KR100915909B1 - Low temperature co-fired dielectric ceramics for pcb application and method for manufacturing the same - Google Patents
Low temperature co-fired dielectric ceramics for pcb application and method for manufacturing the same Download PDFInfo
- Publication number
- KR100915909B1 KR100915909B1 KR1020080034244A KR20080034244A KR100915909B1 KR 100915909 B1 KR100915909 B1 KR 100915909B1 KR 1020080034244 A KR1020080034244 A KR 1020080034244A KR 20080034244 A KR20080034244 A KR 20080034244A KR 100915909 B1 KR100915909 B1 KR 100915909B1
- Authority
- KR
- South Korea
- Prior art keywords
- powder
- temperature
- substrate
- low
- manufacturing
- Prior art date
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 239000000758 substrate Substances 0.000 claims abstract description 46
- 239000000843 powder Substances 0.000 claims abstract description 45
- 238000005245 sintering Methods 0.000 claims abstract description 30
- 238000001354 calcination Methods 0.000 claims abstract description 10
- 238000002156 mixing Methods 0.000 claims abstract description 8
- 238000001035 drying Methods 0.000 claims abstract description 7
- 238000010298 pulverizing process Methods 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims description 22
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 11
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 5
- 239000002904 solvent Substances 0.000 claims description 5
- 238000000227 grinding Methods 0.000 claims 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 239000011812 mixed powder Substances 0.000 abstract 1
- 238000000465 moulding Methods 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 239000000463 material Substances 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 8
- 238000007792 addition Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 238000009766 low-temperature sintering Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 229920000307 polymer substrate Polymers 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N CuO Inorganic materials [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Inorganic materials [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62655—Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
- H01G4/1218—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3215—Barium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3281—Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3409—Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/604—Pressing at temperatures other than sintering temperatures
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
Description
본 발명은 저온소결이 가능하면서도 기판소재로서 낮은 유전상수와 높은 품질계수 및 안정한 공진주파수 온도계수 특성을 갖는 기판용 저온 소성 유전체 세라믹스 및 그 제조방법에 관한 것이다.The present invention relates to a low-temperature calcined dielectric ceramics for a substrate capable of low-temperature sintering and having low dielectric constant, high quality coefficient, and stable resonant frequency temperature coefficient characteristics as a substrate material and a method of manufacturing the same.
현재의 많은 전자기기의 능·수동 부품 실장은 기판 면적의 70%정도를 수동부품이 차지하고 있어 수동부품의 집적화가 절대적으로 필요하다. 현재의 부품실장밀도는 최대 50개/㎠ 정도로 그 영향이 미미하나, 2010년 이후에는 5000개/㎠ 이상으로 급격한 증가할 것으로 예상되어 수동부품의 실장 공정에 어려움이 가중될 수 있다. In today's electronic devices, passive components are occupied about 70% of the board area, so the integration of passive components is absolutely necessary. The current component mounting density is insignificant, at a maximum of 50 / cm2, but it is expected to increase rapidly to more than 5000 / cm2 after 2010, which may add difficulty to the process of mounting passive components.
따라서 수동부품의 집적화를 위해 세라믹 소재기술과 소성 및 적층 등의 세라믹 공정기술이 혼합된 LTCC(Low Temperature Co-fired Ceramic) 기술들이 개발 되었다. 또한, LTCC에 의한 복합모듈 개발이 이루어지고 있다. 그러나 이러한 기술은 집적화 효과가 떨어지는 문제가 있다.Therefore, LTCC (Low Temperature Co-fired Ceramic) technologies have been developed in which ceramic material technology and ceramic process technology such as sintering and lamination are mixed for the integration of passive components. In addition, the development of a composite module by the LTCC. However, such a technology has a problem in that the integration effect is inferior.
최근 미국과 일본 등지에서 SoP (System on Package) 기술이 활발하게 연구 개발되고 있다. SoP (System on Package) 기술은 복수의 시스템을 하나의 패키지에 실장하기 위해서 기판에 능동부품과 수동부품을 집적화하는 기술로서 높은 집적도를 자랑한다. 이러한 SoP 기술은 유전상수가 낮고 품질계수가 높은 소재를 기판으로 하고 기판 위에 다양한 전극(Ag, Cu, Ni, Pd, Pt)을 마이크로 패터닝을 통해 수동소자로 형성한다. Recently, System on Package (SoP) technology has been actively researched in the US and Japan. SoP (System on Package) technology is a technology that integrates active and passive components on a board to mount multiple systems in one package, and boasts high integration. This SoP technology uses a low dielectric constant and high quality factor as a substrate and forms various electrodes (Ag, Cu, Ni, Pd, Pt) on the substrate as passive devices through micro-patterning.
여기서, 유전상수가 낮고 품질계수가 높은 소재로 고려되고 있는 것으로는 가공성이 우수하여 제조공정이 비교적 용이한 폴리머(Polymer) 기판이 있다. 그러나 폴리머 기판은 품질계수 값이 낮고, 열에 약한 점 등이 문제가 되고 있다. Here, a material having a low dielectric constant and a high quality factor is considered to be a polymer substrate having excellent processability and relatively easy manufacturing process. However, polymer substrates have low quality factor values and are weak in heat.
