KR100925879B1 - Complex strain for the waste water/sewage treatment and nitrogen treatment process using the same - Google Patents

Complex strain for the waste water/sewage treatment and nitrogen treatment process using the same Download PDF

Info

Publication number
KR100925879B1
KR100925879B1 KR1020090037737A KR20090037737A KR100925879B1 KR 100925879 B1 KR100925879 B1 KR 100925879B1 KR 1020090037737 A KR1020090037737 A KR 1020090037737A KR 20090037737 A KR20090037737 A KR 20090037737A KR 100925879 B1 KR100925879 B1 KR 100925879B1
Authority
KR
South Korea
Prior art keywords
weight
cfu
denitrification
microorganism
wastewater
Prior art date
Application number
KR1020090037737A
Other languages
Korean (ko)
Inventor
이건
Original Assignee
주식회사 세정바이오텍
이건
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 세정바이오텍, 이건 filed Critical 주식회사 세정바이오텍
Application granted granted Critical
Publication of KR100925879B1 publication Critical patent/KR100925879B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/341Consortia of bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2523/00Culture process characterised by temperature

Abstract

PURPOSE: A method for treating nitrogen and composite microorganism is provided to effectively remove nitrogen in waste water. CONSTITUTION: A composite microorganism (SejungBio-FA100(deposit number: KCTC 11400BP)) for treating organic material of waste water and performing denitrofication comprises: Bacillus licheniformis FE1, Bacillus cereus FE3, Paenibacillus sp. H10-02, Acetobacter pomorum FM2, Acetobacter peroxydans FM3, Bacillus subtilis FM4, Lactobacilus casei FM5, Paenibacillus sp. P33 FM8; Kluyveromyces fragilis FY1, and Debaryomyces hansenii FY2. A composite microorganism formulation for treating organic material of waste water and denitrogenification 0.5-20 weight% of composite microorganism 20-50 weight% of rice bran, 20-50 weight% of food waste residue, 10-30 weight% of rice hull charcoal coarse powder, and 5-10 weight% of humus soil.

Description

오ㆍ폐수 처리용 복합 미생물 및 이를 이용하여 오ㆍ폐수의 유기물과 질소를 처리하는 방법{COMPLEX STRAIN FOR THE WASTE WATER/SEWAGE TREATMENT AND NITROGEN TREATMENT PROCESS USING THE SAME }COMPLEX STRAIN FOR THE WASTE WATER / SEWAGE TREATMENT AND NITROGEN TREATMENT PROCESS USING THE SAME}

본 발명은 오ㆍ폐수 처리용 복합 미생물 및 이를 포함하는 오ㆍ폐수 처리용조성물에 대한 것이다. 또한, 본 발명은 상기 복합 미생물을 이용한 오ㆍ폐수의 유기물 처리 방법 및 호기적 조건 하에서의 탈질(denitrification) 처리 방법에 대한 것이다.The present invention relates to a composite microorganism for treatment of wastewater and wastewater, and a composition for treatment of wastewater containing the same. The present invention also relates to a method for treating organic matter of wastewater and wastewater using the complex microorganism and a method for treating denitrification under aerobic conditions.

미생물 제제는 살아 있는 미생물을 직접적으로 이용하는 것으로서, 소비되는 순간까지 그 생명력이 유지되어 살아있는 기능이 발휘되어야 한다. 미생물 제제는 현재 매우 다양한 분야에서 필요로 하고 있으며, 그 사용처를 보면, 악취를 비롯한 탈취제, 공기 정화제, 제초제, 토양병해방제, 토양개량제, 생육촉진제, 수질정화제 등 다양한 용도로 사용된다. 환경개선제제로 이용하기 위해 바실러스(Bacillus), 슈도모나스(Pseudomonas), 광합성 세균 등의 다양한 균주들이 개발중이며, 토양미 생물 제제로서는 효모, 유산균, 방선균, 사상균, 그리고 조류 및 원생동물까지 그 종류가 다양하다. 최근에는 균고정화 기술이 발달되면서 미생물 제제를 담체에 고정화시켜 판매하기도 한다. Microbial preparations are direct use of living microorganisms, and their vitality must be maintained until the moment they are consumed, and the living function must be exerted. Microbial preparations are currently required in a wide variety of fields, the use of which is used in a variety of applications, such as deodorants, air purifiers, herbicides, soil pesticides, soil improvers, growth promoting agents, water purification agents, including odor. Bacillus (Bacillus), Pseudomonas (Pseudomonas), photosynthetic various jungyimyeo strains have been developed, such as bacteria, soil microbial formulation as it is yeast, lactic acid bacteria, actinomycetes, fungi, and algae and their kind to protozoa varied to use a zero environmental improvers . Recently, microbial preparations have been immobilized on carriers and sold, with the development of homogenization technology.

현재, 선진 외국에서는 미생물 제제를 제초제, 토양병, 수확처리제, 흰가루병, 흰개미용, 잿빛곰팡이용, 식물 성장조절제, 및 종자 처리용 등으로 이용하고 있다. 최근 국내에서도 미생물 제제의 개발 기술은 많은 향상을 보이고 있다. 예를 들면, 국내 생명과학연구소는 바실러스(Bacillus)속 균주를 이용한 토양 미생물 제제 및 항진균제를 개발한 바 있다. 그러나 외국에 비하면 아직까지도 그 개발기술의 수준이 30% 정도 수준밖에 되지 않는 실정이고, 국내에서 소비되는 미생물 제제는 주로 외국으로부터 수입하여 사용하는 경향이 높다. At present, foreign countries use microbial preparations for herbicides, soil diseases, harvesting agents, powdery mildews, termites, gray mold, plant growth regulators, and seed treatments. Recently, the development technology of microbial preparations in Korea is showing a lot of improvement. For example, the Korean Life Science Research Institute has developed soil microbial agents and antifungal agents using Bacillus sp. However, compared to foreign countries, the level of development technology is still only about 30% level, and microbial products consumed in Korea tend to be mainly imported from foreign countries.

질소 등을 포함하는 오ㆍ폐수가 배출되면, 호수나 저수지의 부영양화를 가속화시키고, 옅은 하천에서 조류와 수생식물의 성장을 촉진시켜 심미적인 면에서 좋지 않다. 질소의 제거는 수질관리와 하수장 처리공장 설계에 있어서 중요하다. 따라서 질소 등의 물질을 제거하기 위한 여러 공법이 개발되고 있다. 초기에는 암모니아 산화와 조절을 위한 생물학적 질산화, 외부 탄소원인 메탄올을 이용한 생물학적 탈질화 및 인 제거를 위한 화학적 침전이 주로 이용되는 공정이었다. 최근에는 미생물을 이용하여 질소를 제거하는 공정이 각광을 받고 있다.The discharge of sewage and wastewater, including nitrogen, accelerates the eutrophication of lakes and reservoirs, and promotes the growth of algae and aquatic plants in light rivers, which is not good in aesthetic sense. Nitrogen removal is important for water quality management and sewage treatment plant design. Therefore, various methods for removing substances such as nitrogen have been developed. Initially, biological nitrification for ammonia oxidation and regulation, biological denitrification using methanol as an external carbon source, and chemical precipitation for phosphorus removal were mainly used. Recently, the process of removing nitrogen using microorganisms has been in the spotlight.

이에 본 발명자는 미생물을 이용하여 오ㆍ폐수의 유기물을 처리하고 탈질 미생물을 이용하여 오ㆍ폐수에서 질소를 효과적으로 제거하는 방법을 개발하기 위해 연구를 계속하였다, 그 결과, 오ㆍ폐수의 유기물을 처리할 뿐만 아니라 호기성 조 건에서도 탈질화 반응을 일으켜서 질소 제거 효율이 높은 복합 미생물을 개발하기에 이른 것이다. Therefore, the present inventors continued to develop a method of effectively removing nitrogen from wastewater by using microorganisms to treat organic matter in wastewater and denitrifying microorganisms. As a result, the present invention treated organic matter in wastewater. In addition to aerobic conditions, denitrification can lead to the development of complex microorganisms with high nitrogen removal efficiency.

본 발명은 오ㆍ폐수의 유기물 처리 및 탈질소 처리용 복합 미생물을 제공하기 위한 것이다. The present invention is to provide a complex microorganism for organic matter treatment and denitrification of waste water and waste water.

또한, 본 발명은 오ㆍ폐수의 유기물 처리 및 탈질소 처리를 위한 조성물을 제공하기 위한 것이다. In addition, the present invention is to provide a composition for organic matter treatment and denitrogenation treatment of waste water.

또한, 본 발명은 상기 복합 미생물을 이용한 오ㆍ폐수의 탈질소 처리 방법을 제공하기 위한 것이다.In addition, the present invention is to provide a method for treating denitrification of sewage and wastewater using the complex microorganism.

본 발명의 일 측면에 따르면, 본 발명은 바실러스 리체니포르미스(Bacillus licheniformis) FE1, 바실러스 세레우스(Bacillus cereus) FE3, 패니바실러스 에스피 H10-02(Paenibacillus sp. H10-02) FE4, 아세토박터 포모럼(Acetobacter pomorum) FM2, 아세토박터 페록시단스(Acetobacter peroxydans) FM3, 바실러스 서브틸리스(Bacillus subtilis) FM4, 락토바실러스 카제이(Lactobacilus casei) FM5, 패니바실러스 에스피 P33(Paenibacillus sp. P33) FM8, 클루이베로마이세스 프라질리스(Kluyveromyces fragilis) FY1 및 데바리오마이세스 한세니(Debaryomyces hansenii) FY2로 이루어진 오ㆍ폐수의 유기물 처리 및 탈질소 처리용 복합 미생물 SejungBio-FA100(미생물 기탁번호: KCTC 11400BP)을 제공한다.According to an aspect of the present invention, the present invention provides Bacillus licheniformis FE1, Bacillus cereus FE3, Paenibacillus sp H10-02 FE4, Acetobacter formo Acetobacter pomorum FM2, Acetobacter peroxydans FM3, Bacillus subtilis FM4, Lactobacilus casei FM5, Paenibacillus sp. P33 FM8, Provides a complex microorganism SejungBio-FA100 (microbial accession number: KCTC 11400BP) for organic matter treatment and denitrification of sewage and wastewater consisting of Kluyveromyces fragilis FY1 and Debaryomyces hansenii FY2 do.

구체적으로, 상기 복합 미생물 SejungBio-FA100는 바실러스 리체니포르미스(Bacillus licheniformis) FE1가 9X107 cfu/g, 바실러스 세레우스(Bacillus cereus) FE3가 7.2X107 cfu/g, 패니바실러스 에스피 H10-02(Paenibacillus sp. H10-02 ) FE4가 4.2X107 cfu/g, 아세토박터 포모럼(Acetobacter pomorum) FM2가 7.2X107 cfu/g, 아세토박터 페록시단스(Acetobacter peroxydans) FM3가 7.2X107 cfu/g, 바실러스 서브틸리스(Bacillus subtilis) FM4 가 4.2X107 cfu/g, 락토바실러스 카제이(Lactobacilus casei) FM5가 6X107 cfu/g, 패니바실러스 에스피 P33(Paenibacillus sp. P33) FM8가 4.2X107 cfu/g, 클루이베로마이세스 프라질리스(Kluyveromyces fragilis) FY1가 5.4X107 cfu/g 및 데바리오마이세스 한세니(Debaryomyces hansenii) FY2가 5.4X107 cfu/g로 이루어진다.Specifically, the complex microorganism SejungBio-FA100 Bacillus licheniformis FE1 is 9X10 7 cfu / g, Bacillus cereus FE3 is 7.2X10 7 cfu / g, Fanibacillus Esp H10-02 (Paenibacillus sp. H10-02) FE4 is 4.2X10 7 cfu / g, acetonitrile bakteo Formosan column (Acetobacter pomorum) FM2 is 7.2X10 7 cfu / g, acetonitrile bakteo peroxy thiooxidans (Acetobacter peroxydans) FM3 is 7.2X10 7 cfu / g, Bacillus subtilis FM4 at 4.2 × 10 7 cfu / g, Lactobacilus casei FM5 at 6 × 10 7 cfu / g, Paenibacillus sp . P33 FM8 at 4.2 × 10 7 cfu / g, Kluyveromyces fragilis FY1 with 5.4 × 10 7 cfu / g and Debaryomyces hansenii FY2 with 5.4 × 10 7 cfu / g.

본 발명의 일 측면에 따르면, 본 발명은 상기 복합 미생물 SejungBio-FA100(미생물 기탁번호 : KCTC 11400BP) 배양액 0.5 내지 20 중량%; 쌀겨 20 내지 50 중량%; 음식물 찌꺼기 발효물 20 내지 50 중량%; 및 왕겨숯 조분말 10 내지 30중량% 및 부식토 5 내지 10 중량%로 이루어지는 오ㆍ폐수의 유기물 처리 및 탈질소 처리를 위한 복합 미생물 제제를 제공한다.According to one aspect of the invention, the present invention is a composite microorganism SejungBio-FA100 (Microorganism Accession No .: KCTC 11400BP) culture medium 0.5 to 20% by weight; Rice bran 20-50% by weight; Food waste fermented 20 to 50% by weight; And it provides a complex microbial preparation for organic matter treatment and denitrogenation treatment of sewage and waste water consisting of 10 to 30% by weight of chaff charcoal powder and 5 to 10% by weight of humus.

상기 복합 미생물 SejungBio-FA100(미생물 기탁번호 : KCTC 11400BP) 배양액은 상기 SejungBio-FA100 1 내지 5 중량부와, 수크로오스 4 내지 15 중량부, 펩톤 1 내지 5 중량부, 락토오스 0.05 내지 1 중량부 및 효모 추출물 0.5 내지 10 중량부에 나머지 물을 섞어서 100 중량부가 되도록 혼합하여 제조될 수 있다.The complex microorganism SejungBio-FA100 (Microorganism Accession No .: KCTC 11400BP) culture medium is 1 to 5 parts by weight of the SejungBio-FA100, 4 to 15 parts by weight of sucrose, 1 to 5 parts by weight of peptone, 0.05 to 1 parts by weight of lactose and yeast extract 0.5 to 10 parts by weight may be prepared by mixing the remaining water to 100 parts by weight.

본 발명의 다른 측면에 따르면, 본 발명은 상기 복합 미생물 제제를 호기조 및/또는 폭기조에 첨가하는 것을 특징으로 하는 오ㆍ폐수의 탈질소 처리 방법을 제공한다. According to another aspect of the present invention, the present invention provides a method for treating denitrification of sewage and wastewater, wherein the complex microbial agent is added to an aerobic tank and / or aeration tank.

본 발명에 따른 복합 미생물은 오ㆍ폐수의 유기물을 분해하고 호기적 조건에서 탈질화 반응이 활발히 일어나서 오ㆍ폐수 내의 질소를 효율적으로 제거하는 효과가 있다. The complex microorganism according to the present invention has an effect of decomposing organic matter of wastewater and wastewater and denitrification reaction under active aerobic conditions to efficiently remove nitrogen in wastewater.

기존의 생물학적인 질소 처리 방법은 호기적인 조건에서의 질산화와 무산소 조건에서의 탈질 반응으로 나뉘며, 두 개의 반응조에서 암모니아성 질소가 질산성 질소로(질산화), 질산성 질소가 질소 가스(탈질)로, 단계적인 질소 성분 제거가 이루어진다. 그 이유는 호기적 조건에서 탈질화 반응이 거의 일어나지 않기 때문이다. 그러나 이 방법은, 도 1a 및 도1b에 도시된 바와 같이, 두 개의 반응조 사용에 따른 부지면적 및 부가적인 비용이 많이 들고, 내부 순환에 따른 동력비용 상승의 문제점이 발생할 수 있다. 또한, 질산화 과정에서 pH 감소로 인한 많은 알칼리도(alkalinity)가 소비되며, 탈질 과정에서는 추가로 외부 탄소를 공급해 주어야 하는 단점이 있다. Conventional biological nitrogen treatment methods are divided into nitrification under aerobic conditions and denitrification under anoxic conditions. In the two reactors, ammonia nitrogen is converted to nitrate nitrogen (nitride) and nitrate nitrogen is nitrogen gas (denitrification). Stepwise removal of nitrogen is achieved. The reason is that denitrification rarely occurs under aerobic conditions. However, this method, as shown in Figures 1a and 1b, the site area and additional costs associated with the use of the two reactors are expensive, there may be a problem of the increase in power costs due to the internal circulation. In addition, a lot of alkalinity (alkalinity) is consumed due to the pH decrease in the nitrification process, there is a disadvantage that the external carbon must be additionally supplied in the denitrification process.

일반적으로 탈질은 보통 2 단계로 일어나는데. 아래 반응식 1과 같이, 첫 번째 단계는 질산이 아질산으로 환원되는 과정이고, 두 번째 단계는 두 가지의 중간 생성물을 거치면서 아질산이 질소 가스로 전환되는 과정이다. Denitrification usually occurs in two stages. As shown in Scheme 1 below, the first step is a process in which nitric acid is reduced to nitrous acid, and the second step is a process in which nitrous acid is converted to nitrogen gas through two intermediate products.

