔라듐-산화철 나노촉매를 1.37 g (팔라듐 함량 : 3.66 %, 철 함량 : 2.74 %, 비표면적 : 579 m2g-1)을 수득하였다. Palladium (II) acetate (115 mg, 0.512 mmol) and tetrahydrofuran (1.00 mL) were placed in a 50 mL reaction vessel and stirred for 10 minutes at room temperature and in air. Aluminum tri- sec -butoxide (4.00 g, 16.2 mmol) and 2-butanol (1.00 mL) were then added to the reaction vessel and heated at 50 ° C. for 20 minutes to form palladium nanoparticles. In the reactor, iron oxide nanoparticles (100 mg) obtained in (1-1) were dispersed in ethanol (2.00 mL) and added slowly and stirred at the same temperature for 10 minutes. Water (3.00 mL) was added to the reaction vessel and subsequently heated at the same temperature for 30 minutes. The reaction temperature was lowered to room temperature and the resulting solid was washed three times with acetone (10 mL), and then the obtained solid was dried at 120 ° C. for 5 hours to give 1.37 g of palladium-iron oxide nanocatalyst immobilized on aluminum hydroxide (Palladium content: 3.66%, iron content: 2.74%, specific surface area: 579 m 2 g -1 ).

시험예 1 : 수산화 알루미눔에 고정화된 팔라듐-산화철 나노촉매의 물리적 특성 시험 Test Example 1: Physical property test of palladium-iron oxide nanocatalyst immobilized on alumina hydroxide

상기 실시예 1에서 제조된 수산화 알루미늄에 고정화된 팔라듐-산화철 나노촉매의 투과 전자 현미경(TEM) 사진을 도 1에 나타내었다. 도 1의 (a)는 100 nm 크기의 산화철 나노입자와 3 nm 크기의 팔라듐 나노입자가 수산화 알루미늄에 지지된 형태를 나타낸다. 도 1의 (b) 및 (c)는 산화철 나노입자와 팔라듐 나노입자를 각각 확대한 것이다.A transmission electron microscope (TEM) photograph of the palladium-iron oxide nanocatalyst immobilized on aluminum hydroxide prepared in Example 1 is shown in FIG. 1. 1 (a) shows a form in which iron oxide nanoparticles having a size of 100 nm and palladium nanoparticles having a size of 3 nm are supported on aluminum hydroxide. (B) and (c) of FIG. 1 are enlarged iron oxide nanoparticles and palladium nanoparticles, respectively.

또한, 상기에서 얻어진 수산화 알루미늄에 고정화된 팔라듐-산화철 나노촉매의 자기적 성질을 확인하기 위하여, 초전도 양자 간섭 장치(SQUID; superconducting quantum interference device)로 측정하였다. 도 2에서 알 수 있 는 바와 같이, 상온에서 팔라듐-산화철 나노촉매가 초상자성을 나타냄을 알 수 있다.In addition, in order to confirm the magnetic properties of the palladium-iron oxide nanocatalyst immobilized on the aluminum hydroxide obtained above, it was measured by a superconducting quantum interference device (SQUID). As can be seen in Figure 2, it can be seen that the palladium-iron oxide nanocatalyst exhibits superparamagnetism at room temperature.

<수산화 알루미늄에 고정화된 팔라듐-산화철 나노촉매를 이용한 다양한 유기 반응><Various organic reactions using palladium-iron oxide nanocatalyst immobilized on aluminum hydroxide>