다음으로, 세라믹과 폴리머의 장점만을 이용하여 가공성, 품질계수 및 유전상수를 개선한 세라믹-폴리머 복합재료도 연구도 진행되고 있으나 아직 가시적인 큰 성과를 보여주고 있지는 못하다. Next, ceramic-polymer composites, which have improved processability, quality factor and dielectric constant using only the advantages of ceramics and polymers, are also being researched, but have not yet shown significant results.
또한, RF 시스템의 사용 주파수에 따라 적용이 가능한 기판의 소재 또는 공정의 변화가 요구되고 있는데, 향후의 RF 시스템의 사용주파수는 현재 사용되고 있는 수백 MHz에서 수 GHz 또는 수십 GHz 영역까지 확대되어 나갈 전망이다. 이와 같이 사용주파수 대역의 상승은 기판소재의 품질계수 향상이 필수적이며 기존에 가장 많이 사용되어지던 PCB(Print Circuit Board)의 FR-4보다 품질계수가 높은 폴리머(Polymer) 소재 또는 세라믹 소재 기판이 요구되어지고 있다.In addition, it is required to change the material or process of the applicable substrate according to the frequency of use of the RF system, and the frequency of use of the future RF system is expected to extend from the hundreds of MHz to several GHz or tens of GHz. . As such, it is necessary to improve the quality factor of the substrate material, and the polymer or ceramic substrate that has higher quality factor than FR-4 of PCB (Print Circuit Board), which has been used the most, is required. It is done.
아울러, 실리콘(Si) 기판을 사용해 오던 반도체공정 특히 RF-IC(SOC) 분야에서도 실리콘(Si) 보다 품질계수가 높은 여러 반도체 기판의 사용이 이루어지고 있다. 기판 소재의 품질계수와 공정의 정밀도를 고려한다면 향후 RF 시스템의 사용 주파수가 5 GHz 이하에서는 폴리머(polymer) 기판이, 5 ~ 50 GHz의 영역에서는 세라믹 또는 품질계수가 대폭 향상된 폴리머(Polymer) 기판의 사용이 적당하다.In addition, various semiconductor substrates having a higher quality factor than silicon (Si) have been used in the semiconductor process, especially RF-IC (SOC), which has used silicon (Si) substrates. Considering the quality factor of the substrate material and the precision of the process, a polymer substrate is used in the future when the frequency of the RF system is 5 GHz or less, and in the range of 5 to 50 GHz, a ceramic or polymer coefficient is significantly improved. It is suitable to use.
이에 더하여 상기의 마이크로 패터닝을 통한 기판 위의 전극이 녹지 않는 온도범위에서 소성이 가능토록 하기 위해서 유전체 세라믹스는 저온에서 소결되어야 한다. 전극으로는 상기의 Ag, Cu, Ni, Pd, Pt 및 이들의 합금이 사용되며, 이 중에서도 특히 Ag 전극은 가장 낮은 비저항(1.62×10-4 Ω㎝)을 가지고 있어 소자의 손실을 최소화시킬 수 있다. 그러나 Ag의 녹는점은 961℃이므로, 기판의 소결온도가 Ag의 녹는점 보다 높을 경우, 그 유전체 세라믹스는 사용할 수 없다. 결국 900℃이하의 소결이 가능한 기판용 소재의 유전체 세라믹스가 요구된다.In addition, the dielectric ceramics must be sintered at a low temperature in order to enable firing in a temperature range in which the electrodes on the substrate do not melt through the micro patterning. As the electrode, Ag, Cu, Ni, Pd, Pt, and alloys thereof are used. Among them, Ag electrode has the lowest specific resistance (1.62 × 10 -4 Ωcm), thereby minimizing device loss. have. However, since the melting point of Ag is 961 ° C, when the sintering temperature of the substrate is higher than the melting point of Ag, the dielectric ceramics cannot be used. As a result, dielectric ceramics of a substrate material capable of sintering below 900 ° C are required.
본 발명은 0.95Al2O3 + 0.05TiO2 세라믹스 조성에 소결조제로서 BaCuB2O5를 첨가함으로써, 저온소결이 가능하면서도 낮은 유전상수와 높은 품질계수 및 안정된 공진주파수 온도계수 특성을 갖는 기판용 저온 소성 유전체 세라믹스 및 그 제조방법을 제공하는데 그 목적이 있다.According to the present invention, low temperature sintering is possible by adding BaCuB 2 O 5 as a sintering aid to 0.95Al 2 O 3 + 0.05TiO 2 ceramics composition, but having low dielectric constant, high quality coefficient and stable resonant frequency temperature coefficient characteristics It is an object of the present invention to provide plastic dielectric ceramics and a method of manufacturing the same.
본 발명에 따른 기판용 저온 소성 유전체 세라믹스는 하기의 [조성식 1]로 표현되는 조성물을 포함하는 것을 특징으로 한다.The low temperature calcined dielectric ceramic for a substrate according to the present invention is characterized by comprising a composition represented by the following [formula 1].
[조성식 1][Formula 1]
x(0.95Al2O3 + 0.05TiO2) + yBaCuB2O5 x (0.95Al 2 O 3 + 0.05 TiO 2 ) + yBaCuB 2 O 5
여기서, x, y는 몰분율(molar fraction)이고, 0 〈 y ≤ 0.15x 이다.Where x and y are molar fractions, where 0 < y < 0.15x.