[반응식 1]Scheme 1

Figure 112009026149252-pat00001
Figure 112009026149252-pat00001

탈질 미생물은 자연 환경에서 광범위하게 발견되며, 대사와 활성이 매우 다양하다. 이러한 탈질능은 분류체계에서 별 연관성이 없는 세균들 간에 널리 편재되어 있는 특성으로서, 대부분 진화과정에서의 유전자 전이에 의한 결과로 여겨진다. 그리하여 탈질은 일부의 고세균과 진균류의 미토콘드리아 내에서도 수행되며, 일부 세균에서는 질산염(nitrate)이 단지 아질산염(nitrite)이나 N2O까지만 환원되기도 하고, 또 일부 종은 혐기 상태에서 호흡과 관련한 전자수용체로서 질산염(nitrate)만을 요구하는 것도 있다. Denitrification microorganisms are widely found in the natural environment and vary in metabolism and activity. This denitrification is a widely ubiquitous feature among bacteria that are not related to the taxonomy, which is considered to be the result of gene transfer during evolution. Thus, denitrification is also carried out in some archaeological and fungal mitochondria, in some bacteria nitrate is reduced to only nitrite or N 2 O, and some species are nitrates as receptors associated with respiration in anaerobic conditions. Some require only nitrate.

그 외에도 질산화와 탈질의 연속반응에 의한 질소 제거의 경우에는 각 반응의 최적화를 위해 각 반응에 적절한 pH 조정이 필요하다.In addition, in the case of nitrogen removal by continuous reaction of nitrification and denitrification, appropriate pH adjustment is required for each reaction in order to optimize each reaction.

그러나 호기성 탈질은, 유기물 제거가 일어나는 호기조 및/또는 폭기조에서 질산화와 탈질이 동시에 일어날 수 있다. 또한, 호기성 탈질 과정은 pH 변화가 크지 않아서 별도의 pH 조정이 필요 없어, 기존의 무산소-호기의 연속반응(도 1a 및 1b 참고)에 의한 생물학적 탈질 시스템이 가지는 단점의 일부를 해결해 줄 가능성을 가지고 있다.However, aerobic denitrification may simultaneously occur nitrification and denitrification in an aerobic and / or aeration tank in which organic matter removal takes place. In addition, the aerobic denitrification process does not require a pH adjustment because the pH change is not large, and has the potential to solve some of the disadvantages of the biological denitrification system by the continuous reaction of the existing anoxic-aerobic (see FIGS. 1A and 1B). have.

다양한 종류의 탈질균이 호기성 환경에서 분리되고 있으며, 이들의 특성을 이용한 새로운 생물학적 탈질공정 개발에 대한 연구가 진행중이다. 그리고 호기성 탈질균을 이용하는 외에도 기존의 방식과는 다른 생물학적 질소 제거 방식을 취하는 단축공정에 대한 연구가 활발히 진행되고 있는 실정이다. Various kinds of denitrification bacteria are being separated in aerobic environment, and research on the development of new biological denitrification process using these characteristics is ongoing. In addition, the use of aerobic denitrification bacteria in addition to the existing method to take a biological nitrogen removal method is being actively researched the situation.

호기성 탈질과 관련하여, 알칼리지너스 패칼리스(Alcaligenes faecalies), 슈도모나스 노티카(Pseudomonas nautica), 티오스패라 판토트로파(Thiosphaera pantotropha), 마이크로비르굴라 에어로디니트리피칸스(Microvirgula aerodenitrificans) 등의 많은 탈질균들은 자신들의 생장률을 높이기 위하여 산소와 질산염(nitrate)을 동시에 전자수용체로 이용할 수 있다고 보고되었다. 그 중에서 특히 파라코커스 디니트리피칸스(Paracoccus denitrificans)와 마이크로비르굴라 에어로디니트리피칸스 (Microvirgula aerodenitrificans)에 대한 연구는 다양한 측면에서 이루어졌다. In relation to aerobic denitrification, many such as Alcaligenes faecalies , Pseudomonas nautica , Thiosphaera pantotropha , Microvirgula aerodenitrificans , etc. It has been reported that denitrifiers can simultaneously use oxygen and nitrate as electron acceptors to increase their growth rate. Among them, Paracoccus denitrificans and Microvirgula aerodenitrificans have been studied in various aspects.

이외에도, 오ㆍ폐수 내 고농도의 질소 화합물을 경제적으로 제거하기 위하여, 황을 이용한 독립 영양 탈질과 호기성 탈질 등의 생물학적 탈질에 대한 연구가 꾸준히 진행되고 있다.In addition, in order to economically remove high concentrations of nitrogen compounds in sewage and wastewater, studies on biological denitrification such as independent nutrient denitrification and aerobic denitrification using sulfur have been continuously conducted.

본 발명의 복합 미생물은 오ㆍ폐수의 유기물을 분해할 수 있고, 혐기적 조건 뿐만 아니라 호기적인 조건에서도 탈질을 일으키는 복합 미생물이다. 호기적인 조건에서 탈질을 일으키는 탈질 미생물은 질소 제거의 2단계 공정-무산소 반응공정 및 호기 반응 공정-을 하나의 반응기에서 운전시킬 수 있기 때문에 경제적이고 효과적인 처리방법이라 할 수 있다. The complex microorganism of the present invention is a complex microorganism capable of decomposing organic matter in wastewater and wastewater, and causing denitrification not only under anaerobic conditions but also under aerobic conditions. Denitrification microorganisms that cause denitrification under aerobic conditions can be said to be an economical and effective method because they can operate a two-step process of nitrogen removal-an anoxic reaction process and an aerobic reaction process in one reactor.

본 발명에서는, 경상남도 산악지역 늪지대 부근의 토양과 대나무 잎, 미나리, 쑥잎 등의 식물 추출물을 발효시켜 만든 발효 배양물을 이용하여 미생물을 분리하여 복합 미생물을 만들었다. 구체적으로, 부산광역시 소재의 (주)세정바이오텍이 운영하고 관리하는 피혁 폐수처리장의 반응조에 상기 발효 배양물을 투입하여 운전한 후 오폐수의 유기물 처리 및 호기성 조건 하에서 새로운 형태의 탈질처리가 일어난다는 것을 확인하였다. 그리고 상기 발효 배양물로부터 균주를 분리하고 동정하여 복합 미생물 및 복합미생물 제제를 제조한 것이다.In the present invention, microorganisms were separated by using a fermentation culture made by fermenting plant extracts such as bamboo leaves, buttercups, and wormwood leaves in the vicinity of swamps in the mountainous region of Gyeongsangnam-do, to create a complex microorganism. Specifically, after the fermentation culture was put into a reactor of a leather wastewater treatment plant operated and managed by Sejung Biotech Co., Ltd., Busan, a new type of denitrification treatment occurred under organic matter treatment and aerobic conditions of wastewater. Confirmed. And the strain is isolated and identified from the fermentation culture to prepare a complex microbial and complex microbial formulation.

구체적으로, 본 발명의 복합 미생물은 바실러스 리체니포르미스(Bacillus licheniformis) FE1, 바실러스 세레우스(Bacillus cereus) FE3, 패니바실러스 에스피 H10-02(Paenibacillus sp. H10-02) FE4, 아세토박터 포모럼(Acetobacter pomorum) FM2, 아세토박터 페록시단스(Acetobacter peroxydans) FM3, 바실러스 서브틸리스(Bacillus subtilis) FM4, 락토바실러스 카제이(Lactobacilus casei) FM5, 패니바실러스 에스피 P33(Paenibacillus sp. P33) FM8, 클루이베로마이세스 프라질리스(Kluyveromyces fragilis) FY1 및 데바리오마이세스 한세니(Debaryomyces hansenii) FY2로 이루어진다. Specifically, the complex microorganism of the present invention is Bacillus licheniformis FE1, Bacillus cereus FE3, Paenibacillus sp H10-02 FE4, Acetobacter formum ( Acetobacter pomorum ) FM2, Acetobacter peroxydans FM3, Bacillus subtilis FM4, Lactobacilus casei FM5, Paenibacillus sp. P33 FM8, Cluibero Kluyveromyces fragilis FY1 and Debaryomyces hansenii FY2.

구체적으로 본 발명에 따른 복합 미생물은, 바실러스 리체니포르미 스(Bacillus licheniformis) FE1가 9X107 cfu/g, 바실러스 세레우스(Bacillus cereus) FE3가 7.2X107 cfu/g, 패니바실러스 에스피 H10-02(Paenibacillus sp. H10-02) FE4가 4.2X107 cfu/g, 아세토박터 포모럼(Acetobacter pomorum) FM2가 7.2X107 cfu/g, 아세토박터 페록시단스(Acetobacter peroxydans) FM3가 7.2X107 cfu/g, 바실러스 서브틸리스(Bacillus subtilis) FM4가 4.2X107 cfu/g, 락토바실러스 카제이(Lactobacilus casei) FM5가 6X107 cfu/g, 패니바실러스 에스피 P33(Paenibacillus sp. P33) FM8가 4.2X107 cfu/g, 클루이베로마이세스 프라질리스(Kluyveromyces fragilis) FY1가 5.4X107 cfu/g 및 데바리오마이세스 한세니(Debaryomyces hansenii) FY2가 5.4X107 cfu/g로 이루어진다. Specifically, the complex microorganism according to the present invention, Bacillus licheniformis FE1 is 9X10 7 cfu / g, Bacillus cereus FE3 is 7.2X10 7 cfu / g, Fanibacillus sp H10-02 ( Paenibacillus sp. H10-02) FE4 is 4.2X10 7 cfu / g, Acetobacter pomorum FM2 is 7.2X10 7 cfu / g, Acetobacter peroxydans FM3 is 7.2X10 7 cfu / g g, Bacillus subtilis FM4 is 4.2X10 7 cfu / g, Lactobacilus casei FM5 is 6X10 7 cfu / g, Paenibacillus sp. P33 FM8 is 4.2X10 7 cfu / g, Kluyveromyces fragilis FY1 with 5.4 × 10 7 cfu / g and Debaryomyces hansenii FY2 with 5.4 × 10 7 cfu / g.

상기 복합 미생물은 SejungBio-FA100으로 명명되었고, 2008년 10월 14일에 한국생명공학연구원 생물자원센터에 기탁번호 KCTC 11400BP로 기탁되었다.The complex microorganism was named SejungBio-FA100, and deposited on October 14, 2008 under the accession number KCTC 11400BP to the Korea Institute of Bioscience and Biotechnology.

상기 본 발명의 복합 미생물은 오ㆍ폐수의 유기물 처리 및 탈질소 처리를 위한 복합 미생물 제제로 사용될 수 있다. The complex microorganism of the present invention can be used as a complex microbial preparation for organic matter treatment and denitrogenation treatment of waste water.

구체적으로, 복합 미생물 SejungBio-FA100; 쌀겨; 음식물 찌꺼기 발효물; 및 왕겨숯 조분말을 포함하여 이루어진다. Specifically, the composite microorganism SejungBio-FA100; Rice bran; Food waste fermentation; And chaff charcoal coarse powder.

상기 복합 미생물 SejungBio-FA100은 종균 형태로 직접 사용되거나 배양액 형태로 사용될 수 있다. 바람직한 사용량은 복합 미생물 제제 전체 중량에 대하여 0.5 내지 20 중량%이다. 또한, 상기 복합 미생물 SejungBio-FA100의 배양액은 일반적인 균주 배양 방법을 통해서 얻을 수 있다. 이는 이 기술분야에서 널리 공지된 방법이다.The complex microorganism SejungBio-FA100 can be used directly in the form of a seed or in the form of a culture solution. The preferred amount is 0.5 to 20% by weight based on the total weight of the complex microbial agent. In addition, the culture medium of the complex microorganism SejungBio-FA100 can be obtained through a general strain culture method. This is a method well known in the art.

본 발명의 일실시예에서는 다음과 같은 방법으로 배양액을 얻었으나, 반드시 이에 제한되는 것은 아니다. 냉장보관(4~5℃)하고 있던, 상기 복합 미생물 SejungBio-FA100 종균 1 내지 5 중량부와, 수크로오스 4 내지 15 중량부, 펩톤 1 내지 5 중량부, 락토오스 0.05 내지 1 중량부 및 효모 추출물 0.5 내지 10 중량부에 나머지 물을 섞어서 100 중량부가 되도록 혼합하고(pH 6.8), 20 내지 35℃ 온도에서 공기를 강하게 공급하면서 6 내지 48시간 배양한다. 이 때 공기를 강하게 공급하는 이유는 호기성 미생물을 배양하기 위함이다. 그 다음 공기 공급을 중단하고 2 내지 10일간 교반상태에서 더 배양한 후 얻은 배양액을 SejungBio-FA100 배양액으로 사용한다. 이 때 온도는 30℃에서 24 시간 배양하고 4일간 교반하면서 배양하는 것이 바람직하다.In one embodiment of the present invention, the culture solution was obtained by the following method, but is not necessarily limited thereto. 1 to 5 parts by weight of the composite microorganism SejungBio-FA100 seedlings, 4 to 15 parts by weight of sucrose, 1 to 5 parts by weight of peptone, 0.05 to 1 parts by weight of lactose, and 0.5 to 1 parts of yeast extract, which were refrigerated (4 to 5 ° C.) 10 parts by weight of the remaining water is mixed to 100 parts by weight (pH 6.8) and incubated for 6 to 48 hours with a strong air supply at a temperature of 20 to 35 ℃. The reason for the strong air supply at this time is to cultivate aerobic microorganisms. Then, the air supply was stopped and further cultured under stirring for 2 to 10 days, and the obtained culture was used as SejungBio-FA100 culture. At this time, the temperature is preferably incubated at 30 ° C. for 24 hours and incubated with stirring for 4 days.

이 이외에도 다른 공지된 배양액을 첨가하여 미생물 배양액을 제조할 수 있다. 예를 들면, PYK 배지와 숙신산(Succinate) 배지를 배양액으로 이용할 수 있으나, 반드시 이에 한정되는 것은 아니다. 상기 배지 조성(g/L)은, PYK 배지(pH 7)가, 5 g 펩톤; 3 g 효모 추출물; 2 g KNO3이고, 숙신산 배지(pH 7)는, 4 g 숙신산; 1 g (NH4)2SO4; 3 g KH2PO4; 0.1g K2HPO4; 0.2g MgSO4.7H2O; 2g KNO3이다. In addition to this, other known culture media may be added to prepare a microbial culture. For example, PYK medium and Succinate medium may be used as a culture medium, but are not necessarily limited thereto. The medium composition (g / L), PYK medium (pH 7) is 5 g peptone; 3 g yeast extract; 2 g KNO 3 and succinic acid medium (pH 7), 4 g succinic acid; 1 g (NH 4 ) 2 SO 4 ; 3 g KH 2 PO 4 ; 0.1 g K 2 HPO 4; 0.2 g MgSO 4 .7H 2 O; 2g KNO 3 .

쌀겨는, 현미에서 정백미로 도정하는 과정에서 생기는 것으로 여러 가지 껍질의 혼합물이다. 쌀겨에는 쌀겨지방질, 단백질, 필수지방산, 필수아미노산, 비타민, 식이섬유 및 미량 원소가 풍부한 것으로 알려져 있다. 따라서 이를 첨가제로 사용함으로써, 오ㆍ폐수처리용 복합 미생물 제제가 고형 발효될 때, 영양물을 제공하고, 수분조절제 역할을 한다. 또한, 쌀겨에는 다양한 유기물을 분해하고 악취 저감 효과를 내는 유효한 미생물이 함유되어 있는 장점이 있다.Rice bran is a mixture of various husks that occurs during the process from brown rice to white rice. Rice bran is known to be rich in rice bran fat, protein, essential fatty acids, essential amino acids, vitamins, dietary fiber and trace elements. Therefore, by using this as an additive, when the complex microbial preparation for wastewater treatment is solid fermentation, it provides nutrition and serves as a moisture control agent. In addition, rice bran has the advantage that it contains an effective microorganism that decomposes various organic matters and has a bad smell reduction effect.

본 발명에서 쌀겨는 시중에서 판매하는 것을 구입하여 사용하였으며, 쌀겨의 구체적인 성분은 수분 13.5%, 지방 18.4%, 당질 38.3%, 섬유질 7.8%, 회분 8.9%, 비타민 B 12.5%, 기타 0.6%이다.In the present invention, the rice bran was purchased and used in the market, specific components of the rice bran is water 13.5%, fat 18.4%, sugar 38.3%, fiber 7.8%, ash 8.9%, vitamin B 12.5%, other 0.6%.

