KR100913974B1 - Frequency ratio digitizing temperature sensor with linearity correction - Google Patents

Frequency ratio digitizing temperature sensor with linearity correction Download PDF

Info

Publication number
KR100913974B1
KR100913974B1 KR1020070018046A KR20070018046A KR100913974B1 KR 100913974 B1 KR100913974 B1 KR 100913974B1 KR 1020070018046 A KR1020070018046 A KR 1020070018046A KR 20070018046 A KR20070018046 A KR 20070018046A KR 100913974 B1 KR100913974 B1 KR 100913974B1
Authority
KR
South Korea
Prior art keywords
current
temperature
ptat
frequency
output
Prior art date
Application number
KR1020070018046A
Other languages
Korean (ko)
Other versions
KR20070087516A (en
Inventor
에릭 디. 블롬
준 완
스튜어트 에이치. 우리에
Original Assignee
내셔널 세미콘덕터 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/361,912 external-priority patent/US7331708B2/en
Application filed by 내셔널 세미콘덕터 코포레이션 filed Critical 내셔널 세미콘덕터 코포레이션
Publication of KR20070087516A publication Critical patent/KR20070087516A/en
Application granted granted Critical
Publication of KR100913974B1 publication Critical patent/KR100913974B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • G01K15/005Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/01Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using semiconducting elements having PN junctions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0716Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising a sensor or an interface to a sensor
    • G06K19/0717Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising a sensor or an interface to a sensor the sensor being capable of sensing environmental conditions such as temperature history or pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2219/00Thermometers with dedicated analog to digital converters

Abstract

선형성 정정 온도 출력 신호를 생성하기 위한 주파수비 디지털화 온도 센서는 PTAT 전류 및 CTAT 전류를 수신하는 입력 생성 회로 및, 데이터 및 기준 오실레이터들을 포함하는 주파수비 ADC를 구비한다. 입력 생성 회로는 PTAT 전류와 CTAT 전류의 가중된 합으로부터 제1전류를 생성하고, 또한 제1전류와 제1비율의 PTAT 전류의 합인 제1정정 전류를 생성한다. 입력 생성 회로는 PTAT 전류를 가리키는 제1출력 전류 및, 제1정정 전류를 제1저항에 인가하여 생성되고 데이터 오실레이터에서 사용할 제1출력 전압을 제공하고, 제1정정 전류인 제2출력 전류 및, 제1전류를 제2저항에 인가하여 생성되고 ADC의 기준 오실레이터에서 사용할 제2출력 전압을 제공한다. Frequency ratio digitization temperature sensor for generating linearity correction temperature output signal has an input generation circuit for receiving PTAT current and CTAT current and a frequency ratio ADC including data and reference oscillators. The input generation circuit generates a first current from the weighted sum of the PTAT current and the CTAT current, and also generates a first positive current that is the sum of the first current and the PTAT current of the first ratio. The input generation circuit provides a first output current indicating the PTAT current and a first output voltage generated by applying the first positive current to the first resistor and used for the data oscillator, the second output current being the first positive current, and A first current is applied to the second resistor to provide a second output voltage for use in the reference oscillator of the ADC.

Description

선형성 정정 기능을 가지는 주파수비 디지털화 온도 센서{Frequency ratio digitizing temperature sensor with linearity correction}Frequency ratio digitizing temperature sensor with linearity correction

도 1은 본 발명의 일 실시예에 따르는 주파수비 디지털화 온도 센서를 개념적으로 나타내는 블록도이다. 1 is a block diagram conceptually illustrating a frequency ratio digitizing temperature sensor according to an embodiment of the present invention.

도 2는 전류-주파수 컨버터를 통한 전달 지연에 기인한 온도 계측치들의 활형(bow) 선형성 에러를 도시하는 그래프이다. 2 is a graph showing the bow linearity error of temperature measurements due to propagation delay through the current-frequency converter.

도 3은 온도 종속 전류의 선형성 에러를 예시하는 그래프이다. 3 is a graph illustrating the linearity error of temperature dependent current.

도 4는 본 발명의 일 실시예에 따르는 도 1에 도시된 주파수비 디지털화 온도 센서 내의 3-포트 선형성 정정 동작을 구현하는 입력 생성 회로를 개념적으로 나타내는 블록도이다. 4 is a block diagram conceptually illustrating an input generation circuit that implements a three-port linearity correction operation in the frequency ratio digitization temperature sensor shown in FIG. 1 in accordance with one embodiment of the present invention.

도 5는 선형화된 온도 센서의 온도 출력 신호를 정정되지 않은 온도 센서의 온도 출력 신호와 비교한 결과인 온도 에러를 예시하는 그래프이다. 5 is a graph illustrating a temperature error that is the result of comparing a temperature output signal of a linearized temperature sensor to a temperature output signal of an uncorrected temperature sensor.

도 6은 본 발명의 일 실시예에 따르는 도 1에 도시된 주파수비 디지털화 온도 센서의 입력 생성 회로를 개념적으로 나타내는 블록도이다. 6 is a block diagram conceptually illustrating an input generation circuit of the frequency ratio digitizing temperature sensor shown in FIG. 1 according to an embodiment of the present invention.

도 7은 섭씨 -25도 내지 85도의 구간에서 이득 카운트 Nc에 대한 함수로서 도시된 최악 상황의 피크-대-피크 온도 에러를 예시하는 도면으로서, 정정 인자들 kv 및 Kp는 도 1 및 도 6에 도시된 주파수비 디지털화 온도 센서에 대하여, 도 9에 도시된 결과에 기반한 Nc의 각 값에 대하여 동시에 연산된 결과를 도시하는 그래프이다. FIG. 7 is a diagram illustrating the worst-case peak-to-peak temperature error shown as a function of gain count Nc in the interval of -25 degrees Celsius to 85 degrees Celsius, with correction factors kv and Kp being shown in FIGS. For the frequency ratio digitized temperature sensor shown, it is a graph showing the results simultaneously calculated for each value of Nc based on the result shown in FIG.

도 8은 이득 카운트 Nc에 대한 함수로서의 기준 주파수의 최악 상황의 피크-대-피크 변화를 예시하는 그래프로서, 정정 인자들 kv 및 Kp는 도 1 및 도 6에 도시된 주파수비 디지털화 온도 센서에 대하여, 도 9에 도시된 결과에 기반한 Nc의 각 값에 대하여 동시에 연산된 결과를 도시하는 그래프이다. FIG. 8 is a graph illustrating the worst-case peak-to-peak change in reference frequency as a function of gain count Nc, with correction factors kv and Kp for the frequency ratio digitizing temperature sensor shown in FIGS. 9 is a graph showing the results of simultaneous calculation for each value of Nc based on the result shown in FIG.

도 9는 다항식 근사화에 의하여 표시되고 도 1 및 도 6의 주파수비 디지털화 온도 센서에 대한 수학식 11 및 14의 구속조건(constraint)을 이용하여 그 해가 구해지는 예시적인 시스템에 대한 단일 온도에서의 각 목표치에서의 정정 인자들(Kp, Kv)의 수치적인 값 및 오프셋 조정치(offset adjust)를 예시하는 그래프이다. FIG. 9 is a single temperature for example system represented by a polynomial approximation and solved using the constraints of Equations 11 and 14 for the frequency ratio digitizing temperature sensor of FIGS. 1 and 6. It is a graph illustrating the numerical value and offset adjust of the correction factors Kp and Kv at each target value.

도 10은 도 7 내지 도 9를 이용하여 선택된 정정 인자(correction factor)를 사용하여 구현되는 도 1 및 도 6의 주파수비 디지털화 온도 센서에 있어 온도에 대한 디지털화된 온도 에러를 예시하는 그래프이다. FIG. 10 is a graph illustrating the digitized temperature error versus temperature for the frequency ratio digitized temperature sensor of FIGS. 1 and 6 implemented using a correction factor selected using FIGS. 7-9.

도 11은 도 7 내지 도 9를 이용하여 선택된 정정 인자를 사용하여 구현된 본 발명에 의한 주파수비 디지털화 온도 센서에 있어 온도에 대한 기준 주파수의 퍼센트 변화를 예시하는 그래프이다. FIG. 11 is a graph illustrating a percentage change in reference frequency over temperature for a frequency ratio digitized temperature sensor according to the present invention implemented using a correction factor selected using FIGS. 7-9.

도 12는 본 발명의 제3 실시예에 따르는 도 1의 주파수비 디지털화 온도 센서에 대한 2-포트 선형성 정정 기능을 구현하는 입력 생성 회로를 개념적으로 나타내는 블록도이다. 12 is a block diagram conceptually illustrating an input generation circuit implementing a two-port linearity correction function for the frequency ratio digitizing temperature sensor of FIG. 1 according to a third embodiment of the present invention.

도 13은 도 12에 도시된 선형화된 온도 센서의 온도 출력 신호를 정정되지 않은 온도 센서의 온도 출력 신호와 비교한 온도 에러를 예시하는 그래프이다. FIG. 13 is a graph illustrating a temperature error comparing a temperature output signal of the linearized temperature sensor shown in FIG. 12 with a temperature output signal of an uncorrected temperature sensor.

도 14는 도 12에 도시된 주파수비 디지털화 온도 센서의, 선형성 정정 기능이 적용된 결과를 선형성 정정 기능이 기준 주파수에 적용되지 않은 경우와 비교한 기준 주파수 내의 변화를 예시하는 그래프이다. FIG. 14 is a graph illustrating a change in a reference frequency in the frequency ratio digitizing temperature sensor shown in FIG. 12 comparing the result of applying the linearity correction function to the case where the linearity correction function is not applied to the reference frequency.

도 15a, 15b, 15c 및 15d를 포함하며, 이는 본 발명의 주파수비 디지털화 온도 센서 내의 I/F 컨버터를 구현하기 위하여 이용될 수 있는 전류-주파수 컨버터를 개념적으로 나타내는 블록도이다. 15A, 15B, 15C and 15D, which is a block diagram conceptually illustrating a current-frequency converter that may be used to implement an I / F converter in the frequency ratio digitizing temperature sensor of the present invention.

도 16은 본 발명의 일 실시예에 따르는 RFID 온도 자동 기록기(logger)를 개념적으로 나타내는 블록도이다. FIG. 16 is a block diagram conceptually illustrating an RFID temperature logger according to an embodiment of the present invention.

도 17은 본 발명의 일 실시예에 따르는 도 16의 RFID 온도 자동 기록기에 통합될 수 있는 온도/전압 센서 블록을 개념적으로 나타내는 블록도이다. 17 is a block diagram conceptually illustrating a temperature / voltage sensor block that may be integrated into the RFID temperature recorder of FIG. 16 in accordance with an embodiment of the present invention.

도 18은 도 17의 온도/전압 센서 블록에 통합될 수 있는 배터리 전압 및 PTAT 전류 선택 회로의 회로도이다. FIG. 18 is a circuit diagram of a battery voltage and PTAT current selection circuit that may be incorporated into the temperature / voltage sensor block of FIG. 17.

본 발명은 무선 주파수 식별 장치에 관한 것이며, 특히, 주파수비 디지털화 온도 센서를 내장하는 무선 주파수 식별 장치에 관한 것이다. The present invention relates to a radio frequency identification device, and more particularly, to a radio frequency identification device incorporating a frequency ratio digitizing temperature sensor.

오실레이터의 주파수를 변경시킴으로써 온도를 계측하도록 동작하는 주파수비 디지털화 온도 센서는 공지되어 있다. 더 일반적으로, 이러한 온도 센서는 주 파수비 아날로그-디지털 컨버터(ADC)를 이용하여 온도와 함께 변화되는 입력 신호를 계측하도록 구현된다. 일반적으로, 주파수비 디지털화 온도 센서는 두 개의 오실레이터, 즉, 기준 오실레이터 및 데이터 오실레이터를 포함한다. 기준 오실레이터는 변환 구간(conversion interval)을 정의하는데, 이 구간에서 기준 주파수의 고정된 개수의 클록 주기가 변환 주기를 나타내기 위하여 이용된다. 데이터 오실레이터의 주파수인 데이터 주파수는 온도에 따라 변화하며 기준 주파수에 대한 데이터 주파수의 비율이 온도 센서의 디지털 출력 신호를 생성한다. BACKGROUND OF THE INVENTION Frequency ratio digitizing temperature sensors that operate to measure temperature by changing the frequency of the oscillator are known. More generally, such temperature sensors are implemented to measure input signals that change with temperature using a frequency ratio analog-to-digital converter (ADC). In general, the frequency ratio digitizing temperature sensor includes two oscillators, a reference oscillator and a data oscillator. The reference oscillator defines a conversion interval, in which a fixed number of clock periods of the reference frequency is used to indicate the conversion period. The data frequency, the frequency of the data oscillator, varies with temperature and the ratio of the data frequency to the reference frequency produces the digital output signal of the temperature sensor.

종래 기술에 의한 주파수비 디지털화 온도 센서에서는, 센서 회로의 다양한 구성 요소들의 비이상적 특성 때문에 디지털 출력 신호가 비선형성을 가지게 된다. 예를 들어, 주파수비 디지털화 온도 센서 내의 기준 오실레이터 및 데이터 오실레이터는 일반적으로는 전류-주파수 컨버터(I/F 컨버터)를 이용하여 구현된다. 오실레이터를 통과하는데 소요되는 전파 지연(propagation delay) 때문에 디지털 출력 신호의 주파수의 선형성에 왜곡이 발생한다. 또한, 온도 계측치를 나타내기 위하여 생성되거나 및/또는 기준 전류로서 이용되기 위하여 생성되는 온도에 의존하는 전류들은 그 자체로서 비선형성 특성을 나타낼 수도 있다. 각 오실레이터를 구성하는 저항 및 커패시터의 온도 계수들은 온도가 변화함에 따라서 오실레이터 주파수에 추가적인 드리프트 및 비선형성이 발생하도록 야기할 수도 있다. In frequency ratio digitizing temperature sensors according to the prior art, the digital output signal has nonlinearity due to the non-ideal nature of the various components of the sensor circuit. For example, reference oscillators and data oscillators in frequency ratio digitizing temperature sensors are typically implemented using current-frequency converters (I / F converters). Propagation delays that pass through the oscillator cause distortion in the linearity of the frequency of the digital output signal. In addition, the currents that are generated to represent temperature measurements and / or generated to be used as reference currents may themselves exhibit nonlinear characteristics. The temperature coefficients of the resistors and capacitors that make up each oscillator may cause additional drift and nonlinearity to occur at the oscillator frequency as the temperature changes.

이러한 비선형 에러를 정정 또는 최소화하기 위한 종래의 몇 가지 해결책들은, 일반적인 어플리케이션에서는 정정된 시스템이 더 이상 유용하지 않도록 만들어 버린다. 예를 들어, 몇 가지 온도 주파수비 아날로그-디지털 컨버터(ADC)는 기 준 주파수가 의도적으로 온도에 따라서 폭넓게 변경되는 기준 오실레이터를 이용한다. 전형적으로, 이러한 타입의 주파수비 아날로그-디지털 컨버터(ADC)는, 데이터 주파수가 상대적으로 일정하게 유지되는 반면에, 그 주파수가 온도가 증가함에 따라서 감소하는 기준 오실레이터를 이용한다. 그 결과, 온도가 증가할수록 현저하게 변환 시간이 증가하게 되며, 이에 따라서 원하는 어플리케이션이 고정되고 안정된 간격에서 취해진 샘플들의 출력 스트림일 경우에는 불편할 수 있다. Some conventional solutions for correcting or minimizing such nonlinear errors make the corrected system no longer useful in typical applications. For example, some temperature-frequency-to-analog analog-to-digital converters (ADCs) use reference oscillators in which the reference frequency is intentionally varied widely with temperature. Typically, this type of frequency ratio analog-to-digital converter (ADC) uses a reference oscillator whose data frequency decreases as the temperature increases, while the data frequency remains relatively constant. As a result, the conversion time increases significantly with increasing temperature, which can be inconvenient if the desired application is an output stream of samples taken at fixed and stable intervals.

온도 디지털화 주파수비 아날로그-디지털 컨버터(ADC)는 또한 기준 주파수 생성기로서 온도 보상된 수정 오실레이터를 이용하여 설계 및 구현된다. 그러나, 수정 오실레이터는 외부 구성 요소이며, 이러한 수정 오실레이터를 이용하면 비용이 증가할 뿐만 아니라 주파수비 아날로그-디지털 컨버터(ADC)를 구현하기 위하여 필요한 회로 영역이 증가된다. Temperature digitization Frequency ratio analog-to-digital converters (ADCs) are also designed and implemented using temperature compensated quartz oscillators as reference frequency generators. However, quartz oscillators are external components, and using these oscillators not only increases costs but also increases the circuit area required to implement a frequency ratio analog-to-digital converter (ADC).

미국 특허 제 6,183,131호에서, 디지털화 온도 센서는, 아날로그-디지털 컨버터(ADC) 입력(PTAT 신호)의 작은 비율을 (거의 일정한) 아날로그-디지털 컨버터(ADC) 기준 신호에 추가함으로써 선형성 정정 기능을 구현한다. 이러한 방법에서, 보우 형태의 에러(bow error)가 거의 완전하게 정정되는 것이 디지털화 온도 센서에서 발견되는데, 특히, 이러한 에러들은 베이스-이미터 간 전압의 온도 의존형 동작에 관련된다. 그러나, 미국 특허 제 6,183,131호에서 설명된 정정 보상 기술은 단일 입력 및 단일 기준 포트를 가지는 아날로그-디지털 컨버터(ADC)를 이용하는 디지털 온도 센서에만 적용될 수 있다. 이 장치는 주파수비 아날로그-디지털 컨버터(ADC)에는 적용되지 않는데, 그 이유는 일부에 있어서는 주파수비 아날로그- 디지털 컨버터(ADC)가 네 개의 이격된 입력 포트를 가지고 있으며, 따라서 신호 입력 및 기준 포트에 대한 선형성 보상 동작을 직접 수행하는 것이 적용 가능하지 않기 때문이다. In US Pat. No. 6,183,131, the digitizing temperature sensor implements linearity correction by adding a small percentage of the analog-to-digital converter (ADC) input (PTAT signal) to the (almost constant) analog-to-digital converter (ADC) reference signal. . In this way, it is found in the digitizing temperature sensor that the bow error is almost completely corrected, in particular, these errors are related to the temperature dependent operation of the voltage between base-emitter. However, the correction compensation technique described in US Pat. No. 6,183,131 can be applied only to a digital temperature sensor using an analog-to-digital converter (ADC) having a single input and a single reference port. This device does not apply to a frequency-to-analog analog-to-digital converter (ADC) because, in some cases, the frequency-to-analog analog-to-digital converter (ADC) has four spaced input ports, so that the signal input and reference port This is because performing the linearity compensation operation directly on is not applicable.

무선 주파수 식별(RFID, Radio Frequency Identification)이란 자동적으로 사람 또는 물건을 식별하기 위하여 무선 주파수를 이용하는 자동 식별 기술을 나타낸다. 무선 주파수 식별(RFID)은 방대한 식별 방법들을 모두 포함하는데, 가정 널리 이용되는 분야로는 사람 또는 물건(또는 더 나아가 다른 정보)을 식별하는 일련 번호를 안테나에 연결된 마이크로칩에 저장하는 기수이다. 마이크로칩 및 안테나는 합쳐져서 무선 주파수 식별(RFID) 트랜스폰더 또는 무선 주파수 식별(RFID) 태그라고 불린다. 실리콘 칩 및 안테나는 상호 관련 동작함으로써 무선 주파수 식별(RFID) 태그로 하여금 무선 주파수 식별(RFID) 리더 또는 송수신기로부터의 무선 주파수를 수신하고 이러한 무선 주파수 질의(query)에 응답하도록 허용한다. 예를 들어, 안테나는 칩으로 하여금 식별 정보를 무선 주파수 식별(RFID) 리더로 송신하도록 허용한다. 리더는 무선 주파수 식별(RFID) 태그로부터 되반사된 무선 주파수를 디지털 정보로 변환하고, 변환된 정보는 식별 정보를 이용할 수 있는 컴퓨터로 전달될 수 있다. Radio Frequency Identification (RFID) refers to an automatic identification technique that uses radio frequency to automatically identify a person or object. Radio frequency identification (RFID) encompasses a wide range of identification methods, the most popular of which is the radix that stores a serial number on a microchip connected to an antenna that identifies a person or thing (or even other information). The microchip and antenna are collectively called a radio frequency identification (RFID) transponder or radio frequency identification (RFID) tag. The silicon chip and antenna work together to allow a radio frequency identification (RFID) tag to receive radio frequencies from a radio frequency identification (RFID) reader or transceiver and respond to these radio frequency queries. For example, the antenna allows the chip to transmit identification information to a radio frequency identification (RFID) reader. The reader converts the radio frequency reflected back from the radio frequency identification (RFID) tag into digital information, which can be transferred to a computer that can use the identification information.

RFID 태그는 패시브형, 반-패시브형(반-액티브 형이라고 불린다), 또는 액티브형 일 수 있다. 패시브형 무선 주파수 식별(RFID) 태그들은 내장 전력원을 필요로 하지 않으며, 대신에 송수신기 또는 리더에 의하여 생성된 전자기장으로부터 전력을 끌어오며, 이러한 전력을 이용하여 마이크로칩의 회로에 전력을 공급한다. 무선 주파수 식별(RFID) 송수신기 또는 리더로부터의 전자기파는 무선 주파수 식별(RFID) 태그의 안테나 내에 전류를 유도한다. 그러면, 칩은 신호를 변조하고, 변조된 전자기파는 안테나에 의하여 송수신기로 되돌려진다. 그러면 송수신기는 신규한 전자기파를 디지털 데이터로 변환한다. The RFID tag may be passive, semi-passive (called semi-active), or active. Passive radio frequency identification (RFID) tags do not require a built-in power source, but instead draw power from the electromagnetic fields generated by the transceiver or reader and use this power to power the microchip's circuitry. Electromagnetic waves from a radio frequency identification (RFID) transceiver or reader induce a current in the antenna of the radio frequency identification (RFID) tag. The chip then modulates the signal and the modulated electromagnetic waves are returned to the transceiver by the antenna. The transceiver then converts the new electromagnetic waves into digital data.

액티브형 RFID 태그는 내부 전원, 예컨대 배터리를 필요로 하는데, 이러한 내부 전력원은 마이크로칩에 전력을 공급하고 출력 신호를 생성하는데 이용된다. 액티브형 무선 주파수 식별(RFID) 태그들은 일반적으로는 비콘(beacon)이라고 불리는데, 그 이유는 그들이 자신들 스스로의 신호를 방송할 수 있기 때문이다. Active RFID tags require an internal power source, such as a battery, which is used to power the microchip and generate output signals. Active radio frequency identification (RFID) tags are commonly called beacons because they can broadcast their own signals.

반-패시브형 RFID 태그는 마이크로칩 회로에 전원을 공급하기 위해 소형 배터리를 사용한다는 것을 제외하면 패시브형 무선 주파수 식별(RFID) 태그와 유사하다. 여전히, 무선 주파수 식별(RFID) 태그는 리더 또는 송수신기로부터 전력을 끌어옴으로써 통신한다. 배터리는 무선 주파수 식별(RFID) 태그의 마이크로칩으로 하여금 일정한 전력을 지속적으로 공급받도록 허용하며, 그 결과 수신되는 신호로부터 전력을 모으도록 구현될 필요가 없다. 따라서, 공중망(aerial)은 역확산 신호(backscattering signal)에 대하여 최적화될 수 있다. 반-패시브형 RFID 태그는 패시브형 태그와 비교할 때 응답이 빠르며, 따라서 독출 비율(reading ratio)에 있어서 더 양호하다. A semi-passive RFID tag is similar to a passive radio frequency identification (RFID) tag except that it uses a small battery to power the microchip circuit. Still, radio frequency identification (RFID) tags communicate by drawing power from a reader or transceiver. The battery allows the microchip of the radio frequency identification (RFID) tag to be continuously supplied with a constant power, and consequently need not be implemented to collect power from the received signal. Thus, the aerial may be optimized for backscattering signals. Semi-passive RFID tags have a faster response when compared to passive tags, and are therefore better in reading ratio.

RFID 기술의 하나의 공통 어플리케이션은, 공급 체인 상에서 이동하는 상품을 추적하는데 이용된다. 따라서, 무선 주파수 식별(RFID) 태그들은 온도, 이동, 및 심지어 방사선을 검출 및 기록하는 센서들과 함께 결합된다. 이러한 방식으로, 공급 체인을 통하여 이용하는 아이템들을 추적하는데 이용될 수 있는 동일한 무선 주파수 식별(RFID) 태그들은, 물건들이 정확한 온도로 저장되지 않았거나, 어느 자가 생물학적 에이전트(biological agent)를 물건에 주입하였을 경우에 관리자에게 경고하도록 동작할 수 있다. One common application of RFID technology is used to track goods moving on the supply chain. Thus, radio frequency identification (RFID) tags are combined with sensors that detect and record temperature, movement, and even radiation. In this way, the same radio frequency identification (RFID) tags that can be used to track items used throughout the supply chain may not have been stored at the correct temperature, or which self may have injected a biological agent into the article. In this case, it can operate to warn the administrator.

RFID 태그의 마이크로칩은 판독-기록 가능하거나, 판독 전용 이거나, 한번 쓰고, 다수 번 읽을 수 있는(WORM, write once, read many) 타입의 장치일 수 있다. 판독-기록 칩을 이용하면, 정보가 태그에 추가되거나, 기존의 정보가 대체될 수 있는데, 이 경우 식별 일련 번호는 대체되지 않는 것이 좋다. 무선 주파수 식별(RFID) 태그는 태그 자체에 의하여 생성된 정보를 저장하기 위한 추가적인 저장 블록을 포함할 수도 있다. The microchip of the RFID tag may be a device of the type of read-write, read only, write once, read many (WORM). With the read-write chip, information can be added to the tag or existing information can be replaced, in which case the identification serial number is not recommended. The radio frequency identification (RFID) tag may include additional storage blocks for storing information generated by the tag itself.

온도 로깅 기능(temperature logging ability)을 가지는 개선된 RFID 태그가 요청됨이 바람직하다. It is desirable to request an improved RFID tag having a temperature logging ability.

본 발명의 원리에 따르면, 기준 오실레이터와 데이터 오실레이터를 포함하는 주파수비 디지털화 온도 센서는, 정정 전류를 온도 의존적 기준 전류에 추가하고, 정정된 기준 전류와 동일한 복제본을 이용하여 기준 오실레이터 전류 입력 및 데이터 오실레이터 기준 전압 입력 터미널의 저항을 구동함으로써, 선형성 정정 기능을 구현한다. 저항은 전류를 정정된 기준 전압으로 변환하고, 이러한 기준 전압은 기준 오실레이터 출력단의 주파수에 반비례한다. 정정 전류는 절대 온도에 비례하 는(PTAT, proportional to absolute temperature) 전류이며 온도 센싱 전류 소스들로부터 입력 생성 회로에 인가된, 복제된 일부 비율 Kp의 PTAT 전류를 선택함으로써 획득된다. 기준 오실레이터를 구동하기 위하여 정정된 기준 전류를 이용한 결과, 온도 센서의 기준 주파수는 온도에 대한 에러를 나타내도록 의도된다. 데이터 오실레이터의 전압 기준을 생성하기 위하여 정정된 기준 전류를 이용한 결과, 데이터 오실레이터의 주파수 역시 역 주파수 에러(inverse frequency error)를 나타내도록 유도될 것이 의도된다. 이러한 주파수 에러의 특성을 이용하면, 온도에 대한 디지털 온도 출력 내의 선형성 에러를 상쇄할 수 있는 효과를 가져온다. According to the principles of the present invention, a frequency ratio digitizing temperature sensor comprising a reference oscillator and a data oscillator adds a correction current to a temperature dependent reference current and uses the same copy as the corrected reference current to reference oscillator current input and data oscillator. Linearity correction is implemented by driving the resistors of the reference voltage input terminals. The resistor converts the current into a corrected reference voltage, which is inversely proportional to the frequency of the reference oscillator output. The correction current is a proportional to absolute temperature (PTAT) current and is obtained by selecting a replicated ratio of PTAT current applied from the temperature sensing current sources to the input generation circuit. As a result of using the corrected reference current to drive the reference oscillator, the reference frequency of the temperature sensor is intended to represent an error over temperature. As a result of using the corrected reference current to generate the voltage reference of the data oscillator, the frequency of the data oscillator is also intended to be derived to exhibit an inverse frequency error. Using this characteristic of frequency error has the effect of canceling the linearity error in the digital temperature output over temperature.