또한, 상기 조성물은 875 ~ 925 ℃의 온도에서 소결되는 것을 특징으로 하고, 상기 0.95Al2O3 + 0.05TiO2 조성물은 Al2O3상 및 TiO2상이 공존하는 것을 특징으로 한다.In addition, the composition is characterized in that the sintered at a temperature of 875 ~ 925 ℃, the 0.95Al 2 O 3 + 0.05TiO 2 composition is characterized in that the Al 2 O 3 phase and TiO 2 phase coexist.
아울러, 본 발명에 따른 기판용 저온 소성 유전체 세라믹스 제조 방법은 Al2O3 및 TiO2가 혼합된 시료분말을 분쇄 및 건조시키고, 제 1 하소 공정을 수행하여 0.95Al2O3 + 0.05TiO2 의 조성식을 갖는 제 1 분말을 제조하는 단계와, BaO, CuO 및 B2O3가 혼합된 시료분말을 분쇄 및 건조시키고, 제 2 하소 공정을 수행하여 BaCuB2O5 의 조성식을 갖는 제 2 분말을 제조하는 단계와, 상기 제 1 분말 및 상기 제 2 분말을 혼합하되, 상기 제 1 분말의 몰분율(molar fraction) 100에 대하여 상기 제 2 분말의 몰분율(molar fraction)은 0초과 15이하로 혼합하고, 분쇄 및 건조 공정을 수행하여 제 3 분말을 제조하는 단계와, 상기 제 3 분말을 기판을 정의하는 형틀에 넣고 가압하여 성형체를 형성하는 단계 및 상기 성형체에 소결 공정을 수행하는 단계를 포함하는 것을 특징으로 한다.In addition, the method for producing a low-temperature calcined dielectric ceramics for substrates according to the present invention is to pulverize and dry the sample powder mixed with Al 2 O 3 and TiO 2 , and to carry out the first calcination process to obtain 0.95Al 2 O 3 + 0.05 TiO 2 . Preparing a first powder having a composition formula, pulverizing and drying the sample powder mixed with BaO, CuO, and B 2 O 3 , and performing a second calcination process to obtain a second powder having a composition formula of BaCuB 2 O 5 . Preparing and mixing the first powder and the second powder, wherein the molar fraction of the second powder is mixed with the molar fraction 100 of the first powder less than 0 and less than 15, Preparing a third powder by performing a pulverizing and drying process, placing the third powder into a mold defining a substrate, and pressing the third powder to form a molded body, and performing a sintering process on the molded body. It is done.
여기서, 상기 Al2O3, TiO2, BaO, CuO 및 B2O3 는 각각 순도 99.9% 이상의 시료 분말을 사용하는 것을 특징으로 하고, 상기 제 1 하소 공정은 1150 ~ 1250 ℃의 온도에서 3 ~ 5 시간 동안 수행하는 것을 특징으로 하고, 상기 BaO, CuO 및 B2O3가 혼합된 시료분말은 알코올 용매와 함께 24 ~ 36 시간 동안 혼합하는 것을 특징으로 하고, 상기 제 2 하소 공정은 700 ~ 800 ℃의 온도에서 2 ~ 4 시간 동안 수행하는 것을 특징으로 하고, 상기 제 2 하소 공정을 수행한 후 로냉(furnace cooling)을 더 수행하는 것을 특징으로 하고, 상기 제 1 분말 및 상기 제 2 분말을 혼합하는 공정은 알코올 용매와 함께 24 ~ 36 시간 동안 혼합하는 것을 특징으로 하고, 상기 성형체를 형성하는 단계는 875 ~ 925 ℃의 온도에서 2 ~ 4 시간 동안 수행하는 것을 특징으로 하고, 상기 소결 공정은 875 ~ 925 ℃의 온도에서 2 ~ 4 시간 동안 수행하는 것을 특징으로 하고, 상기 소결공정을 수행한 성형체는 선수축률이 15 ~ 20%가 되도록 하는 것을 특징으로 하고, 상기 소결공정을 수행한 성형체는 유전상수(εr) 4.96 ~ 8.53가 되도록 하는 것을 특징으로 하고, 상기 소결공정을 수행한 성형체는 품질계수(Q× f) 5520 ~ 16200GHz가 되도록 하는 것을 특징으로 하고, 상기 소결공정을 수행한 성형체는 공진주파수 온도계수(τf) -12.50 ~ 1.40 ppm/℃가 되도록 하는 것을 특징으로 한다.Here, Al 2 O 3 , TiO 2 , BaO, CuO and B 2 O 3 is characterized in that each using a sample powder of purity of 99.9% or more, the first calcination process is 3 ~ at a temperature of 1150 ~ 1250 ℃ Characterized in that it is carried out for 5 hours, the sample powder mixed with BaO, CuO and B 2 O 3 is characterized in that the mixture for 24 to 36 hours with an alcohol solvent, the second calcination process is 700 ~ 800 Characterized in that it is carried out for 2 to 4 hours at a temperature of ℃, characterized in that further performing furnace cooling (furnace cooling) after performing the second calcination process, mixing the first powder and the second powder The process is 24-36 with alcohol solvent Characterized in that mixing for a time, the step of forming the shaped body is 875 To 2 to 4 hours at a temperature of ~ 925 ℃, the sintering process is 875 Characterized in that it is carried out for 2 to 4 hours at a temperature of ~ 925 ℃, the molded body subjected to the sintering process is characterized in that the bowel shrinkage is 15 to 20%, the molded body subjected to the sintering process is dielectric Constant (ε r ) 4.96 ~ 8.53, and the molded article subjected to the sintering process is characterized in that the quality factor (Q × f) 5520 ~ 16200GHz, the molded article subjected to the sintering process Resonant Frequency Temperature Coefficient (τ f ) -12.50 ~ 1.40 Characterized in that the ppm / ℃.