상기 음식물 찌꺼기 발효물은, 이 기술분야에 공지된 음식물 찌꺼기 발효물이라면 어느 것이든지 사용할 수 있다. 또한, 본 복합 미생물을 종균으로 사용하여, 고형 발효기에서 음식물 찌꺼기와 함께 약 5 ~10일간 45℃에서 발효시킨 것을 사용할 수도 있다. 구체적으로 본 복합 미생물 100 중량부에 음식물 찌꺼끼는 100 내지 500 중량부와 톱밥 300 내지 1000 중량부를 포함할 수 있다. 상기 음식물 찌꺼기의 발효 과정(45℃, 4~5일 교반발효)을 통해 오ㆍ폐수 중에 존재하는 단백질 화합물을 비롯한 고형성 유기 물질을 분해하고 소멸하는 기능의 미생물이 증식되고 활성화될 수 있다. The food waste fermentation product may be any food waste food fermentation known in the art. In addition, by using the present composite microorganism as a seed, it is also possible to use a fermentation at 45 ℃ for about 5 to 10 days with food waste in a solid fermenter. Specifically, the food residue may include 100 to 500 parts by weight and 300 to 1000 parts by weight of sawdust. Through the fermentation process of food waste (45 ℃, stirred fermentation for 4 to 5 days), microorganisms capable of degrading and extinguishing solid organic substances including protein compounds present in the waste water and extinguishing can be proliferated and activated.

상기 왕겨숯 조분말은 왕겨를 탄화시킨 숯 100%를 믹서 분쇄기로 갈아 만든 분말로서, 부패 발효를 보다 더 억제하고 유용 발효를 왕성하게 하기 위하여 첨가한다. 상기 '조분말'은 조악한, 즉 거친 수준의 분말을 말한다. 따라서 본 발명의 '왕겨숯 조분말'이란, 분쇄된 왕겨숯을 말한다. The chaff charcoal powder is a powder made by grinding the chaff charcoal charcoal 100% with a mixer grinder, it is added to further suppress the decay fermentation and to enhance the useful fermentation. The term 'crude powder' refers to coarse, ie, rough, powder. Therefore, the rice husk charcoal powder of the present invention refers to crushed chaff charcoal.

상기 부식토는, 더 자세히 말하면 다음과 같은 조성의 부식토 함유 토양이다- 코코피트 60~70 중량%, 피트모스 10~20 중량%, 펄라이트 7~10 중량%, 질석 5~8 중량%, 제오라이트 3~5 중량%, 낙엽활엽부식토 1~2 중량%. 이러한 부식토는 시중에서 구입한 것을 사용하거나 직접 제조하여 사용할 수 있다.The humus soil, more specifically, is a humus-containing soil of the following composition: 60 to 70% by weight of cocoite, 10 to 20% by weight of peat moss, 7 to 10% by weight of pearlite, 5 to 8% by weight of vermiculite and 3 to 5 of zeolite. Wt%, deciduous broadleaf soils 1-2 wt%. Such humus can be used commercially available or manufactured directly.

상기 복합 미생물 제제는, 상기 복합 미생물 SejungBio-FA100(미생물 기탁번호 : KCTC 11400BP) 또는 이의 배양액 0.5 내지 20 중량%; 쌀겨 20 내지 50 중량%; 음식물 찌꺼기 발효물 20 내지 50 중량%; 왕겨숯 조분말 10 내지 30 중량% 및 부식토 5 내지 10 중량%로 이루어지지만, 반드시 이에 한정되는 것은 아니다. 상기 조성 비율은 복합 미생물 SejungBio-FA100의 활성이 최적으로 일어날 수 있는 수치 범위에 해당한다.The complex microbial preparation, the complex microorganism SejungBio-FA100 (Microbial Accession Number: KCTC 11400BP) or its culture solution 0.5 to 20% by weight; Rice bran 20-50% by weight; Food waste fermented 20 to 50% by weight; It consists of 10 to 30% by weight of chaff charcoal powder and 5 to 10% by weight of humus, but is not necessarily limited thereto. The composition ratio corresponds to the numerical range in which the activity of the complex microorganism SejungBio-FA100 can optimally occur.

상기 복합 미생물 SejungBio-FA100, 쌀겨, 음식물 찌꺼기 발효물, 왕겨숯 조분말 및 부식토가 포함된 조성물을 40 내지 45℃에서 3~5일간 고형발효하면서 수분 함량을 40~50%이하로 건조시킴으로써, 오ㆍ폐수의 유기물 처리 및 탈질소 처리를 위한 복합 미생물 제제를 제조할 수 있다.The composition containing the microorganism SejungBio-FA100, rice bran, food waste fermented product, rice husk charcoal powder and humus soil was solid-fermented at 40 to 45 ° C. for 3 to 5 days while drying the water content to 40-50% or less. Complex microbial preparations for organic matter treatment and denitrogenation of wastewater can be prepared.

상기 복합 미생물 제제는, 하이포마이크로비움 X (Hyphomicrobium X), 알칼리지너스 패칼리스(Alcaligenes faecalis), 니트로소모나스(Nitrosomonas), 탈질 박테리아 DCB-T6, T23, T25 (Denitrifying bacteria DCB-T6, T23, T25), 티오스패라 판토트로파(Thiosphaera pantotropha), 및 슈도모나스 스투체리(Pseudomonas stutzer)로 이루어진 군으로부터 선택되는 1 종 이상의 균주를, 상기 복합 미생물 제제 100 중량부에 대하여 각각 0.5 내지 1 중량부씩 더 포함할 수 있다. 여기서 언급한 균주들은 널리 알려진 것으로서, 각국 균주보존센터(한국 KCCM, 미국 ATCC, 일본 JCM 나 IFO, 독일 DSM, 네덜란드 CBS 및 영국 NCIBM 등)에서 분양 받아 사용할 수 있다. The complex microbial agent, Hyphomicrobium X ( Alphogeneb faecalis ), Nitrosomonas (nitrosomonas), denitrifying bacteria DCB-T6, T23, T25 (Denitrifying bacteria DCB-T6, T23, T25 ), At least one strain selected from the group consisting of Thiosphaera pantotropha , and Pseudomonas stutzer , each 0.5 to 1 part by weight based on 100 parts by weight of the complex microbial agent. It may include. The strains mentioned here are well known and can be distributed and used by strain preservation centers in each country (Korea KCCM, USA ATCC, Japan JCM or IFO, Germany DSM, Netherlands CBS, UK NCIBM, etc.).

본 발명의 다른 측면에 따르면, 본 발명은 상기 복합 미생물 제제를 호기조 및/또는 폭기조에 첨가하여 오ㆍ폐수의 질소를 처리할 수 있다.According to another aspect of the present invention, the present invention can treat the nitrogen of the waste water by adding the complex microbial agent to the aerobic tank and / or aeration tank.

상기 복합 미생물 제제를 오ㆍ폐수를 처리하기 위한 호기조 및/또는 폭기조에 첨가하여 오ㆍ폐수의 질소를 처리할 수 있다. 일반적으로, 반응조가 폭기를 통해 호기성 상태가 되면 별도로 "호기조 또는 호기성 폭기조"라고 부른다. 상기 호기조 및/또는 폭기조는 일반적인 오ㆍ폐수 처리 반응조 중의 호기성 상태의 폭기조와 준혐기 상태로 운전될 수도 있는 폭기조를 모두 포함한다. 본 발명의 복합 미생물은 호기적 조건 하에서도 탈질 처리를 수행할 수 있으므로, 이를 호기조 및/또는 폭기조에 첨가하여 오ㆍ폐수의 질소를 처리할 수 있다. The complex microbial agent can be added to an aerobic and / or aeration tank for treating wastewater and wastewater to treat nitrogen of the wastewater. In general, when a reaction tank becomes aerobic through aeration, it is separately called "aerobic tank or aerobic aeration tank". The aerobic tank and / or aeration tank includes both aerobic aeration tanks in a general wastewater and wastewater treatment reactor and aeration tanks that may be operated in a quasi-anaerobic state. Since the complex microorganism of the present invention can perform denitrification even under aerobic conditions, it can be added to an aerobic tank and / or aeration tank to treat nitrogen in wastewater and wastewater.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples. Since these examples are only for illustrating the present invention, the scope of the present invention is not to be construed as being limited by these examples.

실시예 1: 미생물의 분리 및 동정Example 1 Isolation and Identification of Microorganisms

1-1. 미생물의 순수 분리1-1. Pure separation of microorganisms

경상남도 산악지역 늪지대 부근의 토양과 대나무 잎, 미나리, 쑥잎의 식물 추출물을 발효시켜 만든 발효 배양물로부터 오폐수 처리에 주요 역할을 하는 미생물들을 순수 분리하기 위하여, 먼저 발효 배양물 샘플을 볼텍스(vortex)를 이용하여 충분히 혼합시킨 후, 1 ml을 채취하여 멸균된 0.1% NaCl 용액에 첨가하고, 이 용액을 볼텍스를 이용하여 충분히 혼합시킨 후, 0.8% 영양 브로쓰 아가(Nutrient broth agar) 배지 위에 3번에 나누어 도말하였다. 도말된 아가 플레이트를 30℃, 인큐베이터에서 배양하였고, 아가 플레이트 위에 콜로니가 형성되면, 콜로니의 모양, 색깔, 크기가 다른 형태의 콜로니를 표시하고 채취하여 현미경 관찰을 통해 동일균의 여부를 결정하였다. 표시된 콜로니로부터 새로운 아가 플레이트로 반복 계대배양하여 최종적으로 독립된 순수 미생물을 분리하였다. In order to purely separate the microorganisms which play a major role in wastewater treatment from fermentation cultures made by fermenting plant extracts of soil, bamboo leaves, buttercups and wormwood leaves in the swamps of the mountainous region of Gyeongsangnam-do, first, the fermentation culture samples were vortexed. After sufficient mixing, 1 ml is taken and added to sterile 0.1% NaCl solution, and the solution is mixed well with Vortex, and then placed on 3 times on 0.8% Nutrient broth agar medium. It was divided and spread. The plated agar plates were incubated in an incubator at 30 ° C., and when colonies were formed on the agar plates, colonies of different shapes, colors, and sizes of colonies were marked and collected to determine whether the same bacteria were observed under a microscope. Repeated subculture from the indicated colonies to fresh agar plates was used to isolate the finally isolated pure microorganisms.

1-2. 선별된 미생물의 동정1-2. Identification of Selected Microorganisms

선별된 유용 균주들은 16S - rDNA 시퀀싱을 통해 동정하였다. 먼저, DNA 추출은 DNA 추출 키트(Bioneer Accuprep, Genomic DNA extraction kit, Korea)를 이용하였고, 추출한 DNA는 0.5 ml 튜브에 10x PCR 버퍼, 2.5mM dNTP, 각각의 프라이머 10 pmol, DNA 주형 1 ㎍, 5U Taq 폴리머라아제(G-tag)를 첨가하고 나머지는 증류수를 첨가하여 총 부피가 20 ㎕이 되도록 제조하였다. PCR 증폭은 95℃에서 5분간 인큐베이션(preincubation), 95℃에서 30초간 변성(denaturation), 55℃에서 30초간 어닐링(annealing), 72℃에서 30초간 익스텐션(extenstion)을 30 사이클 실시하고 72℃에서 10분간 최종 익스텐션을 실시하였다. 이때, PCR 반응에 사용한 프라 이머는 27F (5'-AGAGTTTGATCCTGGCTCAG-3') 및 1429R (5'-GGTTACCTTGTTACGACTT-3)을 사용하고, GeneAmp PCR system 2400 (Perkin Elmer applied Biosystems, USA)을 이용하였다. 증폭된 PCR 산물은 1% 아가로스 겔에서 전기영동하여 PCR 증폭을 확인한 후, PCR 산물을 정제하였다(Generalbiosystem, USA). Selected useful strains were identified via 16S-rDNA sequencing. First, DNA extraction was performed using a DNA extraction kit (Bioneer Accuprep, Genomic DNA extraction kit, Korea), and extracted DNA was placed in 0.5 ml tube with 10x PCR buffer, 2.5 mM dNTP, each primer 10 pmol, DNA template 1 ug, 5U. Taq polymerase (G-tag) was added and the rest was added to distilled water to make a total volume of 20 μl. PCR amplification was performed for 5 minutes of incubation at 95 ° C, denaturation at 95 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, extension at 72 ° C for 30 seconds, and at 72 ° C. The final extension was run for 10 minutes. At this time, the primers used for the PCR reaction were 27F (5'-AGAGTTTGATCCTGGCTCAG-3 ') and 1429R (5'-GGTTACCTTGTTACGACTT-3), and GeneAmp PCR system 2400 (Perkin Elmer applied Biosystems, USA) was used. The amplified PCR product was electrophoresed on a 1% agarose gel to confirm PCR amplification, and then the PCR product was purified (Generalbiosystem, USA).

정제된 PCR 산물은 (주)Macrogen社에 의뢰하여 최종 5'- 말단 및 3' - 말단 부분 16S rDNA 염기서열을 얻었고, 각 부분별 서열은 http://www.ncbi.nlm.nih.gov에 접속하여 Advanced BLAST similarity search option (Altschul et. al., 1997)을 통해 GenBank (National Center for Biotechnology Information, Rockville Pike, Bethesda, MD)에서 비교, 검색하였다.The purified PCR product was commissioned by Macrogen Co., Ltd. to obtain final 5'- and 3'-terminal 16S rDNA sequences, and the sequence of each part was found at http://www.ncbi.nlm.nih.gov. The access was compared and searched in GenBank (National Center for Biotechnology Information, Rockville Pike, Bethesda, MD) through the Advanced BLAST similarity search option (Altschul et. Al., 1997).

그 결과, 두 개의 샘플로부터 총 13 균주를 분리하였는데(도 2), 샘플 A로부터 5 균주를 분리하여 균주 명을 FE 1 - FE 5로 정하였고, 샘플 B에서부터 8 균주를 분리하여 균주명을 임의로 FM 1 - FM 8로 정하였다. 현미경 및 콜로니 형태를 세밀히 관찰한 결과, FM 1 균주와 FE 2 균주는 같은 콜로니를 가진 미생물로 확인되어 FM 1을 제외시켰다. 또한, FE 2 및 FE 5 균주는 각각 FM 6 및 FM 7과 같은 형태의 효모 균주로 확인되었고 이 효모균을 따로 FY 1 및 FY 2라 명명하였다. 따라서 최종 순수 분리된 미생물수는 효모 2종을 포함해서 총 10종이다. 효모를 제외한 8종의 미생물의 동정 결과는 하기 표 1에 나타내었다. 효모의 동정은 이하에서 별도의 제목으로 자세히 설명하기로 한다.As a result, a total of 13 strains were isolated from the two samples (FIG. 2), 5 strains were isolated from sample A, and the strain names were defined as FE 1-FE 5, and 8 strains were separated from sample B to randomly select strain names. FM 1-FM 8 was set. As a result of observing the microscopic and colony form, FM 1 strain and FE 2 strain were identified as microorganisms having the same colonies, excluding FM 1. Also, FE 2 and FE 5 strains were identified as yeast strains of the same type as FM 6 and FM 7, respectively, and these yeasts were named FY 1 and FY 2 separately. Therefore, the total number of microorganisms finally separated is 10 species including 2 yeasts. Identification results of eight microorganisms except yeast are shown in Table 1 below. Identification of yeast will be described in detail below in a separate title.

[표 1]TABLE 1

Figure 112009026149252-pat00002
Figure 112009026149252-pat00002

상기 동정된 균주는 각각 바실러스 리체니포르미스(Bacillus licheniformis) FE1, 바실러스 세레우스(Bacillus cereus) FE3, 패니바실러스 에스피 H10-02(Paenibacillus sp. H10-02) FE4, 아세토박터 포모럼(Acetobacter pomorum) FM2, 아세토박터 페록시단스(Acetobacter peroxydans) FM3, 바실러스 서브틸리스(Bacillus subtilis) FM4, 락토바실러스 카제이(Lactobacilus casei) FM5 및 패니바실러스 에스피 P33(Paenibacillus sp. P33) FM8이라고 명명하였다.The identified strains were Bacillus licheniformis FE1, Bacillus cereus FE3, Paenibacillus sp. H10-02 FE4, Acetobacter pomorum , respectively . FM2, Acetobacter peroxydans FM3, Bacillus subtilis FM4, Lactobacilus casei FM5 and Paenibacillus sp. P33 FM8.

1-3. 효모 동정1-3. Yeast Identification

앞서 언급한 바와 같이, 순수 분리된 각 미생물 중 현미경 관찰을 통해 효모로 추정되는 미생물들을 따로 선택하여 FY1 및 FY2라 명명하였고, 각각 다른 효모배지(표 2)에 배양하여 각 배지 조성에 따른 반응특성 결과를 도 3의 효모 동정 기준에 따라 최종적으로 동정하였다.As mentioned above, among the microorganisms isolated from each pure microorganism, the microorganisms estimated as yeast through microscopic observation were separately selected and named FY1 and FY2, and the reaction characteristics according to the composition of each medium by incubation in different yeast media (Table 2) The results were finally identified according to the yeast identification criteria of FIG. 3.