본 발명에 다른 주파수비 디지털화 온도 센서는 종래의 주파수비 온도 센서에서는 성취할 수 없는 선형성 오차 정정을 실현한다. 특히, 온도 의존 전류와 관련된 에러원들, 전류-주파수 컨버터 내의 시간 지연, 및 저항 및 커패시터의 온도 의존형 동작들은 동시에 작용하여, PTAT 전류의 소정 부분이 기준 전류에 추가되면 상쇄된다. The frequency ratio digitizing temperature sensor according to the present invention realizes linearity error correction that cannot be achieved with conventional frequency ratio temperature sensors. In particular, the error sources associated with the temperature dependent current, the time delay in the current-frequency converter, and the temperature dependent operations of the resistor and the capacitor operate simultaneously, canceling out when a portion of the PTAT current is added to the reference current.

본 발명의 또 다른 측면에 따르면, 무선 주파수 식별(RFID) 태그는 주파수비 디지털화 온도 센서를 통합하여 무선 주파수 식별(RFID) 온도 기록기를 형성한다. 무선 주파수 식별(RFID) 태그는 명령에 대하여 또는 특정한 시간 간격에서 온도 데이터를 기록하도록 프로그램될 수 있다. 본 발명의 일 실시예에서, 무선 주파수 식별(RFID) 태그는 반-패시브형으로서, 온도 센서 및 제어 회로는 배터리에 의하여 전력을 공급받는다. 본 발명의 다른 실시예에서, 본 발명에 따른 주파수비 디지털화 온도 센서는 이중 기능 온도/전압 센서로서 구성되며, 여기서 온도 센서 회로부 는 교번적으로 배터리 전압 및 주변 온도를 계측하도록 이용된다. 본 발명의 일 실시예에서, 3-포트 선형성 정정 방법은 주파수비 디지털화 온도 센서 내에 구현됨으로써, 온도 센서에 의하여 안정된 기준 클록이 생성되도록 한다. 안정된 기준 클록은 클록 캘리브레이션을 위하여 무선 주파수 식별(RFID) 태그의 제어 회로부에 의하여 이용됨으로써, 외부 수정 오실레이터를 이용할 필요가 없어진다. 본 발명에 따른 주파수비 디지털화 온도 센서를 통합하는 무선 주파수 식별(RFID) 태그는 이하 더욱 상세히 후술될 것이다. According to another aspect of the invention, a radio frequency identification (RFID) tag incorporates a frequency ratio digitizing temperature sensor to form a radio frequency identification (RFID) temperature recorder. Radio frequency identification (RFID) tags can be programmed to record temperature data for commands or at specific time intervals. In one embodiment of the invention, the radio frequency identification (RFID) tag is semi-passive, so that the temperature sensor and control circuit are powered by a battery. In another embodiment of the invention, the frequency ratio digitizing temperature sensor according to the invention is configured as a dual function temperature / voltage sensor, wherein the temperature sensor circuitry is used to alternately measure the battery voltage and the ambient temperature. In one embodiment of the present invention, the three-port linearity correction method is implemented in a frequency ratio digitizing temperature sensor, such that a stable reference clock is generated by the temperature sensor. The stable reference clock is used by the control circuitry of the radio frequency identification (RFID) tag for clock calibration, eliminating the need to use an external quartz oscillator. A radio frequency identification (RFID) tag incorporating a frequency ratio digitizing temperature sensor according to the present invention will be described in more detail below.

주파수비 디지털화 온도 센서는 기준 오실레이터 및 데이터 오실레이터를 구현하는 한 쌍의 I/F 컨버터들을 포함한다. 데이터 I/F 컨버터 및 기준 I/F 컨버터라고 불리는 한 쌍의 I/F 컨버터들은, 각각 두 입력 신호들(전류 및 전압)을 수신하고 주파수 출력 신호를 생성한다. 그러므로, 한 쌍의 I/F 컨버터들은 네 개의 입력 신호를 이용하여 계측중인 온도를 연산하기 위한 두 개의 주파수 출력 신호를 생성한다. 특히, 데이터 I/F 컨버터는 온도 의존적인 입력 전류 Idata 및 거의 온도에 무관한 기준 전압 Vdata를 수신한다. 전류 의존형 입력 전류 Idata는 온도 자극에 응답하여 한 쌍의 바이폴라 트랜지스터들의 베이스-이미터간 전압(Vbe)의 전압차에 의하여 생성된 PTAT 전류(IPTAT)의 복제 본이다. 기준 I/F 컨버터는 거의 온도에 무관한 기준 전류 Iref 및 거의 온도에 무관한 기준 전압 Vref을 수신한다. The frequency ratio digitizing temperature sensor includes a pair of I / F converters that implement a reference oscillator and a data oscillator. A pair of I / F converters, called a data I / F converter and a reference I / F converter, respectively receive two input signals (current and voltage) and generate a frequency output signal. Therefore, a pair of I / F converters use four input signals to generate two frequency output signals for computing the temperature being measured. In particular, the data I / F converter receives a temperature dependent input current Idata and a near temperature independent reference voltage Vdata. The current dependent input current Idata is a replica of the PTAT current IPTAT generated by the voltage difference of the base-emitter voltage Vbe of a pair of bipolar transistors in response to a temperature stimulus. The reference I / F converter receives a reference temperature Iref which is almost temperature independent and a reference voltage Vref which is almost temperature independent.

본 발명의 일 측면에 따르면, 본 발명의 주파수비 디지털화 온도 센서는 2-포트 선형성 정정 방법을 구현한다. 2-포트 선형성 정정 방법에서, I/F 컨버터 컨 버터들로의 네 개의 입력 신호들 중 두 개가 정정 전류에 의하여 정정된다. 특히, 온도 의존적인 PTAT 전류의 일부 비율을 1차(first order) 온도 안정적인 기준 전류에 추가함으로써 정정 기준 전류가 생성된다. 정정된 기준 전류들의 동일한 복제본들이 기준 전류로서 기준 I/F 컨버터들에 동시에 적용되고, 또한 저항을 통하여 기준 전압 Vdata로서 데이터 I/F 컨버터로 인가된다. According to one aspect of the present invention, the frequency ratio digitizing temperature sensor of the present invention implements a two-port linearity correction method. In the two-port linearity correction method, two of the four input signals to the I / F converter converters are corrected by a correction current. In particular, a correction reference current is generated by adding a portion of the temperature dependent PTAT current to the first order temperature stable reference current. The same copies of the corrected reference currents are simultaneously applied to the reference I / F converters as the reference current, and also through the resistor to the data I / F converter as the reference voltage Vdata.

정정된 기준 전류의 두 개의 복제본을 데이터 및 기준 I/F 컨버터 모두의 입력 신호에 동시에 인가하면, 주파수비 아날로그-디지털 컨버터(ADC)의 전달 함수를 수정함으로써, 바이폴라 트랜지스터에 기반한 온도 센서들을 이용하여 생성된 온도 의존형 전류에 내재된 2차식(second order) 왜곡으로부터 상이한 부호를 가지는 2차식 왜곡이 해당 ADC 내에 생성되도록 할 수 있다. 그 결과로서, 디지털화된 온도 계측치의 선형성 에러는 현저하게 감소된다. 일 실시예에서, 디지털 온도 계측치 내의 선형성은 적어도 20dB 만큼 개선될 수 있다. Applying two copies of the corrected reference current to the input signal of both the data and the reference I / F converter simultaneously modifies the transfer function of the frequency ratio analog-to-digital converter (ADC), thereby utilizing temperature sensors based on bipolar transistors. From the second order distortion inherent in the generated temperature dependent current, a second order distortion with a different sign can be generated in the ADC. As a result, the linearity error of the digitized temperature measurement is significantly reduced. In one embodiment, the linearity in the digital temperature measurement may be improved by at least 20 dB.

본 발명의 또 다른 측면에 따르면, 본 발명의 주파수비 디지털화 온도 센서는 3-포트 선형성 정정 방법을 구현한다. 3-포트 선형성 정정 방법에서 I/F 컨버터로의 4개의 입력 신호들 중 세 개가 두 개의 개별 정정 전류에 의하여 정정된다. 온도 의존적인 입력 전류 Idata만이 정정되지 않은 채로 남겨지는 입력 신호이다. 3-포트 선형성 정정 방법에서, 제1 정정된 기준 전류는 기준 I/F 컨버터의 기준 전류 Iref로 인가되고, 이러한 정정된 기준 전류의 복제본이 2-포트 선형성 정정 방법에서와 동일한 방법으로 데이터 I/F 컨버터의 기준 전압 입력단의 저항에서의 전압 Vdata로 인가된다. 3-포트 선형성 정정 방법은 온도 의존적 PTAT 전류의 작은 비율을 1차 온도 안정적인 기준 전류에 추가함으로써 제2정정된 기준 전류를 생성하는 단계를 포함한다. 제2정정된 기준 전류를 생성되기 위하여 이용되는 PTAT 전류의 비율은 제1정정된 기준 전류를 생성하는데 이용되는 PTAT 전류의 비율과 상이하며, 따라서 두 개의 정정된 기준 전류들은 상이한 전류값들을 가진다. 제2 정정된 기준 전류는 저항에 인가되어 기준 I/F 컨버터를 위한 기준 전압 Vref을 생성한다. 이러한 방식으로, 기준 I/F 컨버터(기준 오실레이터로서 기능한다)의 주파수 드리프트(drift)는, 온도의 디지털 온도 계측치가 전술된 바와 같이 선형화되는 동안에 최소화된다. 본 발명의 일 실시예에서, 3-포트 선형성 정정 방법은 기준 클록의 주파수 안정성을 0.06% p-p(첨두치-첨두치)로 유지하면서 디지털 온도 계측치 내의 선형성을 20dB 만큼 개선할 수 있다. According to another aspect of the present invention, the frequency ratio digitizing temperature sensor of the present invention implements a three-port linearity correction method. In a three-port linearity correction method, three of the four input signals to the I / F converter are corrected by two separate correction currents. Only the temperature dependent input current Idata is the input signal which is left uncorrected. In the three-port linearity correction method, the first corrected reference current is applied to the reference current Iref of the reference I / F converter, and a copy of this corrected reference current is applied in the same manner as in the two-port linearity correction method. It is applied as the voltage Vdata at the resistance of the reference voltage input of the F converter. The three-port linearity correction method includes generating a second corrected reference current by adding a small percentage of the temperature dependent PTAT current to the primary temperature stable reference current. The ratio of PTAT currents used to generate the second corrected reference current is different from the ratio of PTAT currents used to generate the first corrected reference current, so the two corrected reference currents have different current values. The second corrected reference current is applied to the resistor to generate a reference voltage Vref for the reference I / F converter. In this way, the frequency drift of the reference I / F converter (functioning as a reference oscillator) is minimized while the digital temperature measurement of temperature is linearized as described above. In one embodiment of the invention, the three-port linearity correction method can improve linearity in the digital temperature measurement by 20 dB while maintaining the frequency stability of the reference clock at 0.06% p-p (peak-to-peak).

본 발명에 따른 주파수비 디지털화 온도 센서에서, 이득 및 오프셋의 디지털 값을 동시에 조절함으로써, 어플리케이션이 절대적인 정밀도를 요구할 경우에 계측 정밀도를 더욱 향상시킬 수 있다. 더 나아가, 본 발명에 따른 주파수비 디지털화 온도 센서의 성능을 향상시키기 위하여, 데이터 및 기준 오실레이터들은, 온도 및 전압원이 변동되어도 일정하게 유지되는 전달, 로직, 및 스위칭 시간 지연의 합을 나타내는 I/F 컨버터를 이용하여 구현될 수 있다. In the frequency ratio digitizing temperature sensor according to the present invention, by adjusting the digital values of the gain and the offset at the same time, the measurement accuracy can be further improved when the application requires absolute precision. Furthermore, in order to improve the performance of the frequency ratio digitizing temperature sensor according to the present invention, the data and reference oscillators represent I / F representing the sum of the transfer, logic, and switching time delays that remain constant even when the temperature and voltage source change. It can be implemented using a converter.

본 발명의 일 실시예에서, PTAT 전류는 정정 인자에 의하여 승산되고, 기준 전류에 합산되어, 더 이상 온도에 독립적이지 않고 섭씨 -25도 내지 85도의 구간에서 약 1.15%의 양의 기울기를 가지는 정정된 제1 및 제2 기준 전류들을 생성한다. 정정 인자들은 디지털화 온도 센서를 특징화하는 방정식을 수학적으로 풀거나 실제 집적 회로의 실험적 계측치들을 이용하여 선택된다. In one embodiment of the present invention, the PTAT current is multiplied by a correction factor and summed to the reference current, so that it is no longer temperature independent and has a positive slope of about 1.15% in the interval of -25 degrees Celsius to 85 degrees Celsius. Generated first and second reference currents. The correction factors are selected by mathematically solving the equations characterizing the digitized temperature sensor or using experimental measurements of the actual integrated circuit.

본 발명의 선형성이 정정된 주파수비 디지털화 온도 센서는, 기준 주파수는 일정하게 유지되거나 상대적으로 일정하게 유지되는 동안에 절대 온도(PTAT)에 대하여 거의 선형적으로 비례하는 방식으로 증가하는 온도와 함께 데이터 주파수가 변경되는 주파수비 디지털화 온도 센서에 적용될 수 있다. 본 발명의 선형성 정정 방법은, 데이터 주파수가 온도에 따라서 현저하게 증가되지 않는 디지털화 시스템에는 적용될 수 없다. The frequency ratio digitized temperature sensor of which the linearity of the present invention is corrected is characterized in that the data frequency is increased with the temperature increasing in a substantially linear proportional to the absolute temperature (PTAT) while the reference frequency remains constant or relatively constant. Can be applied to the frequency ratio digitizing temperature sensor to be changed. The linearity correction method of the present invention cannot be applied to a digitization system in which the data frequency does not increase significantly with temperature.

본 발명의 선형성 정정된 주파수비 디지털화 온도 센서는 종래의 온도 센서들에 대하여 다양한 장점을 제공한다. 우선, 본 발명에 따른 선형성 정정된 온도 센서는 외부 수정 발진자 성분을 이용하지 않은 채, 수정 오실레이터를 이용한 온도 센서의 계측 결과만큼 양호하거나 그보다 더욱 양호한 온도 계측 결과를 제공할 수 있다. 이를 통하여, 본 발명의 온도 센서는 제조 비용 및 구현하기 위한 회로 영역을 감소시킨다. 더 나아가, 3-포트 선형성 정정 방법이 적용될 경우, 본 발명의 온도 센서는 동시에 안정성이 향상된 기준 주파수를 제공한다. 기준 주파수는 안정적인 기준 주파수를 요구하는, 온도 센서 이외의 다른 회로에 의하여 이용될 수 있다. 따라서, 본 발명의 온도 센서는, 이러한 안정적인 기준 주파수를 제공하기 위하여 외부 수정 오실레이터를 이용하거나 추가적인 오실레이터 회로를 이용하여야 하는 필요성이 없도록 한다. The linearity corrected frequency ratio digitizing temperature sensor of the present invention provides various advantages over conventional temperature sensors. First, the linearity corrected temperature sensor according to the present invention can provide a temperature measurement result that is as good as or better than that of the temperature sensor using a crystal oscillator without using an external crystal oscillator component. Through this, the temperature sensor of the present invention reduces the manufacturing cost and the circuit area for implementation. Furthermore, when the three-port linearity correction method is applied, the temperature sensor of the present invention simultaneously provides a reference frequency with improved stability. The reference frequency may be used by circuits other than temperature sensors, which require a stable reference frequency. Thus, the temperature sensor of the present invention eliminates the need to use an external quartz oscillator or additional oscillator circuitry to provide this stable reference frequency.

도 1은 본 발명의 일 실시예에 따르는 주파수비 디지털화 온도 센서를 개념적으로 나타내는 블록도이다. 도 1을 참조하면, 주파수비 디지털화 온도 센서(10) 는 그 입력으로서 온도 센싱 회로(20)로부터 두 개의 온도 의존 전류를 수신한다. 온도 센싱 회로(20)는 주파수비 디지털화 온도 센서(10)의 일부일 수도 있고 그렇지 않을 수 있다. 온도 센싱 회로(20)의 정확한 구현예는 본 발명의 실시예에 반드시 의존하는 것이 아니며, 온도 센서를 위하여 오직 두 개의 온도 의존 전류로서, 하나는 비례하고, 하나는 상보적인 전류들이 생성되기만 하면 족하다. 1 is a block diagram conceptually illustrating a frequency ratio digitizing temperature sensor according to an embodiment of the present invention. Referring to FIG. 1, the frequency ratio digitizing temperature sensor 10 receives two temperature dependent currents from the temperature sensing circuit 20 as inputs. The temperature sensing circuit 20 may or may not be part of the frequency ratio digitizing temperature sensor 10. The exact implementation of the temperature sensing circuit 20 does not necessarily depend on the embodiment of the invention, but only two temperature dependent currents, one proportional and one complementary currents, for the temperature sensor. .

도 1에서, 두 개의 전류 소스로서 도시되었으며, 이들은 온도 자극에 응답하여 노드(22)에 절대 온도에 비례하는 전류 IPTAT를 제공하고 노드(24)에 절대 온도에 상보적인 전류 ICTAT를 제공한다. 도 1에 도시된 온도 센싱 회로(20)는 상징적으로 제공된 것일 뿐이며, 온도 센싱 회로의 실제적인 구성을 나타내는 의도로 제공된 것이 아니다. 일반적으로, 두 개의 온도 의존 전류들은 동일하지 않은 전류 밀도에서 동작하는 두 개의 바이폴라 트랜지스터들을 이용하여 생성된다. 두 개의 바이폴라 트랜지스터들의 베이스-이미터 간 전압차인 △Vbe 전압은 절대 온도에 비례하는 전압이다. PTAT 전류는 △Vbe 전압을 저항(예를 들어 저항 Rp)에 인가함으로써 획득되는 △Vbe 전압으로부터 생성될 수 있다. 반면에, 바이폴라 트랜지스터들 중 하나의 베이스-이미터 전압인 Vbe 전압은 절대 온도에 상보적인 전압이다. 그러므로, CTAT 전류는 Vbe 전압으로부터(전형적으로는 의 두 개의 Vbe 전압 중 더 높은 전류 밀도를 가지는 트랜지스터로부터의 더 큰 것으로부터) 생성될 수 있으며, 이 Vbe 전압을 저항(예를 들어 Rc)에 인가함으로써 생성될 수 있다. In FIG. 1, shown as two current sources, they provide node 22 with current IPTAT proportional to absolute temperature and node 24 with current ICTAT complementary to absolute temperature in response to the temperature stimulus. The temperature sensing circuit 20 shown in FIG. 1 is provided only symbolically, and is not intended to represent the actual configuration of the temperature sensing circuit. In general, two temperature dependent currents are generated using two bipolar transistors operating at unequal current densities. The voltage difference ΔV be, the voltage difference between the base-emitter of the two bipolar transistors, is a voltage proportional to the absolute temperature. The PTAT current can be generated from the DELTA Vbe voltage obtained by applying the DELTA Vbe voltage to the resistor (eg, resistor Rp). On the other hand, the Vbe voltage, the base-emitter voltage of one of the bipolar transistors, is a voltage complementary to absolute temperature. Therefore, the CTAT current can be generated from the Vbe voltage (typically from the larger of the transistor with the higher current density of the two Vbe voltages of) and apply this Vbe voltage to the resistor (e.g. Rc). Can be generated by

주파수비 디지털화 온도 센서(10)는 입력 생성 회로(30) 및 주파수비 아날로그-디지털 컨버터(ADC)를 이용하여 형성될 수 있다. 입력 생성 회로(30)는 두 개 의 온도 의존 전류들 IPTAT 및 ICTAT를 수신하고 주파수비 ADC를 구동하기 위하여 필요한 입력 신호들을 생성한다. 제공된 실시예에서, 주파수비 ADC는 한 쌍의 전류-주파수 컨버터(I/F 컨버터)(40, 50), 한 쌍의 카운터들(60, 70), 및 뺄셈 회로(80)를 포함한다. 주파수비 ADC는 주파수비 디지털화 온도 센서(10)의 온도 출력 신호로서 출력 신호 ADCOUT을 제공한다. The frequency ratio digitization temperature sensor 10 may be formed using an input generation circuit 30 and a frequency ratio analog-to-digital converter (ADC). The input generation circuit 30 receives two temperature dependent currents IPTAT and ICTAT and generates the input signals necessary to drive the frequency ratio ADC. In the provided embodiment, the frequency ratio ADC includes a pair of current-frequency converters (I / F converters) 40, 50, a pair of counters 60, 70, and a subtraction circuit 80. The frequency ratio ADC provides the output signal ADCOUT as the temperature output signal of the frequency ratio digitization temperature sensor 10.

I/F 컨버터(40)는 온도 의존 입력 전류 Idata(노드 32) 및 거의 온도 독립적인 기준 전압 (Vdata)(노드 34)을 수신하고, PTAT 전류인 입력 전류를 나타내는 주파수를 가지는 주파수 출력 신호 Fdata(노드 44)을 생성하기 위한 데이터 I/F 컨버터이다. I/F 컨버터(50)는 거의 온도 독립적인 기준 전류 Iref(노드 36) 및 거의 온도 독립적인 기준 전압 Vref(노드 38)를 수신하고, 온도 센서의 기준 주파수인 주파수 출력 신호 Fref(노드 54)을 생성하기 위한 기준 I/F 컨버터이다. 기준 주파수 Fref는, 기준 주파수의 고정된 개수의 클록 주기들(Nc)이 변환 주기를 나타내는 변환 주기를 정의한다. The I / F converter 40 receives the temperature dependent input current Idata (node 32) and the almost temperature independent reference voltage Vdata (node 34), and has a frequency output signal Fdata having a frequency representing the input current which is a PTAT current. Is a data I / F converter for generating node 44). The I / F converter 50 receives a nearly temperature independent reference current Iref (node 36) and a nearly temperature independent reference voltage Vref (node 38) and receives a frequency output signal Fref (node 54), which is the reference frequency of the temperature sensor. The reference I / F converter to generate. The reference frequency Fref defines a conversion period in which a fixed number of clock periods Nc of the reference frequency indicate the conversion period.

본 발명에 따르면, 입력 생성 회로(30)는 기준 전압 Vdata(노드 34)을 생성하는데 이용되는 제1 정정된 기준 전류 및 기준 전류 Iref(노드 36)로서 이용되는 제1 정정된 기준 전류의 복제본을 생성한다. 이러한 방식으로 제1 정정된 기준 전류를 적용하면, 온도 센서의 최종 온도 출력 신호 내의 선형성 오류는 정밀하게 정정된다. 더 나아가, 본 발명의 다른 측면에 따르면, 입력 생성 회로(30)는 기준 주파수 Fref의 안정성을 개선하기 위한 기준 전압 Vref(노드 38)을 생성하는데 이용되는 제2 정정된 기준 전류를 생성한다. 입력 생성 회로(30)의 구체적인 구현에 대해서는 상세히 후술된다. According to the present invention, the input generation circuit 30 generates a copy of the first corrected reference current used to generate the reference voltage Vdata (node 34) and the first corrected reference current used as the reference current Iref (node 36). Create Applying the first corrected reference current in this manner, the linearity error in the final temperature output signal of the temperature sensor is precisely corrected. Furthermore, according to another aspect of the present invention, the input generation circuit 30 generates a second corrected reference current that is used to generate the reference voltage Vref (node 38) for improving the stability of the reference frequency Fref. Specific implementation of the input generation circuit 30 will be described later in detail.

주파수비 디지털화 온도 센서(10)에서, 기준 주파수 Fref (노드 54)는 기준 주파수의 클록 주기들의 고정된 개수 Nc를 카운팅하기 위한 기준 카운터(70)에 연결된다. 기준 카운터(70)는 출력단(78)에 출력 신호 REF_COUNT를 생성하는데, 이것은 온도 센서의 변환 주기를 정의하는 카운트 Nc를 나타낸다. 기준 카운터(70)는 START_CONVERT 신호를 수신하여 각 변환 싸이클을 개시한다. 카운트들의 고정 개수 Nc에 도달하면, 기준 카운터(70)는, 각 변환 싸이클의 끝을 나타내는 CONVERT_DONE 신호(노드 66)로서 기능하는 오버플로우 신호를 생성한다. 기준 카운터(70)가 개수 Nc를 초과하는 카운트를 검출하면, 오버플로우 신호가 제공되어 변환 주기의 종료를 나타낼 것이다. 또한, 기준 카운터(70)는 터미널(72)에 주파수비 디지털화 온도 센서(10)의 이득을 디지털적으로 조절하기 위한 이득 조정 입력 신호를 수신한다. 이득 조정 입력 신호는 카운트의 개수 Nc를 증가 또는 감소시킴으로써 변환 주기를 증가 또는 감소시키도록 동작하여, 온도 센서 시스템의 이득을 조정한다. In the frequency ratio digitizing temperature sensor 10, a reference frequency Fref (node 54) is connected to a reference counter 70 for counting a fixed number Nc of clock periods of the reference frequency. Reference counter 70 generates output signal REF_COUNT at output 78, which represents a count Nc that defines the conversion period of the temperature sensor. The reference counter 70 receives the START_CONVERT signal and initiates each conversion cycle. When the fixed number Nc of the counts is reached, the reference counter 70 generates an overflow signal that functions as a CONVERT_DONE signal (node 66) indicating the end of each conversion cycle. If the reference counter 70 detects a count exceeding the number Nc, an overflow signal will be provided to indicate the end of the conversion period. The reference counter 70 also receives a gain adjustment input signal at the terminal 72 for digitally adjusting the gain of the frequency ratio digitizing temperature sensor 10. The gain adjustment input signal operates to increase or decrease the conversion period by increasing or decreasing the number Nc of the counts to adjust the gain of the temperature sensor system.

데이터 주파수 Fdata(노드 44)는 온도 센서의 변환 주기 내의 데이터 주파수의 클록 주기들의 개수를 카운팅하기 위한 데이터 카운터(60)에 연결된다. 데이터 카운터(60)는 출력 터미널(68)에 해당 변환 주기 내의 데이터 주파수의 카운트를 나타내는 출력 신호 DATA_COUNT를 생성한다. 데이터 카운터(60)는 START_CONVERT 신호(노드 64)를 수신하여 각 변환 싸이클을 개시한다. 또한, 데이터 카운터(60)는 기준 카운터(70)로부터 정지 신호(Halt signal)로서 CONVERT_DONE 신호(노드 66)를 수신한다. CONVERT_DONE 신호가 생성되면, 데이터 카운터(60)에서의 카운팅 동작은 정지된다. 최종적으로, 데이터 카운터(60)는 터미널(62)에서 주파수비 디지털화 온도 센서(10)의 오프셋을 디지털적으로 조정하기 위한 오프셋 조정 입력 신호를 수신한다. Data frequency Fdata (node 44) is coupled to a data counter 60 for counting the number of clock periods of the data frequency within the conversion period of the temperature sensor. The data counter 60 generates an output signal DATA_COUNT indicating the count of data frequencies in the conversion period in the output terminal 68. The data counter 60 receives the START_CONVERT signal (node 64) and initiates each conversion cycle. The data counter 60 also receives a CONVERT_DONE signal (node 66) from the reference counter 70 as a Halt signal. When the CONVERT_DONE signal is generated, the counting operation at the data counter 60 is stopped. Finally, data counter 60 receives an offset adjustment input signal for digitally adjusting the offset of frequency ratio digitizing temperature sensor 10 at terminal 62.

제공된 실시예에서, DATA_COUNT 신호(노드 68) 및 REF_COUNT 신호(노드 78)는 뺄셈 회로(80)에 연결되는데, 뺄셈 회로(80)에서, REF_COUNT 신호는 DATA_COUNT 신호로부터 감산된다. 출력 터미널(82) 상의 최종 ADCOUT 신호는 디지털 온도 출력 신호로서 제공되며 처리되어 온도 출력 신호를 제공할 수 있다. ADCOUT 신호를 처리하기 위한 회로 및 방법은 공지되어 있으며 본 명세서에는 상세히 도시 또는 설명되지 않는다. 일 실시예에서, 주파수비 디지털화 온도 센서(10)는 공칭적으로(nominally) 섭씨 0도에서 상호 동일한 기준 주파수 및 데이터 주파수를 선택함으로써 정규화(normalized)된다. Fdata = Fref인 실제 온도의 모든 부정확성은 적합한 디지털 값을 Offset_Adjust 입력 (노드 62)에 적용함으로써 디지털적으로 정정될 수 있다. 이와 같은 방법에서, 감산 동작의 결과로서, 섭씨 단위의 온도 계측치를 공칭적으로 나타내는 ADCOUT 신호가 얻어진다. In the provided embodiment, the DATA_COUNT signal (node 68) and the REF_COUNT signal (node 78) are connected to the subtraction circuit 80, where the REF_COUNT signal is subtracted from the DATA_COUNT signal. The final ADCOUT signal on output terminal 82 may be provided as a digital temperature output signal and processed to provide a temperature output signal. Circuits and methods for processing ADCOUT signals are known and are not shown or described in detail herein. In one embodiment, the frequency ratio digitizing temperature sensor 10 is normalized by selecting a reference frequency and data frequency that are nominally mutually equal at 0 degrees Celsius. All inaccuracies in the actual temperature with Fdata = Fref can be corrected digitally by applying the appropriate digital value to the Offset_Adjust input (node 62). In this way, as a result of the subtraction operation, an ADCOUT signal representing the temperature measurement value in degrees Celsius nominally is obtained.