이상에서 설명한 바와 같이, 본 발명은 0.95Al2O3 + 0.05TiO2 세라믹스에 BaCuB2O5를 소결조제로서 첨가함으로써 900℃의 저온에서 소결가능하게 된다. 따라서, 0.95Al2O3 + 0.05TiO2 세라믹스가 가지는 마이크로파 유전특성은 저하시키지 않고, 기판용 소재가 요구하는 낮은 유전상수, 높은 품질계수 및 안정된 공진주파수 온도계수 특성을 가지면서도, 저온으로 도체 전극과 동시소성이 가능한 기판용 유전체 세라믹스를 제공하는 효과가 있다.As described above, in the present invention, BaCuB 2 O 5 is added to 0.95Al 2 O 3 + 0.05TiO 2 ceramics as a sintering aid to be sinterable at a low temperature of 900 ° C. Therefore, the conductor electrode at low temperature with low dielectric constant, high quality coefficient, and stable resonant frequency and temperature coefficient characteristics required for substrate materials without degrading the microwave dielectric characteristics of 0.95Al 2 O 3 + 0.05TiO 2 ceramics. There is an effect of providing a dielectric ceramic for substrate capable of simultaneous firing with.
본 발명은 0.95Al2O3 + 0.05TiO2 세라믹스 조성에 소결조제로서 BaCuB2O5를 첨가함으로써, 저온소결이 가능하면서도 낮은 유전상수와 높은 품질계수 및 안정된 공진주파수 온도계수 특성을 가질 수 있도록 한다.The present invention adds BaCuB 2 O 5 as a sintering aid to the 0.95Al 2 O 3 + 0.05TiO 2 ceramics composition, so that low-temperature sintering can be achieved while having low dielectric constant, high quality coefficient, and stable resonance frequency temperature coefficient characteristics. .
이하, 첨부된 도면을 참조하여 본 발명에 따른 기판용 저온 소성 유전체 세라믹스 및 그의 제조 방법에 관하여 상세히 설명한다.Hereinafter, a low-temperature calcined dielectric ceramic for a substrate and a method of manufacturing the same according to the present invention will be described in detail with reference to the accompanying drawings.
먼저, 본 발명에 의한 기판용 저온 소성 유전체 세라믹스의 조성은 다음 [조성식 1]로 나타낼 수 있다.First, the composition of the low-temperature calcined dielectric ceramics for a substrate according to the present invention can be represented by the following [Formula 1].
[조성식 1][Formula 1]
x(0.95Al2O3 + 0.05TiO2) + yBaCuB2O5 x (0.95Al 2 O 3 + 0.05 TiO 2 ) + yBaCuB 2 O 5
여기서, x, y는 몰분율(molar fraction)이고, Where x and y are molar fractions,
0 〈 y ≤ 0.15x 이다.0 < y < 0.15x.
여기서, 0.95Al2O3 + 0.05TiO2 세라믹스 자체는 이미 기판 소재로서 우수한 유전특성을 갖는다. 그러나 소결온도가 대략 1300℃ 이상으로 매우 높아 금속도체와 동시소결이 불가능하다. 따라서 그 조성 자체로는 본 발명이 목적으로 하는 저온 동시소성 세라믹스(Low Temperature Co-Fired Ceramics: LTCC)로 사용될 수 없다. Here, 0.95Al 2 O 3 + 0.05TiO 2 ceramics themselves already have excellent dielectric properties as substrate materials. However, the sintering temperature is very high above about 1300 ℃, so it is impossible to co-sinter with the metal conductor. Therefore, the composition itself cannot be used as Low Temperature Co-Fired Ceramics (LTCC) for the purpose of the present invention.
이러한 문제를 해결하기 위하여, 본 발명에서는 소결조제로서 BaCuB2O5를 상기 조성에 첨가한다. 이때, 소결온도가 900℃ 미만이면 소결 상태가 양호하지 못하며 950℃이상에서는 소결상태는 양호하나 Ag의 확산으로 인하여 응용하기에 불가능하다.In order to solve this problem, in the present invention, BaCuB 2 O 5 is added to the composition as a sintering aid. At this time, if the sintering temperature is less than 900 ℃ sintering state is not good and above 950 ℃ the sintering state is good but it is impossible to apply due to the diffusion of Ag.