[표 2] 효모 동정용 배지 조성(g/1L)TABLE 2 Yeast Identification Medium Composition (g / 1L)

Figure 112009026149252-pat00003
Figure 112009026149252-pat00003

현미경 관찰 결과, 발아 형태의 세포분열을 하는 효모균으로 추정되는 FY 1 및 FY 2 미생물에 대한 동정은 도 2에 있는 효모 동정 기준에 의해 분류하였다. 먼저, 0.8% 영양 브로쓰에 FY 1 및 FY 2 미생물을 접종하여 배양한 후, 균이 자란 액체 배지 위에 펠리클(pellicle)이 형성되는지를 확인하였다. FY1 및 FY2 모두 0.8% 영양 브로쓰에 펠리클이 형성되지 않아 도 2의 (B) 동정 기준을 따라 실험을 진행하였고, FY1 및 FY2 미생물이 형성하는 콜로니나 배양액 모두 색소 발생이 없어서 (B-2) 동정 기준에 따라 실험을 진행하였으며, 그 결과 FY1 및 FY2는 락토오스 배지에 자랐고 FY 2의 경우 펠리클을 형성하여 FY2 만 다시 (A) 동정 순서에 따라 다시 실험하였다. As a result of microscopic observation, the identification of FY 1 and FY 2 microorganisms presumed to be germ-shaped yeast cells was classified according to the yeast identification criteria in FIG. First, after inoculating FY 1 and FY 2 microorganisms in 0.8% nutrient broth, it was confirmed whether pellicles were formed on the liquid medium in which the bacteria were grown. Since the pellicle was not formed in the 0.8% nutrient broth in both FY1 and FY2, the experiment was conducted according to the identification criteria of FIG. 2, and both colonies and cultures formed by the FY1 and FY2 microorganisms did not have pigmentation (B-2). The experiment was conducted according to the identification criteria. As a result, FY1 and FY2 were grown in lactose medium, and in the case of FY 2, pellicles were formed, and only FY2 was again tested in the order of identification (A).

그 결과 60% 글루코오스 효모 추출물에서는 자라지 못하였지만, 말토오스 배 지에서는 성장하였다. 따라서 도 2의 효모 동정 기준에 의해 FY 2는 데바리오마이세스 한제니(Debaryomyces hansenii)로 분류되었으므로, 데바리오마이세스 한세니(Debaryomyces hansenii) FY2라고 명명하였고, FY1은 균주는 (B-2) 과정에 따라 락토오스 배지에서 자랐기 때문에 도 2의 동정 기준에 따라 클루이베로마이세스 프라질리스(Kluyveromyces fragilis)로 분류되었으므로 클루이베로마이세스 프라질리스(Kluyveromyces fragilis) FY1이라 명명하였다. 상기 K. fragilis는 병원성 미생물이 아니며, 주류 및 유가공 산업폐기물 속에서 잘 자라는 것으로 알려져 있어, 오폐수 처리에도 효과적으로 사용될 수 있는 균주이다. 따라서 처리 효과가 뛰어난 오폐수 처리 반응조에서 발견될 수 있는 균주라고 판단된다. As a result, it did not grow in 60% glucose yeast extract, but grew in maltose medium. Therefore, FY 2 was classified as Debaryomyces hansenii by the yeast identification criteria of FIG. 2, so it was named Debaryomyces hansenii FY2, and the strain FY1 was identified in (B-2). Therefore, it was classified as Kluyveromyces fragilis according to the identification criteria of FIG. 2 because it was grown in lactose medium, and was named Kluyveromyces fragilis FY1. The K. fragilis is not a pathogenic microorganism, and is known to grow well in the liquor and dairy industry wastes, and is a strain that can be effectively used for wastewater treatment. Therefore, it is judged that the strain can be found in the wastewater treatment reactor with excellent treatment effect.

상기 FY1 및 FY2는 저분자 당류 등을 발효시켜서 유용 아미노산, 비타민 및 알콜류 등으로 물질 전환을 해 주는 종으로서, 고농도 유기성 오ㆍ폐수의 유기 물처리에 관여하는 미생물이라 판단된다.FY1 and FY2 are fermenting low molecular sugars and converting them into useful amino acids, vitamins, and alcohols, and are considered to be microorganisms involved in organic water treatment of high concentration organic wastewater.

상기 분리 동정된 효모를 포함하는 총10종의 미생물은 복합 미생물로서 SejungBio-FA100으로 명명되었고, 2008년 10월 14일에 한국생명공학연구원 생물자원센터에 기탁번호 KCTC 11400BP로 기탁되었다. 상기 복합 미생물의 구체적인 함량은 다음 표 3과 같다. 이 복합 미생물은 냉장 상태(5±2℃)로 보관하였다. A total of 10 microorganisms including the isolated and identified yeasts were named SejungBio-FA100 as a complex microorganism, and deposited on the 14th of October, 2008 with the accession number KCTC 11400BP to the Biological Resource Center of Korea Research Institute of Bioscience and Biotechnology. Specific contents of the complex microorganisms are shown in Table 3 below. This complex microorganism was stored in a refrigerated state (5 ± 2 ℃).

[표 3]TABLE 3

미생물microbe 균수 (cfu/g)Number of bacteria (cfu / g) 함량 (중량%)Content (% by weight) 바실러스 리체니포르미스(Bacillus licheniformis) FE1 Bacillus licheniformis FE1 9X107 9X10 7 1515 바실러스 세레우스(Bacillus cereus) FE3 Bacillus cereus FE3 7.2X107 7.2 X 10 7 1212 패니바실러스 에스피 H10-02(Paenibacillus sp. H10-02) FE4 Paenibacillus sp. H10-02 FE4 4.2X107 4.2 X 10 7 77 아세토박터 포모럼(Acetobacter pomorum) FM2 Acetobacter pomorum FM2 7.2X107 7.2 X 10 7 1212 아세토박터 페록시단스(Acetobacter peroxydans) FM3 Acetobacter peroxydans FM3 7.2X107 7.2 X 10 7 1212 바실러스 서브틸리스(Bacillus subtilis) FM4 Bacillus subtilis FM4 4.2X107 4.2 X 10 7 77 락토바실러스 카제이(Lactobacillus casei) FM5 Lactobacillus casei FM5 6X107 6X10 7 1010 패니바실러스 에스피P33(Panibacillus sp. p33) FM8 Panibacillus sp. P33 fm8 4.2X107 4.2 X 10 7 77 클루이베로마이세스 프라질리스(Kluyveromyces fragilis) FY1 Kluyveromyces fragilis FY1 5.4X107 5.4 X 10 7 99 데바리오마이세스 한제니(Debaryomyces hansenii) FY2 Debaryomyces hansenii FY2 5.4X107 5.4 X 10 7 99

실시예 2 : 복합 미생물 제제의 제조Example 2: Preparation of Complex Microbial Formulations

상기 실시예 1의 냉장보관중인 복합 미생물의 종균 4 중량부, 수크로오스 6중량부, 펩톤 2 중량부, 락토오스 0.1 중량부 및 효모 추출물 1 중량부에 나머지 물을 섞어서 100 중량부가 되도록 배양기에서 혼합하고(초기 pH 6.8), 30℃에서 배양기에 공기를 강하게 공급하면서 24시간 동안 배양하였다. 그 이후, 공기 공급을 중단하고, 교반 상태에서 4일간 더 배양하여 복합 미생물 SejungBio-FA100 배양액을 얻었다. 4 parts by weight of the microorganisms in the refrigerated complex of Example 1, 6 parts by weight of sucrose, 2 parts by weight of peptone, 0.1 parts by weight of lactose and 1 part by weight of the yeast extract and mixed in the incubator to 100 parts by weight ( Initial pH 6.8), incubated for 24 hours with a strong air supply to the incubator at 30 ℃. Thereafter, the air supply was stopped, and further cultured for 4 days while stirring to obtain a complex microorganism SejungBio-FA100 culture.

상기 복합 미생물 배양액 20 중량%, 쌀겨 30 중량%, 음식물 찌꺼기 발효물 30 중량%(음식물 찌꺼기 발효물은 SejungBio-FA100 100 중량부에 음식물 찌꺼기 100 중량부와 톱밥 800 중량부를 혼합하고 45℃에서 4일 동안 교반발효하여 얻었다), 왕겨숯 조분말 10 중량% 및 부식토 10 중량%를 혼합하고 45℃에서 고형발효(모델명 : KJ-3, 제조원 : 코이에나, 한국) 하면서 수분 함량을 40 내지 50 % 사이 로 건조시켜서 복합 미생물 제제를 제조하였다.20% by weight of the composite microbial culture medium, 30% by weight of rice bran, 30% by weight of food waste fermentation (food waste ferment is 100 parts by weight of food waste and 800 parts by weight of sawdust mixed with 100 parts by weight of SejungBio-FA100 and 4 days at 45 ℃ Obtained by stirring and fermentation), 10% by weight of coarse rice husk charcoal and 10% by weight of humus earth and solid fermentation (model name: KJ-3, manufactured by Koena, Korea) at 45 ℃ moisture content between 40 to 50% The composite microbial formulation was prepared by drying with.

실시예 3 : 복합미생물 제제의 탈질 반응 실험Example 3: Denitrification Experiment of Complex Microbial Formulation

3-1 주사기에서의 탈질 반응 실험3-1 Denitrification Test in Syringe

실시예 2의 복합 미생물 제제에 대한 호기 탈질반응 특성 실험은 도 6과같이 50 mL 주사기를 사용하여 산소를 공급한 호기적 상태에서 실행하였고, 산소를 공급하지 않은 혐기적 상태의 실험을 동시에 진행시켜 그 반응 특성을 비교하였다. 먼저 5%(w/v)의 실시예 2의 복합 미생물 제제 2 g이 포함된 액체배지(PYK 배지: 5 g 펩톤; 3 g 효모 추출물; 2 g KNO3 (초기pH 7.0)) 20 mL을 멸균된 주사기에 담고, 호기적 조건을 위해서 50 mL 주사기 내로 산소 10 mL을 Hamilton gastight 주사기를 사용하여 공급한 후, 50 mL 주사기를 180 rpm 쉐이킹 인큐베이터에 넣고 30℃조건에서 배양하였다. 배지 내의 용존산소가 부족할 때마다 계속적으로 산소를 공급하였고, 주사기 내에 발생되는 가스는 일정시간마다 샘플링하여 GC(가스크로마토그래피)로 분석하였다. GC (Gas Chromatography) 분석을 통하여 가스 중 탈질에 의해 발생된 N2 가스의 조성을 알아보았는데, 가스 측정은 먼저 50 μL 가스-타이트 주사기를 이용하여 50 mL 주사기로부터 가스를 채취하여, 그 중 20 μL 가스를 GC/TCD (Perkin Elmer Instruments)에 주입하여 분석하였다. 탈질 미생물에 의해 생성된 N2 가스의 농도는 표준 곡선에 의하여 구하였고, N2 가스의 양은 이상기체 법칙에 의한 화학양론식에 의해 계산하였다.The aerobic denitrification reaction of the complex microbial preparation of Example 2 was carried out in an aerobic state in which oxygen was supplied using a 50 mL syringe, as shown in FIG. The reaction characteristics were compared. First sterilize 20 mL of liquid medium (PYK medium: 5 g peptone; 3 g yeast extract; 2 g KNO 3 (initial pH 7.0)) containing 2 g of 5% (w / v) complex microbial preparation of Example 2 10 mL of oxygen was supplied into a 50 mL syringe using a Hamilton gastight syringe for aerobic conditions, and then the 50 mL syringe was placed in a 180 rpm shaking incubator and incubated at 30 ° C. Whenever dissolved oxygen in the medium was insufficient, oxygen was continuously supplied, and the gas generated in the syringe was sampled at regular time and analyzed by GC (Gas Chromatography). Gas Chromatography (GC) analysis was performed to determine the composition of N2 gas produced by denitrification in the gas. Gas measurement was performed by first collecting a gas from a 50 mL syringe using a 50 μL gas-tight syringe. Analysis was performed by injection into GC / TCD (Perkin Elmer Instruments). The concentration of N2 gas produced by the denitrification microorganism was obtained by a standard curve, and the amount of N2 gas was calculated by stoichiometric formula according to the ideal gas law.

그 결과, 혐기성 주사기 실험의 경우(도 5a), 반응 3 시간 만에 가스 버블이 발생하기 시작하여, 반응 8 시간 안에 가스 측정이 가능한 1.5 mL이 발생하였다. GC를 이용하여 분석한 결과, 37.0 ㎛ole의 N2가 발생한 것임을 알 수 있었고, 최종 반응 72 시간 후에는 72.1 ㎛ole 발생하였고, 이때, 미지의 가스는 최종 28.3 ㎛ole이 발생하였는데, CO2 가스 분석에서 이 가스의 대부분이 CO2 임을 알 수 있었고, 황화수소 등으로 추정되는 냄새도 맡을 수 있었다(도 6). As a result, in the case of anaerobic syringe experiment (FIG. 5A), gas bubbles began to be generated after 3 hours of reaction, and 1.5 mL of gas measurement was possible within 8 hours of reaction. As a result of analysis using GC, it was found that N 2 of 37.0 μmole occurred, and 72.1 μmole generated after 72 hours of the final reaction. At this time, the final gas generated 28.3 μmole, which was analyzed by CO2 gas. It was found that most of this gas was CO2, and it could smell like hydrogen sulfide (Fig. 6).

호기성 주사기 실험의 경우(도 5b), 반응 8 시간 내에 산소가 거의 소모되어 산소를 3차례 재주입을 해주었고, N2가스는 반응 72 시간동안 최종 64.2 ㎛ole이 발생하였다. N2가스 이외에 미확인 가스가 최종 411.9 ㎛ole이 발생되었는데, 대부분이 CO2 가스 이었다. 따라서 혐기적 상태에서 조금 더 많은 N2 가스가 발생하였으나, 호기적 상태에서 충분한 탈질반응이 일어남을 알 수 있었다. In the case of aerobic syringe experiment (FIG. 5B), oxygen was almost consumed within 8 hours of reaction to re-inject oxygen three times, and N 2 gas generated 64.2 μmole in the final 72 hours of reaction. In addition to the N 2 gas, an unidentified gas generated a final 411.9 μmole, most of which was a CO 2 gas. Therefore, a little more N 2 gas was generated in the anaerobic state, but sufficient denitrification occurred in the aerobic state.

3-2 1L 5-neck 플라스크에서의 호기탈질반응 실험3-2 Aerobic Denitrification in a 1L 5-neck Flask

실시예 3-1의 주사기 반응기에서 나타난 탈질 반응의 주요 반응 파라미터의 변화를 관찰하기 위하여, 3일 동안 순치된 5%(w/v)의 실시예 2의 복합 미생물 제제가 포함된 액체배지(PYK 배지: 5 g 펩톤; 3 g 효모 추출물; 2 g KNO3(초기 pH 7)) 20 mL를 1L 5-neck 플라스크로 접종하여 실험하였다. 1L 플라스크를 30℃ 항온수조에 넣어 배양하였다. 호기적인 조건을 위해 모든 실험 장치를 설치한 후, 5-neck 플라스크 내로 10분간 에어레이션(aeration)을 시키고 샘플링을 하였다. 호기적인 조건을 위해 DO값이 0.5 mg/L 이하로 떨어질 때, 퓨어 O2(80% 순도)를 0.2 ㎛ 필터를 통해 공급해 주었다.In order to observe the change in the main reaction parameters of the denitrification reaction seen in the syringe reactor of Example 3-1, a liquid medium containing 5% (w / v) of the composite microbial formulation of Example 2 incubated for 3 days (PYK) Medium: 5 g peptone; 3 g yeast extract; 2 g KNO 3 (initial pH 7)) was inoculated in a 1 L 5-neck flask. 1 L flask was incubated in a 30 ℃ constant temperature water bath. After all experimental equipment was set up for aerobic conditions, aeration was performed for 10 minutes into a 5-neck flask and sampled. Pure O 2 (80% purity) was fed through a 0.2 μm filter when the DO value dropped below 0.5 mg / L for aerobic conditions.

실시간으로 pH, DO, ORP(산화환원전위)를 측정하였으며, 정기적 샘플링을 통하여 DSW(Dry Sludge Weight), CODcr, 총질소(Total Nitrogen, TN)(L),총켈달질소(Total Kjeldahl Nitrogen, TKN)(L+s), IC(NH4+, NO3-, NO2-)을 분석하였으며, TN(s)은 DSW를 이용한 균체 중의 N성분을 이론적 계산에 의해 값을 구하였다. 또한 생균체수는 콜로니 형성 개체(CFU)로 측정하여 최종적으로 희석율을 고려한 생균체수 농도를 구하였다.PH, DO, ORP (Redox Reduction Potential) was measured in real time, and through regular sampling, DSW (Dry Sludge Weight), CODcr, Total Nitrogen (TN) (L), Total Kjeldahl Nitrogen, TKN ) (L + s) and IC (NH4 +, NO3-, NO2-) were analyzed, and TN (s) was determined by theoretical calculation of the N component in the cells using DSW. In addition, the number of viable cells was measured by colony forming individuals (CFU) to finally determine the number of viable cells considering the dilution rate.