실시예 2Example 2

Figure 112007044135312-pat00001
Figure 112007044135312-pat00001

에피클로로히드린 (92 mg, 1.0 mmol)과 실시예 1에서 제조한 나노촉매 (58 mg, 2.0 mol% 팔라듐)를 반응 용기에 넣은 후, 상기 반응 용기에 에틸아세테이트 (2.0 mL)를 첨가하고 도 3(a)에 나타낸 바와 같이, 상온 및 1기압의 수소 하에서 4시간 동안 혼합물을 교반하였다. 반응이 종결되면, 도 3(b)에 나타낸 바와 같이 외부 자석을 이용하여 촉매를 손쉽게 분리하였다. 그리고 나서, 용매를 제거한 다음 얻어진 잔사를 실리카겔 컬럼 (용리제 : 헥산/에틸아세테이트 (10/1))에 통과시켜 목적하는 1-클로로-2-프로판올 94 mg (>99 % 수율)을 얻었다.Epichlorohydrin (92 mg, 1.0 mmol) and the nanocatalyst (58 mg, 2.0 mol% palladium) prepared in Example 1 were placed in a reaction vessel, and ethyl acetate (2.0 mL) was added to the reaction vessel. As shown in 3 (a), the mixture was stirred for 4 hours under normal temperature and 1 atmosphere of hydrogen. Upon completion of the reaction, the catalyst was easily separated using an external magnet as shown in FIG. 3 (b). Then, after removing the solvent, the obtained residue was passed through a silica gel column (eluent: hexane / ethyl acetate (10/1)) to obtain 94 mg (> 99% yield) of the desired 1-chloro-2-propanol.

상기 반응에서 촉매를 외부 자석을 이용하여 분리한 후 25회 재사용하여도 반응성에는 차이가 없었다.In the reaction, even if the catalyst was separated using an external magnet and reused 25 times, there was no difference in reactivity.

실시예 3 내지 13Examples 3 to 13

실시예 2와 유사하게 하기 표 1에 기재된 바에 따라 다양한 에폭시 화합물을 수소첨가분해 반응(hydrogenolysis)하였으며, 각 반응에서의 수율을 하기 표 1에 나타내었다.Similar to Example 2, various epoxy compounds were hydrogenolyzed as described in Table 1 below, and the yields in each reaction are shown in Table 1 below.

Figure 112009022786974-pat00012
Figure 112009022786974-pat00012

실시예 14Example 14

Figure 112007044135312-pat00003
Figure 112007044135312-pat00003

트랜스-스틸벤 (180 mg, 1.00 mmol)과 실시예 1에서 제조한 팔라듐-산화철 나노촉매 (58 mg, 2.0 mol% 팔라듐)를 반응용기에 넣은 후, 에틸아세테이트 (2.0 mL)를 첨가하고 상온, 1기압의 수소 하에서 1시간 동안 혼합물을 교반하였다. 외부 자석을 이용하여 나노촉매를 분리한 후, 용매를 제거한 다음 얻어진 잔사를 실리카겔 컬럼 (용리제 : 헥산/에틸아세테이트 (10/1))에 통과시켜 목적하는 1,2-디페닐에탄 182 mg (100 % 수율)을 얻었다.Trans-Stilbene (180 mg, 1.00 mmol) and the palladium-iron oxide nanocatalyst prepared in Example 1 (58 mg, 2.0 mol% palladium) were added to a reaction vessel, ethyl acetate (2.0 mL) was added thereto, and room temperature, The mixture was stirred for 1 hour under 1 atmosphere of hydrogen. After separating the nanocatalyst using an external magnet, the solvent was removed, and then the obtained residue was passed through a silica gel column (eluent: hexane / ethyl acetate (10/1)) to give 182 mg of the desired 1,2-diphenylethane ( 100% yield).