또한, BaCuB2O5의 함량(즉, [조성식 1]에 있어서 y)이 15.0 몰분율을 초과하면 유전상수가 급격히 증가하여 기판용 유전체 세라믹스가 가져야 하는 범위를 넘어서게 된다. 능동소자 및 수동소자가 상기의 [조성식 1]의 y가 15.0 몰분율을 초과하는 조성의 기판에 실장될 경우 신호 전달을 방해하는 노이즈로서 작용하게 된다. 이러한 신호 전달의 방해는 소자들의 원활한 구동을 저해하게 되므로 BaCuB2O5의 함량은 15.0 몰분율 이하로 조절하는 것이 바람직하다.In addition, when the content of BaCuB 2 O 5 (that is, y in [Composition Formula 1]) exceeds 15.0 mole fraction, the dielectric constant rapidly increases and exceeds the range that the dielectric ceramics for the substrate should have. When the active device and the passive device are mounted on a substrate having a composition in which y in the above [Formula 1] is greater than 15.0 mole fraction, it acts as a noise that hinders signal transmission. Since the interference of the signal transmission inhibits the smooth driving of the devices, the content of BaCuB 2 O 5 is preferably controlled to 15.0 mole fraction or less.
아울러, 본 발명의 바람직한 일실시 예에 따르면, [조성식 1]과 같은 조성으 로 되는 유전체 세라믹스의 소결온도는 875℃ ~ 925℃일 때 가장 적합하다. 이때, 만일 소결온도를 875℃보다 낮게 설정하는 경우에는 세라믹스의 소결이 이루어지지 않으며, 또한 소결온도를 925℃보다 높게 설정하는 경우에는 물론 저온소결로서 부적합하다.In addition, according to a preferred embodiment of the present invention, the sintering temperature of the dielectric ceramics having the composition as shown in [Formula 1] is most suitable when the 875 ℃ ~ 925 ℃. At this time, if the sintering temperature is set lower than 875 ℃, sintering of the ceramics is not made, and if the sintering temperature is set higher than 925 ℃, of course, it is not suitable as low temperature sintering.
이하, 본 발명의 바람직한 실시예들을 첨부한 도면을 참조하며 상세히 설명한다. 다만, 본 발명이 하술하는 실시예들은 본 발명의 전반적인 이해를 돕기 위하여 제공되는 것이며, 본 발명은 하기 실시예로만 한정되는 것은 아니다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in detail. However, the embodiments described below are provided to help the overall understanding of the present invention, and the present invention is not limited only to the following examples.
실시예Example
본 실시예에서는 우선 소결조제인 BaCuB2O5 분말을 만들기 위하여 순도 99.9%이상의 BaO, CuO 그리고 B2O3의 시료분말을 조성식 BaCuB2O5의 조성비에 맞게 칭량한 후, 이를 알코올 용매와 함께 24시간 동안 혼합하였다. 그리고 이를 700℃에서 2시간 동안 하소하고 로냉(furnace cooling)하여 BaCuB2O5 분말을 제조하였다.In this embodiment, first, in order to make BaCuB 2 O 5 powder, which is a sintering aid, sample powders of BaO, CuO and B 2 O 3 having a purity of 99.9% or more are weighed according to the composition ratio of the compositional formula BaCuB 2 O 5 , and then together with an alcohol solvent. Mix for 24 hours. And it was calcined for 2 hours at 700 ℃ and the furnace (furnace cooling) to prepare a BaCuB 2 O 5 powder.
다음으로, 초기 원료인 순도 99.9%의 Al2O3 및 TiO2의 시료분말을 조성식 0.95Al2O3 + 0.05TiO2의 조성비에 맞게 칭량한 후, 이를 1150℃에서 3시간 동안 하소하였다. 그리고 이렇게 얻어진 분말을 X-선 회절 분석한 결과, Al2O3상과 TiO2상이 공존함을 확인하였다. Next, sample powders of Al 2 O 3 and TiO 2 having an initial raw material purity of 99.9% were weighed according to the composition ratio of the composition formula 0.95Al 2 O 3 + 0.05TiO 2 , and then calcined at 1150 ° C. for 3 hours. X-ray diffraction analysis of the powder thus obtained confirmed that the Al 2 O 3 phase and the TiO 2 phase coexist.
그리고 상기 0.95Al2O3 + 0.05TiO2 분말에 상기 BaCuB2O5 분말을 [조성식 1]에 따라 각각 5.0, 10.0, 15.0 및 20.0 mol% 첨가한 후, 각각 24시간 동안 알코올 용매를 사용하여 습식 혼합하고 건조하였다. 이어서, 제조된 시료를 직경이 약 10 mm, 높이가 약 7 mm인 실린더형 성형체로 가압 성형 후, 900℃에서 2시간 동안 소결하였다. The BaCuB 2 O 5 powder was added to the 0.95Al 2 O 3 + 0.05TiO 2 powder by 5.0, 10.0, 15.0, and 20.0 mol%, respectively, according to the [Formula 1], and then wet by using an alcohol solvent for 24 hours. Mixed and dried. Subsequently, the prepared sample was press-molded into a cylindrical shaped body having a diameter of about 10 mm and a height of about 7 mm, and then sintered at 900 ° C. for 2 hours.