도 7a에 나타난 바와 같이 플라스크 내의 DO 농도의 변화를 살펴보면, 처음 2.5 mg/L이였던 용존산소는 계속적으로 공급된 산소에 의해 반응 3 시간 이후에는 4.6 mg/L까지 증가하였다. 하지만 산소의 공급이 중단된 후 1-2 시간 안에 0.2 mg/L까지 감소하였다. 그 이후 2 차례 더 산소를 공급해 주었지만, 실시예 2의 복합 미생물 제제에 의한 활발한 산소 소모로 DO의 값은 증가되지 못하고 낮게 유지되었다. 이때, ORP 변화를 살펴보면, 처음 3시간 높은 DO 농도 하에서는 + 값을 유지하다가 DO의 급격한 감소와 함께 반응 4 시간 안에 -33.6 mV로 떨어졌고, 반응 6 시간 이후부터는 차츰 증가하기 시작하여 반응 9 시간부터는 + 값을 유지하였다. 그러나, 반응 32 시간 이후부터는 다시 감소하는 경향을 보이면서 최종 ORP 값은 -19 mV 이었다. pH의 경우, 초기 2 시간 동안 6.52에서 5.53까지 감소하였지만, 반 응 시간이 지속될수록 증가하여 최종 pH는 6.24를 나타내었는데, 이는 본 발명의 호기탈질 미생물에 의한 활발한 탈질반응으로 알칼리도의 회복이 어느 정도 일어나고 있음을 말해 준다. 또한, 도 7b에 나타난 바와 같이, CODcr와 TN, TKN의 값들은 감소하는 경향을 볼 수 있다. As shown in FIG. 7A, the concentration of DO in the flask was increased to 4.6 mg / L after 3 hours of reaction by continuously supplied oxygen. However, it decreased to 0.2 mg / L within 1-2 hours after the oxygen supply was stopped. After that, two more oxygens were supplied, but the DO value did not increase but remained low due to active oxygen consumption by the complex microbial preparation of Example 2. At this time, the change in ORP was maintained in the first 3 hours at a high DO concentration, but then decreased to -33.6 mV within 4 hours with a sharp decrease in DO, and gradually increased after 6 hours, starting from 9 hours. The positive value was maintained. However, after 32 hours of reaction, the final ORP value was -19 mV, showing a tendency to decrease again. In the case of pH, it decreased from 6.52 to 5.53 for the first 2 hours, but increased as the reaction time continued, resulting in a final pH of 6.24. Tell them what is happening. In addition, as shown in Figure 7b, the values of CODcr, TN, TKN can be seen to decrease.

이와 같이, 본 발명의 복합 미생물 제제는 호기적 조건에서도 탈질 반응이 활발하게 일어남을 알 수 있다.As such, it can be seen that the complex microbial preparation of the present invention is actively denitrified even under aerobic conditions.

실시예 4: 복합 미생물 제제의 오폐수의 유기물 처리 및 탈질소 처리 확인 Example 4 Confirmation of Organic Matter Treatment and Denitrogenation Treatment of Waste and Wastewater in Complex Microbial Formulations

4-1: 호기 조건 하에서의 폐수의 탈질 처리 확인4-1: Confirmation of denitrification of wastewater under aerobic conditions

도 8에 도시된 바와 같은 피혁폐수처리장의 오ㆍ폐수 처리시설을 이용하였다. 폐수 처리 용량은 약 5,000 ㎥/d이고, 전단에서 처리된 월류수가 생물반응조[폭기조 용량 18,000 ㎥, 이 폭기조가 8개로 구획된 다단 폭기조(B1, B2, B3, B4, B5, B6, B7 및 B8)]에 유입되어 처리되는 조건이었다. 유입수의 COD 농도는 대개 100~200 mg/l 이고 총질소는 150~200 mg/L이다. 이 처리조에 실시예 2의 복합 미생물 제제를 일당 2~3㎥로 첫 단인 B1 폭기조에 약 70~90% 그리고 암모니아성 질소가 질산성 질소로 대부분 전환되는 조인 B5 내지B6 폭기조에 10~30%를, 질소의 처리유형을 살펴가면서, 유동적으로 투입하였다. 또 이 폭기조의 전단 처리되는 월류수를 150ℓ/min (부족되는 알카리도와 탄소원 보충을 위해)으로 B6 폭기조에 연속투입하고, 용존산소(DO)가 호기적 조건인 0.5 내지 2.0 mg/l 사이에서 운전한 결 과, 암모니아성 질소(NH4-N)와 아질산성 질소(NO2-N)가 부분적으로 감소하거나 전환되면서 증가된 질산성질소(NO3-N)가 후단 B5 폭기조부터 대폭 감소하면서, 전체 질소 함량이 감소하는 결과를 나타내었다(도 9). 따라서, 본 발명의 복합 미생물제제에 의해 폭기조가 호기성 조건에서도 탈질 현상이 발생하여 질소가 처리됨을 알 수 있었다. The wastewater treatment facility of the leather wastewater treatment plant as shown in FIG. 8 was used. The wastewater treatment capacity is about 5,000 m3 / d, and the overflow water treated at the front end is bioreactor [aeration tank capacity 18,000 m3, multi-stage aeration tank (B1, B2, B3, B4, B5, B6, B7, and B8 divided into eight aeration tanks). )] Was the condition to flow into the process. Influent COD concentrations are usually between 100 and 200 mg / l and total nitrogen is between 150 and 200 mg / l. In the treatment tank, the composite microbial preparation of Example 2 was 2 to 3 m3 per day, about 70 to 90% in the first stage B1 aeration tank, and 10 to 30% in the B5 to B6 aeration tank where most of the ammonia nitrogen was converted to nitrate nitrogen. In addition, the processing type of nitrogen was added while fluidly flowing. The aeration tank was continuously charged with 150 L / min (for replenishing insufficient alkalinity and carbon source) into the B6 aeration tank, and the dissolved oxygen (DO) was operated between 0.5 and 2.0 mg / l, which is an aerobic condition. As a result, the ammonia nitrogen (NH 4 -N) and nitrite nitrogen (NO 2 -N) were partially reduced or converted, so that the increased nitrogen nitrate (NO 3 -N) decreased drastically from the rear B5 aeration tank. The results showed that the nitrogen content was reduced (FIG. 9). Therefore, it can be seen that the denitrification phenomenon occurs in the aeration tank under aerobic conditions by the complex microbial preparation of the present invention, so that nitrogen is treated.

4-2: 폐수의 유기물 처리 확인4-2: Confirmation of Organics Treatment of Wastewater

도 10에 도시된 바와 같이, 폐수 속에 함유된 유기물의 일반적 지표인 화학적 산소 요구량(COD)도 호기탈질이 일어나는 B5 폭기조에서 감소하는 결과를 보인다. 이는 호기 탈질 과정에 일부 유기물을 타가영양성 호기탈질미생물이 (바실러스 계열 등) 가용화하면서 COD가 동반 감소하는 것으로 판단된다. As shown in FIG. 10, the chemical oxygen demand (COD), which is a general indicator of organic matter contained in the wastewater, also decreases in the B5 aeration tank where aerobic denitrification occurs. It is believed that COD decreases as some organics are solubilized by other nutrients such as Bacillus.

상기 설명한 것과 같은 호기 조건에서의 효과적인 질소의 고도처리는, 단일 호기조에 내부 격벽을 설치하여 다단 구조를 취하고(도 11의 호기조 1, 2 및 3과 같은 것을 예로 들 수 있음), 질소가 처리되는 유형을 조사하여 필요한 구역에 본 발명의 복합 미생물 배양액을 주입하는 방법이 효과적이다.The effective treatment of nitrogen in aerobic conditions as described above is to take an internal bulkhead in a single aerobic tank to take a multistage structure (such as those in aerobic tanks 1, 2 and 3 of FIG. 11), and to process nitrogen. The method of investigating the type and injecting the complex microbial culture of the present invention to the required area is effective.

4-3: 하수의 유기물 처리 및 탈질 처리 확인4-3: Confirmation of organic matter treatment and denitrification of sewage

실시예 2의 복합 미생물 제제를 하수에 적용하기 위해, 실험실 수준의 포트 테스트(pot test)를 실시하였다. 20 L의 플라스틱 시험 용기에 하수 15 L를 넣고, 반응기 내 활성슬러지(mixed liquor suspended solid, MLSS) 농도를 3,000 mg/L로 조정하고, pH는 7.2, DO는 1.0~2.0 mg/L, 실시예 2의 복합 미생물 제제 0.1% 투입한 조건에서 부산 장림하수 처리장으로 유입되는 하수원수를 대상으로 시험하였다. In order to apply the composite microbial preparation of Example 2 to sewage, a laboratory level pot test was conducted. 15 L of sewage was added to a 20 L plastic test vessel and the concentration of mixed liquor suspended solids (MLSS) in the reactor was adjusted to 3,000 mg / L, pH was 7.2, DO was 1.0-2.0 mg / L, Example Sewage source water flowing into Janglim sewage treatment plant was tested under 0.1% of the combined microbial preparation of 2.

도 12에 나타난 바와 같이, 초기 COD가 350 mg/L에서 반응시간 이 4 시간이 경과하면서부터 COD와 총질소가 급격히 감소하였고, 반응시간 8 시간이 경과하면서 COD는 17 mg/L 그리고 총질소는 12 mg/L 로 나타났다. 이는 본 발명의 복합 미생물 SejungBio-FA100 및 이를 포함하는 복합 미생물 제제를 이용하여 하수처리장 방류수에 대한 고도처리 효과를 단일 반응기와 호기반응조건하에서 수행할 수 있음을 나타내는 것이다.As shown in FIG. 12, the COD and total nitrogen rapidly decreased from the initial COD of 350 mg / L after the reaction time of 4 hours, and the COD of 17 mg / L and the total nitrogen of 8 hours of reaction time. 12 mg / L. This indicates that the complex microorganism SejungBio-FA100 of the present invention and the complex microbial preparation including the same can perform the high-treatment effect on the sewage treatment plant effluent under a single reactor and aerobic reaction conditions.

본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다. Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

도 1a 및 1b는 종래기술에 의한 탈질화 반응을 도식적으로 나타낸 것이다.1a and 1b schematically show a denitrification reaction according to the prior art.

도 2는 순수 분리된 각 미생물의 콜로니 사진을 나타낸 것이다. (A) FE 1; (B) FE 2; (C) FE 3; (D) FE 4; (E) FE 5; (F) FM 1; (G) FM 2; (H) FM 3; (I) FM 4; (J) FM 5; (K) FM 6; (L) FM 7; (M) FM 8이다.Figure 2 shows a colony picture of each microorganism purely separated. (A) FE 1; (B) FE 2; (C) FE 3; (D) FE 4; (E) FE 5; (F) FM 1; (G) FM 2; (H) FM 3; (I) FM 4; (J) FM 5; (K) FM 6; (L) FM 7; (M) FM 8.

도 3은 효모의 동정 기준을 나타낸 것이다.Figure 3 shows the criteria for identifying yeast.

도 4는 호기/혐기 탈질화에 이용된 50 mL 주사기 사진을 나타낸 것이다. 4 shows a 50 mL syringe photograph used for aerobic / anaerobic denitrification.

도 5은 혐기성 조건(A)과 호기성 조건(B) 하의 주사기 실험에서 가스 조성의 변화를 나타낸 그래프이다. (↓)는 O2 공급, ( ● )는 O2 ; ( ■ )는 N2 그리고 ( ▲ )는 미확인 가스이다. 5 is a graph showing changes in gas composition in syringe experiments under anaerobic conditions (A) and aerobic conditions (B). (↓) is O 2 , (●) is O 2 ; (■) is N 2 and (▲) is unidentified gas.

도 6은 혐기성 조건에서의 주사기 실험 사진을 나타낸 것이다.Figure 6 shows a photograph of a syringe experiment in anaerobic conditions.

도 7a는 실시예 3-2에 따른 1L 5-neck 플라스크에서의 호기탈질반응 실험시의 파라미터 변화를 나타낸 것이다. (↔) O2는 산소 공급; (●)는 DO; (▲)는 pH; (■)는 ORP; 및 (▼)는 생균수를 나타낸다. Figure 7a shows the parameter change during the aerobic denitrification experiment in a 1L 5-neck flask according to Example 3-2. (↔) O 2 is oxygen supply; (●) DO; (▲) is pH; (■) is ORP; And (▼) indicate viable counts.

도 7b는 실시예 3-2에 따른 1L 5-neck 플라스크에서의 호기탈질반응 실험시의 파라미터 변화를 나타낸 것이다. (●)는 CODcr; (▲)는 TN; 그리고 (■)는 TKN을 나타낸다.Figure 7b shows the parameter change during the aerobic denitrification experiment in a 1L 5-neck flask according to Example 3-2. (●) represents CODcr; (▲) is TN; And (■) represents TKN.

도 8은 본 발명의 실시예 4에 따른 오폐수 처리 시설을 모식적으로 나타낸 것이다. P: 펌프, A1: 제1 세팅 탱크, A2: 제2 세팅 탱크, A3: 제3 세팅 탱크, C1: 제1 액화 탱크 및 C2: 제2 액화 탱크를 나타낸다.8 schematically shows a wastewater treatment plant according to a fourth embodiment of the present invention. P: pump, A1: first setting tank, A2: second setting tank, A3: third setting tank, C1: first liquefaction tank and C2: second liquefaction tank.

도 9는 실시예 4에 따른 폭기조에서의 질소 제거 유형과 용존산소와의 관계를 나타낸 그래프이다.9 is a graph showing the relationship between the nitrogen removal type and dissolved oxygen in the aeration tank according to Example 4.

도 10은 실시예 4에 따른 복합 미생물 제제 투입 폭기조에서의 COD와 DO 관계를 나타낸 그래프이다.10 is a graph showing the relationship between the COD and DO in a composite microbial preparation aeration tank according to Example 4.

도 11은 본 발명의 일 실시예에 따른 복합 미생물 제제의 투입 및 유기물 처리 공정과 호기 탈질 처리 공정을 나타낸 것이다.11 is a view illustrating a process for adding a complex microbial preparation and an organic material treatment process and an aerobic denitrification process according to an embodiment of the present invention.

도 12는 본 발명의 실시예에 따른 하수에 대한 COD와 T-N 처리 효과를 나타낸 그래프이다. 12 is a graph showing the effects of COD and T-N treatment for sewage according to an embodiment of the present invention.