실시예 15Example 15

Figure 112009022786974-pat00013
Figure 112009022786974-pat00013

아세토페논 (120 mg, 1.00 mmol)과 실시예 1에서 제조한 나노촉매 (145 mg, 5.0 mol% 팔라듐)를 반응용기에 넣은 후, 에틸아세테이트 (2.0 mL)를 첨가하고 상온, 1기압의 수소 하에서 10시간 동안 혼합물을 교반하였다. 외부 자석을 이용하여 나노촉매를 분리한 후, 용매를 제거한 다음 얻어진 잔사를 실리카겔 컬럼 (용리제 : 헥산/에틸아세테이트 (10/1))에 통과시켜 목적하는 페닐에틸알코올 114 mg (93 % 수율)을 얻었다.Acetophenone (120 mg, 1.00 mmol) and the nanocatalyst (145 mg, 5.0 mol% palladium) prepared in Example 1 were placed in a reaction vessel, followed by addition of ethyl acetate (2.0 mL) and hydrogen at room temperature and 1 atmosphere of hydrogen. The mixture was stirred for 10 hours. After separating the nanocatalyst by using an external magnet, the solvent was removed, and then the obtained residue was passed through a silica gel column (eluent: hexane / ethyl acetate (10/1)) to give 114 mg (93% yield) of the desired phenylethyl alcohol. Got.

실시예 16Example 16

Figure 112007044135312-pat00005
Figure 112007044135312-pat00005

페닐에틸알코올 (122 mg, 1.00 mmol)과 실시예 1에서 제조한 나노촉매 (145 mg, 5.0 mol% 팔라듐)를 반응용기에 넣은 후, 톨루엔 (2.0 mL)를 첨가하고 상온, 1기압의 산소 하에서 12시간 동안 혼합물을 교반하였다. 외부 자석을 이용하여 나노촉매를 분리한 후, 용매를 제거한 다음 얻어진 잔사를 실리카겔 컬럼 (용리제 : 헥산/에틸아세테이트 (10/1))에 통과시켜 목적하는 아세토페논 120 mg (>99 % 수율)을 얻었다.Phenylethyl alcohol (122 mg, 1.00 mmol) and the nanocatalyst (145 mg, 5.0 mol% palladium) prepared in Example 1 were added to the reaction vessel, toluene (2.0 mL) was added thereto, and then at room temperature and 1 atmosphere of oxygen. The mixture was stirred for 12 hours. After separating the nanocatalyst by using an external magnet, the solvent was removed, and then the obtained residue was passed through a silica gel column (eluent: hexane / ethyl acetate (10/1)) to obtain 120 mg (> 99% yield) of the desired acetophenone. Got.

실시예 17Example 17

Figure 112007044135312-pat00006
Figure 112007044135312-pat00006

벤질알코올 (108 mg, 1.00 mmol)과 실시예 1에서 제조한 나노촉매 (58 mg, 2.0 mol% 팔라듐)를 반응용기에 넣은 후, 헵탄 (5.0 mL)을 첨가하고 90 ℃, 1기압의 산소 하에서 20시간 동안 혼합물을 교반하였다. 외부 자석을 이용하여 나노촉매를 분리한 후, 용매를 제거한 다음 얻어진 잔사를 실리카겔 컬럼 (용리제 : 헥산/에틸아세테이트 (10/1))에 통과시켜 목적하는 N-벤질리딘-2-페네틸아민 188 mg (90 % 수율)을 얻었다.Benzyl alcohol (108 mg, 1.00 mmol) and the nanocatalyst (58 mg, 2.0 mol% palladium) prepared in Example 1 were added to the reaction vessel, and then heptane (5.0 mL) was added thereto at 90 ° C. under 1 atmosphere of oxygen. The mixture was stirred for 20 hours. After separating the nanocatalyst using an external magnet, the solvent was removed, and then the obtained residue was passed through a silica gel column (eluent: hexane / ethyl acetate (10/1)) to obtain the desired N -benzylidine-2-phenethylamine. 188 mg (90% yield) was obtained.