일반적으로, 주파수비 ADC의 디지털화된 출력 신호(오프셋 조정 신호가 0이라고 가정)는 다음 수학식 1에서와 같이 제공된다. In general, the digitized output signal of the frequency ratio ADC (assuming the offset adjustment signal is 0) is given as in the following equation (1).

Figure 112007015805606-pat00001
Figure 112007015805606-pat00001

수학식 1에서, Nc는 기준 클록의 클록 주기들의 고정된 개수이며 변환 주기를 정의한다. 본 발명의 주파수비 디지털화 온도 센서(10)도 전술된 수학식 1을 이용하여 기술될 수 있다. In Equation 1, Nc is a fixed number of clock periods of the reference clock and defines the conversion period. The frequency ratio digitizing temperature sensor 10 of the present invention can also be described using Equation 1 described above.

만일, 수학식 1에서 기준 주파수 Fref가 정수라고 가정한다면, 비율 Fdata/Fref는 출력 신호 ADCOUT가 0 이상인 범위를 가지게 되는 어떤 입력 신호값인 것으로 이해될 수 있다. 그러므로, 수학식 1에 의하여 기술되는 주파수비 ADC의 모든 양의 출력값은 어떤 소정의 기준 값 이상의 입력 신호의 크기에 상응한다. 그러므로, ADC는 소정의 양의 기준값 및 입력 값 간의 차이를 계측한다. 이러한 주파수비 ADC의 특징은, 다이오드에 기반한 온도 센싱 ADC들에서는 특히 유용한데, 그 이유는 입력 신호는 약 섭씨 -273.15도에 근접할 때까지는 0에 도달하지 않을 것이기 때문이며, 이러한 온도는 일반적인 동작 온도보다 훨씬 낮은 값이다. 그러므로, 주파수비 ADC는 검출된 섭씨 0도에 상응하는 기준 값에 대하여 공칭적인 값을 선택함으로써 정규화될 수 있다. 이와 같이 정규화되면, 그 디지털 출력 신호가 공칭적으로 섭씨의 온도를 나타내는 주파수비 디지털화 온도 센서가 구성될 수 있다. If Equation 1 assumes that the reference frequency Fref is an integer, the ratio Fdata / Fref can be understood to be any input signal value that has a range in which the output signal ADCOUT is greater than zero. Therefore, all positive output values of the frequency ratio ADC described by Equation 1 correspond to the magnitude of the input signal above a certain predetermined reference value. Therefore, the ADC measures the difference between a predetermined amount of reference value and input value. This frequency ratio ADC is particularly useful in diode-based temperature sensing ADCs because the input signal will not reach zero until it is close to about -273.15 degrees Celsius, which is typical operating temperature. Much lower than that. Therefore, the frequency ratio ADC can be normalized by selecting a nominal value for a reference value corresponding to 0 degrees Celsius detected. Once normalized in this way, a frequency ratio digitizing temperature sensor can be constructed in which the digital output signal is nominally representing a temperature in degrees Celsius.

제공된 실시예에서, 주파수비 디지털화 온도 센서(10)는 Nc의 값을 선택함으 로써 더욱 정규화됨으로써, 온도 센싱 전류 소스들에 섭씨 1도의 변화가 발생하면, 디지털 출력 ADCOUT에 8개의 LSB(최하위 비트)의 변경을 야기할 수 있다. 이와 같은 방식에서, ADCOUT에서의 부호부 이진 디지털 번호들은 섭씨 0.125도의 LSB 가중치를 가지는 섭씨 단위의 온도로서 용이하게 해석될 수 있다. In the provided embodiment, the frequency ratio digitizing temperature sensor 10 is further normalized by selecting a value of Nc so that if a 1 degree Celsius change occurs in the temperature sensing current sources, eight LSBs (least significant bits) are present in the digital output ADCOUT. May cause a change. In this manner, signed binary digital numbers in ADCOUT can be easily interpreted as temperature in degrees Celsius with an LSB weight of 0.125 degrees Celsius.

전술된 설명에서, 주파수비 디지털화 온도 센서 내의 오실레이터들은 전류-주파수 컨버터(I/F 컨버터)를 이용하여 구현된다. 적용된 전류에 민감한 오실레이터를 이용하는 대신에, 주파수비 디지털화 온도 센서 내의 오실레이터들은 전압에 민감한 오실레이터들을 이용하거나 또는 전압-주파수 컨버터 회로(V/F 컨버터)를 이용하여 구현될 수 있다. 온도 의존형 전류를 생성하는 온도 센싱 회로의 내재적인 전력원 억제 성능(power supply rejection capability)에 기인하여, I/F 컨버터들을 이용하는 것이 V/F 컨버터를 이용하는 것보다 바람직하다. 그러나, 본 발명의 선형성 정정 방법은, 입력 신호를 전류 신호에서 전압 신호로 적합하게 변동하기만 하면, V/F 컨버터 토폴로지를 이용하여 구성된 주파수비 디지털화 온도 센서에도 역시 동일하게 적용될 수 있다. 주파수비 디지털화 온도 센서는, 데이터 주파수 Fdata가 온도에 따라 증가하고 기준 주파수 Fref가 상대적으로 일정한 동안 V/F 컨버터 토폴로지를 이용하여 구현될 수 있으며, 또한, V/F 컨버터가 그들의 주파수가 입력 전압이 증가하면 기준 전압이 증가하면 감소하도록 구성되는 한 V/F 컨버터 토폴로지를 이용하여 구현될 수 있다. In the above description, oscillators in the frequency ratio digitizing temperature sensor are implemented using a current-frequency converter (I / F converter). Instead of using an oscillator sensitive to the applied current, oscillators in the frequency ratio digitizing temperature sensor can be implemented using voltage sensitive oscillators or using a voltage-frequency converter circuit (V / F converter). Due to the inherent power supply rejection capability of a temperature sensing circuit that generates a temperature dependent current, using I / F converters is preferable to using a V / F converter. However, the linearity correction method of the present invention can be equally applied to a frequency ratio digitized temperature sensor constructed using a V / F converter topology, as long as the input signal is properly varied from a current signal to a voltage signal. The frequency ratio digitizing temperature sensor can be implemented using a V / F converter topology while the data frequency Fdata increases with temperature and the reference frequency Fref is relatively constant. It can be implemented using a V / F converter topology as long as it is configured to increase with increasing reference voltage.

앞에서 진술한 것과 같이, 도 1의 주파수비 디지털화 온도 센서(10)는 두 개의 전류-주파수(I/F) 컨버터들(40, 50)을 이용하여 입력 신호를 주파수로 변환하는 기능을 구현한다. 한 I/F 컨버터의 구조 및 동작은 다음 후술되는 바와 같다. 가장 일반적인 의미로, I/F 컨버터는 커패시터, 비교기, 및 스위칭 회로를 포함한다. I/F 컨버터는 입력 전류 Iin 및 기준 전압 Vref을 입력 신호로서 수신한다. 커패시터는 입력 전류 Iin에 의하여 충전되고 커패시터에 선형적으로 증가하는 램프 전압(ramp voltage)이 유도된다. 커패시터에서의 램프 전압이 기준 전압 Vref과 비교된다. 램프 전압이 기준 전압 Vref을 초과하면, 비교기 출력 신호가 제공되고, 스위칭 회로는 리셋되어 커패시터를 방전시킴으로써, 커패시터의 전압을 0으로 리셋하고, 전압 램프 공정을 다시 개시한다. 비교기 출력 신호가 각각 생성되는 동안의 시간은 I/F 컨버터의 출력 주파수 Fout의 주기를 정의한다. 순간적으로 리셋되는 이상적인 시스템에서, 출력 주파수 Fout은 다음 수학식 2와 같이 제공될 수 있다. As stated above, the frequency ratio digitizing temperature sensor 10 of FIG. 1 implements the function of converting an input signal to frequency using two current-frequency (I / F) converters 40, 50. The structure and operation of one I / F converter are as described below. In the most general sense, an I / F converter includes a capacitor, a comparator, and a switching circuit. The I / F converter receives the input current Iin and the reference voltage Vref as input signals. The capacitor is charged by the input current Iin and leads to a ramp voltage which increases linearly on the capacitor. The ramp voltage at the capacitor is compared with the reference voltage Vref. When the ramp voltage exceeds the reference voltage Vref, a comparator output signal is provided, and the switching circuit is reset to discharge the capacitor, thereby resetting the voltage of the capacitor to zero and restarting the voltage ramp process. The time during which the comparator output signals are generated, respectively, defines the period of the output frequency Fout of the I / F converter. In an ideal system that is instantaneously reset, the output frequency Fout can be given by Equation 2 below.

Figure 112007015805606-pat00002
Figure 112007015805606-pat00002

수학식 2에서, Iin은 암페어 단위인 입력 전류를 나타내고, Cint는 패럿 단위의 내장 집적 커패시터의 커패시턴스를 나타내며, Vref는 비교기에서 이용되는 기준 전압이다. In Equation 2, Iin denotes an input current in amperes, Cint denotes a capacitance of a built-in integrated capacitor in farads, and Vref is a reference voltage used in a comparator.

실제 회로에서, 기준 전압 Vref를 초과하는 램프 전압 및 다른 램핑 싸이클의 개시 간에 한정적인 지연 시간이 존재한다. 비교기에서 이용되는 전력 량이 비 교 속도를 한정하는 저전력 어플리케이션에 대하여, 이러한 지연 시간은 커질 수 있으며 출력 주파수 신호의 선형성 에러에 더 큰 기여를 할 수 있다. 기준 전압을 초과하는 커패시터의 램프 전압 및 후속 램프 싸이클의 개시 간에 td의 지연 시간을 나타내는 I/F 컨버터에 대하여, 출력 주파수는 다음 수학식 3과 같이 제공될 수 있다. In practical circuits, there is a finite delay between the ramp voltage exceeding the reference voltage Vref and the initiation of another ramping cycle. For low power applications where the amount of power used in the comparator limits the speed of comparison, this delay can be large and contribute more to the linearity error of the output frequency signal. For an I / F converter that exhibits a delay time of t d between the ramp voltage of a capacitor exceeding the reference voltage and the start of a subsequent ramp cycle, the output frequency can be given by Equation 3 below.

Figure 112007015805606-pat00003
Figure 112007015805606-pat00003

지연 시간 td가 존재하면 I/F 컨버터 전달 함수의 오프셋 및 이득에 영향을 미치지만, 이러한 선형 에러들은 전형적인 시스템에서 용이하게 정정될 수 있다. 불운하게도, 지연 시간이 존재하면, 출력 주파수가 고주파수에서 더 느리게 증가하게 되는데, 여기서 지연 시간은 전체 주기 중 더 큰 부분을 차지하게 되고, 따라서 전달 함수 내의 선형성 에러는 Iin 및 Fout 간에 존재하게 된다. td에 의해 발생하는 선형성 에러의 크기는 td/tramp 비율의 값이 증가함에 따라서 증가하는데, 여기서 tramp는 램프 전압의 시간 주기이다. td/tramp 비율 및 선형성 에러는, 시간 tramp(이것은 입력 전류 Iin이 더 작아지거나 커패시턴스 Cint가 더 커지거나, 기준 전압 Vref이 더 커질 것을 요구한다)를 증가시킴에 의하여, 또는 지연 시간 td를 감소시 킴으로써 최소화될 수 있다. The presence of delay time t d affects the offset and gain of the I / F converter transfer function, but these linear errors can be easily corrected in a typical system. Unfortunately, the presence of a delay causes the output frequency to increase more slowly at high frequencies, where the delay takes up a larger portion of the total period, so that a linearity error in the transfer function exists between Iin and Fout. the linearity error is caused by the size of t d is increased, the value of t d / t ratio to ramp increases as where t is the ramp time period of the ramp voltage. t d / t ramp ratio and linearity error, by increasing the time t ramp (which requires smaller input current Iin, larger capacitance Cint, or larger reference voltage Vref), or delay time t It can be minimized by reducing d .

도 2는 전류-주파수 컨버터를 통한 전달 지연에 기인한 온도 계측치들의 보우(bow) 선형성 에러를 도시하는 그래프이다. 제공된 예시에서, 램프 시간 tramp는 2마이크로초인 것으로 가정된다. 도 2는 지연이 없는 경우인 이상적인 경우 td=0 및 40ns 및 80ns의 지연이 존재하는 경우에 대한 선형성 에러를 예시한다. 그래프로부터 알 수 있는 바와 같이, 지연 시간이 80ns일 경우에, 출력 주파수 내에 0.15%p-p 값을 가지는 선형성 에러가 발견되는데, 이는 대략적으로 1/667에 상응한다. 11비트의 선형성 요구(linearity requirement)를 가지는 시스템은, 1/(211)=0.049%의 p-p 선형성 에러보다 적은 에러가 생기도록 요구하는데, 이것은 도 2에 도시된 비선형성의 대략 1/3에 해당한다. 유도된 선형성 에러는 볼록한 "활 모양(bow)" 곡선이라는 점에 주의한다. 2 is a graph showing bow linearity error of temperature measurements due to propagation delay through a current-frequency converter. In the example provided, the ramp time t ramp is assumed to be 2 microseconds. Figure 2 illustrates the linearity error for the case where there is no delay, the ideal case is t d = 0 and there are delays of 40 ns and 80 ns. As can be seen from the graph, when the delay time is 80 ns, a linearity error with 0.15% pp value in the output frequency is found, which corresponds approximately to 1/667. Systems with an 11-bit linearity requirement require fewer errors than pp linearity errors of 1 / (2 11 ) = 0.049%, which is approximately one third of the nonlinearity shown in FIG. do. Note that the induced linearity error is a convex "bow" curve.

도 2에 도시된 선형성 에러의 값은 지연 시간 td가 두 배가 되면 거의 두 배가 된다. 따라서, 양호하게 제어되는 선형성을 가지는 시스템을 구성하기 위해서는, 지연 시간이 일정하거나 거의 일정한 I/F 컨버터를 설계함으로써, I/F 컨버터의 선형성 에러를 상대적으로 고정된 상태로 유지하고, 따라서 고정된 선형성 정정 방법에 의하여 정정 가능하도록 설계하는 것이 필요하다. 그러므로, 본 발명의 일 측면에 따르면, 주파수비 디지털화 온도 센서는, 바람직하게는 자신의 지연 시간을 최소화함으로써 I/F 컨버터를 통과하는 지연 시간 td의 변화를 최소화할 수 있는 I/F 컨버터를 이용하여 구현되는 것이 바람직하다. The value of the linearity error shown in FIG. 2 nearly doubles when the delay time t d is doubled. Thus, in order to construct a system with well-controlled linearity, by designing an I / F converter with a constant or nearly constant delay time, the linearity error of the I / F converter remains relatively fixed and thus fixed It is necessary to design to be correctable by the linearity correction method. Therefore, according to one aspect of the present invention, the frequency ratio digitizing temperature sensor preferably provides an I / F converter capable of minimizing changes in delay time t d passing through the I / F converter by minimizing its delay time. It is preferably implemented using.

I/F 컨버터의 지연 시간 td에 의하여 야기된 "활" 모양의 선형성 에러는, 그 스스로 오목한 "그릇 형(bowl)" 선형성 에러를 나타내는 I/F 회로를 선형화할 것이며, 이하 온도 센서 시스템의 선형화에 기여하기 위하여 제공될 것이다. 일반적으로, 본 발명의 선형성 정정 방법은 지연 시간 td에 기인한 활형 선형성 에러의 현저한 선형성 정정 기능을 획득하려고 하지 않으며, 이러한 현상은 비록 활형 에러의 존재가 디지털화 온도 센서 시스템 내에 요구되는 정정의 양을 감소시키는 경우에도 그러하다. 그러므로, 디지털화 온도 센서를 설계할 때에, 최대의 선형성 정정 결과를 획득하기 위하여 파라미터 td는 변경되지 않는다. 오히려, 본 발명의 선형성 정정 방법은 시간, 온도, 및 공정 산포에 따른 지연 시간 td의 모든 변화가 전압 램프 타임 tramp에서는 무시할 수 있는 부분이 되도록 하는 범위에서, 지연 시간 td를 최소화하는 것으로 가정한다. 그러면, 본 발명의 선형성 정정 방법은 시간, 온도, 및 회로 처리 과정에서 최적의 선형성 정정 결과를 제공할 수 있다. The "bow" shape linearity error caused by the delay time t d of the I / F converter will linearize the I / F circuit which itself exhibits a concave "bowl" linearity error. Will be provided to contribute to the linearization. In general, the linearity correction method of the present invention does not attempt to obtain a significant linearity correction function of the bow linearity error due to the delay time t d , and this phenomenon is related to the amount of correction required for the presence of the bow error in the digitizing temperature sensor system. This is true even if it decreases. Therefore, when designing a digitized temperature sensor, the parameter td is not changed in order to obtain the maximum linearity correction result. Rather, the linearity correction method of the present invention minimizes the delay time t d in a range such that all changes in the delay time t d according to time, temperature, and process dispersion are negligible in the voltage ramp time t ramp. Assume Then, the linearity correction method of the present invention can provide an optimal linearity correction result in time, temperature, and circuit processing.

시간 지연 항이 존재하기 때문에 I/F 컨버터의 출력 주파수의 오프셋 및 기울기에도 영향을 미친다는 점에 주의한다. 그러나, 기울기 및 오프셋 에러들은 오프셋 및 이득 조정 파라미터를 이용함으로써 디지털 도메인에서 용이하게 정정될 수 있다. Note that the presence of the time delay term also affects the offset and slope of the output frequency of the I / F converter. However, slope and offset errors can be easily corrected in the digital domain by using offset and gain adjustment parameters.

도 3은 도 1에 도시된 온도 센싱 회로(20)에 의하여 생성된 온도 의존 전류들의 선형성 에러를 예시하는 그래프이다. 전술된 바와 같이, 온도 센싱 회로(20)는 다른 전류 밀도에서 작동하고 있는 2개의 바이폴라 트랜지스터를 이용하여 PTAT 전류 IPTAT 및 CTAT 전류 ICTAT를 생성한다. 공지된 다이오드 방정식들이, 바이폴라 트랜지스터의 베이스-이미터 간 전압 Vbe가 온도에 따라서 거의 선형적으로 감소한다는 것 및 상이한 전류 밀도에서의 두 다이오드들의 베이스-이미터 전압들 간의 차이 △Vbe가 적용된 온도에서 더 선형적인 방식으로 증가한다는 것을 나타낸다. PTAT와 CTAT 전류들은 결합되어 1차 온도 독립 기준 전류 Inpo를 생성한다. 3 is a graph illustrating the linearity error of temperature dependent currents generated by the temperature sensing circuit 20 shown in FIG. 1. As mentioned above, the temperature sensing circuit 20 generates PTAT current IPTAT and CTAT current ICTAT using two bipolar transistors operating at different current densities. Known diode equations show that the base-emitter voltage Vbe of a bipolar transistor decreases almost linearly with temperature and the difference ΔVbe between the base-emitter voltages of the two diodes at different current densities is applied at a temperature. Increase in a more linear manner. PTAT and CTAT currents combine to create a primary temperature independent reference current Inpo.

PTAT 및 CTAT 전류들이 1차 기울기 에러를 상쇄시킬 수 있는 가중치와 결합되면, 결과적으로 얻어지는 "0 온도 계수" 기준 전류 Inpo는 여전히 선형성 에러를 보이는데, 그 이유는 도 3에 도시된 바와 같은 CTAT 전류의 주된 활 성분 때문이다. 도 3에 도시된 바와 같은 이러한 선형성 에러의 크기는 0.35%p-p 이며, 이것은 관심 대상인 온도 센서 시스템에 대한 최악인 경우의 선형성 에러에 비하여 대략적으로 7배 만큼 크다. 디지털화 온도 센서의 온도 독립 기준 전류 Inpo의 온도에 대한 비선형적 특성은, 해당 주파수비 디지털화 온도 센서 내의 가장 현저한 선형성 열화 현상이다. When the PTAT and CTAT currents are combined with a weight that can cancel the first slope error, the resulting “zero temperature coefficient” reference current Inpo still shows a linearity error, because of the CTAT current as shown in FIG. 3. This is due to the main bow component. The magnitude of this linearity error as shown in FIG. 3 is 0.35% p-p, which is approximately seven times larger than the worst case linearity error for the temperature sensor system of interest. The nonlinear nature of the temperature independent reference current Inpo of the digitizing temperature sensor is the most significant linearity degradation phenomenon in the frequency ratio digitizing temperature sensor.

도 4는 본 발명의 일 실시예에 따르는 도 1에 도시된 주파수비 디지털화 온도 센서 내의 3-포트 선형성 정정 동작을 구현하는 입력 생성 회로를 개념적으로 나타내는 블록도이다. 도 4에서, 입력 생성 회로(100)는 한 쌍의 선형성 IDAC(110, 120)을 포함하는데, 여기서 디지털 값들 KP_ADJUST 및 KV_ADJUST가 PTAT 전류의 성분의 크기를 설정하기 위하여 적용된다. 입력 생성 회로(100)는 정정된 기준 전류들의 쌍을 제공함으로써, 주파수비 디지털화 온도 센서(10)의 디지털 출력 신호를 선형화할 뿐만 아니라 안정화된 기준 주파수를 제공한다. 4 is a block diagram conceptually illustrating an input generation circuit that implements a three-port linearity correction operation in the frequency ratio digitization temperature sensor shown in FIG. 1 in accordance with one embodiment of the present invention. In FIG. 4, the input generation circuit 100 includes a pair of linearity IDACs 110, 120 where digital values KP_ADJUST and KV_ADJUST are applied to set the magnitude of the component of the PTAT current. The input generation circuit 100 provides a stabilized reference frequency as well as linearizing the digital output signal of the frequency ratio digitizing temperature sensor 10 by providing a corrected pair of reference currents.

본 발명의 입력된 생성 회로(100)의 독특한 특징은, 기준 전압과 기준 전류가 밴드갭(bandgap) 전압으로부터 생성하게 되지 않는다는 점이다. 대신에, 기준 전류는 저항에서 생성 및 적용됨으로써 기준 전압을 형성하는데, 여기서 저항의 저항치가 온도에 따라서 현격하게 변경될 수 있다. 본 발명의 선형성 방법의 현저한 특징은, 기준 I/F 컨버터로의 전류 입력으로서 동일한 기준 전류의 복제본을 이용하여 데이터 I/F 컨버터에 대한 기준 전압을 생성한다는 것이다. A unique feature of the input generation circuit 100 of the present invention is that the reference voltage and the reference current are not generated from the bandgap voltage. Instead, the reference current is generated and applied at the resistor to form a reference voltage, where the resistance of the resistor can vary significantly with temperature. A salient feature of the linearity method of the present invention is that it generates a reference voltage for the data I / F converter using a copy of the same reference current as the current input to the reference I / F converter.

도 4를 참조하면, 입력 생성 회로(100)는 온도 센싱 회로로부터 PTAT 전류 IPTAT(노드 22) 및 CTAT 전류 ICTAT(노드 24)를 수신한다. 전류 IPTAT는 전류의 Ip로서 버퍼(146)에 의해 미러링되고, 디지털화 온도 센서(10)(도 1 참조) 내의 데이터 I/F 컨버터(40)에 대한 온도 의존형 입력 전류 Idata로서 출력 노드(132)에 제공된다. Referring to FIG. 4, the input generation circuit 100 receives a PTAT current IPTAT (node 22) and a CTAT current ICTAT (node 24) from a temperature sensing circuit. The current IPTAT is mirrored by the buffer 146 as the Ip of the current and at the output node 132 as the temperature dependent input current Idata for the data I / F converter 40 in the digitizing temperature sensor 10 (see FIG. 1). Is provided.

입력 생성 회로(100)는 제1 합산 회로를 포함하여 전류 IPTAT 및 ICTAT의 가중 합으로부터 1차 온도 독립 전류 Inpo를 생성한다. 특히, 전류 IPTAT는, 전류 승산 인자 knp가 PTAT에 적용되는 버퍼(102)에 연결되고, 전류 ICTAT는 전류 승산 인자 Knc가 전류 CTAT에 적용되는 버퍼(104)에 연결된다. 버퍼들(102 및 104)에 의해 생성되는 전류들은 합산기(106)에 의하여 합산되어 노드(108)에 Inpo 전류를 생성한다. Inpo 전류는 PTAT 전류 성분 및 CTAT 전류 성분의 조합이며, 공칭적으로 온도에 대하여 안정적이다. The input generation circuit 100 includes a first summation circuit to generate a primary temperature independent current Inpo from the weighted sum of the currents IPTAT and ICTAT. In particular, the current IPTAT is connected to a buffer 102 in which the current multiplication factor knp is applied to the PTAT, and the current ICTAT is connected to a buffer 104 in which the current multiplication factor Knc is applied to the current CTAT. The currents generated by the buffers 102 and 104 are summed by the summer 106 to produce an Inpo current at the node 108. Inpo current is a combination of PTAT current component and CTAT current component and is nominally stable with temperature.

입력 생성 회로(100)에서, 데이터 선형성 IDAC(110)가 이용되어 소량의 디지털적으로 프로그램 가능한 PTAT 전류의 일부 비율을 Inpo 전류에 합산함으로써 제1 정정된 기준 전류를 생성한다. 특히, 전류 IPTAT는 전류 IPTAT1로서 버퍼(144)에 의해 미러링되는데, 이것은 데이터 선형성 IDAC(110) 내의 버퍼(114)에 연결된다. 버퍼(114)는 전류 승산 인자 Kp를 정정 인자로서 전류 IPTAT1에 인가하여 정정 전류로서 PTAT 전류의 소수부를 생성한다. 버퍼(114)로부터의 PTAT 전류의 소수부는 버퍼(112)에 의하여 미러링된 전류 Inpo에 합산기(116)에 의하여 합산되어 노드(118)에 출력 전류(In_1)를 생성한다. 전류의 In_1은 주로 전류 Inpo이지만, 일부 작은 비율의 PTAT 전류를 추가함으로써 전류 In_1은 온도에 대하여 전적으로 독립적이지 않게 된다. 사실상, 전류 In_1은 온도 안정적이기 보다는 다소 PTAT 한 성질을 가지게 되며, 이와 같은 전류 In_1의 성질을 이용하여 온도 센서 회로의 I/F 컨버터 내의 시간 지연에 의하여 야기되는 선형성 에러를 정정한다. In input generation circuit 100, data linearity IDAC 110 is used to generate a first corrected reference current by summing a portion of a small amount of digitally programmable PTAT current to Inpo current. In particular, current IPTAT is mirrored by buffer 144 as current IPTAT1, which is coupled to buffer 114 in data linearity IDAC 110. The buffer 114 applies the current multiplication factor Kp to the current IPTAT1 as a correction factor to generate a fractional portion of the PTAT current as the correction current. The fractional portion of PTAT current from buffer 114 is summed by summer 116 to current Inpo mirrored by buffer 112 to produce output current In_1 at node 118. In_1 of current is mainly current Inpo, but by adding some small proportion of PTAT current, current In_1 is not entirely independent of temperature. In fact, the current In_1 is rather PTAT rather than temperature stable, and this property of current In_1 is used to correct the linearity error caused by the time delay in the I / F converter of the temperature sensor circuit.

제1 정정 기준 전류 In_1은 버퍼(119)에 의해 전류 In으로서 미러링되고 출력 노드(136)에 제공되어 도 1에 도시된 디지털화 온도 센서(10) 내의 기준 I/F 컨버터(50)의 기준 전류 Iref로서 이용된다. 제1 정정 기준 전류 In_1의 복사본 역시 저항 Rdata에 인가되는데, 여기서 저항 Rdata에 인가되는 전압차가 기준 전압 Vd이다. 기준 전압 Vd는 도 1의 입력 생성 회로(100) 내의 데이터 I/F 컨버터(40)의 기준 전압 Vdata로서 출력 노드(132)에 제공된다. 이러한 방식으로, 제1 정정 기준 전류 In_1의 동일한 복제본들이 주파수비 디지털화 온도 센서의 기준 오실레이터에 대한 기준 전류로서 및 데이터 오실레이터에 대한 기준 전압으로서 적용된 다. The first correction reference current In_1 is mirrored by the buffer 119 as current In and provided to the output node 136 so that the reference current Iref of the reference I / F converter 50 in the digitizing temperature sensor 10 shown in FIG. 1. It is used as. A copy of the first correction reference current In_1 is also applied to the resistor Rdata, where the voltage difference applied to the resistor Rdata is the reference voltage Vd. The reference voltage Vd is provided to the output node 132 as the reference voltage Vdata of the data I / F converter 40 in the input generation circuit 100 of FIG. 1. In this way, identical copies of the first correction reference current In_1 are applied as the reference current for the reference oscillator of the frequency ratio digitizing temperature sensor and as the reference voltage for the data oscillator.