<110> LEE, Geon SEJUNG BIOTECH CO.LTD. <120> Complex strain for the waste water/sewage treatment and Nitrogen treatment process using the same <130> P08-270 <150> KR10-2008-0107867 <151> 2008-10-31 <160> 8 <170> KopatentIn 1.71 <210> 1 <211> 1402 <212> DNA <213> Bacillus licheniformis <400> 1 ttttaagatt tnnnntcggc tcaggacgaa cgctggcggc gtgcctaata catgcaagtc 60 gagcggacag atgggagctt gctccctgat gttagcggcg gacgggtgag taacacgtgg 120 gtaacctgcc tgtaagactg ggataactcc gggaaaccgg ggctaatacc ggatggttgt 180 ttgaaccgca tggttcaaac ataaaaggtg gcttcggcta ccacttacag atggacccgc 240 ggcgcattag ctagttggtg aggtaacggc tcaccaaggc gacgatgcgt agccgacctg 300 agagggtgat cggccacact gggactgaga cacggcccag actcctacgg gaggcagcag 360 tagggaatct tccgcaatgg acgaaagtct gacggagcaa cgccgcgtga gtgatgaagg 420 ttttcggatc gtaaagctct gttgttaggg aagaacaagt accgttcgaa tagggcggta 480 ccttgacggt acctaaccag aaagccacgg ctaactacgt gccagcagcc gcggtaatac 540 gtaggtggca agcgttgtcc ggaattattg ggcgtaaagg gctcgcaggc ggtttcttaa 600 gtctgatgtg aaagcccccg gctcaaccgg ggagggtcat tggaaactgg ggaacttgag 660 tgcagaagag gagagtggaa ttccacgtgt agcggtgaaa tgcgtagaga tgtggaggaa 720 caccagtggc gaaggcgact ctctggtctg taactgacgc tgaggagcga aagcgtgggg 780 agcgaacagg attagatacc ctggtagtcc acgccgtaaa cgatgagtgc taagtgttag 840 ggggtttccg ccccttagtg ctgcagctaa cgcattaagc actccgcctg gggagtacgg 900 tcgcaagact gaaactcaaa ggaattgacg ggggcccgca caagcggtgg agcatgtggt 960 ttaattcgaa gcaacgcgaa gaaccttacc aggtcttgac atcctctgac aatcctagag 1020 ataggacgtc cccttcgggg gcagagtgac aggtggtgca tggttgtcgt cagctcgtgt 1080 cgtgagatgt tgggttaagt cccgcaacga gcgcaaccct tgatcttagt tgccagcatt 1140 cagttgggca ctctaaggtg actgccggtg acaaaccgga ggaaggtggg gatgacgtca 1200 aatcatcatg ccccttatga cctgggctac acacgtgcta caatggacag aacaaagggc 1260 agcgaaaccg cgaggttaag ccaatcccac aaatctgttc tcagttcgga tcgcagtctg 1320 caactcgact gcgtgaagct ggaatcgcta gtaatcgcgg atcacatgcn gcgggttgaa 1380 tacgttcccg gggcttgtac ac 1402 <210> 2 <211> 1401 <212> DNA <213> Bacillus cereus <400> 2 cactagagtt tgatcatggc tcaggatgaa cgctggcggc gtgcctaata catgcaagtc 60 gagcgaatgg attgagagct tgctctcaag aagttagcgg cggacgggtg agtaacacgt 120 gggtaacctg cccataagac tgggataact ccgggaaacc ggggctaata ccggataata 180 ttttgaactg catggttcga aattgaaagg cggcttcggc tgtcacttat ggatggaccc 240 gcgtcgcatt agctagttgg tgaggtaacg gctcaccaag gcaacgatgc gtagccgacc 300 tgagagggtg atcggccaca ctgggactga gacacggccc agactcctac gggaggcagc 360 agtagggaat cttccgcaat ggacgaaagt ctgacggagc aacgccgcgt gagtgatgaa 420 ggctttcggg tcgtaaaact ctgttgttag ggaagaacaa gtgctagttg aataagctgg 480 caccttgacg gtacctaacc agaaagccac ggctaactac gtgccagcag ccgcggtaat 540 acgtaggtgg caagcgttat ccggaattat tgggcgtaaa gcgcgcgcag gtggtttctt 600 aagtctgatg tgaaagccca cggctcaacc gtggagggtc attggaaact gggagacttg 660 agtgcagaag aggaaagtgg aattccatgt gtagcggtga aatgcgtaga gatatggagg 720 aacaccagtg gcgaaggcga ctttctggtc tgtaactgac actgaggcgc gaaagcgtgg 780 ggagcaaaca ggattagata ccctggtagt ccacgccgta aacgatgagt gctaagtgtt 840 agagggtttc cgccctttag tgctgaagtt aacgcattaa gcactccgcc tggggagtac 900 ggccgcaagg ctgaaactca aaggaattga cgggggcccg cacaagcggt ggagcatgtg 960 gtttaattcg aagcaacgcg aagaacctta ccaggtcttg acatcctctg aaaaccctag 1020 agatagggct tctccttcgg gagcagagtg acaggtggtg catggttgtc gtcagctcgt 1080 gtcgtgagat gttgggttaa gtcccgcaac gagcgcaacc cttgatctta gttgccatca 1140 ttaagttggg cactctaagg tgactgccgg tgacaaaccg gaggaaggtg gggatgacgt 1200 caaatcatca tgccccttat gacctgggct acacacgtgc tacaatggac ggtacaaaga 1260 gctgcaagac cgcgaggtgg agctaatctc ataaaaccgt tctcagttcg gattgtaggc 1320 tgcaactcgc ctacatgaag ctggaatcgc tagtaatcgc ggatcacatg cccgggttga 1380 atacgttccc ggggcttgta c 1401 <210> 3 <211> 1312 <212> DNA <213> Paenibacillus sp. H10-02 <400> 3 ttagcggcgg acgggtgagt aacacgtagg caacctgcct ataagactgg gataactatc 60 ggaaacgata gctaagaccg gataactggt tttctcgcat gagagaatca tgaaacacgg 120 agcaatctgt ggcttataga tgggcctgcg gcgcattagc tagttggtga ggtaacggct 180 caccaaggcg acgatgcgta gccgacctga gagggtgaac ggccacactg ggactgagac 240 acggcccaga ctcctacggg aggcagcagt agggaatctt ccgcaatgga cgcaagtctg 300 acggagcaac gccgcgtgag tgatgaaggt tttcggatcg taaagctctg ttgccctaga 360 cgaacagcaa ggcgagtaac tgcgctttgt gtgacggtat aggagaagaa agccccggct 420 aactacgtgc cagcagccgc ggtaatacgt agggggcaag cgttgtccgg aattattggg 480 cgtaaagcgc gcgcaggcgg tcaattaagt tgggtgttta agcccggggc tcaaccccgg 540 ttcgcatcca aaactggttg acttgagtgt aggagaggaa agtggaattc cacgtgtagc 600 ggtgaaatgc gtagagatgt ggaggaacac cagtggcgaa ggcgactttc tggcctataa 660 ctgacgctga ggcgcgaaag cgtggggagc aaacaggatt agataccctg gtagtccacg 720 ccgtaaacga tgcatactag gtgttgggga ttcgattcct cggtgccgaa gttaacacag 780 taagtatgcc gcctggggag tacgctcgca agagtgaaac tcaaaggaat tgacggggac 840 ccgcacaagc agtggagtat gtggtttaat tcgaagcaac gcgaagaacc ttaccaggtc 900 ttgacatccc tctgtaagct ctagagatag agccctcctt cggaacatag gagacaggtg 960 gtgcatggtt gtcgtcagct cgtgtcgtga gatgttgggt taagtcccgc aacgagcgca 1020 acccttgatc ttagttgcca gcacttcggg tgggcactct aagatgactg ccggtgacaa 1080 accggaggaa ggtggggatg acgtcaaatc atcatgcccc ttatgacctg ggctacacac 1140 gtactacaat ggtcggtaca acgggaagcg aagccgcgag gcggagccaa tccttataag 1200 ccgatctcag ttcggattgc aggctgcaac tcgcctgcat gaagtcggaa ttgctagtaa 1260 tcgcggatca gcatgccgcg gtgaatacgt tcccgggtct tgtacacacc gc 1312 <210> 4 <211> 1345 <212> DNA <213> Acetobacter pomorum <400> 4 aatagagttt tngactggct cagagcgaac gctggcggca tgcttaacac atgcaagtcg 60 cacgaaggtt tcggccttag tggcggacgg gtgagtaacg cgtaggaatc tatccatggg 120 tgggggataa cactgggaaa ctggtgctaa taccgcatga tacctgaggg tcaaaggcgc 180 aagtcgcctg tggaggagcc tgcgttcgat tagctagttg gtggggtaaa ggcctaccaa 240 ggcgatgatc gatagctggt ttgagaggat gatcagccac actgggactg agacacggcc 300 cagactccta cgggaggcag cagtggggaa tattggacaa tgggggcaac cctgatccag 360 caatgccgcg tgtgtgaaga aggtcttcgg attgtaaagc actttcgacg gggacgatga 420 tgacggtacc cgtagaagaa gccccggcta acttcgtgcc agcagccgcg gtaatacgaa 480 gggggctagc gttgctcgga atgactgggc gtaaagggcg tgtaggcggt tttgacagtc 540 agatgtgaaa tccccgggct taacctggga gctgcatttg agacgttaag actagagtgt 600 gagagagggt tgtggaattc ccagtgtaga ggtgaaattc gtagatattg ggaagaacac 660 cggtggcgaa ggcggcaacc tggctcatta ctgacgctga ggcgcgaaag cgtggggagc 720 aaacaggatt agataccctg gtagtccacg ctgtaaacga tgtgtgctag atgttgggta 780 acttagttac tcagtgtcgc agttaacgcg ttaagcacac cgcctgggga gtacggccgc 840 aaggttgaaa ctcaaaggaa ttgacggggg cccgcacaag cggtggagca tgtggtttaa 900 ttcgaagcaa cgcgcagaac cttaccaggg cttgaatgtg gaggctgtag gcagagatgt 960 ctatttcttc ggacctccaa cacaggtgct gcatggctgt cgtcagctcg tgtcgtgaga 1020 tgttgggtta agtcccgcaa cgagcgcaac ccctatcttt agttgccagc atgtttgggt 1080 gggcactcta gagagactgc cggtgacaag ccggaggaag gtggggatga cgtcaagtcc 1140 tcatggccct tatgtcctgg gctacacacg tgctacaatg gcggtgacag tgggaagcta 1200 tgtggtgaca cagtgctgat ctctaaaagc cgtctcagtt cggattgcac tctgcaactc 1260 gagtgcatga aggtggaatc gctagtaatc gcggatcagc atgcccgcgg tgaatacgtt 1320 cccgggcctt gtacacaccg cccgt 1345 <210> 5 <211> 1420 <212> DNA <213> Acetobacter peroxydans <400> 5 tttgacaagg aggacgaatt gtacaacagg atatctatca acacaggaaa gaaaaccggc 60 aggaggcaaa agaaacgaaa caccacccca gaaaaaacac aacactagag ttgaatcatg 120 gctcagagcg aacgctggcg gcatgcttaa cacatgcaag tcgcacgaag gtttcggcct 180 tagtggcgga cgggtgagta acgcgtagga atctatccat gggtggggga taacactggg 240 aaactggtgc taataccgca tgatacctga gggtcaaagg cgcaagtcgc ctgtggagga 300 gcctgcgttc gattagctag ttggtggggt aaaggcctac caaggcgatg atcgatagct 360 ggtttgagag gatgatcagc cacactggga ctgagacacg gcccagactc ctacgggagg 420 cagcagtggg gaatattgga caatgggggc aaccctgatc cagcaatgcc gcgtgtgtga 480 agaaggtctt cggattgtaa agcactttcg acggggacga tgatgacggt acccgtagaa 540 gaagccccgg ctaacttcgt gccagcagcc gcggtaatac gaagggggct agcgttgctc 600 ggaatgactg ggcgtaaagg gcgtgtaggc ggttttgaca gtcagatgtg aaatccccgg 660 gcttaacctg ggagctgcat ttgagacgtt aagactagag tgtgagagag ggttgtggaa 720 ttcccagtgt agaggtgaaa ttcgtagata ttgggaagaa caccggtggc gaaggcggca 780 acctggctca ttactgacgc tgaggcgcga aagcgtgggg agcaaacagg attagatacc 840 ctggtagtcc acgctgtaaa cgatgtgtgc tagatgttgg gtaacttagt tactcagtgt 900 cgcagttaac gcgttaagca caccgcctgg ggagtacggc cgcaaggttg aaactcaaag 960 gaattgacgg gggcccgcac aagcggtgga gcatgtggtt taattcgaag caacgcgcag 1020 aaccttacca gggcttgaat gtggaggctg taggcagaga tgtctatttc ttcggacctc 1080 caacacaggt gctgcatggc tgtcgtcagc tcgtgtcgtg agatgttggg ttaagtcccg 1140 caacgagcgc aacccctatc tttagttgcc agcatgtttg ggtgggcact ctagagagac 1200 tgccggtgac aagccggagg aaggtgggga tgacgtcaag tcctcatggc ccttatgtcc 1260 tgggctaccc acgtgctaca atggcggtga cagttgggaa gcctatgttg gtggaccatt 1320 gtcttatcct ctaaagcccg tcttcatttc gaattgcacc ctgcgaactc caggcggcag 1380 gaaggtggga ttggtttgta atccttggat caccatggcc 1420 <210> 6 <211> 1378 <212> DNA <213> Bacillus subtilis <400> 6 gaaactgggg aacttgagtg cagaagagga gagtggaatt ccacgttgta gcggtgaaat 60 gcgtagagat gtggaggaac accagtggcg aaggcgactc tctggtctgt aactgacgct 120 gaggagcgaa agcgtgggga gcgaacagga ttagataccc tggtagtcca cgccgtaaac 180 gatgagtgct aagtgttagg gggtttccgc cccttagtgc tgcagctaac gcattaagca 240 ctccgcctgg ggagtacggt cgcaagactg aaactcaaag gaattgacgg gggcccgcac 300 aagcggtgga gcatgtggtt taattcgaag caacgcgaag aaccttacca ggtcttgaca 360 tcctctgaca atcctagaga taggacgtcc ccttcggggg cagagtgaca ggtggtgcat 420 ggttgtcgtc agctcgtgtc gtgagatgtt gggttaagtc ccgcaacgag cgcaaccctt 480 gatcttagtt gccagcattc agttgggcac tctaaggtga ctgccggtga caaaccggag 540 gaaggtgggg atgacgtcaa atcatcatgc cccttatgac ctgggctaca cacgtgctac 600 aatggacaga acaaagggca gcgaaaccgg cgaggttaaa ccaatcccac caatctgttc 660 tcagttccga acgcagtctg caactcgact gcgtgaaact ggaatcccta gtaatcgcgg 720 atccacatgc cgcggtgact agagtttgat catggctcag gacgaacgct ggcggcgtgc 780 ctaatacatg caagtcgagc ggacagatgg gagcttgctc cctgatgtta gcggcggacg 840 ggtgagtaac acgtgggtaa cctgcctgta agactgggat aactccggga aaccggggct 900 aataccggat ggttgtttga accgcatggt tcagacataa aaggtggctt cggctaccac 960 ttacagatgg acccgcggcg cattagctag ttggtgaggt aacggctcac caaggcgacg 1020 atgcgtagcc gacctgagag ggtgatcggc cacactggga ctgagacacg gcccagactc 1080 ctacgggagg cagcagtagg gaatcttccg caatggacga aagtctgacg gagcaacgcc 1140 gcgtgagtga tgaaggtttt cggatcgtaa agctctgttg ttagggaaga acaagtgccg 1200 ttcaaatagg gcggcacctt gacggtacct aaccagaaag ccacggctaa ctacgtgcca 1260 gcagccgcgg taatacgtag gtggcaagcg ttgtccggaa ttattgggcg taaagggctc 1320 gcaggcggtt tcttaagtct gatgtgaaag cccccggctc aaccggggag ggtcattg 1378 <210> 7 <211> 1413 <212> DNA <213> Lactobacillus casei <400> 7 gagtttggat ctggctcagg atgaacgctg gcggcgtgcc taatacatgc aagtcgaacg 60 agttctcgtt gatgatcggt gcttgcaccg agattcaaca tggaacgagt ggcggacggg 120 tgagtaacac gtgggtaacc tgcccttaag tgggggataa catttggaaa cagatgctaa 180 taccgcatag atccaagaac cgcatggttc ttggctgaaa gatggcgtaa gctatcgctt 240 ttggatggac ccgcggcgta ttagctagtt ggtgaggtaa tggctcacca aggcgatgat 300 acgtagccga actgagaggt tgatcggcca cattgggact gagacacggc ccaaactcct 360 acgggaggca gcagtaggga atcttccaca atggacgcaa gtctgatgga gcaacgccgc 420 gtgagtgaag aaggctttcg ggtcgtaaaa ctctgttgtt ggagaagaat ggtcggcaga 480 gtaactgttg tcggcgtgac ggtatccaac cagaaagcca cggctaacta cgtgccagca 540 gccgcggtaa tacgtaggtg gcaagcgtta tccggattta ttgggcgtaa agcgagcgca 600 ggcggttttt taagtctgat gtgaaagccc tcggcttaac cgaggaagcg catcggaaac 660 tgggaaactt gagtgcacaa gaggacagtg agaactccat gtgtagcggt gaaatgcgta 720 gatatatgga agaacaccag tggcgaaggc ggctgtctgg tctgtaactg acgctgaggc 780 tcgaaagcat gggtagcgaa caggattaga taccctggta gtccatgccg taaacgatga 840 atgctaggtg ttggagggtt tccgcccttc agtgccgcag ctaacgcatt aagcattccg 900 cctggggagt acgaccgcaa ggttgaaact caaaggaatt gacgggggcc cgcacaagcg 960 gtggagcatg tggtttaatt cgaagcaacg cgaagaacct taccaggtct tgacatcttt 1020 tgatcacctg agagatcagg tttccccttc gggggcaaaa tgacaggtgg tgcatggttg 1080 tcgtcagctc gtgtcgtgag atgttgggtt aagtcccgca acgagcgcaa cccttatgac 1140 tagttgccag catttagttg ggcactctag taagactgcc ggtgacaaac cggaggaagg 1200 tggggatgac gtcaaatcat catgcccctt atgacctggg ctacacacgt gctacaatgg 1260 atggtacaac gagttgcgag accgcgaggt caagctaatc tcttaaagcc attctcagtt 1320 cggactgtan ngctgcactc gcctacacga agtcggaatc gctagtaatc gcggatcagc 1380 acgcgcggtg aatacgttcc ccggccttgt aca 1413 <210> 8 <211> 1430 <212> DNA <213> Paenibacillus sp. P33 <400> 8 aaaaaagaca aaacgagcca caacagcgnn nncagggaac ccctagagtt tgatctgggt 60 tcaggacgaa cgctggcggc atgcntaata catgcaagtc gagcggactt gatgagaagc 120 ttgcttctct gatggttagc ggcggacggg tgagtaacac gtaggcaacc tgccctcaag 180 cttgggacaa ctaccggaaa cggtagctaa taccgaatag ttgttttctt ctcctgaaga 240 gaactggaaa gacggagcaa tctgtcactt ggggatgggc ctgcggcgca ttagctagtt 300 ggtggggtaa cggctcacca aggcgacgat gcgtagccga cctgagaggg tgatcggcca 360 cactgggact gagacacggc ccagactcct acgggaggca gcagtaggga atcttccgca 420 atgggcgaaa gcctgacgga gcaatgccgc gtgagtgatg aaggttttcg gatcgtaaag 480 ctctgttgcc agggaagaac gcttgggaga gtaactgctc tcaaggtgac ggtacctgag 540 aagaaagccc cggctaacta cgtgccagca gccgcggtaa tacgtagggg gcaagcgttg 600 tccggaatta ttgggcgtaa agcgcgcgca ggcggtcatt taagtctggt gtttaatccc 660 ggggctcaac cccggatcgc actggaaact gggtgacttg agtgcagaag aggagagtgg 720 aattccacgt gtagcggtga aatgcgtaga tatgtggagg aacaccagtg gcgaaggcga 780 ctctctgggc tgtaactgac gctgaggcgc gaaagcgtgg ggagcaaaca ggattagata 840 ccctggtagt ccacgccgta aacgatgagt gctaggtgtt aggggtttcg atacccttgg 900 tgccgaagtt aacacattaa gcactccgcc tggggagtac ggtcgcaaga ctgaaactca 960 aaggaattga cggggacccg cacaagcagt ggagtatgtg gtttaattcg aagcaacgcg 1020 aagaacctta ccaggtcttg acatccctct gaccggtaca gagatgtacc tttccttcgg 1080 gacagacgag acaggtggtg catggttgtc gtcagctcgt gtcgtgagat gttgggttaa 1140 gtcccgcaac gagcgcaacc cttgatctta gttgccagca tttcggatgg gcactctaag 1200 gtgactgccg gtgacaaacc ggaggaaggt ggggatgacg tcaaatcatc atgcccctta 1260 tgacctgngc tacacacgta ctacaatggc cggtacaacg ggctgtgaag ccgcgaggtg 1320 gaacgaatcc taaaagccgg tctcagttcg gatttgcagc tgcaactcgc ctgcatgaag 1380 tcggaattgc taataatccc ggatcaccat ggcgcggtga atacgttccc 1430 <110> LEE, Geon          SEJUNG BIOTECH CO.LTD. <120> Complex strain for the waste water / sewage treatment and Nitrogen          treatment process using the same <130> P08-270 <150> KR10-2008-0107867 <151> 2008-10-31 <160> 8 <170> KopatentIn 1.71 <210> 1 <211> 1402 <212> DNA <213> Bacillus licheniformis <400> 1 ttttaagatt tnnnntcggc tcaggacgaa cgctggcggc gtgcctaata catgcaagtc 60 gagcggacag atgggagctt gctccctgat gttagcggcg gacgggtgag taacacgtgg 120 gtaacctgcc tgtaagactg ggataactcc gggaaaccgg ggctaatacc ggatggttgt 180 ttgaaccgca tggttcaaac ataaaaggtg gcttcggcta ccacttacag atggacccgc 240 ggcgcattag ctagttggtg aggtaacggc tcaccaaggc gacgatgcgt agccgacctg 300 agagggtgat cggccacact gggactgaga cacggcccag actcctacgg gaggcagcag 360 tagggaatct tccgcaatgg acgaaagtct gacggagcaa cgccgcgtga gtgatgaagg 420 ttttcggatc gtaaagctct gttgttaggg aagaacaagt accgttcgaa tagggcggta 480 ccttgacggt acctaaccag aaagccacgg ctaactacgt gccagcagcc gcggtaatac 540 gtaggtggca agcgttgtcc ggaattattg ggcgtaaagg gctcgcaggc ggtttcttaa 600 gtctgatgtg aaagcccccg gctcaaccgg ggagggtcat tggaaactgg ggaacttgag 660 tgcagaagag gagagtggaa ttccacgtgt agcggtgaaa tgcgtagaga tgtggaggaa 720 caccagtggc gaaggcgact ctctggtctg taactgacgc tgaggagcga aagcgtgggg 780 agcgaacagg attagatacc ctggtagtcc acgccgtaaa cgatgagtgc taagtgttag 840 ggggtttccg ccccttagtg ctgcagctaa cgcattaagc actccgcctg gggagtacgg 900 tcgcaagact gaaactcaaa ggaattgacg ggggcccgca caagcggtgg agcatgtggt 960 ttaattcgaa gcaacgcgaa gaaccttacc aggtcttgac atcctctgac aatcctagag 1020 ataggacgtc cccttcgggg gcagagtgac aggtggtgca tggttgtcgt cagctcgtgt 1080 cgtgagatgt tgggttaagt cccgcaacga gcgcaaccct tgatcttagt tgccagcatt 1140 cagttgggca ctctaaggtg actgccggtg acaaaccgga ggaaggtggg gatgacgtca 1200 aatcatcatg ccccttatga cctgggctac acacgtgcta caatggacag aacaaagggc 1260 agcgaaaccg cgaggttaag ccaatcccac aaatctgttc tcagttcgga tcgcagtctg 1320 caactcgact gcgtgaagct ggaatcgcta gtaatcgcgg atcacatgcn gcgggttgaa 1380 tacgttcccg gggcttgtac ac 1402 <210> 2 <211> 1401 <212> DNA <213> Bacillus cereus <400> 2 cactagagtt tgatcatggc tcaggatgaa cgctggcggc gtgcctaata catgcaagtc 60 gagcgaatgg attgagagct tgctctcaag aagttagcgg cggacgggtg agtaacacgt 120 gggtaacctg cccataagac tgggataact ccgggaaacc ggggctaata ccggataata 180 ttttgaactg catggttcga aattgaaagg cggcttcggc tgtcacttat ggatggaccc 240 gcgtcgcatt agctagttgg tgaggtaacg gctcaccaag gcaacgatgc gtagccgacc 300 tgagagggtg atcggccaca ctgggactga gacacggccc agactcctac gggaggcagc 360 agtagggaat cttccgcaat ggacgaaagt ctgacggagc aacgccgcgt gagtgatgaa 420 ggctttcggg tcgtaaaact ctgttgttag ggaagaacaa gtgctagttg aataagctgg 480 caccttgacg gtacctaacc agaaagccac ggctaactac gtgccagcag ccgcggtaat 540 acgtaggtgg caagcgttat ccggaattat tgggcgtaaa gcgcgcgcag gtggtttctt 600 aagtctgatg tgaaagccca cggctcaacc gtggagggtc attggaaact gggagacttg 660 agtgcagaag aggaaagtgg aattccatgt gtagcggtga aatgcgtaga gatatggagg 720 aacaccagtg gcgaaggcga ctttctggtc tgtaactgac actgaggcgc gaaagcgtgg 780 ggagcaaaca ggattagata ccctggtagt ccacgccgta aacgatgagt gctaagtgtt 840 agagggtttc cgccctttag tgctgaagtt aacgcattaa gcactccgcc tggggagtac 900 ggccgcaagg ctgaaactca aaggaattga cgggggcccg cacaagcggt ggagcatgtg 960 gtttaattcg aagcaacgcg aagaacctta ccaggtcttg acatcctctg aaaaccctag 1020 agatagggct tctccttcgg gagcagagtg acaggtggtg catggttgtc gtcagctcgt 1080 gtcgtgagat gttgggttaa gtcccgcaac gagcgcaacc cttgatctta gttgccatca 1140 ttaagttggg cactctaagg tgactgccgg tgacaaaccg gaggaaggtg gggatgacgt 1200 caaatcatca tgccccttat gacctgggct acacacgtgc tacaatggac ggtacaaaga 1260 gctgcaagac cgcgaggtgg agctaatctc ataaaaccgt tctcagttcg gattgtaggc 1320 tgcaactcgc ctacatgaag ctggaatcgc tagtaatcgc ggatcacatg cccgggttga 1380 atacgttccc ggggcttgta c 1401 <210> 3 <211> 1312 <212> DNA <213> Paenibacillus sp. H10-02 <400> 3 ttagcggcgg acgggtgagt aacacgtagg caacctgcct ataagactgg gataactatc 60 ggaaacgata gctaagaccg gataactggt tttctcgcat gagagaatca tgaaacacgg 120 agcaatctgt ggcttataga tgggcctgcg gcgcattagc tagttggtga ggtaacggct 180 caccaaggcg acgatgcgta gccgacctga gagggtgaac ggccacactg ggactgagac 240 acggcccaga ctcctacggg aggcagcagt agggaatctt ccgcaatgga cgcaagtctg 300 acggagcaac gccgcgtgag tgatgaaggt tttcggatcg taaagctctg ttgccctaga 360 cgaacagcaa ggcgagtaac tgcgctttgt gtgacggtat aggagaagaa agccccggct 420 aactacgtgc cagcagccgc ggtaatacgt agggggcaag cgttgtccgg aattattggg 480 cgtaaagcgc gcgcaggcgg tcaattaagt tgggtgttta agcccggggc tcaaccccgg 540 ttcgcatcca aaactggttg acttgagtgt aggagaggaa agtggaattc cacgtgtagc 600 ggtgaaatgc gtagagatgt ggaggaacac cagtggcgaa ggcgactttc tggcctataa 660 ctgacgctga ggcgcgaaag cgtggggagc aaacaggatt agataccctg gtagtccacg 720 ccgtaaacga tgcatactag gtgttgggga ttcgattcct cggtgccgaa gttaacacag 780 taagtatgcc gcctggggag tacgctcgca agagtgaaac tcaaaggaat tgacggggac 840 ccgcacaagc agtggagtat gtggtttaat tcgaagcaac gcgaagaacc ttaccaggtc 900 ttgacatccc tctgtaagct ctagagatag agccctcctt cggaacatag gagacaggtg 960 gtgcatggtt gtcgtcagct cgtgtcgtga gatgttgggt taagtcccgc aacgagcgca 1020 acccttgatc ttagttgcca gcacttcggg tgggcactct aagatgactg ccggtgacaa 1080 accggaggaa ggtggggatg acgtcaaatc atcatgcccc ttatgacctg ggctacacac 1140 gtactacaat ggtcggtaca acgggaagcg aagccgcgag gcggagccaa tccttataag 1200 ccgatctcag ttcggattgc aggctgcaac tcgcctgcat gaagtcggaa ttgctagtaa 1260 tcgcggatca gcatgccgcg gtgaatacgt tcccgggtct tgtacacacc gc 1312 <210> 4 <211> 1345 <212> DNA Acetobacter pomorum <400> 4 aatagagttt tngactggct cagagcgaac gctggcggca tgcttaacac atgcaagtcg 60 cacgaaggtt tcggccttag tggcggacgg gtgagtaacg cgtaggaatc tatccatggg 120 tgggggataa cactgggaaa ctggtgctaa taccgcatga tacctgaggg tcaaaggcgc 180 aagtcgcctg tggaggagcc tgcgttcgat tagctagttg gtggggtaaa ggcctaccaa 240 ggcgatgatc gatagctggt ttgagaggat gatcagccac actgggactg agacacggcc 300 cagactccta cgggaggcag cagtggggaa tattggacaa tgggggcaac cctgatccag 360 caatgccgcg tgtgtgaaga aggtcttcgg attgtaaagc actttcgacg gggacgatga 420 tgacggtacc cgtagaagaa gccccggcta acttcgtgcc agcagccgcg gtaatacgaa 480 gggggctagc gttgctcgga atgactgggc gtaaagggcg tgtaggcggt tttgacagtc 540 agatgtgaaa tccccgggct taacctggga gctgcatttg agacgttaag actagagtgt 600 gagagagggt tgtggaattc ccagtgtaga ggtgaaattc gtagatattg ggaagaacac 660 cggtggcgaa ggcggcaacc tggctcatta ctgacgctga ggcgcgaaag cgtggggagc 720 aaacaggatt agataccctg gtagtccacg ctgtaaacga tgtgtgctag atgttgggta 780 acttagttac tcagtgtcgc agttaacgcg ttaagcacac cgcctgggga gtacggccgc 840 aaggttgaaa ctcaaaggaa ttgacggggg cccgcacaag cggtggagca tgtggtttaa 900 ttcgaagcaa cgcgcagaac cttaccaggg cttgaatgtg gaggctgtag gcagagatgt 960 ctatttcttc ggacctccaa cacaggtgct gcatggctgt cgtcagctcg tgtcgtgaga 1020 tgttgggtta agtcccgcaa cgagcgcaac ccctatcttt agttgccagc atgtttgggt 1080 gggcactcta gagagactgc cggtgacaag ccggaggaag gtggggatga cgtcaagtcc 1140 tcatggccct tatgtcctgg gctacacacg tgctacaatg gcggtgacag tgggaagcta 1200 tgtggtgaca cagtgctgat ctctaaaagc cgtctcagtt cggattgcac tctgcaactc 1260 gagtgcatga aggtggaatc gctagtaatc gcggatcagc atgcccgcgg tgaatacgtt 1320 cccgggcctt gtacacaccg cccgt 1345 <210> 5 <211> 1420 <212> DNA Acetobacter peroxydans <400> 5 tttgacaagg aggacgaatt gtacaacagg atatctatca acacaggaaa gaaaaccggc 60 aggaggcaaa agaaacgaaa caccacccca gaaaaaacac aacactagag ttgaatcatg 120 gctcagagcg aacgctggcg gcatgcttaa cacatgcaag tcgcacgaag gtttcggcct 180 tagtggcgga cgggtgagta acgcgtagga atctatccat gggtggggga taacactggg 240 aaactggtgc taataccgca tgatacctga gggtcaaagg cgcaagtcgc ctgtggagga 300 gcctgcgttc gattagctag ttggtggggt aaaggcctac caaggcgatg atcgatagct 360 ggtttgagag gatgatcagc cacactggga ctgagacacg gcccagactc ctacgggagg 420 cagcagtggg gaatattgga caatgggggc aaccctgatc cagcaatgcc gcgtgtgtga 480 agaaggtctt cggattgtaa agcactttcg acggggacga tgatgacggt acccgtagaa 540 gaagccccgg ctaacttcgt gccagcagcc gcggtaatac gaagggggct agcgttgctc 600 ggaatgactg ggcgtaaagg gcgtgtaggc ggttttgaca gtcagatgtg aaatccccgg 660 gcttaacctg ggagctgcat ttgagacgtt aagactagag tgtgagagag ggttgtggaa 720 ttcccagtgt agaggtgaaa ttcgtagata ttgggaagaa caccggtggc gaaggcggca 780 acctggctca ttactgacgc tgaggcgcga aagcgtgggg agcaaacagg attagatacc 840 ctggtagtcc acgctgtaaa cgatgtgtgc tagatgttgg gtaacttagt tactcagtgt 900 cgcagttaac gcgttaagca caccgcctgg ggagtacggc cgcaaggttg aaactcaaag 960 gaattgacgg gggcccgcac aagcggtgga gcatgtggtt taattcgaag caacgcgcag 1020 aaccttacca gggcttgaat gtggaggctg taggcagaga tgtctatttc ttcggacctc 1080 caacacaggt gctgcatggc tgtcgtcagc tcgtgtcgtg agatgttggg ttaagtcccg 1140 caacgagcgc aacccctatc tttagttgcc agcatgtttg ggtgggcact ctagagagac 1200 tgccggtgac aagccggagg aaggtgggga tgacgtcaag tcctcatggc ccttatgtcc 1260 tgggctaccc acgtgctaca atggcggtga cagttgggaa gcctatgttg gtggaccatt 1320 gtcttatcct ctaaagcccg tcttcatttc gaattgcacc ctgcgaactc caggcggcag 1380 gaaggtggga ttggtttgta atccttggat caccatggcc 1420 <210> 6 <211> 1378 <212> DNA <213> Bacillus subtilis <400> 6 gaaactgggg aacttgagtg cagaagagga gagtggaatt ccacgttgta gcggtgaaat 60 gcgtagagat gtggaggaac accagtggcg aaggcgactc tctggtctgt aactgacgct 120 gaggagcgaa agcgtgggga gcgaacagga ttagataccc tggtagtcca cgccgtaaac 180 gatgagtgct aagtgttagg gggtttccgc cccttagtgc tgcagctaac gcattaagca 240 ctccgcctgg ggagtacggt cgcaagactg aaactcaaag gaattgacgg gggcccgcac 300 aagcggtgga gcatgtggtt taattcgaag caacgcgaag aaccttacca ggtcttgaca 360 tcctctgaca atcctagaga taggacgtcc ccttcggggg cagagtgaca ggtggtgcat 420 ggttgtcgtc agctcgtgtc gtgagatgtt gggttaagtc ccgcaacgag cgcaaccctt 480 gatcttagtt gccagcattc agttgggcac tctaaggtga ctgccggtga caaaccggag 540 gaaggtgggg atgacgtcaa atcatcatgc cccttatgac ctgggctaca cacgtgctac 600 aatggacaga acaaagggca gcgaaaccgg cgaggttaaa ccaatcccac caatctgttc 660 tcagttccga acgcagtctg caactcgact gcgtgaaact ggaatcccta gtaatcgcgg 720 atccacatgc cgcggtgact agagtttgat catggctcag gacgaacgct ggcggcgtgc 780 ctaatacatg caagtcgagc ggacagatgg gagcttgctc cctgatgtta gcggcggacg 840 ggtgagtaac acgtgggtaa cctgcctgta agactgggat aactccggga aaccggggct 900 aataccggat ggttgtttga accgcatggt tcagacataa aaggtggctt cggctaccac 960 ttacagatgg acccgcggcg cattagctag ttggtgaggt aacggctcac caaggcgacg 1020 atgcgtagcc gacctgagag ggtgatcggc cacactggga ctgagacacg gcccagactc 1080 ctacgggagg cagcagtagg gaatcttccg caatggacga aagtctgacg gagcaacgcc 1140 gcgtgagtga tgaaggtttt cggatcgtaa agctctgttg ttagggaaga acaagtgccg 1200 ttcaaatagg gcggcacctt gacggtacct aaccagaaag ccacggctaa ctacgtgcca 1260 gcagccgcgg taatacgtag gtggcaagcg ttgtccggaa ttattgggcg taaagggctc 1320 gcaggcggtt tcttaagtct gatgtgaaag cccccggctc aaccggggag ggtcattg 1378 <210> 7 <211> 1413 <212> DNA <213> Lactobacillus casei <400> 7 gagtttggat ctggctcagg atgaacgctg gcggcgtgcc taatacatgc aagtcgaacg 60 agttctcgtt gatgatcggt gcttgcaccg agattcaaca tggaacgagt ggcggacggg 120 tgagtaacac gtgggtaacc tgcccttaag tgggggataa catttggaaa cagatgctaa 180 taccgcatag atccaagaac cgcatggttc ttggctgaaa gatggcgtaa gctatcgctt 240 ttggatggac ccgcggcgta ttagctagtt ggtgaggtaa tggctcacca aggcgatgat 300 acgtagccga actgagaggt tgatcggcca cattgggact gagacacggc ccaaactcct 360 acgggaggca gcagtaggga atcttccaca atggacgcaa gtctgatgga gcaacgccgc 420 gtgagtgaag aaggctttcg ggtcgtaaaa ctctgttgtt ggagaagaat ggtcggcaga 480 gtaactgttg tcggcgtgac ggtatccaac cagaaagcca cggctaacta cgtgccagca 540 gccgcggtaa tacgtaggtg gcaagcgtta tccggattta ttgggcgtaa agcgagcgca 600 ggcggttttt taagtctgat gtgaaagccc tcggcttaac cgaggaagcg catcggaaac 660 tgggaaactt gagtgcacaa gaggacagtg agaactccat gtgtagcggt gaaatgcgta 720 gatatatgga agaacaccag tggcgaaggc ggctgtctgg tctgtaactg acgctgaggc 780 tcgaaagcat gggtagcgaa caggattaga taccctggta gtccatgccg taaacgatga 840 atgctaggtg ttggagggtt tccgcccttc agtgccgcag ctaacgcatt aagcattccg 900 cctggggagt acgaccgcaa ggttgaaact caaaggaatt gacgggggcc cgcacaagcg 960 gtggagcatg tggtttaatt cgaagcaacg cgaagaacct taccaggtct tgacatcttt 1020 tgatcacctg agagatcagg tttccccttc gggggcaaaa tgacaggtgg tgcatggttg 1080 tcgtcagctc gtgtcgtgag atgttgggtt aagtcccgca acgagcgcaa cccttatgac 1140 tagttgccag catttagttg ggcactctag taagactgcc ggtgacaaac cggaggaagg 1200 tggggatgac gtcaaatcat catgcccctt atgacctggg ctacacacgt gctacaatgg 1260 atggtacaac gagttgcgag accgcgaggt caagctaatc tcttaaagcc attctcagtt 1320 cggactgtan ngctgcactc gcctacacga agtcggaatc gctagtaatc gcggatcagc 1380 acgcgcggtg aatacgttcc ccggccttgt aca 1413 <210> 8 <211> 1430 <212> DNA <213> Paenibacillus sp. P33 <400> 8 aaaaaagaca aaacgagcca caacagcgnn nncagggaac ccctagagtt tgatctgggt 60 tcaggacgaa cgctggcggc atgcntaata catgcaagtc gagcggactt gatgagaagc 120 ttgcttctct gatggttagc ggcggacggg tgagtaacac gtaggcaacc tgccctcaag 180 cttgggacaa ctaccggaaa cggtagctaa taccgaatag ttgttttctt ctcctgaaga 240 gaactggaaa gacggagcaa tctgtcactt ggggatgggc ctgcggcgca ttagctagtt 300 ggtggggtaa cggctcacca aggcgacgat gcgtagccga cctgagaggg tgatcggcca 360 cactgggact gagacacggc ccagactcct acgggaggca gcagtaggga atcttccgca 420 atgggcgaaa gcctgacgga gcaatgccgc gtgagtgatg aaggttttcg gatcgtaaag 480 ctctgttgcc agggaagaac gcttgggaga gtaactgctc tcaaggtgac ggtacctgag 540 aagaaagccc cggctaacta cgtgccagca gccgcggtaa tacgtagggg gcaagcgttg 600 tccggaatta ttgggcgtaa agcgcgcgca ggcggtcatt taagtctggt gtttaatccc 660 ggggctcaac cccggatcgc actggaaact gggtgacttg agtgcagaag aggagagtgg 720 aattccacgt gtagcggtga aatgcgtaga tatgtggagg aacaccagtg gcgaaggcga 780 ctctctgggc tgtaactgac gctgaggcgc gaaagcgtgg ggagcaaaca ggattagata 840 ccctggtagt ccacgccgta aacgatgagt gctaggtgtt aggggtttcg atacccttgg 900 tgccgaagtt aacacattaa gcactccgcc tggggagtac ggtcgcaaga ctgaaactca 960 aaggaattga cggggacccg cacaagcagt ggagtatgtg gtttaattcg aagcaacgcg 1020 aagaacctta ccaggtcttg acatccctct gaccggtaca gagatgtacc tttccttcgg 1080 gacagacgag acaggtggtg catggttgtc gtcagctcgt gtcgtgagat gttgggttaa 1140 gtcccgcaac gagcgcaacc cttgatctta gttgccagca tttcggatgg gcactctaag 1200 gtgactgccg gtgacaaacc ggaggaaggt ggggatgacg tcaaatcatc atgcccctta 1260 tgacctgngc tacacacgta ctacaatggc cggtacaacg ggctgtgaag ccgcgaggtg 1320 gaacgaatcc taaaagccgg tctcagttcg gatttgcagc tgcaactcgc ctgcatgaag 1380 tcggaattgc taataatccc ggatcaccat ggcgcggtga atacgttccc 1430  