실시예 18Example 18

Figure 112007044135312-pat00007
Figure 112007044135312-pat00007

아세토페논 (120 mg, 1.00 mmol)과 실시예 1에서 제조한 나노촉매 (58 mg, 2.0 mol% 팔라듐)를 반응용기에 넣은 후, 포타슘포스페이트 (636 mg)와 톨루엔 (5.0 mL)을 첨가하고 110 ℃, 아르곤 하에서 5시간 동안 혼합물을 교반하였다. 외부 자석을 이용하여 나노촉매를 분리한 후, 용매를 제거한 다음 얻어진 잔사를 실리카겔 컬럼 (용리제 : 헥산/에틸아세테이트 (10/1))에 통과시켜 목적하는 1,3-디페닐프로판-1-온 197 mg (94 % 수율)을 얻었다.Acetophenone (120 mg, 1.00 mmol) and the nanocatalyst (58 mg, 2.0 mol% palladium) prepared in Example 1 were added to the reaction vessel, followed by addition of potassium phosphate (636 mg) and toluene (5.0 mL). The mixture was stirred for 5 h under argon. After separating the nanocatalyst using an external magnet, the solvent was removed, and then the obtained residue was passed through a silica gel column (eluent: hexane / ethyl acetate (10/1)) to obtain the desired 1,3-diphenylpropane-1- 197 mg (94% yield) was obtained.

실시예 19Example 19

Figure 112007044135312-pat00008
Figure 112007044135312-pat00008

2-니트로벤질알코올 (154 mg, 1.00 mmol)과 실시예 1에서 제조한 나노촉매 (58 mg, 2.0 mol% 팔라듐)를 반응용기에 넣은 후, 톨루엔 (5.00 mL)을 첨가하고 상온, 1기압의 수소하에서 4시간 동안 교반하였다. 반응 혼합물에 아세토페논 (144 mg, 1.20 mmol)과 포타슘포스페이트 (636 mg)를 첨가하고 110 ℃, 아르곤 하에서 10시간 동안 혼합물을 교반하였다. 외부 자석을 이용하여 나노촉매를 분리한 후, 용매를 제거한 다음 얻어진 잔사를 실리카겔 컬럼 (용리제 : 헥산/에틸아세테이트 (10/1))에 통과시켜 목적하는 2-페닐퀴놀린 176 mg (86 % 수율)을 얻었다.2-nitrobenzyl alcohol (154 mg, 1.00 mmol) and the nanocatalyst prepared in Example 1 (58 mg, 2.0 mol% palladium) were added to a reaction vessel, and then toluene (5.00 mL) was added thereto. Stir under hydrogen for 4 hours. Acetophenone (144 mg, 1.20 mmol) and potassium phosphate (636 mg) were added to the reaction mixture, and the mixture was stirred at 110 ° C. under argon for 10 hours. After separating the nanocatalyst by using an external magnet, the solvent was removed, and then the obtained residue was passed through a silica gel column (eluent: hexane / ethyl acetate (10/1)) to obtain 176 mg (86% yield) of the desired 2-phenylquinoline. )

상기한 바와 같이, 본 발명의 자성체 나노촉매는 나노크기의 전이금속 입자와 자성체 나노입자가 담체에 결합되어 있어, 유기반응에 촉매로 사용할 경우 우수한 반응성을 제공하며, 반응 후 자석으로 분리하여 용이하게 회수할 수 있고, 회수된 촉매는 활성 변화 없이 재활용이 가능하므로, 에폭시 화합물의 고리열림 반응, 알코올의 산화반응, 수소화 반응, 탄소-탄소 짝지음 반응, 알킬화 반응 등 다양한 반응에서 촉매로 유용하게 사용될 수 있다.As described above, the magnetic nanocatalyst of the present invention is a nano-sized transition metal particles and magnetic nanoparticles are bonded to the carrier, providing excellent reactivity when used as a catalyst in the organic reaction, and easily separated by a magnet after the reaction It can be recovered, and the recovered catalyst can be recycled without changing its activity, so it can be usefully used as a catalyst in various reactions such as ring opening reaction of epoxy compound, oxidation reaction of alcohol, hydrogenation reaction, carbon-carbon coupling reaction, alkylation reaction, etc. Can be.