특히, 본 발명의 입력된 생성 회로(100)는 종래의 주파수비 온도 센서 회로와 상이한데, 종래의 회로에서는 두 개의 오실레이터들에 대한 기준 전압인 Vdata 및 Vref가 전압 기준 회로로부터 생성된 동일한 전압이다. 본 발명에 따르면, 데이터 오실레이터를 위한 기준 전압 Vdata와 기준 오실레이터를 위한 기준 전압 Vref는 개별적으로 생성되고, 따라서 이러한 두 전압들은 상호 분리된다. 기준 전압 Vref는 온도 변화에 대해 적게 증가하는 온도 의존 변화를 보이는 반면에, 기준 전압 Vdata는 온도에 대하여 상이하게 더 많이 증가하는 성질을 나타낼 수 있다. In particular, the input generation circuit 100 of the present invention is different from the conventional frequency ratio temperature sensor circuit, in which the reference voltages for two oscillators, Vdata and Vref, are the same voltage generated from the voltage reference circuit. . According to the invention, the reference voltage Vdata for the data oscillator and the reference voltage Vref for the reference oscillator are generated separately, so that these two voltages are separated from each other. The reference voltage Vref may exhibit a temperature-dependent change that increases less with temperature changes, while the reference voltage Vdata may exhibit a differently increasing property with respect to temperature.

입력 생성 회로(100)에서, 기준 선형성 IDAC(120)이 작은 일부 비율의 PTAT 전류를 Inpo 전류에 가산함으로써 제2 정정 기준 전류를 생성하는데 이용된다. 제2 정정 기준 전류를 생성하는데 이용되는 일부 비율의 PTAT 전류는 제1 정정 기준 전류를 형성하는데 이용된 비율과 상이한데, 이러한 결과는 상이한 정정 인자들 또는 전류 승산 인자들을 이용하여 얻을 수 있다. 특히, 전류의 IPTAT2로서 버퍼(142)에 의해 미러링되는 전류 IPTAT는 기준 선형성 IDAC(120) 내의 버퍼(122)에 연결된다. 버퍼(122)는 전류 승산 인자 Kv를 전류 IPTAT2에 인가함으로써 일부 비율의 PTAT 전류를 다른 정정 전류로서 생성한다. 버퍼(122)로부터의 ㅇ일부 비율의 PTAT 전류는 버퍼(124)에 의하여 미러링된 전류 Inpo에 합산기(126)를 이용하여 가산되어 노드(128)에 출력 전류 Ivr을 생성한다. 전류 Ivr은 주로 전류 Inpo이지만, 작은 비율의 PTAT 전류를 가산함으로써 전류 Ivr이 다소 PTAT 성질을 갖게 된다. In the input generation circuit 100, the reference linearity IDAC 120 is used to generate a second correction reference current by adding a small fraction of the PTAT current to the Inpo current. Some proportion of the PTAT current used to generate the second correction reference current is different from the ratio used to form the first correction reference current, which can be obtained using different correction factors or current multiplication factors. In particular, the current IPTAT mirrored by buffer 142 as IPTAT2 of current is coupled to buffer 122 in reference linearity IDAC 120. The buffer 122 generates a proportion of PTAT current as another correction current by applying the current multiplication factor Kv to the current IPTAT2. Some ratio of PTAT current from buffer 122 is added to current Inpo mirrored by buffer 124 using summer 126 to produce output current Ivr at node 128. The current Ivr is mainly a current Inpo, but by adding a small proportion of PTAT currents, the current Ivr has a somewhat PTAT property.

제2 정정 기준 전류 Ivr는 저항 Rref에 적용되는데, 여기서 해당 저항에 대한 전압차는 기준 전압 Vr이 된다. 기준 전압 Vr은 도 1의 디지털화 온도 센서(10) 내의 기준 I/F 컨버터(50)의 기준 전압 Vref로서 출력 노드(138)에 제공된다. 제2 정정 기준 전류 Ivr을 이용하여 기준 오실레이터에 대한 기준 전압 Vref를 생성함으로써, 온도 안정화된 기준 전류가 획득된다. The second correction reference current Ivr is applied to the resistor Rref, where the voltage difference for that resistor is the reference voltage Vr. The reference voltage Vr is provided to the output node 138 as the reference voltage Vref of the reference I / F converter 50 in the digitizing temperature sensor 10 of FIG. 1. The temperature stabilized reference current is obtained by generating a reference voltage Vref for the reference oscillator using the second correction reference current Ivr.

도 4에 도시된 입력 생성 회로(100)에서, 버퍼(112, 119, 124, 142, 144 및 146)들과 같은 단위 이득 버퍼들이 전류 복제를 위하여 이용되고, 이들은 단위 이득 증폭기 또는 단위-크기를 가지는 전류 미러의 형태로 구현될 수 있다. 더 나아가, 단위 이득 버퍼들(112, 119, 124, 142, 144 및 146)은 입력 전류의 복제본을 생성하기 위하여 전류 복제 동작이 필요한 경우에 포함된다. 단위 이득 버퍼들은, 회로의 동작을 위하여 전류 복제가 필요하지 않은 경우에는 삭제될 수 있다. 단위 이득 버퍼 또는 단위 크기 전류 미러를 이용하여 필요할 경우 입력 전류의 복제본을 생성하는 기술은 당업계에 공지된 바 있다. 더 나아가, 본 발명의 입력 생성 회로를 실제로 구현할 때에는, 출력 전류에 대하여 이용되거나 저항에 인가되는 전류가 최초로 생성된 전류일 수 있고 최초 생성된 전류의 복제본일 수도 있다는 점이 이해된다. 즉, 최초 생성된 전류 또는 주어진 노드에서의 전류의 복제본을 이용하는 것은 상호 호환가능한 기술이며 본 발명을 구현하는데 중요한 차이점을 발생시키지 않는다. In the input generation circuit 100 shown in FIG. 4, unit gain buffers such as buffers 112, 119, 124, 142, 144 and 146 are used for current replication, which are unit gain amplifiers or unit-sizes. Branch may be implemented in the form of a current mirror. Furthermore, unity gain buffers 112, 119, 124, 142, 144 and 146 are included when a current copy operation is needed to create a copy of the input current. The unity gain buffers can be cleared if current replication is not needed for the operation of the circuit. Techniques for generating a copy of the input current when needed using a unity gain buffer or unit size current mirror are known in the art. Furthermore, when actually implementing the input generation circuit of the present invention, it is understood that the current used for the output current or applied to the resistor may be the first generated current or may be a duplicate of the first generated current. In other words, using a replica of the first generated current or current at a given node is a mutually compatible technique and does not make a significant difference in implementing the present invention.

온도 독립 전류인 Inpo를 생성하기 위한 전류 승산 인자들(정정 인자들)인 kv 및 Kp를 유도하는 방식은 종래의 방법과 같다. 전류 승산 인자들 Kv 및 Kp는 후술되는 바와 같이 수학적으로 유도될 수도 있고 또는 실험적 시뮬레이션 또는 장치 특성화 동작을 통하여 획득될 수도 있다. 승산 인자 Kv 및 Kp가 수학적으로 유도되거나 시뮬레이션을 통하여 유도되면, 실제 구현을 위하여 이러한 값들을 정밀하게 조정할 필요가 있을 수 있다. The method of inducing the current multiplication factors (correction factors) kv and Kp to generate the temperature independent current Inpo is the same as the conventional method. Current multiplication factors Kv and Kp may be derived mathematically as described below or may be obtained through experimental simulation or device characterization operations. If the multiplication factors Kv and Kp are derived mathematically or through simulation, it may be necessary to precisely adjust these values for actual implementation.

도 4에 도시된 입력 생성 회로(100)가 도 1의 온도 센서 내에 통합되면, 선형성 및 기준 클록의 안정성이 정정된 온도 센서가 구현된다. 온도 센서는 또한 오실레이터 내의 시간 지연에 기인한 선형성 에러를 정정하도록 동작한다. 도 4의 입력 생성 회로(100)를 이용하여 구현된 디지털화 온도 센서(10)의 동작 특성에 대하여 이하 후술될 것이다. 비교기들 내의 시간 지연이 무시할 수 있을 정도인 경우에, 온도 센서의 디지털 출력 신호 ADCOUT는 다음 수학식 4와 같이 얻어질 수 있다. When the input generation circuit 100 shown in FIG. 4 is integrated into the temperature sensor of FIG. 1, a temperature sensor in which linearity and stability of the reference clock are corrected is implemented. The temperature sensor also operates to correct for linearity errors due to time delays in the oscillator. Operation characteristics of the digitizing temperature sensor 10 implemented using the input generation circuit 100 of FIG. 4 will be described below. In the case where the time delay in the comparators is negligible, the digital output signal ADCOUT of the temperature sensor can be obtained as Equation 4 below.

Figure 112007015805606-pat00004
Figure 112007015805606-pat00004

Cdata=Cref=C, Rdata=Rref=R, In=In_1 및 td_data=td_ref=td와 같은 방정식이 만족된다면, 수학식 4는 단순화 될 수 있다. 전류 Ip가 PTAT 전류 Idata와 같다는 점에 주의한다. 디지털 출력 신호 ADCOUT의 간략화된 결과는 다음 수학식 5와 같다.  Equation 4 can be simplified if equations such as Cdata = Cref = C, Rdata = Rref = R, In = In_1 and td_data = td_ref = td are satisfied. Note that the current Ip is equal to the PTAT current Idata. The simplified result of the digital output signal ADCOUT is shown in Equation 5 below.

Figure 112007015805606-pat00005
Figure 112007015805606-pat00005

지연 시간 td가 0인 경우에는, 수학식 5는 더 단순화되어 수학식 6을 얻는다. When the delay time td is 0, equation (5) is further simplified to obtain equation (6).

Figure 112007015805606-pat00006
Figure 112007015805606-pat00006

온도 센서에 어떠한 선형성 정정 기능도 적용되지 않는다면(즉, kv=Kp=0이라면), 도 3에 도시된 바와 같은 온도 독립 전류 Inpo가 이용되어 기준 및 데이터 오실레이터 모두에 대한 기준 전압들 Vdata 및 Vref를 생성하기 위해 사용되고 또한 기준 오실레이터의 기준 전류 Iref로서 사용된다. 즉, In=Ivr=Inpo 이다. 전술된 수학식 6으로부터 알 수 있는 바와 같이, 전류 Inpo의 선형성은 ADC 전달 함수의 분모에 영향을 미친다. 만일 PTAT 전류 Ip가 데이터 I/F 컨버터의 전류 입력에 적용되면, 그 선형성은 수학식 6의 분자에 영향을 미친다. 따라서, 결과적으로 얻어지는 ADC 선형성 에러는 전류 Inpo 내의 CTAT "활형" 에러의 역수에 의해 발생하는 추가적인 "그릇형(bowl)" 에러와 함께 합산되는 PTAT 전류의 그릇 형 에러에 의하여 야기되는 확대된 "그릇형" 에러이다. If no linearity correction is applied to the temperature sensor (ie, kv = Kp = 0), a temperature independent current Inpo as shown in FIG. 3 is used to reference the reference voltages Vdata and Vref for both the reference and data oscillators. It is used to generate and also used as the reference current Iref of the reference oscillator. That is, In = Ivr = Inpo. As can be seen from Equation 6 above, the linearity of the current Inpo affects the denominator of the ADC transfer function. If PTAT current Ip is applied to the current input of the data I / F converter, its linearity affects the numerator of equation (6). Thus, the resulting ADC linearity error is an enlarged "bowl" caused by a bowl-type error of PTAT current that is summed up with an additional "bowl" error caused by the inverse of the CTAT "bow" error in the current Inpo. Type "error.

도 5는 선형화된 온도 센서로부터의 온도 출력 신호들을 정정되지 않은 온도 센서의 출력들과 비교하여 얻어진 온도 에러들을 예시하는 그래프이다. 도 5를 참조하면, 전류 Inpo가 기준 I/F 컨버터로의 입력 전류로서 직접 사용되고 또한 직접 양쪽 I/F 컨버터에 대한 기준 전압 Vdata 및 Vref를 생성하기 위해 사용되면, 결과적으로 얻어지는 온도 계측치는 도 5의 "무정정" 곡선에 의하여 도시된 바와 같은 선형성 에러를 가지게 될 것이다. p-p 에러는 0.955%인데, 이것은 온도가 섭씨 -25도로부터 85도 까지 변경되는 동안의 섭씨 1.05도(p-p)에 등가이며, 이것은 전형적인 시스템 내에서 발생할 수 있는 선형성 에러의 최악의 경우에 비하여 거의 20배 만큼 크다. 5 is a graph illustrating temperature errors obtained by comparing temperature output signals from a linearized temperature sensor to outputs of an uncorrected temperature sensor. Referring to FIG. 5, if the current Inpo is used directly as the input current to the reference I / F converter and also directly used to generate the reference voltages Vdata and Vref for both I / F converters, the resulting temperature measurement is shown in FIG. You will have a linearity error as shown by the "Amorphous" curve of. The pp error is 0.955%, which is equivalent to 1.05 degrees Celsius (pp) while the temperature varies from -25 degrees Celsius to 85 degrees Celsius, which is nearly 20 percent of the worst case of linearity error that can occur in a typical system. Big as a ship

그러나, 선형성 정정이 온도 센서에 인가되면(즉 Kv 및 Kp가 0이 아니라면), 디지털화 온도 센서의 선형성 에러는 거의 완전하게 제거되며, 이는 도 5의 "정정" 곡선에 의하여 도시된 바와 같다. 도 5에 도시된 정정 곡선에서 관찰되는 선형성 에러는 무시할 수 있으며, 따라서 온도 센서 계측치의 정밀도가 더욱 높아지도록 보장된다. However, if linearity correction is applied to the temperature sensor (ie, Kv and Kp are not zero), the linearity error of the digitizing temperature sensor is almost completely eliminated, as shown by the “correction” curve in FIG. 5. The linearity error observed in the correction curve shown in FIG. 5 can be ignored, thus ensuring that the precision of the temperature sensor reading is higher.

도 4에 도시된 입력 생성 회로(100)는, 기준 주파수가 디지털 온도 출력의 선형화와 더불어 안정화되는 3-포트 선형성 정정 방법을 구현한다. 기준 주파수 정정 기술이 제공되는데, 그 이유는 I/F 컨버터를 형성하는데 이용된 저항 및 커패시터의 이상적이지 않은 특성들 때문이다. 본 발명에 따른 3-포트 선형성 정정 방법을 이용한 디지털 온도 계측치의 선형성 정정과 더불어 기준 주파수를 정정하는 동작은 다음과 같이 수행된다. The input generation circuit 100 shown in FIG. 4 implements a three-port linearity correction method in which the reference frequency is stabilized with linearization of the digital temperature output. Reference frequency correction techniques are provided because of the non-ideal characteristics of the resistors and capacitors used to form the I / F converter. The operation of correcting the reference frequency in addition to the linearity correction of the digital temperature measurement using the 3-port linearity correction method according to the present invention is performed as follows.

전형적이고 저렴한 CMOS 프로세스로부터 일반적으로 만들어지는 반도체 집적 회로는 온도에 대한 충분한 안정성을 제공하는 저항을 가지지 않는다. 심지어 니크롬 또는 시크롬(Sichrome)의 박막으로부터 제작된 저항은 온도가 변경함에 대해 거의 선형인 저항 변화를 보이는데, 이 경우 증가량은 섭씨 1도당 100ppm이다. 섭씨 100도 이상의 영역에서는, 이러한 저항의 값은 1%만큼 변경할 수 있다. 이러한 장치가 I/F 컨버터 내의 기준 저항 Rref를 형성하도록 이용되면, 이와 같은 저항 Rref의 저항값의 사소한 선형 변화조차도 기준 주파수가 선형 및 비선형 성분과 함께 변경되도록 야기할 수 있다. 그 이유는, 기준 주파수 전달 함수의 분모에 저항값이 존재하기 때문이다. 우선, 기준 저항 Rref의 저항은 다음과 같이 주어지는 고정 저항 성분 및 온도에 의하여 변화되는 성분을 이용하여 표시될 수 있다. Semiconductor integrated circuits typically made from typical and inexpensive CMOS processes do not have a resistance that provides sufficient stability to temperature. Even resistances made from thin films of nichrome or Sichrome show a nearly linear resistance change with temperature changes, in which case the increase is 100 ppm per degree Celsius. In the region of 100 degrees Celsius or more, the value of this resistance can be changed by 1%. If such a device is used to form a reference resistor Rref in an I / F converter, even a slight linear change in the resistance value of such a resistor Rref can cause the reference frequency to change along with the linear and nonlinear components. This is because the resistance value exists in the denominator of the reference frequency transfer function. First, the resistance of the reference resistance Rref can be expressed using a fixed resistance component and a component that varies with temperature given as follows.

Figure 112007015805606-pat00007
Figure 112007015805606-pat00007

그러면, 이러한 기준 저항을 내장하는 기준 I/F 컨버터의 출력 주파수 Fref는 다음 수학식 7과 같이 제공된다. Then, the output frequency Fref of the reference I / F converter having such a reference resistor is given by Equation 7 below.

Figure 112007015805606-pat00008
Figure 112007015805606-pat00008

I/F 컨버터 내의 커패시터 Cref의 커패시턴스 값이 변화하는 것은 이러한 기준 주파수에는 작은 영향을 미친다. 저항들 Rref 및 Rdata에 동일하게 영향을 미 치는 변화, 또는 커패시터들 Cref 및 Cdata에 동일하게 영향을 미치는 변화는 디지털화된 온도 계측치의 선형성에 큰 영향을 주지 않는다는 점(전술된 수학식 6 참조), 및 이에 반하여 저항 Rref의 저항치 또는 커패시터 Cref의 커패시턴스가 변화하면 기준 클록 주파수가 변경될 것이라는 점에 주의한다. 저항 Rref 또는 커패시터 Cref 각각이 관심 대상인 온도 영역에 대하여 매우 작은 변화만을 보일 때에 온도 선형성 오류를 최소화하면서 최적의 안정된 기준 클록 주파수를 획득하기 위해서는, 기준 I/F 컨버터로의 입력 신호들 중 하나가 본 발명의 선형성 정정 방법의 일부로서 조정된다. Changing the capacitance value of the capacitor Cref in the I / F converter has a small effect on this reference frequency. That a change that affects the resistors Rref and Rdata equally, or a change that affects the capacitors Cref and Cdata equally, does not significantly affect the linearity of the digitized temperature measurement (see equation 6 above), Note that the reference clock frequency will change if the resistance of the resistor Rref or the capacitance of the capacitor Cref changes. In order to obtain an optimal stable reference clock frequency while minimizing temperature linearity error when the resistor Rref or capacitor Cref each shows only a very small change over the temperature region of interest, one of the input signals to the reference I / F converter is seen. As part of the linearity correction method of the invention.

특히, 도 4에서 예시된 3-포트 선형성 정정 방법은 기준 전압 Vref를 생성하기 위하여 이용되는 제2 정정 기준 전류의 생성 단계를 포함한다. 이러한 방법으로, 기준 주파수의 안정성은, 제1 정정 기준 전류를 통하여 디지털 온도 계측치에 선형성 정정 기술이 적용되는 것과 동시에 개선된다. In particular, the three-port linearity correction method illustrated in FIG. 4 includes generating a second correction reference current that is used to generate the reference voltage Vref. In this way, the stability of the reference frequency is improved at the same time as the linearity correction technique is applied to the digital temperature measurement through the first correction reference current.

도 4에 도시된 입력 생성 회로(100)에 의하여 제공되는 정정 방법은, 두 개의 정정 기준 전류들인 In(또는 IN_1) 및 Ivr을 형성하는 단계를 포함하는데, 이 단계에서 작은 비율의 PTAT 전류가 전류 Inpo에 합산되어 전류 In을 형성하고, 다른 작은 비율의 PTAT 전류가 전류 Inpo에 합산되어 전류 Ivr을 형성한다. 두 개의 정정 기준 전류들은 다음과 같이 표현될 수 있다. The correction method provided by the input generation circuit 100 shown in FIG. 4 includes forming two correction reference currents, In (or IN_1) and Ivr, in which a small proportion of the PTAT current is current. It is added to Inpo to form a current In, and another small ratio of PTAT current is added to the current Inpo to form a current Ivr. The two correction reference currents can be expressed as follows.

Figure 112007015805606-pat00009
Figure 112007015805606-pat00009

상기의 방정식이 전술된 수학식 5 내에 대입되고, 다시 지연 시간 td가 0이라고 가정하면, 디지털 출력 신호 ADCOUT의 간략화된 형태를 다음 수학식 8과 같이 제공된다. If the above equation is substituted into the above-described equation (5), and again assumes that the delay time td is 0, a simplified form of the digital output signal ADCOUT is given by the following equation (8).

Figure 112007015805606-pat00010
Figure 112007015805606-pat00010

두 개의 작은 상수인 Kp 및 kv는 온도 센서 시스템의 선형성 에러를 감소시키고 또한 기준 클록 주파수로의 외란을 최소화하도록 선택되어야 한다. 본 발명의 3-포트 선형성 정정 방법을 구현하려면, 온도 센서의 파라미터들인 적합한 집합을 결정함으로써 전체 시스템의 선형성 및 정밀성 에러를 최소화하여야 한다. 이러한 파라미터들 Kp, Kv 및 Nc을 수학적으로 결정하고 결정된 솔루션을 해당 시스템에 적용하는 과정이 이하 후술된다. Two small constants, Kp and kv, should be chosen to reduce the linearity error of the temperature sensor system and also to minimize disturbance to the reference clock frequency. To implement the three-port linearity correction method of the present invention, it is necessary to minimize the linearity and precision errors of the overall system by determining a suitable set of parameters of the temperature sensor. The process of mathematically determining these parameters Kp, Kv and Nc and applying the determined solution to the system is described below.

Kp, Kv 및 Nc 파라미터들의 파생에 대해서는, 정규화된 전류 값들을 가진 입력 발생 회로를 활용해 더 잘 설명될 것이다. 도 6은 본 발명의 제2실시예에 따라 도 1의 주파수비 디지털화 온도 센서의 입력 발생 회로의 개략도이다. 도 6을 참조할 때, 입력 발생 회로(200)는 선형 IDAC 회로에 적용된 전류 곱 인자들을 제외하면 도 4의 입력 발생 회로(100)와 동일한 방식으로 구성된다. 도 6에서, 제1 및 제2정정 전류는 정규화되어 온도 센서 전체에 걸친 각 전류에 대해 일정한 총 전류 크기를 유지하게 된다. 즉, 입력 발생 회로(100)에서, 일정 비율의 Kp*IPTAT 전류 가 전류 Inpo에 더해지고, 그 결과 정정 기준 전류 In_1은 필히 증가 된 전류 크기를 가지게 될 것이다. 같은 원리가 정정 기준 전류 Ivr에에 적용된다. 일부 어플리케이션에서, 이 증가한 전류 크기는 바람직하지 않을 수 있다. 그런 경우, 도 6의 입력 발생 회로(200)가 사용되어, 기준 전류들이 온도 센서 시스템 전체에 걸쳐 일정한 크기를 유지하게 한다. Derivation of Kp, Kv and Nc parameters will be better explained using an input generation circuit with normalized current values. 6 is a schematic diagram of an input generation circuit of the frequency ratio digitizing temperature sensor of FIG. 1 in accordance with a second embodiment of the present invention. Referring to FIG. 6, the input generation circuit 200 is configured in the same manner as the input generation circuit 100 of FIG. 4 except for the current product factors applied to the linear IDAC circuit. In FIG. 6, the first and second positive currents are normalized to maintain a constant total current magnitude for each current across the temperature sensor. That is, in the input generation circuit 100, a certain ratio of Kp * IPTAT current is added to the current Inpo, so that the correction reference current In_1 will necessarily have an increased current magnitude. The same principle applies to the correction reference current Ivr. In some applications, this increased current magnitude may not be desirable. In such a case, the input generation circuit 200 of FIG. 6 is used to ensure that the reference currents remain constant throughout the temperature sensor system.

입력 발생 회로(200)는 정규화된 제1정정 기준 전류 In_1을 제공하는 데이터 선형 IDAC(210) 및, 정규화된 제2정정 기준 전류 Ivr을 제공하는 기준 선형 IDAC(220)를 포함한다. 데이터 선형 IDAC(210)에서, 버퍼(214)는 PTAT 전류 IPTAT1에 전류 곱셈 인자 Kp를 인가하여, 제1비율의 1PTAT 전류를 생성한다. 버퍼(212)는 온도와 무관한 전류 Inpo에 전류 곱셈 인자 1-Kp를 인가하여, Kp 정도만큼 크기가 줄어든 INPO 전류를 제공한다. 버퍼들(212 및 214)로부터의 출력 전류들은 합산기(216)에서 합해져서, 노드(218)에서 제1정정 기준 전류 In_1을 생성하며, 이때 전류 In_1은 전류 Inpo와 동일한 최종 전류 크기를 가진다. 그런 다음 전류 In_1은, 위에서 설명한 것과 같은 방식에 따라, 데이터 오실레이터의 기준 전압 Vdata를 생성하는데 사용되고 기준 오실레이터의 입력 전류 Iref로서 사용된다. The input generation circuit 200 includes a data linear IDAC 210 that provides a first normalized reference current In_1 and a reference linear IDAC 220 that provides a second normalized reference current Ivr. In the data linear IDAC 210, the buffer 214 applies a current multiplication factor Kp to the PTAT current IPTAT1, producing a 1PTAT current of the first rate. The buffer 212 applies a current multiplication factor 1-Kp to a temperature-independent current Inpo to provide an INPO current reduced in size by about Kp. Output currents from buffers 212 and 214 are summed in summer 216 to produce a first positive reference current In_1 at node 218, where current In_1 has a final current magnitude equal to current Inpo. The current In_1 is then used to generate the reference voltage Vdata of the data oscillator and used as the input current Iref of the reference oscillator, in the same manner as described above.

기준 선형 IDAC(220)에서, 버퍼(222)는 PTAT 전류 IPTAT2로 전류 곱셈 인자 Kv를 인가하여 제2비율의 PTAT 전류를 생성한다. 버퍼(222)는 1-Kv인 전류 곱셈 인자를 온도에 무관한 전류 Inpo에 인가해, Kv 정도만큼 크기가 줄어든 INPO 전류를 제공한다. 버퍼들(222 및 224)로부터의 출력 전류들이 합산기(226)에서 더해져, 노드(228)에서 제2정정 기준 전류 Ivr을 생성하며, 여기서 전류 Ivr은 전류 Inpo와 동일한 최종 전류 크기를 가진다. 그런 다음 전류 Ivr은 위에서 설명한 것과 같은 방식에 따라, 기준 오실레이터의 기준 전압 Vref를 생성하는데 사용된다. In the reference linear IDAC 220, the buffer 222 applies a current multiplication factor Kv to the PTAT current IPTAT2 to produce a second rate of PTAT current. The buffer 222 applies a current multiplication factor of 1-Kv to the temperature-independent current Inpo to provide INPO current reduced in size by about Kv. Output currents from buffers 222 and 224 are added at summer 226 to produce a second positive reference current Ivr at node 228, where current Ivr has a final current magnitude equal to current Inpo. The current Ivr is then used to generate the reference voltage Vref of the reference oscillator, in the same manner as described above.

이제, Kp, Kv 및 Nc 파라미터들의 결정에 대해 설명할 것이다. 본 발명의 주파수비 디지털화 온도센서에 대한 3 포트 선형 정정 방법이, 보다 안정적인 기준 클록 주파수를 제공하면서도, 정정 전류를 저항 Rref에 공급해 전류 Iref로서 사용되고 전압 Vdata 생성에 사용되는 정정 전류의 온도 계수와는 다른 온도 계수를 갖는 전압 Vref를 생성함으로써 온도 디지털화의 선형화 에러들을 최소화할 수 있다. 기준 주파수의 변동을 최소화하기 위해, 기준 오실레이터에 대한 정정 전류를, 가능한 한 커패시턴스(capacitance) 및 저항(resistance) 편차로 인한 변동 정도만큼 상쇄함이 바람직하다.Now, the determination of Kp, Kv and Nc parameters will be described. The three-port linear correction method for the frequency ratio digitizing temperature sensor of the present invention provides a more stable reference clock frequency, but differs from the temperature coefficient of the correction current used as the current Iref by supplying the correction current to the resistor Rref and used to generate the voltage Vdata. By generating a voltage Vref with a different temperature coefficient, linearization errors of temperature digitization can be minimized. In order to minimize fluctuations in the reference frequency, it is desirable to offset the correction current for the reference oscillator as much as possible due to variations in capacitance and resistance.