그 결과 0.95Al2O3 + 0.05TiO2 분말에 BaCuB2O5 분말을 [조성식 1]에 따라 5.0 mol% 이상 최대 15 mol% 이하 첨가시에 선 수축률은 15 ~ 20% 정도로 되어 저온 소성 기판으로서 적합한 것을 알 수 있다. 이때, BaCuB2O5 분말의 함량이 증가할수록 선 수축률은 비례하여 증가하는 경향을 나타내었으며 소결도 잘 이루어졌다.As a result, when BaCuB 2 O 5 powder was added to 0.95Al 2 O 3 + 0.05TiO 2 powder by 5.0 mol% or more and up to 15 mol% or less according to [Formula 1], the linear shrinkage was about 15 to 20%. It can be seen that it is suitable. At this time, as the content of BaCuB 2 O 5 powder increases, the linear shrinkage was in proportion to increase proportionally and the sintering was also good.
도 1은 본 발명에 의한 기판용 저온 소성 유전체 세라믹스에 있어서 900℃에서 소결한 BaCuB2O5 첨가량 변화에 따른 0.95Al2O3 + 0.05TiO2 세라믹스의 유전상수(εr)의 변화를 나타낸 그래프이다. 1 is a graph showing the change in dielectric constant (ε r ) of 0.95Al 2 O 3 + 0.05TiO 2 ceramics according to the change amount of BaCuB 2 O 5 added at sintered at 900 ° C. in the low-temperature calcined dielectric ceramics for substrates according to the present invention. to be.
도 1을 참조하면, BaCuB2O5가 10.0 mol%만큼 첨가된 경우를 유전상수(εr)가 5.59 정도로 낮은 값을 나타내는 것을 알 수 있다. 그리고 BaCuB2O5의 첨가량에 따라서 유전상수(εr)가 4.96 ~ 8.53까지 변화하는데, 바람직하게는 5 ~ 7의 범위 내에서 가장 좋은 유전특성을 확보할 수 있다.Referring to FIG. 1, it can be seen that the dielectric constant ε r has a value as low as 5.59 when BaCuB 2 O 5 is added by 10.0 mol%. The dielectric constant ε r changes from 4.96 to 8.53 depending on the amount of BaCuB 2 O 5 added. Preferably, the best dielectric properties can be secured within the range of 5-7.
도 2는 본 발명에 의한 기판용 저온 소성 유전체 세라믹스에 있어서 900℃에서 소결한 BaCuB2O5 첨가량 변화에 따른 0.95Al2O3 + 0.05TiO2 세라믹스의 품질계수(Q ×f)의 변화를 나타낸 그래프이다. 2 shows BaCuB 2 O 5 sintered at 900 ° C. in a low-temperature calcined dielectric ceramic for substrates according to the present invention. 0.95Al 2 O 3 + 0.05TiO 2 depending on the amount of addition It is a graph showing the change of the quality factor (Qxf) of ceramics.
도 2를 참조하면, BaCuB2O5가 10.0 mol% 첨가된 경우 품질계수(Q×f)가 9,230 GHz 정도의 높은 값을 나타내는 것을 알 수 있다. Referring to FIG. 2, when 10.0 mol% of BaCuB 2 O 5 is added, it can be seen that the quality factor (Q × f) represents a high value of about 9,230 GHz.
도 3은 본 발명에 의한 기판용 저온 소성 유전체 세라믹스에 있어서 900℃에서 소결한 BaCuB2O5 첨가량 변화에 따른 0.95Al2O3 + 0.05TiO2 세라믹스의 공진주파수 온도계수(τf)의 변화를 나타낸 그래프이다. Figure 3 is a change in a BaCuB 2 O 5 can be the resonant frequency temperature coefficient of 0.95Al 2 O 3 + 0.05TiO 2 Ceramics with the amount change (τ f) and sintered at 900 ℃ in the low-temperature co-fired dielectric ceramics for substrates of the present invention The graph shown.
도 3을 참조하면, 10.0 mol%의 BaCuB2O5가 첨가된 0.95Al2O3 + 0.05TiO2 세라믹스를 900℃에서 소결한 경우, 공진주파수 온도계수(τf)가 -5.32 ppm/℃로 비교적 양호한 값을 나타내는 것을 알 수 있다.Referring to FIG. 3, when 0.95Al 2 O 3 + 0.05TiO 2 ceramics containing 10.0 mol% of BaCuB 2 O 5 was sintered at 900 ° C., the resonance frequency temperature coefficient (τ f ) was −5.32 ppm / ° C. It can be seen that it shows a relatively good value.
도 4는 본 발명에 의한 기판용 저온 소성 유전체 세라믹스에 있어서 900℃에서 소결한 BaCuB2O5 첨가량 변화에 따른 0.95Al2O3 + 0.05TiO2 세라믹스의 상대밀도 변화를 나타낸 그래프이다. 4 is a graph showing the relative change in density 0.95Al 2 O 3 + 0.05TiO 2 Ceramics with a BaCuB 2 O 5 amount change sintered at 900 ℃ in the low-temperature co-fired dielectric ceramics for substrates of the present invention.