Claims (15)

전이금속 나노입자 및 Fe의 산화물이 담체에 지지된 자성체 나노촉매.A magnetic nanocatalyst in which a transition metal nanoparticle and an oxide of Fe are supported on a carrier. 제1항에 있어서,The method of claim 1, 상기 전이금속 나노입자가 1 내지 100 nm의 입경 범위를 갖고, Fe의 산화물이 1 내지 500 nm의 입경 범위를 갖는 것을 특징으로 하는, 자성체 나노촉매.The transition metal nanoparticles have a particle size range of 1 to 100 nm, and the oxide of Fe has a particle size range of 1 to 500 nm, magnetic nanocatalyst. 제1항에 있어서,The method of claim 1, 상기 전이금속 나노입자와 Fe의 산화물이 1: 0.1 내지 100의 비율로 지지되어 있는 것을 특징으로 하는, 자성체 나노촉매.Magnetic oxide catalyst, characterized in that the transition metal nanoparticles and the oxide of Fe is supported in a ratio of 1: 0.1 to 100. 제1항에 있어서,The method of claim 1, 상기 전이금속이 Pd, Pt, Ru, Os, Rh, Ir, Re, Mo, W, Cu, Ag, Au, Zn, Hf, Ta, Nb, V 및 이들의 조합 중에서 선택된 것을 특징으로 하는, 자성체 나노촉매.Magnetic nanoparticles, characterized in that the transition metal is selected from Pd, Pt, Ru, Os, Rh, Ir, Re, Mo, W, Cu, Ag, Au, Zn, Hf, Ta, Nb, V and combinations thereof catalyst. 제4항에 있어서,The method of claim 4, wherein 상기 전이금속이 Pd인 것을 특징으로 하는, 자성체 나노촉매.Magnetic transition nanocatalyst, characterized in that the transition metal is Pd. 삭제delete 삭제delete 제1항에 있어서,The method of claim 1, 상기 담체가 실리카, 티타니아, 알루미나, 지르코니아, 마그네시아 및 이들의 조합 중에서 선택된 것을 특징으로 하는, 자성체 나노촉매.Magnetic carrier nanocatalyst, characterized in that the carrier is selected from silica, titania, alumina, zirconia, magnesia and combinations thereof. (1) 전이금속 착물, 금속잡게 리간드 및 담체 전구체를 혼합하고 가열하여 전이금속 나노입자를 형성한 후, 생성된 전이금속 나노입자를 Fe의 산화물과 혼합하는 단계; 및 (1) mixing and heating a transition metal complex, a metal grasp ligand and a carrier precursor to form a transition metal nanoparticle, and then mixing the resulting transition metal nanoparticle with an oxide of Fe; And (2) 생성된 혼합물에 물을 가하여 졸-겔 반응시키는 단계를 포함하는, 제1항의 자성체 나노촉매의 제조방법.(2) A method for producing the magnetic nanocatalyst of claim 1, which comprises sol-gel reaction by adding water to the resulting mixture. 제9항에 있어서,The method of claim 9, 상기 전이금속 착물이 하이드라이드(H-), 클로라이드(Cl-), 시아나이드(CN-), 아세틸(CH3CO-), 트리페닐포스핀(P(C6H5)3), 디벤질리덴아세톤(C6H5CH=CHCOCH=CHC6H5), 카르보닐(CO) 및 디엔(CH2CHCHCH2) 중에서 선택된 리간드를 포함하는 것을 특징으로 하는, 자성체 나노촉매의 제조방법.The transition metal complex is hydride (H -), chloride (Cl -), cyanide (CN -), acetyl (CH 3 CO -), triphenylphosphine (P (C 6 H 5) 3), dibenzyl Lidenacetone (C 6 H 5 CH = CHCOCH = CHC 6 H 5 ), carbonyl (CO) and diene (CH 2 CHCHCH 2 ), characterized in that it comprises a ligand selected from, magnetic nanocatalyst manufacturing method. 