먼저, 기준 오실레이터의 저항 Rref와 커패시턴스 Cref에 대한 1, 2차 온도 영향을 포함하는 정규화 함수가 다음과 같이 주어진다:First, a normalization function is given, including the primary and secondary temperature effects on the resistance Rref and capacitance Cref of the reference oscillator:

Figure 112007015805606-pat00011
Figure 112007015805606-pat00011

Figure 112007015805606-pat00012
Figure 112007015805606-pat00012

수학식 9 및 10의 두 정규화 함수는 서로 곱해져 Rn(T)Cn(T)를 이룬다. 다 음으로, 제1정정 전류 In 대 제2정정 전류 Ivr의 비가 정규화된 RnCn 함수와 같게 설정될 때, 가장 안정적인 기준 주파수가 나올 수 있다. 따라서, 상기 3 포트 선형 정정 방법의 일차 디자인 제약조건이 다음과 같이 주어진다:The two normalization functions of Equations 9 and 10 multiply each other to form Rn (T) Cn (T). Next, when the ratio of the first constant current In to the second constant current Ivr is set equal to the normalized RnCn function, the most stable reference frequency can be obtained. Thus, the primary design constraints of the three-port linear correction method are given as follows:

Figure 112007015805606-pat00013
Figure 112007015805606-pat00013

수학식 11에 정의된 비율비교(ratiometric) 제약조건은 다음과 같은 다른 형식으로 정리될 수 있다:The ratiometric constraints defined in Eq. (11) can be summarized in other forms:

Figure 112007015805606-pat00014
Figure 112007015805606-pat00014

이제, 디지털화 온도 센서의 디지털 출력 신호 ADCOUT의 전달 함수를 나타내는 상기 수학식 5가 사용되어 이차 제약조건을 파생시키게 된다. 디지털화 온도 센서에 있어, 디지털 출력 신호 ADCOUT이 어떤 요망된 온도 범위 T에 대해, 어떤 이득 상수 곱하기 T로서 정의되는 선형 함수가 되는 것이 바람직하다. 이러한 논의의 목적으로서, Nc로 나눠진 값을 가진 이득 상수 "a"가 전제된다. 선형성에 영향을 미치지 못함에 따라 오프셋 에러들이 무시될 때, 요망되는 선형 식은 다음과 같이 온도 T의 범위에 대해 서술될 수 있다:Now, Equation 5, which represents the transfer function of the digital output signal ADCOUT of the digitized temperature sensor, is used to derive the secondary constraint. For digitized temperature sensors, it is desirable that the digital output signal ADCOUT be a linear function defined as a certain gain constant times T for any desired temperature range T. For the purposes of this discussion, a gain constant "a" with a value divided by Nc is assumed. When offset errors are ignored because they do not affect linearity, the desired linear equation can be described for the range of temperature T as follows:

Figure 112007015805606-pat00015
Figure 112007015805606-pat00015

수학식 13은 3 포트 선형성 정정 방법을 이용해 T 온도 범위 동안의 주파수비 디지털화 온도 센서를 선형화하는 일반적인 이차 제약을 형성하도록 재작성되고 간략화될 수 있다. 이차 디자인 제약이 다음과 같이 나타내 진다: Equation 13 can be rewritten and simplified to form a general secondary constraint that linearizes the frequency ratio digitization temperature sensor over the T temperature range using a three port linearity correction method. Secondary design constraints are represented as follows:

Figure 112007015805606-pat00016
Figure 112007015805606-pat00016

따라서, 기준 전압 Vdata와 기준 전류 Iref 둘 모두로서 사용되는, PTAT 전류 IP 대기준 전류 In 비의 적합한 선택에 따라, 디지털화 온도 센서의 선형성이 최적화될 수 있다. 일반적인 경우의 최적 비율 선택은, 이제 부분적으로 지연 시간 대 데이터 I/F 컨버터에서의 등가 RC 곱의 비에 달려 있다. 전류비의 최적 선택 역시 이득 파라미터 a의 각 선택 값마다 다를 것이다. Ivr/In 비는 일차 제약조건에 대한 수학식에 의해 앞서 정해진다. Thus, depending on the proper selection of the PTAT current IP to reference current In ratio, used as both the reference voltage Vdata and the reference current Iref, the linearity of the digitized temperature sensor can be optimized. The choice of the optimum ratio in the general case now depends in part on the ratio of the delay time to the equivalent RC product in the data I / F converter. The optimal choice of current ratio will also be different for each selection of gain parameter a. The Ivr / In ratio is previously determined by the equation for the primary constraint.

위에서 논의된 두 가지 제약조건들은 이제 Kv 및 Kp 정정 파라미터들뿐 아니라 전형적 온도 센서 시스템에 대한 이득 조정 파라미터들 Nc 및 Offset (오프셋)의 최선의 선택을 한정하는데 사용될 것이다. 수학적 계산을 단순화하기 위해, 도 6의 정규화 입력 발생 회로가 사용될 것이다. 일차 제약조건은 상기 수학식 12에서 정의되어 아래에 다시 반복되는 전류비 Ivr/In를 요한다:The two constraints discussed above will now be used to define the best choice of gain adjustment parameters Nc and Offset for a typical temperature sensor system as well as Kv and Kp correction parameters. To simplify the mathematical calculation, the normalized input generation circuit of FIG. 6 will be used. The first constraint requires a current ratio Ivr / In, defined in Equation 12 above, repeated again below:

Figure 112007015805606-pat00017
Figure 112007015805606-pat00017

당면한 온도 범위에 걸쳐 정규화된 R 및 C의 계측값 또는 시뮬레이션 값에 곡선을 맞춤으로써 정규화된 다항식 형태로 된 수학식이 얻어질 수 있다. 시스템을 선형화하기 위해 상기 이차 제약조건을 규정하는 수학식을 이용하려면, 전류 In인 미지의 일차 제약조건을 찾아야 하며, 이것은 다음과 같이 주어진다:Equations in the form of normalized polynomials can be obtained by fitting curves to measured or simulated values of R and C normalized over the temperature range at hand. To use the equation that defines the secondary constraint to linearize the system, we need to find the unknown primary constraint, which is the current In, which is given by:

Figure 112007015805606-pat00018
Figure 112007015805606-pat00018

수학식 16은 In의 재귀 함수이나, Ivr/In 비는 일차 제약조건의 수학식 15로부터 근사 다항식의 형태로 정해질 수 있다. 수학식 5를 수학식 16에 치환함으로써, 변수 In이 수학식 16의 우측 항에서 사라진다. 이러한 치환이 수학식 16을 바로 In의 해가 되게 한다. 수학식 16에서, T는 섭씨 도수로 표현하는 온도 변수이다. 위 수학식 16에서 네 개의 모든 항들이 다 온도 T의 함수임을 알아야 한다. 전류 Ip는, 온도 T에 걸친 그 전류의 다항식을 상이한 온도들에서 취해진 전류 IP의 계측치들로 곡선을 맞춤으로써 묘사할 수 있는, PTAT 전류이다. 저항 R은 기준 I/F 컨버터로의 기준 전압 입력에 사용되는 저항 Rref의 저항으로 온도 T의 함수이다. 커패시턴스 C는 기준 I/F 컨버터의 적분 커패시터 Cref의 커패시턴스로서 온 도 T의 함수이다. Td는 데이터나 기준 I/F 컨버터 내부의 지연 시간 상수이다. 마지막으로, 이득 파라미터 "a"는 선형화 동작 뒤에 출력 범위를 재 정규화하도록 선택된다.Equation 16 is a recursive function of In, but the Ivr / In ratio may be determined as an approximate polynomial form from Equation 15 of the first constraint. By substituting equation (5) into equation (16), the variable In disappears in the right term of equation (16). This substitution makes Eq. 16 a solution of In. In Equation 16, T is a temperature variable expressed in degrees Celsius. It should be noted that in Equation 16 above, all four terms are functions of the temperature T. The current Ip is the PTAT current, which can be described by curves of the polynomial of the current over temperature T with measurements of the current IP taken at different temperatures. Resistor R is a function of temperature T as the resistance of resistor Rref used for reference voltage input to the reference I / F converter. Capacitance C is the capacitance of the integral capacitor Cref of the reference I / F converter and is a function of temperature T. Td is the delay time constant inside the data or reference I / F converter. Finally, the gain parameter "a" is selected to renormalize the output range after the linearization operation.

현재의 예에서, 재 정규화 이득 조정은, 변환시 마다의 기준 기간들의 수, Nc를 조정함으로써 디지털 방식으로 구현된다. 일 실시예에서, 8 LSB들이 섭씨 1도가 되도록 출력 데이터를 정규화하는 것이 편리하다. 따라서, 이득 파라미터 "a"는 다음과 같이 정의된다:In the present example, the renormalization gain adjustment is implemented digitally by adjusting the number of reference periods Nc per conversion. In one embodiment, it is convenient to normalize the output data such that 8 LSBs are 1 degree Celsius. Thus, the gain parameter "a" is defined as follows:

Figure 112007015805606-pat00019
Figure 112007015805606-pat00019

수학식 16 및 17을 결합하면 다음과 같은 식이 나올 수 있다:Combining equations (16) and (17) can yield:

Figure 112007015805606-pat00020
Figure 112007015805606-pat00020

위의 수학식 18에서 Ip, R(T) 및 C(T) 파라미터들이 다 이들의 곡선에 맞춰진 다항식들로 대체되면, 당해 온도 범위에 걸친 변수 T의 함수이면서 또한 이득 카운트 파라미터 Nc의 함수인 In의 근사 다항식이 얻어질 수 있다.If Ip, R (T) and C (T) parameters in Equation 18 above are replaced by polynomials that fit their curves, then In is a function of the variable T over the temperature range and also a function of the gain count parameter Nc. An approximate polynomial of can be obtained.

본 발명의 선형 정정에 대한 구현에 있어, 온도 출력 신호가 선형화되도록 전류 In을 형성할, 온도와 무관한 Inpo에 더해져야 할 초과 PTAT 전류의 소정 양을 찾는 것이 목표이다. 이 수학식을 단순화하기 위해, Inpo, Ip, R(T), C(T) 값들이 모두 T=0℃에서 1(unity)이 되는 정규화된 함수들이라고 전제한다. 정규화된 정정 전류 In을 만들기 위해, 도 6 및 아래의 수학식 19에 나타낸 것과 같이, Kp 만큼 PTAT 성분을 증가시킬 때 상수 Inpo 성분을 줄일 필요가 있다:In the implementation of the linear correction of the present invention, the goal is to find a predetermined amount of excess PTAT current to be added to the temperature independent Inpo, which will form the current In so that the temperature output signal is linearized. To simplify this equation, it is assumed that Inpo, Ip, R (T), and C (T) values are all normalized functions that yield unity at T = 0 ° C. To make the normalized correction current In, it is necessary to reduce the constant Inpo component when increasing the PTAT component by Kp, as shown in Figure 6 and Equation 19 below:

Figure 112007015805606-pat00021
Figure 112007015805606-pat00021

위의 수학식 19에서

Figure 112007015805606-pat00022
의 해를 구하면 다음과 같다:In Equation 19 above
Figure 112007015805606-pat00022
The solution to is:

Figure 112007015805606-pat00023
Figure 112007015805606-pat00023

마찬가지로, 정규화된 정정 전류 Ivr의 해는 다음과 같이 된다:Similarly, the solution of normalized correction current Ivr is as follows:

Figure 112007015805606-pat00024
Figure 112007015805606-pat00024

정정 전류 Ivr은 In, R(T) 및 C(t)의 다항식들로부터의 근사 다항식에서 구할 수 있다. 또, 정정 전류는 원하는 정규화 정정 전류 Ivr을 구하기 위해 작은 비율의 PTAT 전류를 Inpo 전류에 더함으로써 구현될 수 있다:The correction current Ivr can be found in the approximate polynomial from the polynomials of In, R (T) and C (t). In addition, the correction current can be implemented by adding a small proportion of PTAT current to the Inpo current to obtain the desired normalized correction current Ivr:

Figure 112007015805606-pat00025
Figure 112007015805606-pat00025

Figure 112007015805606-pat00026
Figure 112007015805606-pat00026

전류 Inpo 및 Ip의 근사 다항식들은, 온도에 대한 전류를 게측하여 정해지며, 그에 따라 전류 In 및 Ivr을 나타내는 다항식들이 전류 Inpo 및 Ip의 근사 다항식들로부터 수학적으로 결정될 수 있다. 이 다항식들이 상기 수학식 안에 대체되어 알려진 온도 T 및 이득 카운트 Nc에서 수치화되면, 각 온도 및 이득 카운트 Nc 쌍의 값들에서의 Kp 및 Kv 동시 추정치가 얻어질 수 있다. Kp 및 Kv 값들로부터, 근사 전류 Ivr' 및 In'가 정해질 수 있고, 그 결과에 따른 온도 센서의 선형성 에러 및 기준 클록 편차가 계산되거나 온도에 대해 물리적으로 계측될 수 있다.Approximate polynomials of currents Inpo and Ip are determined by estimating the current over temperature, so that polynomials representing currents In and Ivr can be determined mathematically from approximate polynomials of currents Inpo and Ip. If these polynomials are substituted in the equation and quantified at known temperature T and gain count Nc, then a simultaneous Kp and Kv estimate can be obtained at the values of each temperature and gain count Nc pair. From the Kp and Kv values, the approximate currents Ivr 'and In' can be determined and the resulting linearity error and reference clock deviation of the temperature sensor can be calculated or physically measured over temperature.

Kp, Kv, Nv 및 Offset Adjust (오프셋 조정) 값들로 된 최선의 세트를 결정하는 한 가지 편리한 방법이, 상기 식들을 사용하여 Nc의 각 타깃 값에서 Kp 및 Kv의 추정치들을 동시에 계산하고, 그런 다음 이들 추정치들이 사용될 때 당해 온도 범위에 걸쳐 온도 센서가 보이는 결과적 선형성 및 오프셋을 검토하는 것이다. 선형성 에러 및 요구되는 오프셋 정정은, 보통 적합한 I/F 컨버터 안에 대체되는 전류들을 나타내는 다항식들의 직접적 컴퓨터 감정치 및 상기 ADCOUT 전송 함수 식들의 활용을 통해 얻어진다.One convenient way to determine the best set of Kp, Kv, Nv and Offset Adjust values is to use the above equations to calculate the estimates of Kp and Kv at each target value of Nc simultaneously, and then When these estimates are used, it is to review the resulting linearity and offset seen by the temperature sensor over the temperature range in question. Linearity error and required offset correction are usually obtained through the use of the ADCOUT transfer function equations and direct computer estimates of polynomials that represent currents being replaced in a suitable I / F converter.

도 7-10은 도 6의 입력 생성 회로를 포함하여, 도 1의 디지털화 온도 센서의 이득 카운트 Nc 각 값에서의 다양한 시스템 특성을 평가한 것을 도시한 것이다. 도 7은 섭씨 온도 C로 나타낸 피크-투-피크 (peak-to-peak) 선형성 온도 에러를 도 1 및 도 6의 주파수비 디지털화 온도 센서에 대한 이득 카운트 Nc의 함수로서 도시한 그래프이다. 도 8은 기준 주파수 변화를 도 1 및 6의 주파수비 디지털화 온도 센서에 대한 이득 카운트 Nc의 함수로서 도시한 그래프이다. 도 9는 정정 인자들인 Kp, Kv 및 offset adjust 수치들을 도 1 및 6의 주파수비 디지털화 온도 센서에 대한 이득 카운트 Nc의 함수로서 도시한 그래프이다. 도 10은 도 7-9를 이용해 선택되는 정정 인자들을 활용하여 구현되는 도 1 및 6의 주파수비 디지털화 온도 센서에 있어서의 디지털화 온도 에러 대 온도를 보인 그래프이다. 7-10 illustrate the evaluation of various system characteristics at each value of gain count Nc of the digitizing temperature sensor of FIG. 1, including the input generation circuit of FIG. FIG. 7 is a graph showing peak-to-peak linearity temperature error, expressed in degrees Celsius C, as a function of gain count Nc for the frequency ratio digitized temperature sensor of FIGS. 1 and 6. FIG. 8 is a graph showing the reference frequency change as a function of gain count Nc for the frequency ratio digitizing temperature sensor of FIGS. 1 and 6. 9 is a graph showing the correction factors Kp, Kv and offset adjust values as a function of gain count Nc for the frequency ratio digitized temperature sensor of FIGS. 1 and 6. FIG. 10 is a graph showing digitization temperature error versus temperature in the frequency ratio digitizing temperature sensor of FIGS. 1 and 6 implemented using correction factors selected using FIGS. 7-9.

도 7에서 관찰할 수 있듯이, Kp, Kv 및 Offset Adjust의 동시 최적 추정치들을 생성하는, 한 최적 Nc 값에서의 시스템 선형 에러 최소값이 존재한다. 기준 클록 주파수의 피크 투 피크 안정성은, 도 8에 도시된 것처럼 Nc가 Kv, Kp의 동시 변경을 통해 변화함에 있어, 크게 달라지지 않는다. 계산된 Kp, Kv 및 Offset Adjust의 타깃 값들 (Offset Adjust 값들은 풀 스케일 (full-scale) 범위에 대한 백분율로서 도시됨)은 Nc의 함수로서 도 9에 도시된다. 최소 온도 에러를 야기하는 Nc 값들에서의 Kv, Kp, Nc 및 Offset Adjust 값들 (즉, 점선으로 된 박스 안의 값들)을 선택함으로써, 도 10에 도시된 것처럼 -25 내지 85℃까지의 범위에 걸쳐 +/- 0.05℃ 미만의 온도 에러를 가진 온도 센서가 얻어질 수 있다.As can be seen in FIG. 7, there is a system linear error minimum at one optimal Nc value that produces simultaneous optimal estimates of Kp, Kv and Offset Adjust. The peak-to-peak stability of the reference clock frequency is not significantly changed as Nc changes through simultaneous change of Kv and Kp as shown in FIG. The calculated target values of Kp, Kv and Offset Adjust (Offset Adjust values are shown as a percentage of the full-scale range) are shown in FIG. 9 as a function of Nc. By selecting the Kv, Kp, Nc and Offset Adjust values (i.e., the values in the dashed box) at the Nc values causing the minimum temperature error, as shown in FIG. A temperature sensor with a temperature error of less than -0.05 ° C can be obtained.

도 11은 도 7-9를 이용해 선택되는 정정 인자들을 활용하여 구현되는 도 1 및 6의 주파수비 디지털화 온도 센서에 있어서의 온도에 대한 기준 주파수 변화의 백분율을 보인 그래프이다. 도 11에서 관찰할 수 있는 바와 같이, -25 내지 85℃ 까지의 범위에 걸친 기준 주파수의 피크 투 피크 주파수 에러는 단 0.06% 정도이다.FIG. 11 is a graph showing the percentage of change in reference frequency to temperature in the frequency ratio digitizing temperature sensor of FIGS. 1 and 6 implemented using correction factors selected using FIGS. 7-9. As can be seen in FIG. 11, the peak to peak frequency error of the reference frequency over the range from -25 to 85 ° C. is only about 0.06%.

위의 설명에서, 주파수비 디지털화 온도 센서는 3 포트 선형성 정정 방법을 구현하는 것이라고 설명하였다. 어떤 어플리케이션들에서, 기준 주파수의 안정성은 그다지 중요하지 않다. 본 발명의 디지털화 온도 센서를 활용하는 어플리케이션이 약 1.25%의 피크 투 피크 변동과 같은 정도의, 기준 주파수의 온건한 변동을 감내할 수 있다면, 2 포트 선형성 정정 방법이 적용될 수 있다. 2 포트 선형성 정정 방법에서는, 오직 한 개의 정정 기준 전류가 생성되고, 기준 주파수는 정정되지 않고 그대로 유지된다. 따라서 2 포트 선형성 정정 방법은 3 포트 선형성 정정 방법에 비해 그 구현이 더 간단하므로 어떤 어플리케이션들에 유리하게 적용될 수 있을 것이다.In the above description, the frequency ratio digitizing temperature sensor has been described as implementing a three-port linearity correction method. In some applications, the stability of the reference frequency is not very important. If the application utilizing the digitizing temperature sensor of the present invention can tolerate moderate fluctuations in the reference frequency, such as a peak-to-peak fluctuation of about 1.25%, a two-port linearity correction method can be applied. In the two-port linearity correction method, only one correction reference current is generated and the reference frequency remains uncorrected. Therefore, the two-port linearity correction method is simpler in implementation than the three-port linearity correction method, and thus may be advantageously applied to certain applications.

도 12는 본 발명의 제3실시예에 따른 도 1의 주파수비 디지털화 온도 센서의 2 포트 선형성 정정 방법을 구현하는 입력 생성 회로의 개략도이다. 도 12를 참조할 때, 입력 생성 회로(300)는 기준 선형성 IDAC를 생략한 것만 빼면 도 4의 입력 생성 회로(100)와 같은 방식으로 구축된다. 따라서 2 포트 선형성 정정 방법에서, 전류 Inpo (노드 308) 및 Kp 비율의 PTAT 전류 IPTAT1(345)를 합해서 생성되는 정정된 기준 전류 In_1 (노드 318)이, 기준 오실레이터의 기준 전류 Iref 및 데이터 오실레이터의 기준 전압 Vdata를 변경하는데 동시에 사용된다. 더 특정하자면, 정정된 기준 전류 In_1이 버퍼(319)에 의해 미러링되어 기준 오실레이터의 입력 기준 전류 Iref (노드 336)로서 사용되는 전류 In이 된다. 정정된 기준 전류 In_1은 저 항 Rdata로 인가되어, 데이터 오실레이터의 기준 전압 Vdata (노드 334)를 생성한다.12 is a schematic diagram of an input generation circuit implementing the two-port linearity correction method of the frequency ratio digitizing temperature sensor of FIG. 1 according to a third embodiment of the present invention. Referring to FIG. 12, the input generation circuit 300 is constructed in the same manner as the input generation circuit 100 of FIG. 4 except that the reference linearity IDAC is omitted. Therefore, in the two-port linearity correction method, the corrected reference current In_1 (node 318) generated by adding the current Inpo (node 308) and the PTAT current IPTAT1 345 of Kp ratio is the reference current Iref of the reference oscillator and the reference of the data oscillator. It is used simultaneously to change the voltage Vdata. More specifically, the corrected reference current In_1 is mirrored by the buffer 319 to become the current In used as the input reference current Iref (node 336) of the reference oscillator. The corrected reference current In_1 is applied to the resistance Rdata to generate the reference voltage Vdata (node 334) of the data oscillator.

그러나, 기준 오실레이터의 기준 전압 Vref (노드 338)은 온도와 무관한 전류 Inpo를 기준 저항 Rref에 바로 인가해서 생성된다. 따라서, 2 포트 선형성 정정 방법에서, 정정 인자 Kp 만이 요구되며, 정정 인자 Kv는 필요로 되지 않는다.However, the reference voltage Vref (node 338) of the reference oscillator is generated by directly applying a temperature-independent current Inpo to the reference resistor Rref. Therefore, in the two-port linearity correction method, only correction factor Kp is required, and correction factor Kv is not required.

도 12의 입력 생성 회로(300)에서, 정정된 기준 전류 In은 이제 다음과 같이 주어진다:In the input generation circuit 300 of FIG. 12, the corrected reference current In is now given as follows:

Figure 112007015805606-pat00027
.
Figure 112007015805606-pat00027
.

I/F 컨버터들에서의 시간 지연 td는 무시할 수 있는 정도라고 전제한 상태에서 디지털 출력 신호 ADCOUT의 전달 함수는 다음과 같이 주어진다:Given that the time delay td in the I / F converters is negligible, the transfer function of the digital output signal ADCOUT is given by:

Figure 112007015805606-pat00028
Figure 112007015805606-pat00028

수학식 24의 전달 함수의 선형성은 이제 단일 상수 Kp 값을 조정해 튜닝 될 수 있다. Kp를 증가시키면 선형성이 크게 휘어지는 전달 함수를 파생시키며, 이것은 정정되지 않은 시스템의 내재적 "사발(bowl)" 모양 에러를 상쇄시킨다. 2 포트 선형성 정정 방법을 이용해 얻는 활 모양 (bow) 정정의 정도는 3 포트 선형성 정정 방법을 이용하는 것보다 훨씬 더 크다. 일 실시예에서, 3 포트 선형성 정정 방법을 이용해 적용되는 정정 인자들은 Kp=0.14193, Kv=0.1833, Nc=2630 그리고 Offset~0 LSB들이 된다. 2 포트 선형성 정정 방법을 사용하여 같은 선형성 정정 결과를 얻으려면, 적용되는 정정 인자들은 Kp=0.0475, Kv=0, Nc=2613 그리고 Offset~0 LSB들이 된다. 같은 선형성 정정 결과에 있어, 2 포트 선형성 정정 방법에서 3 포트 방법에서보다 더 작은 Kp 값이 요구된다는 것을 알 수 있고, 이것은 디지털 온도 계측치를 선형화하기 위해 Inpo 전류에 더해져야 하는 보다 적은 양의 PTAT 전류가 요구됨을 의미한다. 사실상, 시뮬레이션 결과에 기초할 때, 2 포인트 선형성 정정 방법은 실질적으로 3 포트 선형성 정정 방식에 비해 0.0847℃ p-p 에러 대 0.089℃ p-p 정도의 약간 나은 결과를 보인다.The linearity of the transfer function in equation (24) can now be tuned by adjusting the single constant Kp value. Increasing Kp results in a transfer function with large linearity deflection, which cancels out the inherent "bowl" shape error of the uncorrected system. The degree of bow correction obtained using the two port linearity correction method is much greater than using the three port linearity correction method. In one embodiment, the correction factors applied using the three port linearity correction method are Kp = 0.14193, Kv = 0.1833, Nc = 2630 and Offset ~ 0 LSBs. To obtain the same linearity correction result using the two-port linearity correction method, the correction factors applied are Kp = 0.0475, Kv = 0, Nc = 2613 and Offset ~ 0 LSBs. In the same linearity correction results, it can be seen that a smaller Kp value is required in the two-port linearity correction method than in the three-port method, which means that less PTAT current must be added to the Inpo current to linearize the digital temperature measurement. Means required. In fact, based on the simulation results, the two point linearity correction method yields a slightly better result of 0.0847 ° C. p-p error versus 0.089 ° C. p-p compared to the three port linearity correction method.

도 13은 정정되지 않은 온도 센서와 비교한, 도 12의 선형화된 온도 센서로부터의 온도 출력 신호들의 온도 에러들을 나타낸 그래프이다. 도 13에서 관찰할 수 있듯이, 사발 모양 선형성 에러는 정정 인자 Kp의 적용으로 정정되고, 그에 따른 디지털 온도 출력 값들은 0.0847℃의 피크 투 피크 에러를 가진다. FIG. 13 is a graph showing temperature errors of temperature output signals from the linearized temperature sensor of FIG. 12 compared to an uncorrected temperature sensor. As can be seen in FIG. 13, the bowl-shaped linearity error is corrected by the application of the correction factor Kp, and the resulting digital temperature output values have a peak-to-peak error of 0.0847 ° C.

도 14는 선형 정정이 기준 주파수에 대해 적용되지 않을 때와 비교해, 선형 정정이 적용될 때 도 12의 주파수비 디지털화 온도 센서의 기준 주파수 변화를 나타낸 그래프이다. 도 12의 입력 생성 회로에서, 기준 주파수는 안정화되어 있지 않다. 따라서, 선형 정정이 적용되지 않을 때 ("No_Correction), 기준 주파수는 안정적이다. 그러나, 정정 인자 Kp 활용을 통해 선형성 정정이 적용될 때 ("Using Correction"), 기준 주파수는 -25 내지 85℃에 대해 약 1.25% 피크 투 피크 레벨로 변동한다.FIG. 14 is a graph showing the change in the reference frequency of the frequency ratio digitized temperature sensor of FIG. 12 when linear correction is applied, compared to when no linear correction is applied for the reference frequency. In the input generation circuit of Fig. 12, the reference frequency is not stabilized. Thus, when no linear correction is applied ("No_Correction), the reference frequency is stable. However, when linearity correction is applied through the use of the correction factor Kp (" Using Correction "), the reference frequency is for -25 to 85 ° C. Fluctuates to about 1.25% peak to peak level.