도 4를 참조하면, 10.0 mol%의 BaCuB2O5가 첨가된 0.95Al2O3 + 0.05TiO2 세라믹스를 900℃에서 소결한 경우, 95.3%의 높은 상대밀도를 나타내어 상기 온도에서 세라믹스의 소결상태가 매우 양호함을 알 수 있다.Referring to FIG. 4, when 0.95Al 2 O 3 + 0.05TiO 2 ceramics containing 10.0 mol% of BaCuB 2 O 5 was sintered at 900 ° C., a high relative density of 95.3% was shown, resulting in a sintered state of the ceramics at the temperature. It can be seen that is very good.
상술한 바와 같이 본 발명에 의한 기판용 저온 소성 유전체 세라믹스는 10.0 mol%의 BaCuB2O5가 첨가될 때, 상대밀도가 95.3%, 유전상수(εr)가 5.59, 품질계 수(Q×f)가 9,230 GHz이며 공진주파수 온도계수(τf)는 -5.32 ppm/℃로서, 저온 소성 기판용 유전체 세라믹스의 부품재료로서 사용이 매우 적합한 상태가 된다.As described above, the low-temperature calcined dielectric ceramic for a substrate according to the present invention has a relative density of 95.3%, a dielectric constant (ε r ) of 5.59, and a quality factor (Q × f) when 10.0 mol% of BaCuB 2 O 5 is added. ) Is 9,230 GHz, and the resonant frequency temperature coefficient (τ f ) is -5.32 ppm / ° C, which makes it suitable for use as a component material of dielectric ceramics for low-temperature baking substrates.
여기서, 이상 기술한 본 발명의 바람직한 실시예들의 제반 유전특성은 조성분말의 평균입도, 분포 및 비표면적과 같은 분말특성과, 원료의 순도, 불순물 첨가량 및 소결 조건에 따라 통상적인 오차범위 내에서 다소 변동이 있을 수 있음은 해당 분야에서 통상의 지식을 가진 자에게는 지극히 당연한 것이다.Here, all the dielectric properties of the preferred embodiments of the present invention described above are somewhat within the usual error range depending on the powder properties such as the average particle size, distribution and specific surface area of the composition powder, the purity of the raw material, the amount of impurity added and the sintering conditions. It is only natural for those with ordinary knowledge in the field that there may be variations.
한편, 본 발명의 바람직한 실시예들은 예시의 목적을 위해 개시된 것이며, 해당 분야에서 통상의 지식을 가진 자라면 누구나 본 발명의 사상과 범위 안에서 다양한 수정, 변경, 부가 등이 가능할 것이고, 이러한 수정, 변경, 부가 등은 특허청구 범위에 속하는 것으로 보아야 한다.On the other hand, preferred embodiments of the present invention are disclosed for the purpose of illustration, anyone of ordinary skill in the art will be possible to various modifications, changes, additions, etc. within the spirit and scope of the present invention, such modifications, changes And additions should be regarded as within the scope of the claims.
도 1은 본 발명에 의한 기판용 저온 소성 유전체 세라믹스에 있어서 900℃에서 소결한 BaCuB2O5 첨가량 변화에 따른 0.95Al2O3 + 0.05TiO2 세라믹스의 유전상수(εr)의 변화를 나타낸 그래프.1 is a graph showing the change in dielectric constant (ε r ) of 0.95Al 2 O 3 + 0.05TiO 2 ceramics according to the change amount of BaCuB 2 O 5 added at sintered at 900 ° C. in the low-temperature calcined dielectric ceramics for substrates according to the present invention. .
도 2는 본 발명에 의한 기판용 저온 소성 유전체 세라믹스에 있어서 900℃에서 소결한 BaCuB2O5 첨가량 변화에 따른 0.95Al2O3 + 0.05TiO2 세라믹스의 품질계수(Q×f)의 변화를 나타낸 그래프.2 shows BaCuB 2 O 5 sintered at 900 ° C. in a low-temperature calcined dielectric ceramic for substrates according to the present invention. 0.95Al 2 O 3 + 0.05TiO 2 depending on the amount of addition Graph showing changes in quality factor (Q × f) of ceramics.
도 3은 본 발명에 의한 기판용 저온 소성 유전체 세라믹스에 있어서 900℃에서 소결한 BaCuB2O5 첨가량 변화에 따른 0.95Al2O3 + 0.05TiO2 세라믹스의 공진주파수 온도계수(τf)의 변화를 나타낸 그래프.Figure 3 is a change in a BaCuB 2 O 5 can be the resonant frequency temperature coefficient of 0.95Al 2 O 3 + 0.05TiO 2 Ceramics with the amount change (τ f) and sintered at 900 ℃ in the low-temperature co-fired dielectric ceramics for substrates of the present invention Graph shown.
도 4는 본 발명에 의한 기판용 저온 소성 유전체 세라믹스에 있어서 900℃에서 소결한 BaCuB2O5 첨가량 변화에 따른 0.95Al2O3 + 0.05TiO2 세라믹스의 상대밀도 변화를 나타낸 그래프.Figure 4 is a graph showing the relative change in density of a BaCuB 2 O 5 amount 0.95Al 2 O 3 + 0.05TiO 2 sintered ceramics according to the change at 900 ℃ in the low-temperature co-fired dielectric ceramics for substrates of the present invention.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080034244A KR100915909B1 (en) | 2008-04-14 | 2008-04-14 | Low temperature co-fired dielectric ceramics for pcb application and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080034244A KR100915909B1 (en) | 2008-04-14 | 2008-04-14 | Low temperature co-fired dielectric ceramics for pcb application and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100915909B1 true KR100915909B1 (en) | 2009-09-07 |
Family
ID=41355410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020080034244A KR100915909B1 (en) | 2008-04-14 | 2008-04-14 | Low temperature co-fired dielectric ceramics for pcb application and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100915909B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112047728A (en) * | 2020-09-28 | 2020-12-08 | 成都万士达瓷业有限公司 | Manufacturing method of Al2O3 ceramic substrate |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR950029230A (en) * | 1994-04-21 | 1995-11-22 | 이헌조 | Nonmagnetic Ceramic Substrates for Thin Film Magnetic Heads |
JP2000016867A (en) | 1998-07-02 | 2000-01-18 | Mitsubishi Heavy Ind Ltd | Titanium dioxide sintered compact, its production and high-temperature member using the same |
KR20060022740A (en) * | 2004-09-07 | 2006-03-13 | 이덕록 | Ceramic composition having antibiosis for radiating far infrared ray |
KR100663972B1 (en) | 2005-08-25 | 2007-01-02 | 충주대학교 산학협력단 | Al2o3-doped pmn-pzt piezoelectric ceramics and method for producing the same |
-
2008
- 2008-04-14 KR KR1020080034244A patent/KR100915909B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR950029230A (en) * | 1994-04-21 | 1995-11-22 | 이헌조 | Nonmagnetic Ceramic Substrates for Thin Film Magnetic Heads |
JP2000016867A (en) | 1998-07-02 | 2000-01-18 | Mitsubishi Heavy Ind Ltd | Titanium dioxide sintered compact, its production and high-temperature member using the same |
KR20060022740A (en) * | 2004-09-07 | 2006-03-13 | 이덕록 | Ceramic composition having antibiosis for radiating far infrared ray |
KR100663972B1 (en) | 2005-08-25 | 2007-01-02 | 충주대학교 산학협력단 | Al2o3-doped pmn-pzt piezoelectric ceramics and method for producing the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112047728A (en) * | 2020-09-28 | 2020-12-08 | 成都万士达瓷业有限公司 | Manufacturing method of Al2O3 ceramic substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100426219B1 (en) | Dielectric Ceramic Compositions and Manufacturing Method of Multilayer components thereof | |
KR101161614B1 (en) | Glass-free microwave dielectric ceramics and the manufacturing method thereof | |
US20010051584A1 (en) | Dielectric ceramic composition and method for producing the same, and device for communication apparatus using the same | |
CN104003722A (en) | Ultralow-dielectric constant microwave dielectric ceramic Li3AlV2O8 capable of being sintered at low temperature and preparation method thereof | |
CN104387057B (en) | A kind of temperature-stable titanio spinelle microwave-medium ceramics and low temperature preparation method thereof | |
CN103467095A (en) | Low-temperature sinterable microwave dielectric ceramic SrCuV2O7 and preparation method thereof | |
KR100557853B1 (en) | Phosphate Ceramic Compositions with Low Dielectric Constant | |
KR102189481B1 (en) | Dielectric ceramics composition for high frequency device, ceramic substrate thereby and manufacturing method thereof | |
KR100915909B1 (en) | Low temperature co-fired dielectric ceramics for pcb application and method for manufacturing the same | |
KR102716712B1 (en) | Composite ceramics composition for ultra high frequency device and ceramic substrate thereby and manufacturing method of the same | |
EP1289909A1 (en) | A dielectric ceramic composite | |
CN109053189A (en) | A kind of low-k high performance microwave medium ceramic material, preparation method and application | |
CN110066170B (en) | high-Q-value low-temperature sintered composite microwave dielectric ceramic material and preparation method thereof | |
KR100842854B1 (en) | Low temperature co-fired microwave dielectric ceramics and the manufacturing method thereof | |
CN105565808A (en) | Low-temperature co-fired microwave dielectric ceramic material and preparation method thereof | |
KR20090117412A (en) | Glass-ceramic composition with high quality factor and low dielectric constant | |
KR100632393B1 (en) | High-permittivity dielectric ceramic compositions for low-fire ceramic multilayer packages | |
KR20050078073A (en) | Low-fire high-permittivity dielectric compositions with adjustable temperature coefficient | |
EP1489058A2 (en) | Dielectric material and method of producing the same | |
KR101089447B1 (en) | Microwave dielectric ceramics composition and method for fabricating microwave dielectric ceramics using the same | |
KR101089495B1 (en) | Microwave dielectric ceramics composition and method for fabricating microwave dielectric ceramics using the same | |
KR100563453B1 (en) | Dielectric ceramic composition and manufacturing method thereof | |
KR20050105392A (en) | Microwave dielectric ceramic composition for low temperature firing and preparation method thereof | |
JP4368136B2 (en) | Dielectric porcelain composition | |
KR100582983B1 (en) | Microwave Dielectric Ceramic Composition for Low Temperature Firing and Preparation Method Thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120814 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20130816 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20140828 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20150818 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20160822 Year of fee payment: 8 |
|
LAPS | Lapse due to unpaid annual fee |