제9항에 있어서,The method of claim 9, 상기 금속잡게 리간드가 유기산(CnCOOH, Cn : 탄화수소, 7≤n≤30), 유기아민(CnNH2, Cn : 탄화수소, 7≤n≤30), 알칸 티올(CnSH, Cn : 탄화수소, 7≤n≤30), 포스핀(CnP, Cn : 탄화수소, 7≤n≤30) 및 폴리에틸렌 글리콜 중에서 선택된 것임을 특징으로 하는, 자성체 나노촉매의 제조방법.The metal-catalyzed ligand is an organic acid (C n COOH, C n : hydrocarbon, 7 ≦ n ≦ 30), an organic amine (C n NH 2 , C n : hydrocarbon, 7 ≦ n ≦ 30), alkane thiol (C n SH, C n : hydrocarbon, 7 ≦ n ≦ 30), phosphine (C n P, C n : hydrocarbon, 7 ≦ n ≦ 30) and polyethylene glycol, characterized in that the method for producing a magnetic nanocatalyst. 제9항에 있어서,The method of claim 9, 상기 담체 전구체가 테트라알킬오르소실리케이트(Si(OR)4), 티타늄테트라알콕사이드(Ti(OR)4), 알루미늄트리알콕사이드(Al(OR)3), 지르코늄알콕사이드(Zr(OR)4), 마그네슘알콕사이드(Mg(OR)2)(상기 식에서, R은 메틸, 에틸, n-프로필, i-프로필, n-부틸, i-부틸 또는 s-부틸기임) 및 이들의 혼합물 중에서 선택된 것임을 특징으로 하는, 자성체 나노촉매의 제조방법. The carrier precursor is tetraalkyl orthosilicate (Si (OR) 4 ), titanium tetraalkoxide (Ti (OR) 4 ), aluminum trialkoxide (Al (OR) 3 ), zirconium alkoxide (Zr (OR) 4 ), magnesium Alkoxide (Mg (OR) 2 ), wherein R is a methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl or s-butyl group, and mixtures thereof Method for producing a magnetic nanocatalyst. 제9항에 있어서,The method of claim 9, 상기 금속잡게 리간드 및 상기 담체 전구체가 각각 전이금속 착물 1 몰을 기준으로 10 내지 1000 몰 범위의 양으로 사용되는 것을 특징으로 하는, 자성체 나노촉매의 제조방법.The metal-catch ligand and the carrier precursor are used in an amount ranging from 10 to 1000 moles based on 1 mole of the transition metal complex, respectively. 제9항에 있어서,The method of claim 9, 상기 Fe의 산화물이 전이금속 나노입자 1 몰을 기준으로 0.1 내지 100 몰 범위의 양으로 사용되는 것을 특징으로 하는, 자성체 나노촉매의 제조방법.The method of producing a magnetic nanocatalyst, characterized in that the oxide of Fe is used in an amount ranging from 0.1 to 100 moles based on 1 mole of transition metal nanoparticles. 제9항에 있어서,The method of claim 9, 상기 Fe의 산화물이 20 내지 500 ℃의 온도 범위에서 전이금속 나노입자와 혼합되는 것을 특징으로 하는, 자성체 나노촉매의 제조방법.The Fe oxide is mixed with the transition metal nanoparticles in a temperature range of 20 to 500 ℃, method of producing a magnetic nanocatalyst.
KR1020070059741A 2007-06-19 2007-06-19 Magnetic nanocatalyst and method for the preparation thereof KR100926128B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020070059741A KR100926128B1 (en) 2007-06-19 2007-06-19 Magnetic nanocatalyst and method for the preparation thereof
PCT/KR2008/003485 WO2008156320A1 (en) 2007-06-19 2008-06-19 Magnetic nanocatalyst composition and method for the preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070059741A KR100926128B1 (en) 2007-06-19 2007-06-19 Magnetic nanocatalyst and method for the preparation thereof