도 15a, 도 15b, 도 15c 및 도 15d 도면들을 포함하여 총칭하는 도 15는 본 발명의 주파수비 디지털화 온도 센서에서 I/F 컨버터들을 구현하는데 사용될 수 있는 전류-주파수 (I/F) 컨버터에 대한 개략도이다. 기존에 있거나 앞으로 개발될 임의의 I/F 컨버터들이 본 발명의 주파수비 디지털화 온도 센서에 사용될 수 있으나, 데이터 및 기준 I/F 컨버터들을 구현하기 위해 도 15의 I/F 컨버터를 사용하는 것이 특별한 이점을 가져다 주게 된다. 구체적으로 말하면, 도 15의 I/F 컨버터(500)는 온도, 제조 공정 및 전원 변동에 대해 일정한 전파(propagation), 로직 및 스위칭 시간 지연의 합을 보장한다. 또, I/F 컨버터 지연 시간이 최소화되면서, 지연시간 변동 역시 최소화된다. 마지막으로, I/F 컨버터 지연들의 합은, 입력 전류 Ibias의 온도 성능이 그 지연들을 통제하는 방식에 따라 구현된다. 그러한 지연들은 I/F 컨버터에 인가된 전류 Ibias의 온도 계수를 제거함으로써 온도에 대한 최적 성능에 맞춰 정리될 수 있다. 15 collectively including FIGS. 15A, 15B, 15C, and 15D views for a current-frequency (I / F) converter that may be used to implement I / F converters in the frequency ratio digitized temperature sensor of the present invention. Schematic diagram. Any I / F converters existing or in the future may be used in the frequency ratio digitizing temperature sensor of the present invention, but the particular advantage of using the I / F converter of FIG. 15 to implement data and reference I / F converters. Will bring. Specifically, the I / F converter 500 of FIG. 15 ensures a constant sum of propagation, logic, and switching time delays over temperature, fabrication process, and power supply variations. In addition, the I / F converter delay time is minimized, so the delay variation is also minimized. Finally, the sum of the I / F converter delays is implemented according to how the temperature performance of the input current Ibias controls the delays. Such delays can be arranged for optimal performance over temperature by removing the temperature coefficient of the current Ibias applied to the I / F converter.

도 15d를 참조하면, I/F 컨버터(500)는 입력 전류 Iin과 입력 기준 전압 Vref를 받아, clk_out 신호를 주파수 출력 신호로서 제공한다. 도 1의 온도 센서에 적용될 때, 입력 전류 Iin은 입력 전류 Idata가 되거나, 기준 전류 Iref가 되며, 입력 기준 전압은 그에 따라 각자 기준 전압 Vdatark 되거나 기준 전압 Vref가 된다. clk_out 신호는 그에 따라 각자 Fdata 출력 신호가 되거나 Fref 출력 신호가 된다. I/F 컨버터(500)는 입력 전류인 바이어스 전류 Ibias 및 reset_lo 신호를 더 수신한다.Referring to FIG. 15D, the I / F converter 500 receives an input current Iin and an input reference voltage Vref and provides a clk_out signal as a frequency output signal. When applied to the temperature sensor of FIG. 1, the input current Iin becomes the input current Idata or becomes the reference current Iref, and the input reference voltage becomes the reference voltage Vdatark or the reference voltage Vref accordingly. The clk_out signal is either an Fdata output signal or a Fref output signal accordingly. The I / F converter 500 further receives the bias currents Ibias and reset_lo signals that are input currents.

도 15를 참조할 때, I/F 컨버터(500)는 두 커패시터 어레이 I21 및 I22의 충전을 제어하기 위한 D 플립플롭 I11을 포함한다. D 플립플롭 D11은 그 커패시터 어레이들 중 하나를 충전시키기 위해 입력 전류 Iin을 대안적으로 적용하도록 동작한다. 예를 들어, D 플립플롭 I11은 제어 신호 "dswitch"를 내세워, 입력 전류를 상위의 커패시터 어레이 I21로 인가하고 노드 "dintcap"에서 전압을 충전한다. 상위 커패시터 어레이 I21은 노드 dintcap에서의 전압이 입력 기준 전압 Vref_in 레벨에 도달할 때까지 충전되어, 상위 비교기(502)가 자신의 출력 신호라고 내세울 수 있게 된다. 이제 D 플립플롭 I11은 제어 신호 dswitch2를내세워 입력 전류가 하위 커패시터 어레이 I22에 인가되게 하고 노드 dintcap2에서의 전압을 충전시킨다. 하위 커패시터 어레이 I22는 노드 dintcap2에서의 전압의 입력 기준 전압 Vref_in 레벨에 도달할 때까지 충전됨으로써, 하위의 비교기(504)가 자신의 출력 신호라고 내세울 수 있게 된다. 출력 신호들인 "bufdout"과 "2bufdout"는 D 플립플롭을 리셋시키고 클록킹(clock) 하도록 D 플립플롭 I11을 구동하는 로직 게이트들에 연결된다.Referring to FIG. 15, the I / F converter 500 includes a D flip-flop I11 for controlling charging of two capacitor arrays I21 and I22. D flip-flop D11 operates to alternatively apply input current Iin to charge one of its capacitor arrays. For example, the D flip-flop I11 asserts the control signal "dswitch" to apply the input current to the upper capacitor array I21 and charge the voltage at node "dintcap". The upper capacitor array I21 is charged until the voltage at the node dintcap reaches the input reference voltage Vref_in level, allowing the upper comparator 502 to claim its output signal. Now, D flip-flop I11 asserts control signal dswitch2, allowing input current to be applied to lower capacitor array I22 and charging the voltage at node dintcap2. The lower capacitor array I22 is charged until the input reference voltage Vref_in level of the voltage at node dintcap2 is reached, so that the lower comparator 504 can claim its output signal. The output signals " bufdout " and " 2bufdout " are connected to logic gates driving D flip-flop I11 to reset and clock the D flip-flop.

비교기들(502 및 504)은 통상의 방식으로 구현될 수 있다. 일실시예에서, 비교기는 일정한 지연을 위해 튜닝 될 수 있는 커패시터를 포함한다. 또, 커패시터는 초핑(chopping) 스킴을 구축하여, 비교기 내 어떤 오프셋 전압 에러들이 정현파의 하나 걸러 한 번의 비교 사이클마다 반전되도록 한다. 이와 같은 방식으로, 비교기와 전체 I/F 컨버터의 평균 지연 시간이 공급 전압이나 온도 변동에 민감하지 않게 된다. Comparators 502 and 504 can be implemented in a conventional manner. In one embodiment, the comparator includes a capacitor that can be tuned for a constant delay. In addition, the capacitor establishes a chopping scheme such that any offset voltage errors in the comparator are reversed every other comparison cycle every one of the sinusoids. In this way, the average delay time of the comparator and the entire I / F converter is not sensitive to supply voltage or temperature variations.

I/F 컨버터(500)로의 바이어스 전류 Ibias의 온도 계수는, 비교기들의 지연 시간이 매우 일정하게 되도록 정리될 수 있다. 바이어스 전류 Ibias는, 비교기 들(502 및 504) 내 전류 소스 장치들로의 미러 전압 드라이브를 제공하는 전류 미러(mirror)에 연결된다. The temperature coefficient of the bias current Ibias to the I / F converter 500 can be arranged such that the delay times of the comparators are very constant. The bias current Ibias is connected to a current mirror which provides a mirror voltage drive to current source devices in comparators 502 and 504.

두 충전 커패시터들인 I21 및 I22 중 하나로 입력 전류 Iin을 방향 조종하는 스위치들 (트랜지스터들 M12, M0)은 전압 스위치들이 아니라, 전류 스위치들로서 구현된다. 따라서 이 스위치들은 입력 전류 Iin가 주어지는 차동(differential) 페어(pair)처럼 작동한다. 입력 전류 Iin은 게이트 구동 전압이 그라운드에 가까운 경로로 가게 조종된다. 이제, 선택된 커패시터 어레이에서 조종 장치 (스위치 M12 또는 M0)는 접지된 게이트 캐스케이드(cascade)같이 작동하여, 입력 전류 소스 Iin을 비교기에서 발생된 글리치(glitches)로부터 절연시키고, 입력 전류 Iin을 제공하는 전류 소스의 일정한 전압 (가령, 그라운드 위의 한 PMOS 게이트-투(to)-소스 Vgs 전압)을 제공한다. The switches (transistors M12, M0) which direct the input current Iin to one of the two charging capacitors I21 and I22 are implemented as current switches, not voltage switches. Therefore, these switches act like a differential pair given the input current Iin. The input current Iin is steered to the path whose gate drive voltage is close to ground. Now, in the selected capacitor array, the control device (switch M12 or M0) acts like a grounded gate cascade, isolating the input current source Iin from the glitches generated by the comparator and providing the input current Iin. Provide a constant voltage at the source (eg, a PMOS gate-to-source Vgs voltage above ground).

장치들 M3 및 M1은 스위칭 순간에 도입되는 과잉 전하 (excess charge)를 일차 상쇄시키는데 사용되며, 여기서 그 도입 전하는 온도 및 공급 전압에 종속된다. 나머지 로직 회로들은 리셋시 알려져 있는 상태를 제공한다.Devices M3 and M1 are used to first offset the excess charge introduced at the moment of switching, where the charge of introduction is dependent on the temperature and the supply voltage. The remaining logic circuits provide a known state upon reset.

일실시예에서, I/F 컨버터(500)가 극단적으로 낮은 전력 공급 전압들 (1.1 볼트 아래와 같은)에서 동작할 수 있게 하기 위해, 낮은 문턱 전압 트랜지스터 장치 (도 15에서 "Low_Vt"로 표시됨)가 사용되어, 알맞은 경우 낮은 공급 전압 동작을 가능하게 한다.In one embodiment, to enable the I / F converter 500 to operate at extremely low power supply voltages (such as below 1.1 volts), a low threshold voltage transistor device (denoted as "Low_Vt" in Figure 15) is Used to enable low supply voltage operation where appropriate.

RFID 온도 RFID temperature 로거Logger (logger)(logger)

본 명세서의 내용을 숙지한 이 분야의 당업자라면, 본 발명의 주파수비 디지 털화 온도 센서가 전자 분야에서 여러 어플리케이션들을 가진다는 것을 알 수 있을 것이다. 본 발명의 한 양태에 따르면, 본 발명의 주파수비 디지털화 온도 센서는 무선 주파수 식별 (RFID) 트랜스폰더(transponder)나 태그(tag) 안에 병합되어, RFID 태그 안에서 온도 로깅 기능을 구현시킨다. 그에 따른 RFID 태그는, RFID 온도 로거라고도 불리어, 주변 온도값들을 계측 및 저장하도록 작동하며, 계측 간격은 미리 프로그래밍되거나 필요시마다 프로그래밍 될 수 있다. 온도 계측치들은 RFID 온도 로거에 저장되어 필요할 때마다 읽혀질 수 있다. 이러한 방식으로, 온도 계측 기능을 포함하게 된 RFID 태그가 실현된다.Those of ordinary skill in the art having knowledge of the present disclosure will appreciate that the frequency ratio digitizing temperature sensor of the present invention has several applications in the electronics field. According to one aspect of the present invention, the frequency ratio digitizing temperature sensor of the present invention is incorporated into a radio frequency identification (RFID) transponder or tag to implement a temperature logging function within an RFID tag. The resulting RFID tag, also called an RFID temperature logger, operates to measure and store ambient temperature values, and the measurement interval can be programmed in advance or as needed. Temperature measurements can be stored in an RFID temperature logger and read whenever needed. In this way, an RFID tag that includes a temperature measuring function is realized.

일실시예에서, RFID 온도 로거는 반수동(semi-passive) RFID 태그로서 구현된다. 반수동 RFID 태그일 때, RFID 태그의 일부 회로가 RFID 태그외부의 배터리에 의해 전력 공급된다. 반수동 RFID 태그는 RF 통신 블록, 제어 로직 블록, 및 본 발명의 주파수비 디지털화 온도 센서를 병합한 센서 블록을 포함한다. 이 실시예에서, 제어 로직 블록과 센서 블록은 배터리로 파워 공급되지만, RF 통신 블록은 입사(incident) RF 신호로부터 자가 전력 공급된다. 본 발명의 한 양태에 따르면, 센서 블록은 주변 온도와 배터리 전압 모두를 계측하기 위한 듀얼 기능 온도/전압 센서로서 설정된다.In one embodiment, the RFID temperature logger is implemented as a semi-passive RFID tag. When a semi-passive RFID tag, some circuitry of the RFID tag is powered by a battery outside the RFID tag. The semi-passive RFID tag includes an RF communication block, a control logic block, and a sensor block incorporating the frequency ratio digitizing temperature sensor of the present invention. In this embodiment, the control logic block and sensor block are powered by a battery, while the RF communication block is self-powered from an incident RF signal. According to one aspect of the invention, the sensor block is set as a dual function temperature / voltage sensor for measuring both ambient temperature and battery voltage.

또 다른 실시예에서, 3 포트 선형성 정정 방법이 주파수비 디지털화 온도 센서 내에서 활용되어, 센서 블록이 제어 로직 블록의 실시간 클록을 눈금 조정하는데 사용될 수 있는 안정적 기준 클록을 제공하도록 하며, 이에 대해 이하에서 보다 상세히 설명할 것이다.In another embodiment, a three-port linearity correction method is utilized within the frequency ratio digitization temperature sensor, such that the sensor block provides a stable reference clock that can be used to calibrate the real time clock of the control logic block. This will be explained in more detail.

도 16은 본 발명의 일실시예에 따른 RFID 온도 로거의 개략도이다. 도 16을 참조할 때, RFID 온도 로거(600)는 RF 통신 블록(602), 제어 로직 블록(604) 및 온도/전압 센서 블록(606) (이후, "센서 블록"이라 칭함)을 포함한다. RFID 온도 로거(600)는 반수동이고 외부 배터리(620)에 연결되어 제어 로직 블록(604) 및 세서 블록(606)에 공급할 전력을 수신한다. 배터리(620)는 온도 로거(600)의 BAT 단자 및 그라운드 단자 양단에 걸쳐 연결되어, 제어 로직과 센서 블록들에 배터리 전압 VBAT를 공급한다.16 is a schematic diagram of an RFID temperature logger in accordance with an embodiment of the present invention. Referring to FIG. 16, the RFID temperature logger 600 includes an RF communication block 602, a control logic block 604 and a temperature / voltage sensor block 606 (hereinafter referred to as a “sensor block”). The RFID temperature logger 600 is semi-passive and connected to an external battery 620 to receive power to supply control logic block 604 and parser block 606. The battery 620 is connected across the BAT terminal and the ground terminal of the temperature logger 600 to supply the battery voltage V BAT to the control logic and sensor blocks.

RFID 온도 로거(600)는 또 크리스털 핀들인 XCKI 및 XCK0를 포함하며, 그 핀들로 크리스털 오실레이터(610)가 연결될 수 있다. 크리스털 오실레이터(610)는 제어 로직 블록(604)에 대한 기준 주파수를 공급한다. 크리스털 오실레이터(610)는 옵션사항이므로 온도 로거(600)에서 제거될 수 있는데, 이는 센서 블록(606)이 안정적 기준 주파수를 공급할 수 있기 때문이며, 여기에 대해서는 이하에서 더 자세히 설명할 것이다.RFID temperature logger 600 also includes crystal pins, XCKI and XCK0, to which crystal oscillator 610 may be connected. Crystal oscillator 610 supplies a reference frequency for control logic block 604. The crystal oscillator 610 is optional and can be removed from the temperature logger 600 because the sensor block 606 can supply a stable reference frequency, which will be described in more detail below.

이 실시예에서, RF 통신 블록(602)은 안테나 (미도시)를 통해 검출되는 입사 RF 신호를 받기 위해 제1RF 포트 RF1 및 제2RF 포트 RF2에 연결된다. RF 통신 블록(602)은 버스(612)를 통해 제어 블록(604)과 통신하여 입사 RF 신호들에 의해 명령된 대로 제어 로직 블록(604)에 저장된 데이터를 읽고 쓰도록 한다. RF 통신 블록(602)은 또 버스(622)를 통해 센서 블록(606)과도 통신한다. 센서 블록(606)은 버스(614)를 통해 제어 로직 블록(604)과 통신한다. 제어 로직 블록(604)은 제어 신호들을 제공해 온도나 전압 계측 기능들이 센서 블록(606)에서 일어나게 하고, 센서 블록(606)은 제어 로직 블록(604)에 저장할 계측된 온도 또는 전압 데이터를 제공한다.In this embodiment, the RF communication block 602 is connected to the first RF port RF1 and the second RF port RF2 to receive an incident RF signal detected through an antenna (not shown). The RF communication block 602 communicates with the control block 604 via the bus 612 to read and write data stored in the control logic block 604 as commanded by the incident RF signals. The RF communication block 602 also communicates with the sensor block 606 via the bus 622. The sensor block 606 communicates with the control logic block 604 via the bus 614. The control logic block 604 provides control signals to cause temperature or voltage measurement functions to occur in the sensor block 606, and the sensor block 606 provides the measured temperature or voltage data to be stored in the control logic block 604.

본 발명의 한 양태에 따르면, 센서 블록(606)은 또 버스(618)를 통해 안정적 기준 클록을 제어 로직 블록으로 제공하기도 하며, 여기서 안정적 기준 클록은 제어 로직 블록에서 실시간 클록의 눈금조정에 사용된다. 이 같은 방식에서는, 외부 크리스털 오실레이터가 RFID 온도 로거(600) 작동에 필요로 되지 않는다. 본 발명의 다른 양태에 따르면, 제어 로직 블록(604)은 버스(616)를 통해 power_save 신호를 센서 블록(606)으로 공급하여, 센서 블록(606)이 전력 보존을 위해 파워를 오프하게 만들며, 이에 대해서는 아래에서 보다 자세히 설명할 것이다. According to one aspect of the invention, the sensor block 606 also provides a stable reference clock to the control logic block via the bus 618, where the stable reference clock is used to calibrate the real time clock in the control logic block. . In this manner, no external crystal oscillator is required for the RFID temperature logger 600 operation. According to another aspect of the invention, the control logic block 604 supplies a power_save signal via the bus 616 to the sensor block 606, causing the sensor block 606 to power off for power conservation, thereby This will be explained in more detail below.

일실시예에서, RF 통신 블록(602)은 제1 및 제2RF 포트들인 RF1과 RF2를통해 RF 통신을 지원하기 위한 EPC 클래스 0+에 따르는 RFID 통신 코어로서 구현된다. RF 통신 블록(602)은 내장된 상태 머신들을 포함하여 제어 로직 블록(604)로/로부터의 통신뿐 아니라, 센서 블록(606)으로/로부터의 통신을 구현하도록 한다. 일시시예에서, 센서 블록(606)에 의해 제공되는 센서 데이터와, 센서 블록(606)으로 주어질 명령 및 지시사항이 무선 RF 링크를 거쳐 전송되고 RF 통신 블록(602)에 의해 수신 및 검출된다. 센서 블록(606)에 의도된 데이터 및 명령들은 센서 블록(606)로/로부터 버스(622)를 지난다.In one embodiment, the RF communication block 602 is implemented as an RFID communication core in accordance with EPC Class 0+ for supporting RF communication via the first and second RF ports, RF1 and RF2. The RF communication block 602 includes embedded state machines to implement communication to / from the sensor block 606 as well as to / from the control logic block 604. In one embodiment, sensor data provided by sensor block 606 and instructions and instructions to be given to sensor block 606 are transmitted over a wireless RF link and received and detected by RF communication block 602. Data and instructions intended for sensor block 606 pass over bus 622 to / from sensor block 606.

일실시예에서, 무선 RF 링크는 900 MHz 주파수이고, 16KBps부터 80KBps의 데이터 레이트를 지원한다. RFID 리더로부터 RFID 온도 로거(600)로의 포워드 링크 통신은 30% 내지 100% 사이의 변조 깊이의 크기 변조 RF에 대해 열려 있다. ㄲRFId 온도 로거(600)에서 RFID 리더로의 백(back) 링크 통신은 수동형 후방산라(backscatter)에 열려 있다. 위에서 설명한 것과 같이, RFID 통신 블록(602)은 배터리 전력을 받지 않고 대신 안테나 상의 입사 RF를 통해 전력 공급된다.In one embodiment, the wireless RF link is at a 900 MHz frequency and supports data rates from 16 KBps to 80 KBps. Forward link communication from the RFID reader to the RFID temperature logger 600 is open for magnitude modulated RF of modulation depth between 30% and 100%. Backlink communication from the RFId temperature logger 600 to the RFID reader is open to the passive backscatter. As described above, the RFID communication block 602 does not receive battery power but instead is powered via incident RF on the antenna.

제어 로직 블록(604)는 RF 통신 블록(302)으로부터 수신되는 명령을 저장하고, 또 센서 블록(606)에 의해 제공된 온도나 전압 데이터를 저장하기 위한 레지스터들 및 메모리를 포함한다. 제어 로직 블록(604)은 RFID 태그(600)의 동작을 제어하도록 작동한다. 제어 로직 블록(604)는 외부 배터리(620)로부터 배터리 전력을 수신한다. 이 예에서, 제어 로직 블록(604)는 외부 크리스털 오실레이터(60)로부터 입력 클록 신호를 수신하기 위한 한 쌍의 입력 단자 Clock_In를 포함한다. 입력 클록 신호는 제어 로직으로 하여금 그것의 실시간 클록을 동시시키게 한다. 그러나, Clock_In 단자들과 외부 크리스털 오실레이터(610)은 옵션으로서, 본 발명의 다른 실시예들에서 생략될 수 있다. 특히, 크리스털 오실레이터(610)는 센서 블록(606)이 버스(618)를 통해 안정적 기준 클록을 제공할 때 필요로 되지 않는다. The control logic block 604 includes registers and memory for storing instructions received from the RF communication block 302 and for storing temperature or voltage data provided by the sensor block 606. The control logic block 604 operates to control the operation of the RFID tag 600. The control logic block 604 receives battery power from the external battery 620. In this example, control logic block 604 includes a pair of input terminals Clock_In for receiving an input clock signal from external crystal oscillator 60. The input clock signal causes the control logic to synchronize its real time clock. However, the Clock_In terminals and external crystal oscillator 610 are optional and may be omitted in other embodiments of the present invention. In particular, the crystal oscillator 610 is not needed when the sensor block 606 provides a stable reference clock over the bus 618.

일실시예에서, 제어 로직 블록(604)는 센서 블록(606)에 의한 온도 계측을 명하거나 유발하도록 동작한다. 온도 계측은 1초에서 8시간 까지의 사용자 선택 간격들을 포함할 수 있다. 온도 로깅의 시작은, 하이(high) 또는 로(low) 온도 트립(trip) 포인트에서나 소정 지연 시간 이후에만, 전력이 공급되었을 때 할 수 있다. 또, 일실시예에서, 제어 로직 블록(604)는 샘플당 8 비트로 된 4000 개의 온도 계측치까지를 저장하기 위한 메모리를 포함한다. 제어 로직 블록은 또 각각의 계측 세션 중에 계측된 최소 및 최대 온도들을 기록하고, 온도 계측치들이 미리 프로그래밍 된 소정 레벨들을 초과하는 경우 경고 신호를 제공하도록 프로그래밍 될 수 있다.In one embodiment, the control logic block 604 operates to direct or cause temperature measurements by the sensor block 606. The temperature measurement may include user selected intervals from 1 second to 8 hours. Initiation of temperature logging can occur when power is supplied only at a high or low temperature trip point or after a predetermined delay time. Further, in one embodiment, the control logic block 604 includes a memory for storing up to 4000 temperature measurements with 8 bits per sample. The control logic block can also be programmed to record the minimum and maximum temperatures measured during each metering session and to provide a warning signal if the temperature measurements exceed certain preprogrammed levels.

제어 로직 블록(604)은 또 센서 블록(606)을 제어하여 배터리 전압을 계측하고 배터리 전력을 보존하게 한다. 센서 블록(606)이 온도 계측치를 가져오지 않고 있을 때, 제어 로직 블록(604)은 센서 블록(606)에 명하여 배터리 전력 보존을 위해 전력을 다운(down)하게 한다. 제어 로직 블록(604)은 또 계측 세션시 센서 블록(606)을 각성 시킨다(wake up). 계측 세션이 완료되면, 제어 로직 블록(604)은 자신의 내부 클록 신호를 턴 오프하여, 센서 블록(606)과 자신의 내부 회로로의 전력을 다운시킨다. 일실시예에서, 계측치들이 주어지고 있지 않을 때, 제어 로직 블록(604)은 센서 블록 및, 데이터 메모리를 제외한 자신의 회로 모두를 전력 오프한다. 이러한 방식으로, 전력 소비가 최소 레벨로 줄어들고, 배터리 전력의 수명이 더 길어질 수 있다.The control logic block 604 also controls the sensor block 606 to measure battery voltage and conserve battery power. When sensor block 606 is not bringing temperature measurements, control logic block 604 commands sensor block 606 to power down to conserve battery power. The control logic block 604 also wakes up the sensor block 606 during the measurement session. Upon completion of the measurement session, control logic block 604 turns off its internal clock signal, bringing down power to sensor block 606 and its internal circuitry. In one embodiment, when no measurements are given, the control logic block 604 powers off both the sensor block and its circuit except the data memory. In this way, power consumption can be reduced to a minimum level and battery life can be longer.

이 실시예에서, 센서 블록(606)은 배터리 전압 VBAT와 주변 온도를 계측한다. 센서 블록(606)에 의해 제공되는 배터리 전압 계측치들로부터, 제어 로직 블록(604)는 배터리 전력이 낮은지를 판단할 수 있다. 배터리 전력이 낮으면, 제어 로직 블록(604)은 power_save 명령을 버스(616)를 통해 인가하여 센서 블록(606)을 전력 다운시킴으로서, 남은 배터리 전력이 보존될 수 있게 한다. 일실시예에서, power_save 명령은 배터리 전력이 센서 블록(606)으로부터 분리되게 만들어, 더 이 상의 배터리 전력이 소비되지 못하게 한다. 다른 실시예에서, 배터리 전력이 임계 레벨에 있을 때, 제어 로직 블록(604)과 센서 블록(606)은 데이터 메모리를 제외하고 전력 다운되어져, 남은 배터리 전력이 계측 데이터를 보존하기 위해 데이터 메모리를 유지하는데 사용될 것이다.In this embodiment, the sensor block 606 measures the battery voltage V BAT and the ambient temperature. From the battery voltage measurements provided by the sensor block 606, the control logic block 604 can determine whether the battery power is low. If the battery power is low, the control logic block 604 applies a power_save command over the bus 616 to power down the sensor block 606 so that the remaining battery power can be conserved. In one embodiment, the power_save command causes battery power to be separated from the sensor block 606 so that no more battery power is consumed. In another embodiment, when the battery power is at the threshold level, the control logic block 604 and the sensor block 606 are powered down except for the data memory so that the remaining battery power maintains the data memory to preserve measurement data. Will be used to

예를 들어, 도 17에 도시된 바와 같이, 배터리 전압 VBAT은 스위치 S2를 통해 온도/전압 센서 블록(606)을 위한 전력 공급 전압 Vdd 노드(680)에 연결된다. 전력 공급 전압 Vdd(680)는 센서 블록 내 회로에 전원을 인가하도록 연결되어 있는 전력 공급 전압을 나타낸다. 스위치 S2는 power_save 신호에 의해 제어된다. power_save 신호가 주어져 배터리 전력 상태가 양호함을 나타내면, 스위치 S2는 닫혀져서 배터리 전력이 센서 블록(606)의 전력 공급 전압 노드(680)에 연결되게 한다. power_save 신호가 주어져 배터리 전력 상태가 낮음을 가리키면, 스위치 S2는 개방되어 배터리 전압이 센서 블록으로부터 분리되어 진다.For example, as shown in FIG. 17, battery voltage V BAT is connected to power supply voltage Vdd node 680 for temperature / voltage sensor block 606 through switch S2. The power supply voltage Vdd 680 represents the power supply voltage that is connected to power the circuit in the sensor block. The switch S2 is controlled by the power_save signal. If a power_save signal is given to indicate that the battery power state is good, the switch S2 is closed to allow battery power to be connected to the power supply voltage node 680 of the sensor block 606. When the power_save signal is given to indicate that the battery power state is low, switch S2 is opened to separate the battery voltage from the sensor block.