Claims (5)

바실러스 리체니포르미스(Bacillus licheniformis) FE1 9X107 cfu/g, 바실러스 세레우스(Bacillus cereus) FE3 7.2X107 cfu/g, 패니바실러스 에스피 H10-02(Paenibacillus sp. H10-02 ) FE4 4.2X107 cfu/g, 아세토박터 포모럼(Acetobacter pomorum) FM2 7.2X107 cfu/g, 아세토박터 페록시단스(Acetobacter peroxydans) FM3 7.2X107 cfu/g, 바실러스 서브틸리스(Bacillus subtilis) FM4 4.2X107 cfu/g, 락토바실러스 카제이(Lactobacilus casei) FM5 6X107 cfu/g, 패니바실러스 에스피 P33(Paenibacillus sp. P33) FM8 4.2X107 cfu/g, 클루이베로마이세스 프라질리스(Kluyveromyces fragilis) FY1 5.4X107 cfu/g 및 데바리오마이세스 한세니(Debaryomyces hansenii) FY2 5.4X107 cfu/g로 이루어진 오ㆍ폐수의 유기물 처리 및 탈질소 처리용 복합 미생물 SejungBio-FA100(미생물 기탁번호: KCTC 11400BP). Bacillus licheniformis FE1 9X10 7 cfu / g, Bacillus cereus FE3 7.2X10 7 cfu / g, Paenibacillus sp. H10-02 FE4 4.2X10 7 cfu / g, Acetobacter pomorum FM2 7.2X10 7 cfu / g, Acetobacter peroxydans FM3 7.2X10 7 cfu / g, Bacillus subtilis FM4 4.2X10 7 cfu / g, Lactobacilus casei FM5 6X10 7 cfu / g, Paenibacillus sp. P33 FM8 4.2X10 7 cfu / g, Kluyveromyces fragilis FY1 5.4X10 7 cfu / g and Debaryomyces hansenii FY2 complex microorganism SejungBio-FA100 (microbial accession number: KCTC 11400BP) for organic matter treatment and denitrogenation treatment of sewage and wastewater consisting of 5.4X10 7 cfu / g. 제1항의 복합 미생물 SejungBio-FA100(미생물 기탁번호 : KCTC 11400BP) 배양액 0.5 내지 20 중량%; 쌀겨 20 내지 50 중량%; 음식물 찌꺼기 발효물 20 내지 50 중량%; 왕겨숯 조분말 10 내지 30 중량% 및 부식토 5 내지 10 중량%로 이루어지는 것을 특징으로 하는 오ㆍ폐수의 유기물 처리 및 탈질소 처리를 위한 복합 미생물 제제.0.5 to 20% by weight of the composite microorganism SejungBio-FA100 (Microorganism Accession No .: KCTC 11400BP) culture medium of claim 1; Rice bran 20-50% by weight; Food waste fermented 20 to 50% by weight; A composite microbial preparation for organic matter treatment and denitrification of sewage and wastewater, characterized by consisting of 10-30% by weight of coarse rice husk charcoal and 5-10% by weight of humus soil. 제2항에 있어서,The method of claim 2, 상기 복합 미생물 SejungBio-FA100(미생물 기탁번호 : KCTC 11400BP) 배양액은 상기 SejungBio-FA100 1 내지 5 중량부와, 수크로오스 4 내지 15 중량부, 펩톤 1 내지 5 중량부, 락토오스 0.05 내지 1 중량부 및 효모 추출물 0.5 내지 10 중량부에 나머지 물을 섞어서 100 중량부가 되도록 혼합한 후 20-35℃에서 6-48시간 배양하여 얻은 것임을 특징으로 하는 오ㆍ폐수의 유기물 처리 및 탈질소 처리를 위한 복합 미생물 제제.The complex microorganism SejungBio-FA100 (Microorganism Accession No .: KCTC 11400BP) culture medium is 1 to 5 parts by weight of the SejungBio-FA100, 4 to 15 parts by weight of sucrose, 1 to 5 parts by weight of peptone, 0.05 to 1 parts by weight of lactose and yeast extract Mixed microorganism preparation for organic matter treatment and denitrification of sewage and waste water, characterized in that obtained by mixing the remaining water in 0.5 to 10 parts by weight to 100 parts by weight and then incubated at 20-35 ℃ for 6-48 hours. 삭제delete 제2항 또는 제3항의 복합 미생물 제제를 호기조 또는 폭기조에 첨가하는 것을 특징으로 하는 오ㆍ폐수의 탈질소 처리 방법.The denitrification treatment method of wastewater and wastewater, wherein the complex microbial agent of claim 2 or 3 is added to an aerobic tank or aeration tank.
KR1020090037737A 2008-10-31 2009-04-29 Complex strain for the waste water/sewage treatment and nitrogen treatment process using the same KR100925879B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20080107867 2008-10-31
KR1020080107867 2008-10-31

Publications (1)

Publication Number Publication Date
KR100925879B1 true KR100925879B1 (en) 2009-11-06

Family

ID=41561426

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090037737A KR100925879B1 (en) 2008-10-31 2009-04-29 Complex strain for the waste water/sewage treatment and nitrogen treatment process using the same

Country Status (1)

Country Link
KR (1) KR100925879B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101553073B1 (en) 2015-02-17 2015-09-14 주식회사 태초의 아침 Decoposing method for organic sludge
KR20170027111A (en) * 2015-09-01 2017-03-09 농업회사법인(주)이지엠앤알 Manufacturing Method of Microbial Agent for annnihilation of Organic Sludge and Microbial Agent for annihilation of Organic Sludge manufactured by the same
KR102097669B1 (en) * 2018-12-20 2020-04-06 한경대학교 산학협력단 Novel denitrification bacteria Microvirgula aerodenitrificans dN46-6 showing excellent denitrification activity
KR102097670B1 (en) * 2018-12-20 2020-04-06 한경대학교 산학협력단 Microorganism preparation for water purification and manufacturing method thereof
CN113173650A (en) * 2021-04-28 2021-07-27 华中科技大学 Method for treating septic tank sewage by coupling compound microbial agent and calcium peroxide
CN113443783A (en) * 2021-06-25 2021-09-28 云南天腾化工有限公司 Method for in-situ pretreatment of high-concentration landfill leachate by using lactobacillus paracasei

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
고농도 질소함유 폐수 처리공정에서 일어나는 호기탈질 특성

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101553073B1 (en) 2015-02-17 2015-09-14 주식회사 태초의 아침 Decoposing method for organic sludge
KR20170027111A (en) * 2015-09-01 2017-03-09 농업회사법인(주)이지엠앤알 Manufacturing Method of Microbial Agent for annnihilation of Organic Sludge and Microbial Agent for annihilation of Organic Sludge manufactured by the same
KR101721185B1 (en) 2015-09-01 2017-03-29 농업회사법인(주)이지엠앤알 Manufacturing Method of Microbial Agent for annnihilation of Organic Sludge and Microbial Agent for annihilation of Organic Sludge manufactured by the same
KR102097669B1 (en) * 2018-12-20 2020-04-06 한경대학교 산학협력단 Novel denitrification bacteria Microvirgula aerodenitrificans dN46-6 showing excellent denitrification activity
KR102097670B1 (en) * 2018-12-20 2020-04-06 한경대학교 산학협력단 Microorganism preparation for water purification and manufacturing method thereof
CN113173650A (en) * 2021-04-28 2021-07-27 华中科技大学 Method for treating septic tank sewage by coupling compound microbial agent and calcium peroxide
CN113443783A (en) * 2021-06-25 2021-09-28 云南天腾化工有限公司 Method for in-situ pretreatment of high-concentration landfill leachate by using lactobacillus paracasei

Similar Documents

Publication Publication Date Title
Ducey et al. Characterization of a microbial community capable of nitrification at cold temperature
KR100925879B1 (en) Complex strain for the waste water/sewage treatment and nitrogen treatment process using the same
EP2664587A2 (en) Biological treatment method and waste-water treatment agent for refractory wastewater
CN102443558B (en) Composite heterotrophic nitrifying bacterial agent and application of same in nitrogen removal treatment of waste water containing ammonia and nitrogen
US8445253B2 (en) High performance nitrifying sludge for high ammonium concentration and low temperature wastewater treatment
KR102074233B1 (en) Composition for livestock carcass degradation and microbial medicament comprising the same
KR100547281B1 (en) organic wastes treatment apparatus and method to recycle as a liquid fertilizer
CN111534449B (en) Aerobic denitrifying pseudomonas and culture method and application thereof
KR102150330B1 (en) Novel strains of Oceanobacillus species having activity to reduce foul smell from livestock excretions and a composition containing them
Cherni et al. Mixed culture of Lactococcus lactis and Kluyveromyces marxianus isolated from kefir grains for pollutants load removal from Jebel Chakir leachate
US6423533B1 (en) Isolation and use of perchlorate and nitrate reducing bacteria
Wei et al. Isolation and characterization of a purple non-sulfur photosynthetic bacterium Rhodopseudomonas faecalis strain A from swine sewage wastewater
Schmitz et al. Competition between n-alkane-assimilating yeasts and bacteria during colonization of sandy soil microcosms
KR100426791B1 (en) A method for ecological treatment of organic wastewater using alga and waterflea
CN114292798B (en) Anaerobic denitrifying strain and application thereof in riverway water body remediation
Okubo et al. Distribution and capacity for utilization of lower fatty acids of phototrophic purple nonsulfur bacteria in wastewater environments
CN113151063B (en) Citrobacter freundii AS11 and application thereof in sewage treatment
CN113293111B (en) Bacillus marinus with denitrification function and application thereof
CN113005062B (en) Facultative ammonia oxidizing bacteria and application thereof
CN110407338B (en) Low-temperature denitrification and dephosphorization bacteria and application thereof
Phatthongkleang et al. The Efficiency of Bacillus spp. to Remove Ammonia in Shrimp Aquaculture
CN113373086A (en) Denitrifying bacterium pseudomonas strain JNB12 and application thereof
Suman et al. Simultaneous biomass production and mixed-origin wastewater treatment by five environmental isolates of Cyanobacteria
Byun et al. Characterization of microbial community and kinetics for spent sulfidic caustic applied autotrophic denitrification
KR102652219B1 (en) Novel Pseudomonas putida strain having denitrification activity and use of the same

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121102

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140120

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160801

Year of fee payment: 7

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20161202

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20171204

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20181010

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20191202

Year of fee payment: 11