Publications (2)

Publication Number Publication Date
KR20080111602A KR20080111602A (en) 2008-12-24
KR100926128B1 true KR100926128B1 (en) 2009-11-11

Family

ID=40156404

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070059741A KR100926128B1 (en) 2007-06-19 2007-06-19 Magnetic nanocatalyst and method for the preparation thereof

Country Status (2)

Country Link
KR (1) KR100926128B1 (en)
WO (1) WO2008156320A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100928910B1 (en) * 2007-12-24 2009-11-30 연세대학교 산학협력단 Magnetic substance-silica cluster, method for producing the same, and method for desulfurization of natural gas using the same
US8114807B2 (en) 2010-03-05 2012-02-14 Cem Corporation Synthesis and use of intermetallic iron palladium nanoparticle compositions
CN103917512A (en) 2011-05-27 2014-07-09 加利福尼亚大学董事会 Method to convert fermentation mixture into fuels
CN102614894B (en) * 2012-03-04 2013-11-13 浙江建业化工股份有限公司 Supported catalyst used for synthesis of diisopropylamine from isopropylamine and preparation method as well as application of supported catalyst
CN102614892B (en) * 2012-03-04 2014-01-01 浙江大学 Synthesis method of triethylamine and catalyst used in method
CN102614893B (en) * 2012-03-04 2014-01-01 浙江建业化工股份有限公司 Method for combining tributylamine and used catalyst
GB201206042D0 (en) * 2012-04-04 2012-05-16 Isis Innovation Alcohol production process
RU2506998C1 (en) * 2012-08-31 2014-02-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тверской государственный технический университет" Method of producing catalytically active magnetically separable nanoparticles
BR112015027037A2 (en) 2013-04-26 2017-07-25 Univ California methods to produce fuels
CN103232336B (en) * 2013-05-08 2014-12-24 温州大学 Green synthesis method for substituted ketone
CN103801257B (en) * 2014-02-14 2015-12-02 中国科学院合肥物质科学研究院 The synthetic method of silver/tri-iron tetroxide/earth silicon/titanic oxide four layers of nucleocapsid structure and purposes
US10207961B2 (en) 2014-03-24 2019-02-19 The Regents Of The University Of California Methods for producing cyclic and acyclic ketones
EP3212328A1 (en) 2014-10-29 2017-09-06 The Regents of the University of California Methods for producing fuels, gasoline additives, and lubricants using amine catalysts
WO2016069805A1 (en) 2014-10-29 2016-05-06 The Regents Of The University Of California Methods for producing fuels, gasoline additives, and lubricants using amine catalysts
CN110092477B (en) * 2019-05-05 2021-11-30 辽宁大学 Method for treating antibiotic-containing wastewater in artificial wetland
CN112661602B (en) * 2019-10-16 2024-04-23 中国石油化工股份有限公司 Preparation method of cyclopentanol based on copper catalyst
EP3881955A1 (en) * 2020-03-20 2021-09-22 BASF Corporation Process for the preparation of transition metal nanoparticles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030071233A (en) * 2002-02-28 2003-09-03 (주)에프이에이 코퍼레이션 recyclable ionic-organometallic catalysts immobilized on magnetic nanoparticles and methods of preparing thereof
KR20060076419A (en) * 2004-12-29 2006-07-04 학교법인 포항공과대학교 Synthesis of heterogeneous transitional metal catalysts

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0166148B1 (en) * 1995-09-05 1998-12-15 강박광 Preparing method of high dispersed-mixed metal oxide supported catalyst
JP2006188727A (en) * 2005-01-05 2006-07-20 Sony Corp Cluster of nanoparticles of magnetic metal, and production method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030071233A (en) * 2002-02-28 2003-09-03 (주)에프이에이 코퍼레이션 recyclable ionic-organometallic catalysts immobilized on magnetic nanoparticles and methods of preparing thereof
KR20060076419A (en) * 2004-12-29 2006-07-04 학교법인 포항공과대학교 Synthesis of heterogeneous transitional metal catalysts