온도/전압 센서 블록(606)에 대해 이제부터 보다 상세히 설명할 것이다. 도 17은 본 발명의 일실시예에 따라 도 16의 RFID 온도 로거 안에 병합될 수 있는 온도/전압 센서 블록의 개략도이다. 도 17에서, 센서 블록(606)은 주변 온도 및 배터리 전압 VBAT을 계측하도록 설정되어 있다. 센서 블록(606)은 외부 배터리(620)를 통해 전력 공급된다. 일실시예에서, 센서 블록(606)은 1.55V 산화은 (silver oxide) 동전모양 셀 배터리로부터 구동되도록 디자인되고, 배터리가 1.1 볼트 아래로 방전될 때에도 -25℃ 내지 85℃에 걸쳐 정밀한 온도 및 전압 계측치들을 공급하 도록 기능한다. The temperature / voltage sensor block 606 will now be described in more detail. 17 is a schematic diagram of a temperature / voltage sensor block that may be incorporated into the RFID temperature logger of FIG. 16 in accordance with an embodiment of the present invention. In FIG. 17, sensor block 606 is set to measure ambient temperature and battery voltage V BAT . The sensor block 606 is powered through an external battery 620. In one embodiment, sensor block 606 is designed to be driven from a 1.55V silver oxide coin cell battery, and precise temperature and voltage measurements over -25 ° C to 85 ° C even when the battery is discharged below 1.1 volts. Function to feed them.

온도/전압 센서 블록(606)은 도 1-15를 참조해 위에서 설명한 주파수비 디지털화 온도 센서 구조를 구현한다. 그러나, 본 발명에 따라, 센서 블록(606)은 동일한 디지털화 회로를 이용해 온도와 전압 모두를 계측하도록 설정된다. 온도 계측 함수를 구현하기 위해, 센서 블록(606)은 온도 센서(625)를 포함하여, 도 1을 참조해 위에서 설명한 것처럼 온도 디지털화 회로로 PTAT 전류 (IPTAT) 및 CTAT 전류 (ICTAT)를 공급한다. CTAT 전류 ICTAT는 입력 생성 회로(630)의 ICTAT_IN입력 단자로 주어지고, PTAT 전류 IPTAT는 입력 생성 회로(630)의 IPTAT_IN입력 단자로 주어진다.The temperature / voltage sensor block 606 implements the frequency ratio digitizing temperature sensor structure described above with reference to FIGS. 1-15. However, in accordance with the present invention, sensor block 606 is configured to measure both temperature and voltage using the same digitization circuit. To implement the temperature measurement function, sensor block 606 includes a temperature sensor 625 to supply PTAT current (IPTAT) and CTAT current (ICTAT) to the temperature digitization circuit as described above with reference to FIG. 1. The CTAT current ICTAT is given to the ICTAT_IN input terminal of the input generation circuit 630 and the PTAT current IPTAT is given to the IPTAT_IN input terminal of the input generation circuit 630.

전압 계측 동작을 구현하기 위해, 센서 블록(606)은 저항 R1 및 R2를 포함하는 저항 디바이더(divider)를 사용한다. 저항 디바이더는 배터리 전압 단자 BAT와 그라운드 전위에 연결되어, 배터리 전압 VBAT을 수용한다. 배터리 전압을 가리키는 전류 IBAT가 노드(618)로 주어진다. 저항들 R1 및 R2의 저항값은 원하는 경사를 가진 전류 IBAT 설정에 맞춰 선택된다. 전류 IBAT는, 센서 블록(606)의 주파수비 디지털화 회로로 스위칭 가능하게 연결되는 스위치 S1으로 제공되고, 이에 대한 설명은 이하에서 상세히 설명할 것이다.To implement the voltage metering operation, sensor block 606 uses a resistor divider that includes resistors R1 and R2. The resistor divider is connected to the battery voltage terminal BAT and the ground potential to accommodate the battery voltage V BAT . A current IBAT indicating the battery voltage is given to node 618. The resistance value of the resistors R1 and R2 is selected according to the current IBAT setting with the desired slope. The current IBAT is provided to the switch S1 which is switchably connected to the frequency ratio digitization circuit of the sensor block 606, a description of which will be described in detail below.

센서 블록(606)의 주파수비 디지털화 회로는 도 1-15를 참조해 위에서 설명한 것과 같은 방식으로 구현된다. 구체적으로, 디지털화 회로는 입력 생성 회로(630) 및 주파수비 아날로그-디지털 컨버터(ADC)를 포함한다. 입력 생성 회 로(630)는 두 온도 종속 전류 IPTAT 및 ICTAT를 수신한다. 입력 생성 회로(630)는 주파수비 ADC를 구동하는데 필요한 입력 신호들인 IDATA, VDATA, IREF 및 VREF를 생성한다. 전류 및 전압 신호들인 IDATA, VDATA, IREF 및 VREF를 생성하기 위한 입력 생성 회로(630)의 동작은 도 1-15를 참조해 위에서 설명한 것과 동일하다. 이 실시예에서, 주파수비 ADC는 전류-주파수(I/F) 컨버터들(640)과 카운터들 및 뺄셈 회로(660)를 포함한다. 카운터들과 뺄셈 회로(660)는 제어 로직 블록으로부터 오프셋 조정 및 이득 조정 신호들을 수신한다. 주파수비 ADC는 주파수비 디지털화 회로의 계측 출력 신호로서 출력 신호 ADCOUT을 제공한다.The frequency ratio digitization circuit of the sensor block 606 is implemented in the same manner as described above with reference to FIGS. 1-15. Specifically, the digitization circuit includes an input generation circuit 630 and a frequency ratio analog-to-digital converter (ADC). The input generation circuit 630 receives two temperature dependent currents IPTAT and ICTAT. The input generation circuit 630 generates IDATA, VDATA, IREF and VREF, which are input signals required to drive the frequency ratio ADC. The operation of the input generation circuit 630 for generating the current and voltage signals IDATA, VDATA, IREF and VREF is the same as described above with reference to FIGS. 1-15. In this embodiment, the frequency ratio ADC includes current-frequency (I / F) converters 640 and counters and subtraction circuits 660. Counters and subtraction circuit 660 receive offset adjustment and gain adjustment signals from the control logic block. The frequency ratio ADC provides the output signal ADCOUT as the measurement output signal of the frequency ratio digitization circuit.

I/F 컨버터들(640)로 주어지는 IDATA 신호는 계측 출력 신호 ADCOUT으로 디지털화될 데이터 신호를 나타낸다. 따라서, 온도 계측치가 주어질 때, 신호 IDATA는 온도 종속 PTAT 전류 IPTAT이다. 배터리 전압 계측치가 주어져야 할 때, 신호 IDATA는 전압 종속 전류 IBAT이다. 본 발명의 듀얼 기능 온도/전압 계측 방식에 따르면, 전압 종속 전류 IBAT와 온도 종속 전류 IPTAT는 스위치 S1에 연결되어, 주파수비 ADC와 교대로 연결된다. 스위치 S1이 제어 로직 블록(604)에 의해 주어진 선택 신호를 버스(614)를 통해 수신하여, 전류 IPTAT나 전류 IBAT 중 하나를, 디지털 변환을 위해 신호 IDATA로서 I/F 컨버터들(640)에 연결되도록 선택한다. 이런 방식으로, 센서 블록(606)의 디지털화 회로는 IDATA 신호로서 I/F 컨버터들로 연결되는 온도 계측치 또는 전압 계측치 중 하나를 가리키는 ADCOUT 신호를 제공한다.The IDATA signal given to the I / F converters 640 represents a data signal to be digitized into the measurement output signal ADCOUT. Thus, given a temperature measurement, the signal IDATA is the temperature dependent PTAT current IPTAT. When the battery voltage measurement is to be given, the signal IDATA is the voltage dependent current IBAT. According to the dual function temperature / voltage measurement scheme of the present invention, the voltage dependent current IBAT and the temperature dependent current IPTAT are connected to the switch S1 and alternately connected to the frequency ratio ADC. The switch S1 receives the selection signal given by the control logic block 604 via the bus 614, connecting either current IPTAT or current IBAT to the I / F converters 640 as signal IDATA for digital conversion. Choose to In this way, the digitization circuit of sensor block 606 provides an ADCOUT signal that points to either a temperature measurement or a voltage measurement that is connected to the I / F converters as an IDATA signal.

계측된 배터리 전압 값들을 가지고, 제어 로직 블록(604)은 온도 계측 동작을 지속하기 충분한 배터리 전력이 있는지 여부를 판단할 수 있다. 일실시예에서, 센서 블록(606)은 배터리 전압이 1.1 볼트 이상일 대에만 작동한다. 따라서, 센서 블록(606)에 의해 주어진 배터리 전압 계측치가 배터리 전압이 1.1 볼트 미만임을 가리킬 때, 제어 로직 블록(604)은 power_save 신호를 인가해, 센서 블록(606)을 셧 다운한다.With the measured battery voltage values, control logic block 604 can determine whether there is enough battery power to continue the temperature measurement operation. In one embodiment, sensor block 606 only operates when the battery voltage is greater than 1.1 volts. Thus, when the battery voltage measurement given by sensor block 606 indicates that the battery voltage is less than 1.1 volts, control logic block 604 applies a power_save signal to shut down sensor block 606.

도 17에서, 선택 신호, 오프셋 조정 및 이득 조정 신호들과 ADCOUT 출력 신호가 제어 로직 블록(604) 및 센서 블록(606) 사이에서 버스(614)를 통해 전송된다. 일실시예에서, 배터리 전력을 보존하기 위해, 대부분의 디지털화 회로는 계측 변환들 사이에 셧다운 되도록 설정되어 있으면서, 센서 블록과 로직 제어 블록 사이의 인터페이스 회로들이 계측치를 다시 받아야 할 때 센서 블록을 재시동하는데 필요로 되기 때문에 이 회로들에 거의 0에 가까운 정적(quiescent) 파워 드레인 (power drain)으로 계속 전력 공급이 이뤄지게 한다. In FIG. 17, select signals, offset adjustment and gain adjustment signals and the ADCOUT output signal are transmitted over the bus 614 between the control logic block 604 and the sensor block 606. In one embodiment, to conserve battery power, most of the digitization circuitry is set to shut down between instrumentation transformations, restarting the sensor block when the interface circuits between the sensor block and the logic control block must receive the measurement again. As needed, these circuits continue to be powered with a near zero quiescent power drain.

본 발명의 듀얼 기능 온도/전압 센서의 한 특징이, 온도 및 전압 계측치들이 디지털화 회로에 있어 동일한 오프셋 및 이득 조정 값들을 공유하도록 센서가 설정된다는 것이다. 구체적으로 말해, 선택된 온도 계측 포인트 (가령, 0℃)에서 PTAT 전류 IPTAT는, 선택된 전압 계측 포인트에서의 배터리 전류 IBAT와 같도록 설정되어야 한다. 이와 같은 방식으로, 전압 계측 오프셋 및 이득 조정 값들이 온도 계측치들을 추종하고, 두 계측치들 모두에 대해 단 한 세트의 오프셋 및 이득 조정 값들만이 필요로 된다.One feature of the dual function temperature / voltage sensor of the present invention is that the sensor is set such that the temperature and voltage measurements share the same offset and gain adjustment values in the digitization circuit. Specifically, the PTAT current IPTAT at the selected temperature measurement point (eg 0 ° C.) should be set equal to the battery current IBAT at the selected voltage measurement point. In this manner, the voltage measurement offset and gain adjustment values follow the temperature measurements, and only one set of offset and gain adjustment values are needed for both measurements.

위에서 논의된 것처럼, 본 발명의 주파수비 디지털화 온도 센서는 3 포트 선형성 정정 방법을 구현하고, 주파수비 디지털화 온도 센서는 안정화된 기준 클록 주파수를 제공하는 한편 온도 디지털화 선형성 에러들 역시 최소화시킨다. 안정화된 기준 클록 주파수가 클록 조정에 사용될 수 있다. 따라서, 본 발명에 따르면, 센서 블록(606)은 3 포트 선형성 정정 방법을 구현하도록 설정되고 기준 클록 신호가 버스(618)를 통해 공급된다. 그러면 기준 클록 신호는 제어 로직 블록의 클록 신호를 조정하는데 사용되도록 제어 로직 블록(604)으로 제공될 수 있다.As discussed above, the frequency ratio digitization temperature sensor of the present invention implements a three port linearity correction method, while the frequency ratio digitization temperature sensor provides a stabilized reference clock frequency while also minimizing temperature digitization linearity errors. The stabilized reference clock frequency can be used for clock adjustment. Thus, in accordance with the present invention, sensor block 606 is configured to implement a three port linearity correction method and a reference clock signal is supplied over bus 618. The reference clock signal can then be provided to the control logic block 604 to be used to adjust the clock signal of the control logic block.

도 18은 도 17의 온도/전압 센서 블록에 병합될 수 있는 배터리 전류 및 PTAT 전류 선택 회로의 회로도이다. 도 17에 도시된, 배터리 전류 생성 회로 및 배터리 전류 및 PTAT 전류 선택 회로는 온도/전압 센서 블록(606)의 동작 원리들을 보이도록 간략화되어 있다. 도 18은 배터리 전압을 가리키는 전류를 생성하고, 배터리 전류나 온도 종속 PTAT 전류를 입력 신호 IDATA로서 I/F 컨버터들에 선택적으로 연결하는데 사용될 수 있는 배터리 전류 및 PTAT 전류 선택 회로(700)의 실제 구성을 도시한 것이다. FIG. 18 is a circuit diagram of a battery current and PTAT current selection circuit that may be incorporated into the temperature / voltage sensor block of FIG. 17. The battery current generation circuit and the battery current and PTAT current selection circuit, shown in FIG. 17, are simplified to show the operating principles of the temperature / voltage sensor block 606. 18 shows an actual configuration of a battery current and PTAT current selection circuit 700 that can be used to generate a current that indicates battery voltage and to selectively connect battery current or temperature dependent PTAT current to I / F converters as input signal IDATA. It is shown.

도 18을 참조할 때, 회로(700)에서, 배터리 전압 VBAT가 저항 R1과 R2로 이뤄진 저항 디바이터에 연결되어 있다. 배터리 전압 VBAT는 또한 power_save 신호에 의해 제어되는 스위치 S2를통해 전력 공급 전압 Vdd 노드에 연결된다. 따라서, 회로(700)에서, 저항들 R1 및 R2로 된 저항 디바이더 (그리고 관련 트랜지스터 M54)만 제외하면, 모든 회로가 전력 공급 Vdd 전압에 연결되어, 상술한 바와 같이 power_save 신호가 인가될 때 그 모든 회로가 배터리 전력에서 분리될 수 있도록 된다.Referring to FIG. 18, in circuit 700, battery voltage V BAT is connected to a resistor divider consisting of resistors R1 and R2. The battery voltage V BAT is also connected to the power supply voltage Vdd node via switch S2 which is controlled by the power_save signal. Thus, in circuit 700, all circuits are connected to the power supply Vdd voltage, except for the resistor divider (and associated transistor M54) of resistors R1 and R2, all of which when the power_save signal is applied as described above. The circuit can be separated from the battery power.

배터리 전압을 계측하기 위해, 한 쌍의 직렬 연결된 저항들 R1 및 R2가 배터리 전압 VBAT과 그라운드 전압 VSS 사이에 연결되어, 저항 디바이더를 형성한다. VBAT_sel 신호로 제어되는 NMOS 트랜지스터 M54가 저항 R2와 VSS 사이에 연결되어, 배터리 전압 계측이 선택될 때 저항 디바이더에 연결되게 되거나 배터리 전압 계측이 선택되지 않을 때 저항 디바이더에서 떨어진다. 트랜지스터 M54는 배터리 전압 계측이 선택될 때 인가되는 VBAT_sel 신호에 의해 제어된다. 동작시, 트랜지스터 M54는 저항 R1 및 R2를 통한 배터리 전류의 DC 경로를 끊어, 배터리 전압 계측치를 받지 않을 때 배터리 전력이 전력이 소모되지 않도록 한다. 트랜지스터 M54는 길이에 비해 매우 큰 너비 비율을 가지도록 설계되어, 트랜지스터 M54에 걸쳐 소량의 전압 강하(drop)만이 일어나게 된다. 즉, 트랜지스터 M54가 턴 온 되어 있을 때, 이 트랜지스터에 걸쳐 있는 저항값은 저항 R1 및 R2의 저항값들에 비해 무시할 수 있는 정도이다. To measure the battery voltage, a pair of series connected resistors R1 and R2 are connected between the battery voltage V BAT and the ground voltage VSS to form a resistor divider. The NMOS transistor M54, controlled by the VBAT_sel signal, is connected between the resistors R2 and VSS to connect to the resistor divider when the battery voltage measurement is selected or to drop from the resistor divider when the battery voltage measurement is not selected. Transistor M54 is controlled by the VBAT_sel signal applied when battery voltage measurement is selected. In operation, transistor M54 disconnects the DC path of battery current through resistors R1 and R2 so that battery power is not drained when battery voltage measurements are not received. Transistor M54 is designed to have a very large width ratio relative to length, so that only a small amount of voltage drop occurs across transistor M54. That is, when transistor M54 is turned on, the resistance value across this transistor is negligible compared to the resistance values of resistors R1 and R2.

저항들 R1 및 R2로 된 저항 디바이더는 연산증폭기 (opamp)(730)의 제1입력 단자에 연결되는 전류 Inn를 공급한다. opamp(730)는 피드백 루프로 되어 있고, opamp(730)의 출력 단자는 PMOS 트랜지스터 M67을 구동하도록 연결되어 있다. PMOS 트랜지스터 M67은 배터리 전압 VBAT에 연결된 소스 단자를 포함하고, 자신의 드레인 단자에서 전류 Inp를 제2입력 단자로 공급한다. opamp(730)의 출력 단자는 또, 배터리 전압 VBAT을 가리키는 드레인 전류 IBAT를 제공하기 위한 PMOS 트랜지스터 M56을 구동하도록 연결되어 있다. 트랜지스터 M67은 트랜지스터 M56의 10배로 서 입력 전류 Inn 및 Inp는 많은 전류 값들을 가질 수 있게 하는 한편 트랜지스터 M56에서의 출력 전류 IBAT는 작은 전류 레벨을 유지한다. 구체적으로, 트랜지스터 M67과 M56의 트랜지스터 비율이 10:1인 것을 사용하여, 전류 Inn과 Inp가 더 큰 값들을 가질 수 있으면서도 저항 R1 및 R2의 저항값들은 작게 유지될 수 있게 된다. 즉, 전류 Inn 및 Inp에 대해 더 작은 전류 값들을 얻기 위해 저항 R1 및 R2에 대해 큰 저항값들을 사용할 필요가 없다. 저항 R1 및 R2의 저항값들이 작고 입력 전류 Inn 및 Inp가 클 때에도, M67/M56의 비율 조정된 트랜지스터들의 사용에 의해 트랜지스터 M56에서의 전류 IBAT는 작게 유지된다. 일실시예에서, 전류 Inn 및 Inp는 20 ㎂의 범위 내에 있고, 전류 IBAT는 2 ㎂ 범위 내에 있다.A resistor divider of resistors R1 and R2 supplies a current Inn connected to the first input terminal of an operational amplifier 730. The opamp 730 is in a feedback loop and the output terminal of the opamp 730 is connected to drive the PMOS transistor M67. The PMOS transistor M67 includes a source terminal connected to the battery voltage V BAT and supplies current Inp from the drain terminal thereof to the second input terminal. The output terminal of opamp 730 is also connected to drive PMOS transistor M56 to provide a drain current IBAT indicating battery voltage V BAT . Transistor M67 is ten times larger than transistor M56, allowing input current Inn and Inp to have many current values, while output current IBAT at transistor M56 maintains a small current level. Specifically, by using a transistor ratio of transistors M67 and M56 of 10: 1, the resistance values of the resistors R1 and R2 can be kept small while the current Inn and Inp can have larger values. That is, there is no need to use large resistance values for resistors R1 and R2 to obtain smaller current values for current Inn and Inp. Even when the resistance values of the resistors R1 and R2 are small and the input current Inn and Inp are large, the current IBAT in the transistor M56 is kept small by the use of the scaled transistors of M67 / M56. In one embodiment, the current Inn and Inp are in the range of 20 mA and the current IBAT is in the range of 2 mA.

다른 실시예에서, opamp(730)은 제1 및 제2입력 단자들 사이의 오프셋 전압 에러들을 최소화하기 위해 초퍼(chopper) 방식을 구현한다.In another embodiment, opamp 730 implements a chopper scheme to minimize offset voltage errors between the first and second input terminals.

이 실시예에서, 배터리 전압 계측의 정확도는 저항 트림(trim) 디지털-아날로그 컨버터(DAC)(720)의 사용으로 보장된다. 더 상세히 말하면, 제조 공정 변동이 저항 R1 및 R2의 저항값들의 변동을 일으킬 수 있다. 저항값들의 변동은, 배터리 전류 IBAT가 제조 공정 변동에 민감하게 되지 않도록 저항 트림 DAC(720)에 의해 조정된다. 이 예에서, 저항 트림 DAC는 각 트림 저항에 연결된 PMOS 트랜지스터를 포함한다. 직렬 트림 트랜지스터-저항 쌍이 주어져, 저항 R1 및 R2 저항값들의 정밀한 조정(trimming)을 가능하게 한다. 하나 이상의 트랜지스터들이, 하나 이상의 트림 저항들을 선택하는 트리밍 프로그램 코드 W0 내지 Wn에 의해 턴 온 된 다. 상기 저항 트림 DAC의 구조는 단지 예를 든 것으로 본 발명의 다른 실시예들에서 다른 트림 회로 구성이 활용될 수 있다. 또, 저항 트림 DAC(720)는 옵션으로서, 본 발명의 다른 실시예들에서 생략이 가능하다.In this embodiment, the accuracy of the battery voltage measurement is ensured by the use of a resistance trim digital-to-analog converter (DAC) 720. More specifically, manufacturing process variation can cause variation in the resistance values of resistors R1 and R2. The variation of the resistance values is adjusted by the resistance trim DAC 720 such that the battery current IBAT is not sensitive to manufacturing process variations. In this example, the resistive trim DAC includes a PMOS transistor connected to each trim resistor. A series trim transistor-resistance pair is given to allow precise trimming of the resistors R1 and R2 resistance values. One or more transistors are turned on by trimming program codes W 0 to Wn that select one or more trim resistors. The structure of the resistive trim DAC is merely exemplary and other trim circuit configurations may be utilized in other embodiments of the present invention. In addition, the resistance trim DAC 720 is optional and may be omitted in other embodiments of the present invention.

PMOS 트랜지스터 M56과 함께 opamp(730)에 의해 생성되는 배터리 전류 IBAT와, 온도 종속 PTAT 전류 IPTAT는 I/F 컨버터들(640)에 입력 신호 IDATA로서 스위치 가능하게 연결된다. 이 실시예에서, 배터리 전류 IBAT는 스위치 S71을 통해 IDATA 단자에 연결되고, 한편 전류 IPTAT는 스위치 S72를 통해 IDATA 단자에 연결된다. 스위치 S71은 VBAT_sel 신호에 의해 제어되고 스위치 S72는 IP_sel 신호에 의해 제어된다. VBAT_sel 신호와 IP_sel 신호는 상호보완적이고 겹쳐지지 않는 신호들이다. VBAT_sel 신호가 인가될 때, IP_sel 신호는 인가되지 비인가되어, 배터리 전류 IBAT가 IDATA 단자에 연결되게 된다. VBAT_sel 신호가 비인가될 때, IP_sel 신호가 인가되어 PTAT 전류 IPTAT가 IDATA 단자에 연결되어 진다.Battery current IBAT generated by opamp 730 with PMOS transistor M56, and temperature dependent PTAT current IPTAT are switchably connected as input signal IDATA to I / F converters 640. In this embodiment, the battery current IBAT is connected to the IDATA terminal via switch S71, while the current IPTAT is connected to the IDATA terminal via switch S72. The switch S71 is controlled by the VBAT_sel signal and the switch S72 is controlled by the IP_sel signal. The VBAT_sel and IP_sel signals are complementary and non-overlapping signals. When the VBAT_sel signal is applied, the IP_sel signal is not applied, which causes the battery current IBAT to be connected to the IDATA terminal. When the VBAT_sel signal is not applied, the IP_sel signal is applied to connect the PTAT current IPTAT to the IDATA terminal.

배터리 전류나 PTAT 전류가 공급되지 않을 때, 그 전류는 다른 경로를 지나 그라운드로 보내져, 미사용 전류가 센서 블록의 동작에 영향을 미치지 못하게 한다. 이 실시예에서, PMOS 트랜지스터 M58과 다이오드-연결 NMOS 트랜지스터 M63은 배터리 전류 IBAT에 대한 다른 전류 경로를 제공한다. VBAT_sel 신호가 인가되지 않을 때, 트랜지스터 M58이 턴 온 되어 배터리 전류 IBAT가 트랜지스터 M63을 통해 그라운드 노드 VSS로 소모되게 한다. VBAT_sel 신호가 인가될 때 트랜지스터 M58이 개방 회로로 되어, 모든 배터리 전류가 스위치 S71을 통해 IDATA 단자로 가게 된다.When no battery current or PTAT current is supplied, the current is passed through another path to ground, preventing unused currents from affecting the operation of the sensor block. In this embodiment, the PMOS transistor M58 and the diode-connected NMOS transistor M63 provide another current path for the battery current IBAT. When the VBAT_sel signal is not applied, transistor M58 is turned on, causing battery current IBAT to be consumed through transistor M63 to ground node VSS. Transistor M58 is open circuited when the VBAT_sel signal is applied, so that all battery current is passed through the switch S71 to the IDATA terminal.

PTAT 전류 측에서, PMOS 트랜지스터 M64와 다이오드-연결 NMOS 트랜지스터 M66는 PTAT 전류 IPTAT에 대한 다른 전류 경로를 제공한다. IP_sel 신호가 인가되지 않을 때, 트랜지스터 M64가 턴 온 되어 전류 IPTAT가 트랜지스터 M66을 거쳐 그라운드 노드 VSS로 소진되게 한다. 트랜지스터 M66는 IP_sel 신호가 인가될 때 개방 회로가 되어, 모든 PTAT 전류가 스위치 S72를거쳐 IDATA 단자로 보내지게 된다. On the PTAT current side, the PMOS transistor M64 and the diode-connected NMOS transistor M66 provide another current path for the PTAT current IPTAT. When the IP_sel signal is not applied, transistor M64 is turned on, causing current IPTAT to run out through transistor M66 to ground node VSS. Transistor M66 becomes an open circuit when the IP_sel signal is applied, so that all PTAT currents are sent to the IDATA terminal via switch S72.

위에서 논의된 본 발명의 RFID 온도 로거는 온도 계측 기능 및 배터리 전압 모니터링 기능을 가진 RFID를 구현한다. 또 RFID 온도 로거는, 외부 크리스털 오실레이터가 필요로 되지 않기 때문에 감축된 개수의 구성요소들로서 구현될 수 있게 된다. RFID 온도 로거는 계측이 행해지지 않을 때 모든 디지털 회로로의 전력을 다운시켜 배터리 효율성을 도모한다. 본 발명의 RFID 온도 로거는 RFID 시스템들 안에서, 정비되어 있고 용이한 어플리케이션들이 존재할 수 있도록 한다.The RFID temperature logger of the present invention discussed above implements RFID with temperature measurement and battery voltage monitoring. The RFID temperature logger can also be implemented as a reduced number of components since no external crystal oscillator is needed. RFID temperature loggers reduce battery power by powering down all digital circuitry when no measurements are made. The RFID temperature logger of the present invention allows for maintenance and easy applications to exist within RFID systems.

위의 세부적인 내용들은 본 발명의 특정 실시예들을 예시하기 위해 주어진 것으로, 제한의 의도로 사용된 것이 아니다. 본 발명의 범위 안에서 수많은 변형과 치환이 행해질 수 있다. 본 발명은 이하의 청구항들로서 규정된다. The above details are given to illustrate certain embodiments of the invention and are not intended to be limiting. Numerous variations and substitutions may be made within the scope of the invention. The invention is defined by the following claims.

본 발명에 의해, 온도에 대한 디지털 온도 출력 내의 선형성 에러를 상쇄할 수 있다. By the present invention, it is possible to offset the linearity error in the digital temperature output with respect to temperature.

Claims (23)

주파수비 디지털화 (frequency ration digitizing) 온도 센서(10)에 있어서,In the frequency ratio digitizing temperature sensor 10, PTAT (Proportional To Absolute Temperature) 전류 및 CTAT (Complementary To Absolute Temperature) 전류를 제공하는 온도 센싱 회로(20);A temperature sensing circuit 20 for providing a PTAT (Proportional To Absolute Temperature) current and a CTAT (Complementary To Absolute Temperature) current; 온도 센싱 회로에 연결되어, PTAT 전류 및 CTAT 전류를 수신하고, PTAT 전류 및 CTAT 전류의 합에 소정 가중치를 부여한 값인 가중된 합으로부터 온도에 대해 비선형 특성을 가지는 온도 독립 (temerature independent) 기준 전류인 제1전류를 생성하고, 제1전류와 제1비율의 PTAT 전류 합인 제1정정 전류를 더 생성하고, PTAT 전류에 해당하는 제1출력 전류, 제1정정 전류를 제1저항에 인가해 생성된 제1출력 전압, 제1정정 전류를 미러링 (mirroing)하여 생성된 제2출력 전류, 및 제1전류를 제2저항에 인가해 생성된 제2출력 전압을 제공하는 입력 생성 회로(30); 및A temperature independent reference current connected to a temperature sensing circuit that is a temperature independent reference current having a non-linear characteristic with respect to temperature from a weighted sum that receives PTAT current and CTAT current and weights the sum of PTAT current and CTAT current. A first current generated by generating one current, and further generating a first fixed current that is a sum of PTAT currents of the first current and the first ratio, and applying a first output current and a first positive current corresponding to the PTAT current to the first resistor; An input generation circuit 30 for providing one output voltage, a second output current generated by mirroring the first positive current, and a second output voltage generated by applying the first current to the second resistor; And 제1출력 전류 및 제1출력 전압을 수신하는 데이터 오실레이터 및 제2출력 전류 및 제2출력 전압을 수신하는 기준 오실레이터를 포함하여, 선형성 정정 (linearity-corrected) 온도 출력 신호를 생성하는 주파수비 아날로그-디지털 컨버터를 포함함을 특징으로 하는 주파수비 디지털화 온도 센서. A frequency ratio analog-producing linearity-corrected temperature output signal, including a data oscillator receiving a first output current and a first output voltage and a reference oscillator receiving a second output current and a second output voltage. A frequency ratio digitizing temperature sensor comprising a digital converter. 제1항에 있어서, 상기 주파수비 아날로그-디지털 컨버터는,The method of claim 1, wherein the frequency ratio analog to digital converter, 입력 생성 회로로부터 제1출력 전류 및 제1출력 전압을 수신하여, PTAT 전류에 해당하는 주파수를 갖는 제1주파수 출력 신호를 제공하는 데이터 오실레이터인 제1전류-주파수 컨버터(40);A first current-frequency converter 40 which is a data oscillator for receiving a first output current and a first output voltage from an input generating circuit and providing a first frequency output signal having a frequency corresponding to a PTAT current; 입력 생성 회로로부터 제2출력 전류 및 제2출력 전압을 수신하여 기준 주파수가 되는 제2주파수 출력 신호를 제공하는, 기준 오실레이터인 제2전류-주파수 컨버터(50);A second current-frequency converter 50, which is a reference oscillator, receiving a second output current and a second output voltage from an input generation circuit and providing a second frequency output signal that becomes a reference frequency; 제1주파수 출력 신호를 수신하여 변환 주기 동안의 제1주파수 출력 신호의 클록 사이클 수를 가리키는 제1디지털 카운트 값을 생성하는 제1카운터 회로(60); A first counter circuit (60) for receiving a first frequency output signal and generating a first digital count value indicating the number of clock cycles of the first frequency output signal during the conversion period; 제2주파수 출력 신호를 수신하여 제2주파수 출력 신호의 클록 사이클 수를 가리키는 제2디지털 카운트 값을 생성하고, 이때 상기 변환 주기는 제2주파수 출력 신호의 소정 클록 사이클 수에 의해 규정되게 되는 제2카운터 회로(70); 및Receiving a second frequency output signal and generating a second digital count value indicating the number of clock cycles of the second frequency output signal, wherein the conversion period is defined by a predetermined number of clock cycles of the second frequency output signal; Counter circuit 70; And 제1디지털 카운트 값에서 제2디지털 카운트 값을 빼고, 온도 출력 신호를 제공하는 뺄셈 회로(80)를 포함함을 특징으로 하는 주파수비 디지털화 온도 센서. And a subtraction circuit (80) for subtracting the second digital count value from the first digital count value and providing a temperature output signal. 제1항에 있어서, 상기 제1출력 전류는 PTAT 전류의 복제본이고, 제1정정 전류 또는 제1정정 전류의 복제본이 제1저항으로 인가되어 제1출력 전압을 생성하도록 함을 특징으로 하는 주파수비 디지털화 온도 센서.The frequency ratio of claim 1, wherein the first output current is a copy of the PTAT current, and the first positive current or the copy of the first positive current is applied to the first resistor to generate the first output voltage. Digitizing Temperature Sensor. 제3항에 있어서, 상기 제1정정 전류 또는 제1정정 전류의 복제본은 제2출력 전류로서 인가됨을 특징으로 하는 주파수비 디지털화 온도 센서.4. The frequency ratio digitizing temperature sensor as claimed in claim 3, wherein the first positive current or a copy of the first positive current is applied as a second output current. 제1항에 있어서, 상기 입력 생성 회로는, The circuit of claim 1, wherein the input generation circuit comprises: 제2비율의 PTAT 전류와 제3비율의 CTAT 전류를 합산하여, 온도에 대해 비선형 특성을 가지는 온도 독립 기준 전류인 제1전류를 생성하도록 연결된 제1합산 회로(106); 및A first summing circuit 106 coupled to sum the PTAT current of the second rate and the CTAT current of the third rate to produce a first current that is a temperature independent reference current having a nonlinear characteristic with respect to temperature; And 제1전류 및, PTAT 전류의 1보다 작은 비율인 제1비율의 PTAT 전류를 합산하여, 제1정정 전류를 생성하도록 연결되는 제2합산 회로(116)를 더 포함함을 특징으로 하는 주파수비 디지털화 온도 센서.And a second summation circuit 116 coupled to sum the first current and the PTAT current of the first ratio, which is a ratio less than one of the PTAT currents, to produce a first corrected current. temperature Senser. 제5항에 있어서, 상기 입력 생성 회로는,The circuit of claim 5, wherein the input generation circuit comprises: PTAT 전류를 수신하고, PTAT 전류에 제1정정 인자를 곱하여 제1비율의 PTAT 전류를 생성하도록 하는 제1버퍼(114)를 더 포함함을 특징으로 하는 주파수비 디지털화 온도 센서.And a first buffer (114) for receiving a PTAT current and multiplying the PTAT current by a first correction factor to produce a PTAT current at a first rate. 제6항에 있어서, 상기 제1정정 인자는 0.15 미만의 값을 가짐을 특징으로 하는 주파수비 디지털화 온도 센서.7. The frequency ratio digitizing temperature sensor as claimed in claim 6, wherein the first correction factor has a value of less than 0.15. 제6항에 있어서, 상기 입력 생성 회로는, The circuit of claim 6, wherein the input generation circuit comprises: 제1전류를 수신하여 1 마이너스 제1정정 인자 (1-제1정정 인자)인 제2정정 인자를 제1전류에 곱하여 정규화된 제1전류를 생성하고, 그 정규화된 제1전류를 제2합산 회로로 제공해 제1비율의 PTAT 전류와 합산되게 하는 제2버퍼(212)를 더 포함함을 특징으로 하는 주파수비 디지털화 온도 센서.Receiving the first current, multiplying the first current by a second correction factor, which is one negative first correction factor (1-first correction factor), to generate a normalized first current, and adding the normalized first current to the second sum. And a second buffer (212) provided to the circuit to sum with the PTAT current of the first ratio. 제1항에 있어서, 상기 입력 생성 회로는, 제1전류 및, 제1비율과 다른 제4비 율의 PTAT 전류를 더한 값인 제2정정 전류를 더 생성하고, 제2정정 전류를 제2저항에 인가하여 제2출력 전압을 생성함을 특징으로 하는 주파수비 디지털화 온도 센서. The circuit of claim 1, wherein the input generation circuit further generates a second positive current which is a value obtained by adding a first current and a PTAT current having a fourth ratio different from the first ratio, and converting the second positive current to the second resistor. And a second output voltage to generate a second output voltage. 제9항에 있어서, 상기 입력 생성 회로는,The circuit of claim 9, wherein the input generation circuit comprises: 제2비율의 PTAT 전류와 제3비율의 CTAT 전류를 합하여, 온도에 대해 비선형 특성을 가진 온도 독립 기준 전류인 제1전류를 생성하도록 연결된 제1합산 회로(206);A first summing circuit 206 coupled to add the PTAT current of the second rate and the CTAT current of the third rate to produce a first current that is a temperature independent reference current having a nonlinear characteristic with respect to temperature; 제1전류 및, PTAT 전류의 1보다 작은 비율인 제1비율의 PTAT 전류를 합하여, 제1정정 전류를 생성하도록 연결된 제2합산 회로(216); 및A second summing circuit 216 coupled to sum the first current and the PTAT current of the first ratio, which is a ratio less than 1 of the PTAT current, to produce a first positive current; And 제1전류 및, PTAT 전류의 1보다 작은 비율로서 제1비율과는 다른 제4비율의 PTAT 전류를 합산하여, 제2정정 전류를 생성하도록 연결된 제3합산 회로(226)를 더 포함함을 특징으로 하는 주파수비 디지털화 온도 센서. And a third summing circuit 226 coupled to sum the first current and the PTAT current at a fourth rate different from the first rate as a ratio less than one of the PTAT currents to produce a second positive current. Frequency ratio digitization temperature sensor. 제10항에 있어서, 상기 입력 생성 회로는, The circuit of claim 10, wherein the input generation circuit comprises: PTAT 전류를 수신하고, 제1정정 인자를 PTAT 전류에 곱하여 제1비율의 PTAT 전류를 생성하도록 하는 제1버퍼(214); 및A first buffer 214 for receiving a PTAT current and multiplying the first correction factor by the PTAT current to produce a first ratio PTAT current; And PTAT 전류를 수신하고, 제2정정 인자를 PTAT 전류에 곱하여 제4비율의 PTAT 전류를 생성하도록 하는 제2버퍼(222)를 더 포함함을 특징으로 하는 주파수비 디지털화 온도 센서.And a second buffer (222) for receiving the PTAT current and multiplying the second correction factor by the PTAT current to produce a fourth ratio of PTAT current. 제11항에 있어서, 상기 입력 생성 회로는, The circuit of claim 11, wherein the input generation circuit comprises: 제1전류를 수신하여 1 마이너스 제1정정 인자인 (1-제1정정 인자) 제3정정 인자를 제1전류에 곱하여 제1정규화된 제1전류를 생성하고, 제1정규화된 제1전류를 제2합산 회로로 제공해 제1비율의 PTAT 전류와 합산되게 하는 제3버퍼(212); 및The first current is received and the first normalized first current is generated by multiplying the first current by one minus first correcting factor (1-first correcting factor) by the third correcting factor, thereby generating the first normalized first current. A third buffer 212 which is provided to the second summing circuit to be summed with the PTAT current of the first ratio; And 제1전류를 수신하여 1 마이너스 제2정정 인자인 (1-제2정정 인자) 제4정정 인자를 제1전류에 곱하여 제2정규화된 제1전류를 생성하고, 제2정규화된 제1전류를 제3합산 회로로 제공하여 제4비율의 PTAT 전류와 합산되게 하는 제4버퍼(224)를 더 포함함을 특징으로 하는 주파수비 디지털화 온도 센서. Receiving the first current and multiplying the first current by one negative second correction factor (1-second correction factor) to the first current to generate a second normalized first current, and converting the second normalized first current to And a fourth buffer (224) for providing to a third summation circuit to sum with a fourth ratio of PTAT current. 선형성 정정 (linearity-corrected) 온도 출력 신호 생성 방법에 있어서, In a linearity-corrected temperature output signal generation method, PTAT (Proportional To Absolute Temperature) 전류 및 CTAT (Complementary To Absolute Temperature) 전류를 제공하는 단계;Providing a Proportional To Absolute Temperature (PTAT) current and a Complementary To Absolute Temperature (CTAT) current; PTAT 전류 및 CTAT 전류의 합에 소정 가중치를 부여한 값인, 가중된 합으로부터 온도에 대해 비선형 특성을 가지는 온도 독립 (temerature independent) 기준 전류인 제1전류를 생성하는 단계;Generating a first current that is a temperature independent reference current having a non-linear characteristic with respect to temperature from a weighted sum that is a weighted sum of the PTAT current and the CTAT current; 제1전류 및 제1비율 PTAT 전류 합인 제1정정 전류를 생성하는 단계;Generating a first positive current that is the sum of the first current and the first ratio PTAT current; PTAT 전류에 해당하는 제1출력 전류를 생성하는 단계;Generating a first output current corresponding to the PTAT current; 제1정정 전류를 제1저항에 인가해 제1출력 전압을 생성하는 단계;Applying a first positive current to the first resistor to generate a first output voltage; 제1정정 전류를 미러링함으로써 제2출력 전류를 생성하는 단계;Generating a second output current by mirroring the first positive current; 제1전류를 제2저항에 인가해 생성된 제2출력 전압을 생성하는 단계; 및Generating a second output voltage generated by applying a first current to the second resistor; And 제1출력 전류 및 제1출력 전압을 주파수비 아날로그-디지털 컨버터의 데이터 오실레이터와 연결하고, 제2출력 전류 및 제2출력 전압을 주파수비 아날로그-디지털 컨버터의 기준 오실레이터로 연결하여, 선형성 정정 온도 출력 신호를 생성하는 단계를 포함함을 특징으로 하는 방법.Linearity correction temperature output by connecting the first output current and the first output voltage to the data oscillator of the frequency ratio analog-to-digital converter, and the second output current and the second output voltage to the reference oscillator of the frequency ratio analog-to-digital converter Generating a signal. 제13항에 있어서, 상기 제1 및 제2출력 전류와 제1 및 제2출력 전압들을 주파수비 아날로그-디지털 컨버터에 연결하여 선형성 정정 온도 출력 신호를 생성하는 단계는, 14. The method of claim 13, wherein coupling the first and second output currents and the first and second output voltages to a frequency ratio analog-to-digital converter to produce a linearity correction temperature output signal comprises: 제1출력 전류 및 제1출력 전압을 제1전류-주파수 컨버터로 제공하여, PTAT 전류에 해당하는 주파수를 갖는 제1주파수 출력 신호를 생성하도록 하는 단계; Providing a first output current and a first output voltage to a first current-frequency converter to generate a first frequency output signal having a frequency corresponding to a PTAT current; 제2출력 전류 및 제2출력 전압을 제2전류-주파수 컨버터로 제공하여, 기준 주파수가 되는 제2주파수 출력 신호를 생성하도록 하는 단계; Providing a second output current and a second output voltage to a second current-frequency converter to generate a second frequency output signal that becomes a reference frequency; 변환 주기 동안의 제1주파수 출력 신호의 클록 사이클 수를 카운트하여 제1디지털 카운트 값을 제공하는 단계; Counting the number of clock cycles of the first frequency output signal during the conversion period to provide a first digital count value; 제2주파수 출력 신호의 클록 사이클 수를 카운트하여 제2디지털 카운트 값을 제공하고, 이때 상기 변환 주기는 제2주파수 출력 신호의 소정 클록 사이클 수에 의해 규정되는 단계; 및Counting the number of clock cycles of the second frequency output signal to provide a second digital count value, wherein the conversion period is defined by a predetermined number of clock cycles of the second frequency output signal; And 제1디지털 카운트 값에서 제2디지털 카운트 값을 빼서 온도 출력 신호를 생성하는 단계를 포함함을 특징으로 하는 방법. Generating a temperature output signal by subtracting the second digital count value from the first digital count value. 제13항에 있어서, The method of claim 13, 제1전류 및, 제1비율과 다른 제4비율의 PTAT 전류를 합산한 제2정정 전류를 생성하는 단계를 더 포함하고,Generating a second positive current obtained by summing a first current and a PTAT current having a fourth ratio different from the first ratio, 상기 제2출력 전압을 생성하는 단계는, 제2정정 전류를 제2저항에 인가하여 제2출력 전압을 생성하는 단계를 포함함을 특징으로 하는 방법.Generating the second output voltage comprises applying a second positive current to the second resistor to generate a second output voltage. 제13항에 있어서, 상기 제1출력 전류는 PTAT 전류의 복제본이고, 제1정정 전류 또는 제1정정 전류의 복제본이 제1저항으로 인가되어 제1출력 전압을 생성하도록 함을 특징으로 하는 방법.15. The method of claim 13, wherein the first output current is a copy of the PTAT current and a first positive current or a copy of the first positive current is applied to the first resistor to produce a first output voltage. 제16항에 있어서, 상기 제1정정 전류 또는 제1정정 전류의 복제본은 제2출력 전류로서 인가됨을 특징으로 하는 방법.17. The method of claim 16, wherein the first positive current or a copy of the first positive current is applied as a second output current. 제13항에 있어서, 상기 PTAT 전류 및 CTAT 전류의 가중된 합으로부터 온도에 대해 비선형 특성을 가지는 온도 독립 (temerature independent) 기준 전류인 제1전류를 생성하는 단계는, The method of claim 13, wherein generating a first current that is a temperature independent reference current having a non-linear characteristic with respect to temperature from the weighted sum of the PTAT current and the CTAT current comprises: 제2비율의 PTAT 전류와 제3비율의 CTAT 전류를 합산하여, 온도에 대해 비선형 특성을 가지는 온도 독립 기준 전류인 제1전류를 생성하도록 하는 단계를 포함함을 특징으로 하는 방법.Summing the PTAT current at the second rate and the CTAT current at the third rate to produce a first current that is a temperature independent reference current having a non-linear characteristic with respect to temperature. 제13항에 있어서, 상기 제1전류 및 제1비율의 PTAT 전류를 합한 제1정정 전류를 생성하는 단계는, The method of claim 13, wherein the generating of the first positive current sum of the first current and the PTAT current of the first ratio comprises: PTAT 전류에, 제1정정 인자를 곱하여, PTAT 전류의 1보다 작은 비율인 제1비율의 PTAT 전류를 생성하는 단계; 및Multiplying the PTAT current by a first correction factor to produce a PTAT current at a first rate, the ratio being less than one of the PTAT currents; And 제1전류 및 제1비율의 PTAT 전류를 합산하여 제1정정 전류를 생성하도록 하는 단계를 포함함을 특징으로 하는 방법Summing the first current and the PTAT current of the first ratio to produce a first positive current. 제19항에 있어서, 상기 제1정정 인자는 0.15 미만의 값을 가짐을 특징으로 하는 방법.20. The method of claim 19, wherein said first correction factor has a value of less than 0.15. 제1항에 있어서, The method of claim 1, 제1전압을 계측하고 제1전압에 비례하는 제3전류를 제공하는 전압 계측 회로;A voltage measuring circuit measuring the first voltage and providing a third current proportional to the first voltage; 제1출력 전류 및 제3전류를 수신하고, 선택 신호에 기반하여 제1출력 전류와 제3전류 중 하나를 선택 전류로서 선택하는 선택 회로 (S1)를 더 포함하고,A selection circuit S1 for receiving the first output current and the third current and selecting one of the first output current and the third current as the selection current based on the selection signal, 주파수비 아날로그-디지털 컨버터 (640 및 660)는 상기 선택 전류 및 제1출력 전압을 수신하는 데이터 오실레이터와, 제2출력 전류 및 제2출력 전압을 수신하는 기준 오실레이터를 포함하고, PTAT 전류 및 제3전류 중에서 선택된 것을 가리키는 선형성 정정 디지털 출력 신호를 발생함을 특징으로 하는 주파수비 디지털화 온도 센서. The frequency ratio analog-to-digital converters 640 and 660 include a data oscillator for receiving the selected current and a first output voltage, and a reference oscillator for receiving a second output current and a second output voltage, and a PTAT current and a third. And a linearity correcting digital output signal indicating a selected one of the currents. 반수동(semi-passive) 무선 주파수 식별 (RFID) 태그(600)에 있어서,In a semi-passive radio frequency identification (RFID) tag 600, RFID 태그의 회로 일부에 전력을 공급하도록, 배터리 전압을 제공하는 배터리(620)에 연결되어 있고, 제21항에 따른 주파수비 디지털화 온도 센서를 구비한 센서 블록(606)을 포함함을 특징으로 하는 반수동 무선 주파수 식별 태그.A sensor block 606 connected to a battery 620 providing a battery voltage for powering a portion of the circuit of the RFID tag and having a frequency ratio digitizing temperature sensor according to claim 21. Semi-passive radio frequency identification tag. 제22항에 있어서, 상기 제1전압은 배터리 전압을 포함하며, 상기 센서 블록(606)은 주변 온도와 상기 배터리 전압을 교대로 계측함을 특징으로 하는 반수동 무선 주파수 식별 태그.23. The semi-passive radio frequency identification tag of claim 22, wherein the first voltage comprises a battery voltage, and the sensor block 606 alternately measures ambient temperature and the battery voltage.
KR1020070018046A 2006-02-23 2007-02-22 Frequency ratio digitizing temperature sensor with linearity correction KR100913974B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11/361,912 2006-02-23
US11/361,912 US7331708B2 (en) 2006-02-23 2006-02-23 Frequency ratio digitizing temperature sensor with linearity correction
US11/425,381 US7474230B2 (en) 2006-02-23 2006-06-20 RFID temperature logger incorporating a frequency ratio digitizing temperature sensor
US11/425,381 2006-06-20

Publications (2)

Publication Number Publication Date
KR20070087516A KR20070087516A (en) 2007-08-28
KR100913974B1 true KR100913974B1 (en) 2009-08-25

Family

ID=38547542

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070018046A KR100913974B1 (en) 2006-02-23 2007-02-22 Frequency ratio digitizing temperature sensor with linearity correction

Country Status (2)

Country Link
JP (1) JP4680214B2 (en)
KR (1) KR100913974B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101358076B1 (en) * 2012-04-13 2014-02-05 한국과학기술원 Temperature sensor, and temperature measurement method thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101003036B1 (en) 2008-07-28 2010-12-21 충북대학교 산학협력단 Radio Frequency IDentification Apparatus with Compensating Function of Temperature-error and Method of Controlling the Same
KR101520358B1 (en) 2008-12-09 2015-05-14 삼성전자주식회사 A Temperature sensor with compensated output characteristics against variation of temperature and the compensating method used by the sensor
JP5879294B2 (en) * 2013-03-29 2016-03-08 日立オートモティブシステムズ株式会社 Battery system
CN104156757B (en) * 2014-06-25 2017-04-05 赵犁 The passive ultra-high frequency super low-power consumption RFID label chip of embedded temperature sensor
FI127115B (en) * 2014-09-03 2017-11-15 Metso Flow Control Oy Passive RFID sensor tag and RFID reader
EP3286534B1 (en) * 2015-04-22 2019-06-12 Paksense Inc. Environmental and product sensing
CN106017730A (en) * 2016-06-17 2016-10-12 广州中大微电子有限公司 Temperature sensor integrated in RFID tag
KR101947678B1 (en) * 2016-09-22 2019-02-14 충북대학교 산학협력단 Hybrid on-chip cmos temperature sensor and temperature measurement method thereof
KR20190044977A (en) 2017-10-23 2019-05-02 에스케이하이닉스 주식회사 Temperature sensing circuit and semiconductor device
JP7124417B2 (en) * 2018-04-24 2022-08-24 セイコーエプソン株式会社 Circuit devices, oscillators, electronic devices and moving bodies
CN110798220B (en) * 2018-08-03 2023-07-25 杭州万高科技股份有限公司 Analog-to-digital conversion method and analog-to-digital conversion device of temperature sensor
KR20210041655A (en) 2019-10-07 2021-04-16 삼성전자주식회사 Memory chip, memory system having the same and operating method thereof
CN113848453B (en) * 2021-09-09 2023-05-12 湖南航天机电设备与特种材料研究所 I/F circuit linearity calibration method and system
CN113863919A (en) * 2021-09-28 2021-12-31 西南石油大学 Barton correction device and method for output of underground while-drilling strain gauge type pressure sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5394078A (en) 1993-10-26 1995-02-28 Analog Devices, Inc. Two terminal temperature transducer having circuitry which controls the entire operating current to be linearly proportional with temperature
US6052035A (en) 1998-03-19 2000-04-18 Microchip Technology Incorporated Oscillator with clock output inhibition control
US6183131B1 (en) 1999-03-30 2001-02-06 National Semiconductor Corporation Linearized temperature sensor
US6356161B1 (en) 1998-03-19 2002-03-12 Microchip Technology Inc. Calibration techniques for a precision relaxation oscillator integrated circuit with temperature compensation
US6891358B2 (en) 2002-12-27 2005-05-10 Analog Devices, Inc. Bandgap voltage reference circuit with high power supply rejection ratio (PSRR) and curvature correction

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6078208A (en) * 1998-05-28 2000-06-20 Microchip Technology Incorporated Precision temperature sensor integrated circuit
JP2001187611A (en) * 1999-10-21 2001-07-10 Denso Corp Id tag with sensor, and container, clinical thermometer, temperature control system and position control system attached with the same
US6329868B1 (en) * 2000-05-11 2001-12-11 Maxim Integrated Products, Inc. Circuit for compensating curvature and temperature function of a bipolar transistor
US6695475B2 (en) * 2001-05-31 2004-02-24 Stmicroelectronics, Inc. Temperature sensing circuit and method
JP4222766B2 (en) * 2002-03-22 2009-02-12 株式会社リコー Temperature detection circuit
US6869216B1 (en) * 2003-03-27 2005-03-22 National Semiconductor Corporation Digitizing temperature measurement system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5394078A (en) 1993-10-26 1995-02-28 Analog Devices, Inc. Two terminal temperature transducer having circuitry which controls the entire operating current to be linearly proportional with temperature
US6052035A (en) 1998-03-19 2000-04-18 Microchip Technology Incorporated Oscillator with clock output inhibition control
US6356161B1 (en) 1998-03-19 2002-03-12 Microchip Technology Inc. Calibration techniques for a precision relaxation oscillator integrated circuit with temperature compensation
US6183131B1 (en) 1999-03-30 2001-02-06 National Semiconductor Corporation Linearized temperature sensor
US6891358B2 (en) 2002-12-27 2005-05-10 Analog Devices, Inc. Bandgap voltage reference circuit with high power supply rejection ratio (PSRR) and curvature correction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101358076B1 (en) * 2012-04-13 2014-02-05 한국과학기술원 Temperature sensor, and temperature measurement method thereof

Also Published As

Publication number Publication date
JP2007225614A (en) 2007-09-06
JP4680214B2 (en) 2011-05-11
KR20070087516A (en) 2007-08-28

Similar Documents

Publication Publication Date Title
KR100913974B1 (en) Frequency ratio digitizing temperature sensor with linearity correction
US7474230B2 (en) RFID temperature logger incorporating a frequency ratio digitizing temperature sensor
US9086330B2 (en) Temperature sensing circuit
Chen et al. A time-domain SAR smart temperature sensor with curvature compensation and a 3σ inaccuracy of− 0.4 C∼+ 0.6 C over a 0 C to 90 C range
CA1114635A (en) Temperature measurement apparatus
US10378969B2 (en) Temperature sensor
US10228294B2 (en) System and method for temperature sensing
US20130272341A1 (en) Temperature sensor and temperature measurement method thereof
US7417448B2 (en) System to calibrate on-die temperature sensor
Cochet et al. A 225 μm ${}^{2} $ Probe Single-Point Calibration Digital Temperature Sensor Using Body-Bias Adjustment in 28 nm FD-SOI CMOS
KR20010022313A (en) A Precision Temperature Sensor Integrated Circuit
EP3236224B1 (en) Temperature sensor and calibration method thereof having high accuracy
EP1216855A3 (en) Response adjustable temperature sensor for transponder
JP6415285B2 (en) Temperature voltage sensor
CN105912068A (en) Bias circuit for generating bias outputs
US20150362379A1 (en) Temperature voltage generator
US20190094079A1 (en) Apparatus for Sensing Temperature in Electronic Circuitry and Associated Methods
US20060071733A1 (en) Low power consumed and small circuit area occupied temperature sensor
JP6460458B2 (en) Digital temperature compensated oscillator
US11047946B2 (en) Differential current sensing with robust path, voltage offset removal and process, voltage, temperature (PVT) tolerance
US11444633B2 (en) Near zero power fully integrated digital conversion, sensors and sensing methods
US11233503B2 (en) Temperature sensors and methods of use
Wang et al. A 113 pW fully integrated CMOS temperature sensor operating at 0.5 V
Chen et al. A 486k S/s CMOS time-domain smart temperature sensor with− 0.85° C/0.78° C voltage-calibrated error
Karkani et al. A low-power smart temperature sensor for passive UHF RFID tags and sensor nets

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
E902 Notification of reason for refusal
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120727

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130729

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140730

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160629

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170629

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180628

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190624

Year of fee payment: 11