Also Published As

Publication number Publication date
KR20080111602A (en) 2008-12-24
WO2008156320A1 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
KR100926128B1 (en) Magnetic nanocatalyst and method for the preparation thereof
Rajabzadeh et al. A facile hydrothermal synthesis of novel hollow triple-shell CuNiFe2O4 nanospheres with robust catalytic performance in the Suzuki–Miyaura coupling reaction
CN110835359B (en) P, N-containing porous organic cage ligand, complex catalyst and application
Du et al. Immobilized palladium on surface-modified Fe3O4/SiO2 nanoparticles: as a magnetically separable and stable recyclable high-performance catalyst for Suzuki and Heck cross-coupling reactions
Polshettiwar et al. Nanoparticle-supported and magnetically recoverable nickel catalyst: a robust and economic hydrogenation and transfer hydrogenation protocol
Mohammadi et al. Hercynite silica sulfuric acid: a novel inorganic sulfurous solid acid catalyst for one-pot cascade organic transformations
Joharian et al. Ultrasound-assisted synthesis of two new fluorinated metal-organic frameworks (F-MOFs) with the high surface area to improve the catalytic activity
Karimi et al. Additive-free aerobic CH oxidation through a defect-engineered Ce-MOF catalytic system
Jadhav et al. Palladium nanoparticles supported on a titanium dioxide cellulose composite (PdNPs@ TiO 2–Cell) for ligand-free carbon–carbon cross coupling reactions
Akkoç et al. N-heterocyclic carbene Pd (II) complex supported on Fe3O4@ SiO2: Highly active, reusable and magnetically separable catalyst for Suzuki-Miyaura cross-coupling reactions in aqueous media
CA2589069C (en) Synthesis of supported transition metal catalysts
CN110835343A (en) P, N-containing porous organic cage ligand and preparation and application thereof
Jin et al. Imparting magnetic functionality to iron-based MIL-101 via facile Fe 3 O 4 nanoparticle encapsulation: an efficient and recoverable catalyst for aerobic oxidation
Chaurasia et al. Synthesis of quinolines via acceptorless dehydrogenative tandem cyclization of 2-amionbenzyl alcohol with alcohols using magnetic CuNiFeO nanocatalyst
CN113145131B (en) Rhodium monoatomic magnetic catalyst and preparation method and application thereof
Yuan et al. A cuboidal [Ni 4 O 4] cluster as a precursor for recyclable, carbon-supported nickel nanoparticle reduction catalysts
Hegde et al. Furaldehyde-based magnetic supported palladium nanoparticles as an efficient heterogeneous catalyst for Mizoroki–Heck cross-coupling reaction
CN113042089A (en) Supported nano palladium catalyst for synthesizing benzaldehyde from oxygen and benzyl alcohol and preparation method thereof
Majedi et al. Oxidation of C–H bond of benzylic position in aromatic substrates by dehydroacetic acid based on an Iron (III) complex covalently anchored on Fe3O4 nanoparticles
Gholinejad et al. Bimetallic AuNi nanoparticles supported on mesoporous MgO as catalyst for Sonogashira-Hagihara cross-coupling reaction
Kim et al. Suzuki coupling reaction using hybrid Pd nanoparticles
Nikoorazm et al. Two Schiff-base Complexes of Copper and Zirconium Oxide Fabricated on Magnetic Nanoparticles as Practical and Recyclable Catalysts in CC Coupling Reaction
Kooti et al. Synthesis of a novel magnetic nanocatalyst based on rhodium complex for transfer hydrogenation of ketone
Chen et al. Water-medium organic reactions on an active and easily recycled Pd (II) organometallic catalyst bonded to magnetic SiO2@ Fe3O4 support
Mathur et al. Magnetic Nickel Nanoparticles Supported on Oxidized Charcoal as a Recoverable Catalyst for N-Alkylation of Amines with Alcohols

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121012

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee