KR100912601B1 - Synthetic method of titanium dioxide photocatalysts to change crystal structure by rate of sulfate and chlorine - Google Patents
Synthetic method of titanium dioxide photocatalysts to change crystal structure by rate of sulfate and chlorine Download PDFInfo
- Publication number
- KR100912601B1 KR100912601B1 KR1020080052390A KR20080052390A KR100912601B1 KR 100912601 B1 KR100912601 B1 KR 100912601B1 KR 1020080052390 A KR1020080052390 A KR 1020080052390A KR 20080052390 A KR20080052390 A KR 20080052390A KR 100912601 B1 KR100912601 B1 KR 100912601B1
- Authority
- KR
- South Korea
- Prior art keywords
- titanium dioxide
- sulfate
- chlorine
- synthesizing
- anatase
- Prior art date
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 244
- 239000004408 titanium dioxide Substances 0.000 title claims abstract description 87
- 239000000460 chlorine Substances 0.000 title claims abstract description 51
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 title claims abstract description 50
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 32
- 229910052801 chlorine Inorganic materials 0.000 title claims abstract description 30
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 title claims abstract description 28
- 239000013078 crystal Substances 0.000 title claims description 39
- 238000010189 synthetic method Methods 0.000 title abstract 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 26
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 22
- 239000012153 distilled water Substances 0.000 claims abstract description 19
- 230000002194 synthesizing effect Effects 0.000 claims abstract description 19
- 239000002244 precipitate Substances 0.000 claims abstract description 15
- 230000008569 process Effects 0.000 claims abstract description 15
- 239000007864 aqueous solution Substances 0.000 claims abstract description 13
- 238000002156 mixing Methods 0.000 claims abstract description 10
- 239000006227 byproduct Substances 0.000 claims abstract description 4
- 239000000243 solution Substances 0.000 claims description 25
- 238000010438 heat treatment Methods 0.000 claims description 14
- 239000007858 starting material Substances 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 7
- 238000003786 synthesis reaction Methods 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 3
- 238000010992 reflux Methods 0.000 claims description 3
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 229910021653 sulphate ion Inorganic materials 0.000 abstract description 5
- 150000002894 organic compounds Chemical class 0.000 abstract 1
- 238000002441 X-ray diffraction Methods 0.000 description 12
- 150000002500 ions Chemical class 0.000 description 10
- 238000003756 stirring Methods 0.000 description 7
- 238000010304 firing Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 3
- -1 titanium alkoxide Chemical class 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 238000013032 photocatalytic reaction Methods 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical group 0.000 description 2
- 230000000475 sunscreen effect Effects 0.000 description 2
- 239000000516 sunscreening agent Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- KPZGRMZPZLOPBS-UHFFFAOYSA-N 1,3-dichloro-2,2-bis(chloromethyl)propane Chemical compound ClCC(CCl)(CCl)CCl KPZGRMZPZLOPBS-UHFFFAOYSA-N 0.000 description 1
- 235000003976 Ruta Nutrition 0.000 description 1
- 240000005746 Ruta graveolens Species 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- YDZQQRWRVYGNER-UHFFFAOYSA-N iron;titanium;trihydrate Chemical compound O.O.O.[Ti].[Fe] YDZQQRWRVYGNER-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- IYVLHQRADFNKAU-UHFFFAOYSA-N oxygen(2-);titanium(4+);hydrate Chemical compound O.[O-2].[O-2].[Ti+4] IYVLHQRADFNKAU-UHFFFAOYSA-N 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 235000005806 ruta Nutrition 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000012463 white pigment Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
Description
본 발명은 황산염과 염소 비율에 의해 결정구조가 변환되는 이산화티타늄 광촉매의 합성방법에 관한 것으로, 보다 상세하게는 100℃ 이하의 온도에서 열처리하여 이산화티타늄 광촉매를 합성하되, 출발물질인 사염화티타늄에 황산염을 첨가하여 염소(Cl_)와 황산염(SO4 2 -)의 몰비를 조절하여 적절한 반응조건 하에서 다양한 이산화티타늄의 결정구조로 용이하게 변환될 수 있도록 한 이산화티타늄 광촉매의 합성방법에 관한 것이다.The present invention relates to a method for synthesizing a titanium dioxide photocatalyst in which the crystal structure is converted by the ratio of sulphate and chlorine, and more particularly, to synthesize a titanium dioxide photocatalyst by heat treatment at a temperature of 100 ° C. or lower, and to a tetrachloride as a starting material. was added to the chlorine (Cl _) and sulfate (sO 4 2 -) to adjust the molar ratio of the present invention relates to a method for the synthesis of the titanium dioxide photocatalyst to be easily converted under suitable reaction conditions in a wide variety of crystal structures of titanium dioxide.
일반적으로 광촉매(Photocatalyst)는 빛(Photo)과 촉매(catalyst)의 합성어로, 빛을 이용한 촉매 혹은 광반응을 가속시키는 촉매의 의미로, 빛을 에너지원으로 하여 촉매반응을 진행시키는 물질을 말하는데, 이러한 광촉매로는 반응에 직접 참여하여 소모되지 않으면서도 기존의 광반응과는 다른 매커니즘을 제공하여 반응속도를 가속시킬 수 있는 일반적인 촉매로의 기본 조건을 만족함은 물론 발현하고 자 하는 물질에 빛을 조사하였을 때 자외선을 흡수하여 강한 환원력과 산화력을 가질 수 있는 반도체성 금속 산화물이나 황화합물이 주로 이용된다.In general, a photocatalyst is a compound word of photo and a catalyst, which means a catalyst using light or a catalyst for accelerating a photoreaction, and refers to a material that promotes a catalytic reaction using light as an energy source. These photocatalysts do not consume and participate directly in the reaction, but provide a mechanism different from the existing photoreaction, satisfying the basic conditions as a general catalyst that can accelerate the reaction rate, as well as irradiating light to the material to be expressed. When used, semiconducting metal oxides or sulfur compounds that absorb ultraviolet light and have strong reducing and oxidizing power are mainly used.
이러한 광화학 반응을 유발시키는 필수적인 역할을 하는 광촉매 반응에 가장 많이 적용되고 있는 금속산화물이 이산화티타늄인데, 상기 이산화티타늄의 광촉매반응 메카니즘에 대해 살펴보면, 일반적인 금속산화물과 달리 이산화티타늄과 같은 반도체 물질들은 에너지적으로 서로 겹쳐지지 않는 두 개의 준위(band)를 지니고 있는 것으로 특징지어 지는데, 이산화티타늄 광촉매 표면에 빛을 조사하게 되면, 이산화티타늄 기저준위(valence band)에 있는 전자가 들뜬준위(excitde band)로 전이(transition)하게 되고, 기저준위에는 전자가 비어 있는 정공(positive hole)을 생성하게 된다.The most widely applied metal oxide for photocatalytic reaction, which plays an essential role in inducing the photochemical reaction, is titanium dioxide. Looking at the photocatalytic reaction mechanism of titanium dioxide, unlike general metal oxides, semiconductor materials such as titanium dioxide are energetic It is characterized by having two bands that do not overlap each other. When light is irradiated on the surface of the titanium dioxide photocatalyst, electrons in the titanium dioxide valence band are transferred to the excitde band. This creates a positive hole at the ground level, with electrons empty.
이 때, 전자가 전이되는데 필요한 광에너지는 두 에너지 준위차에 해당되며, 이산화티타늄의 결정구조에 따라 아나타제(anatase)구조는 3.2eV이고, 루타일(rutile)구조는 3.0eV에 해당하고, 루타일(rutile)구조의 이산화티타늄은 고온 열처리에 의해 제조됨으로 인해 비표면적이 작고 입자크기가 큼으로 표면에서 반응을 일으키는 광촉매 소재로 적합하지 않은 반면에 아나타제(anatase)구조의 이산화티타늄의 경우 비표면적이 넓고 이로 인해 표면 광반응을 일으킬 수 있는 활성자리가 루타일(rutile)구조에 비해 우수함으로 현재 대부분의 광촉매용 이산화티타늄은 아나타제(anatase)구조가 사용되고 있으며, 이 경우 400nm 이하의 자외선을 조사시켜줘야 광반응을 개시할 수 있다.At this time, the light energy required for electron transfer corresponds to two energy levels, and according to the crystal structure of titanium dioxide, the anatase structure is 3.2 eV, the rutile structure is 3.0 eV, and the ruta Titanium dioxide with rutile structure is produced by high temperature heat treatment, so its specific surface area is small and its particle size is large, so it is not suitable as a photocatalyst material that reacts on the surface, whereas anatase titanium dioxide has a specific surface area. Because of this wide and the active site that can cause surface photoreaction is superior to the rutile structure, most of titanium dioxide for photocatalyst is using anatase structure. Photoreaction can be initiated.
상기 이산화티타늄은 광촉매로서 가장 널리 활용되고 있지만 근래에는 초친 수성 매개체로서의 응용도 활발히 진행되고 있는데, 상기 이산화티타늄이 빛을 받지 않은 상태에서는 표면이 소수성 특성을 가지지만 400nm 이하의 자외선을 조사되면 기저상태의 전자가 들뜬 상태로 전이하게 됨으로 분극이 일어나게 되고, 이 전자 분극에 의해 이산화티타늄 표면은 소수성에서 친수성으로 전환되는데, 이러한 특성을 사용하여 습기가 많은 화장실 등의 거울, 자동차 백미러 및 기타 유리제품의 김서림방지제로써 상용화가 가능하다.Titanium dioxide is most widely used as a photocatalyst, but recently, the application as a super-aqueous medium is also actively progressed. In the state where the titanium dioxide is not lighted, the surface has hydrophobic properties, but the base state is irradiated with ultraviolet rays of 400 nm or less. The polarization occurs due to the transition of electrons into excited state, and the electron polarization converts the titanium dioxide surface from hydrophobic to hydrophilic. This property is used to make mirrors of wet toilets, car rearview mirrors and other glass products. Commercially available as an anti-fog agent.
상기 이산화티타늄은 내화학성, 내식성 등 물리화학적인 물성이 뛰어남으로 광촉매로 응용되기 전부터 페인트의 백색 안료로 활용되고 있으며, 페인트 안료로 사용되는 경우 내화학성 및 백색도가 좋아야 하기 때문에 일반적으로 이산화티타늄 결정구조 중 가장 안전한 루타일(rutile)구조의 이산화티타늄을 사용하는데, 상기 이산화티타늄의 또 다른 대량 소비처로는 화장품의 원료로 사용되어 지고 있으며, 여성용 파운데이션 역시 백색도가 좋은 루타일(rutile) 구조의 이산화티타늄을 원재료로 사용하며, 자외선 차단제의 경우에도 자외선 흡수가 빠르고 색도가 뛰어난 루타일(rutile)구조의 이산화티타늄이 사용되고 있다.The titanium dioxide has been utilized as a white pigment of paint before being applied as a photocatalyst due to its excellent physical and chemical properties such as chemical resistance and corrosion resistance, and when used as a paint pigment, it generally has a crystal structure of titanium dioxide because of its good chemical resistance and whiteness. Among the safest rutile titanium dioxide, another mass consumer of titanium dioxide is used as a raw material for cosmetics, and the women's foundation also has a good whiteness rutile titanium dioxide. Is used as a raw material, and even in the case of a sunscreen, titanium dioxide having a rutile structure having fast UV absorption and excellent color is used.
상기 이산화티타늄의 경우 적용분야에 따라 요구되는 결정구조가 달라지게 되는데, 광촉매용 및 초친수성 제품으로 이산화티타늄을 적용하기 위해서는 일반적으로 아나타제(anatase)구조 및 아나타제/루타일(anatase/rutile)의 혼합구조를 사용하고, 이산화티타늄의 내화학성, 내식성, 물리화학적인 물성 및 UV 차단제로의 제품 적용은 루타일(rutile)구조의 이산화티타늄을 사용하게 되는데, 이는 이산화티타늄의 아나타제(anatase)구조 및 루타일(rutile)구조간의 물리적인 특성 차이에 기인한다.In the case of titanium dioxide, the crystal structure required varies depending on the application field. In order to apply titanium dioxide as a photocatalyst and a superhydrophilic product, anatase structure and anatase / rutile mixture are generally used. The structure, and the chemical resistance, corrosion resistance, physicochemical properties of the titanium dioxide and the application of the product to the UV blocker uses a rutile titanium dioxide, which is an anatase structure and rutile of titanium dioxide This is due to the difference in physical properties between the rutile structures.
종래의 이산화티타늄은 루틸광, 일메나이트, 염화티타늄 및 티타늄 알콕사이드 등을 출발물질로 하여 산성에서 가수분해를 통해 이산화티타늄 침전물을 합성하고, 이를 400℃에서 1000℃ 사이의 온도에서 소성하여 순수한 이산화티타늄을 합성한다.Conventional titanium dioxide is synthesized titanium dioxide precipitate through hydrolysis in acid using rutile ore, ilmenite, titanium chloride and titanium alkoxide as starting materials, and calcined at a temperature between 400 ℃ and 1000 ℃ pure titanium dioxide Synthesize
하지만 종래의 졸겔법 또는 가수분해법에 의한 이산화티타늄 합성법의 경우 순수한 루타일(rutile)구조의 이산화티타늄을 제조하기 위해서는 아나타제(anatase)구조의 이산화티타늄에 700℃ 이상의 온도에서 열처리를 하게 되는데, 이러한 고온 열처리공정에 의해 인접한 입자들간의 상호 뭉침에 따라 입자크기가 커지게 되고, 이에 따라 그만큼 표면적이 작아져 촉매 활성이 저하되고, 상기 고온 열처리공정은 열처리 온도가 높아짐에 따라 생산단가가 상승하게 되어 경제성이 저하되는 문제점이 있다.However, in the conventional method of synthesizing titanium dioxide by the sol-gel method or the hydrolysis method, in order to manufacture a pure rutile titanium dioxide, heat treatment is performed on an anatase structure titanium dioxide at a temperature of 700 ° C. or higher. Particle size is increased by mutual agglomeration of adjacent particles by the heat treatment process, and thus the surface area is reduced so that the catalytic activity is reduced. In the high temperature heat treatment process, the production cost is increased as the heat treatment temperature is increased. There is a problem of this deterioration.
본 발명은 상기의 종래 문제점을 해결하기 위하여 안출한 것으로, 출발물질로 사염화티타늄을 이용하여 100℃ 이하의 낮은 온도에서 염소(Cl_)와 황산염(SO4 2-)의 몰비를 조절하는 조건을 통해 순수한 아나타제(anatase) 구조, 아나타제/루타일(anatase/rutile) 혼합구조 및 순수한 루타일(rutile) 구조를 가지는 이산화티타늄 광촉매를 용이하게 합성할 수 있도록 하는데 목적이 있다.The present invention has been made in order to solve the above conventional problems, using titanium tetrachloride as a starting material to control the molar ratio of chlorine (Cl _ ) and sulfate (SO 4 2- ) at a low temperature of less than 100 ℃. Through this, an object of the present invention is to easily synthesize a titanium dioxide photocatalyst having a pure anatase structure, an anatase / rutile mixed structure, and a pure rutile structure.
상기의 목적을 달성하기 위하여 출발물질인 사염화티타늄과 증류수를 혼합하여 0.2∼3.0M 농도를 갖는 사염화티타늄 수용액을 합성하는 제1공정; 황산염과 2차 증류수를 혼합하여 0.1∼1.0M 농도를 갖는 황산염 수용액을 합성하는 제2공정; 상기 사염화티타늄 수용액에 황산염 수용액을 1 : 0.01∼0.5의 부피비율로 혼합되게 적하시키면서 교반하되, 4℃의 온도에서 1∼2시간 동안 교반시킨 후, 상기 사염화티타늄 수용액과 황산염 수용액의 혼합용액을 아르곤 및 질소가스 내의 항온조에서 50∼100℃의 온도로 가열하면서 12∼36 시간 동안 환류시켜 이산화티타늄 침전물을 합성하는 제3공정; 상기 제3공정을 통해 획득된 이산화티타늄 침전물에서 용매제거 및 세척 후 수분을 제거하고, 잔존하는 반응 부생성물 및 미반응 유기물을 제거한 후, 400℃ 이하의 온도를 유지한 채 2∼5 시간 동안 소성시켜 이산화티타늄 광촉매를 합성하는 제4공정;으로 이루어지는 황산염과 염소 비율에 의해 결정구조가 변환 되는 이산화티타늄 광촉매의 합성방법을 구현하고자 한 것이다.A first step of synthesizing an aqueous titanium tetrachloride solution having a concentration of 0.2 to 3.0 M by mixing titanium tetrachloride as a starting material and distilled water in order to achieve the above object; A second step of synthesizing an aqueous solution of sulfate having a concentration of 0.1 to 1.0 M by mixing sulfate and secondary distilled water; The aqueous solution of titanium tetrachloride and the aqueous solution of sulfate solution were added dropwise to the aqueous solution of titanium tetrachloride in a volume ratio of 1: 0.01 to 0.5, and stirred. The mixture was stirred for 1 to 2 hours at a temperature of 4 ° C. And a third step of synthesizing the titanium dioxide precipitate by refluxing for 12 to 36 hours while heating to a temperature of 50 ~ 100 ℃ in a thermostatic chamber in nitrogen gas. After removing the solvent and water from the titanium dioxide precipitate obtained through the third process, the water is removed, the remaining reaction by-products and unreacted organics are removed, and then fired for 2 to 5 hours while maintaining the temperature below 400 ° C. The fourth step of synthesizing the titanium dioxide photocatalyst is to implement a method for synthesizing the titanium dioxide photocatalyst in which the crystal structure is converted by the ratio of sulfate and chlorine.
상기 제3공정을 통해 합성되는 이산화티타늄 침전물에서, 염소(Cl_) 대 황산염(SO4 2 -)의 몰비가 1 : 0.01 이하인 경우에는 상기 황산염 이온에 의한 영향이 무시되어 순수한 루타일(rutile) 결정구조의 이산화티타늄이 합성되고, 염소(Cl_) 대 황산염(SO4 2 -)의 몰비가 1 : 0.01 초과∼1.0 미만인 경우에는 상기 황산염 이온에 의한 영향이 무시되지 않아 용액 속에 존재하는 염소 이온과 경쟁하게 되어 아나타제/루타일(anatase/rutile) 결정구조의 이산화티타늄이 합성되고, 염소(Cl_) 대 황산염(SO4 2-)의 몰비가 1 : 1.0 이상인 경우에는 상기 염소 이온에 의한 영향이 무시되어 순수한 아나타제(anatase) 결정구조의 이산화티타늄이 합성되게 하는 방법으로 이루어진다.In the titanium dioxide precipitate synthesized through the third process, when the molar ratio of chlorine (Cl _ ) to sulfate (SO 4 2 − ) is less than or equal to 1: 0.01, the effect of the sulfate ion is ignored and thus pure rutile When titanium dioxide having a crystal structure is synthesized and the molar ratio of chlorine (Cl _ ) to sulfate (SO 4 2 − ) is greater than 1: 0.01 to less than 1.0, the effect of sulfate ions is not ignored and chlorine ions present in the solution. And the anatase / rutile crystal structure of titanium dioxide is synthesized, and the effect of chlorine ion when the molar ratio of chlorine (Cl _ ) to sulfate (SO 4 2- ) is 1: 1.0 or more This is neglected to allow the synthesis of pure titanium anatase crystal structure.
본 발명은 사염화티타늄을 출발물질로 하여 염소(Cl_)와 황산염(SO4 2 -)의 몰비를 조절하는 조건 하에서 100℃ 이하의 저온 열처리하여 순수한 아나타제(anatase) 구조, 아나타제/루타일(anatase/rutile) 혼합구조 및 순수한 루타일(rutile) 구조를 가지는 이산화티타늄 광촉매를 합성할 수 있도록 함으로써, 비교적 제조공정이 단축되고, 낮은 온도에서 이산화티타늄을 합성할 수 있어 열처리 비용에 따른 제조비용이 절감되고, 저온 열처리하여 제조되어 동일 무게대비 비표면적이 상대적으로 크므로 페인트 안료, 화장품, 자외선 차단제, 고무의 물성 증감제 등으로 사용될 수 있어 제품의 효용성을 향상시키는 효과가 있다.The invention and the titanium tetrachloride as a starting material chlorine (Cl _) and sulfate (SO 4 2 -) a low temperature heat treatment by pure anatase below 100 ℃ (anatase) structure, the anatase / rutile under conditions to control the molar ratio of (anatase It is possible to synthesize a titanium dioxide photocatalyst having a / rutile) mixed structure and a pure rutile structure, thereby relatively shortening the manufacturing process and synthesizing titanium dioxide at a low temperature, thereby reducing the manufacturing cost according to the heat treatment cost. Since it is manufactured by heat treatment at low temperature and has a relatively large specific surface area compared to the same weight, it can be used as a paint pigment, cosmetics, sunscreen, rubber sensitizer, etc., thereby improving the effectiveness of the product.
이하, 도면을 참조하여 본 발명에 적용되는 황산염과 염소 비율에 의해 결정구조가 변환되는 이산화티타늄 광촉매의 합성방법에 대하여 상세히 설명한다.Hereinafter, a method of synthesizing a titanium dioxide photocatalyst in which the crystal structure is converted by the sulfate and chlorine ratios applied to the present invention will be described in detail with reference to the drawings.
도1은 본 발명에 적용되는 이산화티타늄 광촉매의 합성공정을 도시한 흐름도이고, 도2는 본 발명에 적용되는 소성전 이산화티타늄의 다양한 결정구조를 XRD로 분석한 스펙트럼의 예시도이고, 도3은 본 발명에 적용되는 소성후 이산화티타늄의 다양한 결정구조를 XRD로 분석한 스펙트럼의 예시도이다.FIG. 1 is a flowchart illustrating a synthesis process of a titanium dioxide photocatalyst applied to the present invention, FIG. 2 is an exemplary diagram of spectrums analyzed by XRD of various crystal structures of titanium dioxide before firing, and FIG. Exemplary spectrum of XRD analysis of various crystal structures of titanium dioxide after firing applied to the present invention.
본 발명은 사염화티타늄(TiCl4)을 출발물질로 하여 수용액 상태에서 가수분해반응에 의해 화학식 1과 같이 티타늄 하이드록사이드(titanium hydroxide)를 제조하고, The present invention is to prepare a titanium hydroxide (titanium hydroxide) as shown in the formula 1 by the hydrolysis reaction in the aqueous solution state using titanium tetrachloride (TiCl 4 ) as a starting material,
상기 화학식 1에서 제조된 티타늄 하이드록사이드(titanium hydroxide)의 축합반응에 의해 화학식 2와 같이 이산화티탄 수화물이 만들어지고,Titanium dioxide hydrate is made by the condensation reaction of titanium hydroxide prepared in Chemical Formula 1 as shown in
다음은 유기물 및 수분을 제거하기 위한 단계로서, 400℃ 이하의 온도에서 열처리하여 화학식 3에 의해 아나타제(anatase) 구조, 아나타제/루타일(anatase/rutile) 혼합구조 또는 루타일(rutile) 구조를 갖는 이산화티타늄을 합성한다.The following is a step for removing organic matter and water, and having an anatase structure, an anatase / rutile mixed structure or a rutile structure by the heat treatment at a temperature of 400 ℃ or less Titanium dioxide is synthesized.
본 발명은 100℃ 이하의 저온 열처리 하에서 황산염과 염소의 비율을 조절하여 순수 아나타제(anatase) 구조, 아나타제/루타일(anatase/rutile) 혼합구조, 순수 루타일(rutile) 구조와 같이 다양한 결정구조를 가지는 이산화티타늄을 용이하게 합성하는 것을 요지로 하는 것으로, 본 발명의 일실시예에 의해 구현된 황산염과 염소 비율에 의해 결정구조가 변환되는 이산화티타늄 광촉매의 합성공정을 살펴보면, 다음과 같다.In the present invention, various crystal structures such as pure anatase structure, anatase / rutile mixed structure, and pure rutile structure are controlled by controlling the ratio of sulfate and chlorine under low temperature heat treatment at 100 ° C. or lower. The branch is to make it easy to synthesize titanium dioxide, look at the synthesis process of the titanium dioxide photocatalyst, the crystal structure is converted by the sulfate and chlorine ratio implemented by one embodiment of the present invention, as follows.
[제1공정(사염화티타늄과 2차 증류수의 혼합공정)][Step 1 (mixing process of titanium tetrachloride and secondary distilled water)]
제1공정은 출발물질인 사염화티타늄(TiCl4)과 증류수를 혼합하여 0.2∼3M 농도를 갖는 사염화티타늄 수용액을 제조하는 공정으로, 본 발명에서는 상기 사염화티타늄(TiCl4)과 증류수 교반에 의해 준비된 용액을 "A용액"이라 칭한다.The first step is to prepare a titanium tetrachloride aqueous solution having a concentration of 0.2 ~ 3M by mixing titanium tetrachloride (TiCl 4 ) and distilled water as a starting material, in the present invention, a solution prepared by stirring the titanium tetrachloride (TiCl 4 ) and distilled water Is referred to as "A solution".
상기 출발물질인 사염화티타늄(TiCl4)을 약 4℃ 온도의 증류수에 적하시키는데, 이 때 증류수에 사염화티타늄(TiCl4)이 균일하게 용해될 수 있도록 자석 젓개를 사용하여 1∼2 시간 동안 교반시키는 작업을 수행한다.Titanium tetrachloride (TiCl 4 ), which is the starting material, was added dropwise to distilled water at a temperature of about 4 ° C. At this time, titanium tetrachloride (TiCl 4 ) was stirred in the distilled water for 1 to 2 hours to uniformly dissolve the distilled water. Do the work.
상기 사염화티타늄(TiCl4)과 교반되는 물은 2차 증류수를 사용하되, 이 경우 사염화티타늄 수용액의 농도가 0.2∼3.0M 정도가 되게 하는데, 이 때 상기 사염화티타늄 수용액의 농도가 3.0M 이상이 되면, 반응이 매우 급격하게 진행되게 때문에 이산화티타늄 결정구조 조절이 어려워져 바람직하지 못한 결과를 초래할 수 있다.The titanium tetrachloride (TiCl 4 ) and the water to be stirred using secondary distilled water, in this case the concentration of the titanium tetrachloride solution is about 0.2 ~ 3.0M, when the concentration of the titanium tetrachloride solution is more than 3.0M As the reaction proceeds very rapidly, it is difficult to control the titanium dioxide crystal structure, which may cause undesirable results.
상기 출발물질로 사용되는 사염화티타늄(TiCl4)은 공기 중에서 산소와 격렬하게 반응하고, 대기 중 잔존하는 수분을 흡수하여 가수분해를 일으킬 정도로 대기 중에는 항상 불안전한 상태로 존재하게 되기 때문에 상기의 합성과정은 무산소 조건하에서 수행될 수 있도록 하되, 아르곤(Ar) 또는 질소(N) 가스 분위기 하에서 실험을 수행하도록 한다.Titanium tetrachloride (TiCl 4 ) used as the starting material reacts violently with oxygen in the air, absorbs the remaining water in the air, and remains in an unstable state in the air so as to cause hydrolysis. Is to be carried out under anoxic conditions, but the experiment is carried out in an argon (Ar) or nitrogen (N) gas atmosphere.
[제2공정(황산염 수용액 제조공정)][Step 2 (Sulfate Aqueous Solution Manufacturing Process)]
제2공정은 2차 증류수와 황산염(sulfate salt)의 혼합 및 교반을 통해 생성되는 황산염 수용액을 제조하는 공정으로, 이하 본 발명에서는 상기 황산염 수용액을 "B용액"이라 칭한다.The second step is to prepare a sulfate solution produced by mixing and stirring the secondary distilled water and sulfate salt, in the present invention, the sulfate solution is referred to as "B solution".
상기 2차 증류수에 (NH4)2SO4, Na2SO4, K2SO4와 같은 황산염을 혼합하여 황산염의 농도가 0.1∼1.0M인 황산염 수용액을 제조하는데, 상기 황산염의 농도가 1.0M 이상인 경우에는 제3공정의 이산화티타늄 침전물 제조공정에서 반응이 급격하게 진행되기 때문에 주의하는 것이 바람직하다.Sulfates such as (NH 4 ) 2 SO 4 , Na 2 SO 4 , K 2 SO 4 are mixed with the secondary distilled water to prepare a sulfate solution having a sulfate concentration of 0.1 to 1.0 M. The sulfate concentration is 1.0 M. In this case, it is preferable to pay attention because the reaction proceeds rapidly in the titanium dioxide precipitate production step of the third step.
[제3공정(이산화티타늄 침전물 제조공정)][3rd process (titanium dioxide precipitate manufacturing process)]
제3공정은 제1공정을 통해 제조된 A용액과 제2공정을 통해 제조된 B용액을 혼합 및 교반하여 이산화티타늄 침전물을 제조하는 공정으로, 이산화티타늄 침전물을 합성하기 위해서 사염화티타늄(TiCl4)과 증류수의 교반에 의해 준비된 A용액에 황산염과 증류수의 교반에 의해 준비된 B용액을 1 : 0.01∼0.5의 부피비율로 혼합되게 피펫을 사용하여 적하시키면서 교반하되, 4℃의 온도에서 1∼2 시간 동안 A용액과 B용액의 혼합용액을 교반시키고, 상기 A용액과 B용액의 혼합용액을 무산소 조건인 아르곤(Ar) 및 질소(N) 가스 분위기의 항온조에서 50∼100℃의 온도로 가열하면서 12∼36 시간 동안 환류시켜 이산화티타늄 침전물을 합성한다.The third step is to prepare a titanium dioxide precipitate by mixing and stirring the solution A prepared in the first step and the solution B prepared in the second step, and in order to synthesize the titanium dioxide precipitate, titanium tetrachloride (TiCl 4 ) The solution A prepared by stirring the distilled water and the solution B prepared by stirring the sulfate and distilled water were stirred with a pipette so as to be mixed at a volume ratio of 1: 0.01 to 0.5 with a pipette, and stirred at a temperature of 4 ° C. for 1 to 2 hours. While the mixed solution of solution A and solution B is stirred, the solution of solution A and solution B is heated to a temperature of 50 to 100 ° C. in an incubator in an argon (Ar) and nitrogen (N) gas atmosphere, which is anoxic conditions. Reflux for ˜ 36 hours to synthesize a titanium dioxide precipitate.
상기 이산화티타늄은 산성인 조건 하에서 염소(Cl_) 이온의 함량이 증가되면, 루타일(rutile) 결정구조가 합성되고, 황산염(SO4 2 -) 이온의 함량이 증가되면, 입체장애에 의해서 아나타제(anatase) 결정핵을 형성하는 경향이 있기 때문에 아나타제(anatase) 결정구조가 합성된다.When the titanium dioxide is chlorine (Cl _) increases the content of ions under acidic conditions, rutile (rutile) and the crystal structure is synthesized, a sulfate (SO 4 2 -) when the content of the ion is increased, anatase by steric hindrance Because of the tendency to form (anatase) crystal nuclei, an anatase crystal structure is synthesized.
상기 사염화티타늄(TiCl4)과 증류수의 교반에 의해 준비된 A용액과 황산염과 증류수의 교반에 의해 준비된 B용액을 혼합함에 있어, 염소(Cl_) 대 황산염(SO4 2 -)의 몰비가 1 : 0.01 이하인 경우에는 염소(Cl_) 이온에 의한 영향이 상대적으로 황산염(SO4 2 -) 이온에 의한 영향보다 크게 작용되기 때문에 상기 황산염(SO4 2 -) 이온에 의 한 영향은 무시되어 이러한 조건에서는 순수한 루타일(rutile) 결정구조를 갖는 이산화티타늄이 합성된다.In mixing the A solution prepared by stirring titanium tetrachloride (TiCl 4 ) with distilled water and the B solution prepared by stirring sulfate and distilled water, the molar ratio of chlorine (Cl _ ) to sulfate (SO 4 2 − ) is 1: 0.01 or lower case, chlorine (Cl _) ion impact is relatively sulfate by (SO 4 2 -) the sulfate because it largely acts more influenced by the ion (SO 4 2 -) an effect on the ion is ignored these conditions In is synthesized titanium dioxide having a pure rutile crystal structure.
상기 염소(Cl_) 대 황산염(SO4 2 -)의 몰비가 1 : 0.01초과∼1.0 미만인 경우에는 황산염(SO4 2 -) 이온에 대한 영향을 더 이상 무시할 수 없기 때문에 용액속에 존재하는 염소(Cl_) 이온과 경쟁하게 되고, 이에 따라 이러한 조건에서는 아나타제/루타일(anatase/rutile) 혼합구조를 갖는 이산화티타늄이 합성된다.When the molar ratio of chlorine (Cl _ ) to sulfate (SO 4 2 − ) is greater than 1: 0.01 to less than 1.0, the effect on sulphate (SO 4 2 − ) ions can no longer be ignored. It is competing with Cl _ ) ions, whereby titanium dioxide having an anatase / rutile mixed structure is synthesized under these conditions.
상기 염소(Cl_) 대 황산염(SO4 2 -)의 몰비가 1 : 1.0 이상인 경우에는 황산염(SO4 2 -) 이온에 의한 영향이 상대적으로 염소(Cl_) 이온에 의한 영향보다 크게 작용되어 염소(Cl_) 이온에 의한 영향은 무시되기 때문에 이러한 조건에서는 순수한 아나타제(anatase) 결정구조를 갖는 이산화티타늄이 합성된다.The chlorine (Cl _) for sulfate (SO 4 2 -) a molar ratio of 1: 1.0, sulfate (SO 4 2 -) or more are affected by ion zoom is effected prior to impact of relatively chlorine (Cl _) ion Under these conditions, titanium dioxide with a pure anatase crystal structure is synthesized because the influence by chlorine (Cl _ ) ions is ignored.
[제4공정(다양한 구조의 이산화티타늄 광촉매 제조공정)][Step 4 (Manufacturing Process of Titanium Dioxide Photocatalysts with Various Structures)]
제4공정은 상기 이산화티타늄 침전물에서 용매와 잔존한 유기물을 제거한 후, 다양한 결정구조의 이산화티타늄 광촉매를 제조하는 공정으로, 상기 제3공정에서 얻어진 이산화티타늄 침전물을 감압여과기를 사용하여 용매를 제거하고, 잔존하는 불순물을 제거하기 위해 증류수로 여러 번 세척하고, 다양한 결정구조의 이산화티타늄을 흡습제가 들어 있는 진공 데시게이터에서 하루 동안 보관하여 이산화티타 늄에 포함된 수분을 제거한다.The fourth step is to remove the solvent and the organic matter remaining in the titanium dioxide precipitate, to prepare a titanium dioxide photocatalyst of various crystal structures, the solvent is removed from the titanium dioxide precipitate obtained in the third step using a vacuum filter In order to remove residual impurities, it is washed several times with distilled water, and titanium dioxide of various crystal structures is stored in a vacuum desiccator containing a moisture absorbent for one day to remove moisture contained in titanium dioxide.
잔존하는 반응 부생성물 및 미반응 유기물을 제거하고, 결정성을 증가시키기 위해 관형전기로(tube furnace)에서 400℃로 2∼5 시간 동안 소성시켜서 다양한 결정구조를 가지는 순수한 이산화티타늄 광촉매를 제조한다.The remaining reaction by-products and unreacted organics are removed, and then fired at 400 ° C. for 2 to 5 hours in a tube furnace to increase crystallinity, thereby preparing pure titanium dioxide photocatalyst having various crystal structures.
아래에서는 본 발명에 적용되는 황산염과 염소 비율에 의해 변환되는 이산화티타늄의 결정구조에 대한 실험예를 살펴보기로 한다.Hereinafter, an experimental example of the crystal structure of titanium dioxide converted by the sulfate and chlorine ratios applied to the present invention will be described.
[실험예 (XRD 측정)]Experimental Example (XRD Measurement)
실험예는 상기 제1공정∼제4공정에 의해 합성된 이산화티타늄 광촉매의 반응조건에 따른 결정구조를 확인하기 위해서 이산화티타늄 광촉매의 XRD(X-ray diffraction)을 측정한 것으로, 아래의 표1은 XRD를 측정하기 위한 XRD 데이터의 측정조건을 나타낸 것이고, 도2 및 도3은 제3공정에서 염소(Cl_)와 황산염(SO4 2 -)의 몰비를 달리하여 합성한 이산화티타늄 광촉매의 결정구조를 XRD로 분석한 그래프(스펙트럼)이다.Experimental Example was measured the XRD (X-ray diffraction) of the titanium dioxide photocatalyst in order to confirm the crystal structure according to the reaction conditions of the titanium dioxide photocatalyst synthesized in the first to fourth process, Table 1 below will showing the measurement conditions of the XRD data, 2 and 3 are chlorine in a third step (Cl _) and sulfate (SO 4 2 -) to measure the XRD crystals of titanium dioxide photocatalyst composite by varying the mole ratio of structure Is a graph (spectrum) analyzed by XRD.
상기 표1에 나타난 기본 측정조건을 가지고 측정한 결과, 본 발명의 제3공정에서 염소(Cl_)와 황산염(SO4 2 -)의 몰비를 적절히 조절하면 도2 및 도3에 도시된 바와 같이 100℃ 이하의 저온 열처리 조건 하에서 다양한 결정구조의 이산화티타늄 광촉매를 제조할 수 있게 된다.The table has the basic measurement conditions shown in the first measurement result, the chlorine in the third step of the present invention (Cl _) and sulfate (SO 4 2 -) by properly adjusting the molar ratio of 2, and as shown in Figure 3 of the Titanium dioxide photocatalysts of various crystal structures can be prepared under low temperature heat treatment conditions of 100 ° C or lower.
아래의 표2는 도2 및 도3에 도시된 소성전 및 소성후 이산화티타늄의 XRD 측정 결과에 대한 것으로, 염소(Cl_)와 황산염(SO4 2 -)의 몰비를 조절하여 합성한 이산화티타늄의 XRD 분석결과로부터 각각의 결정구조 조성을 확인하기 위해 루타일(rutile) 특성 피크와 아나타제(anatase) 특성 피크의 세기를 수치로 정리하여 나타낸 것이다.Table 2 below shows the XRD measurement results of titanium dioxide before and after firing shown in FIGS. 2 and 3, and synthesized by controlling the molar ratio of chlorine (Cl _ ) and sulfate (SO 4 2 − ). In order to confirm the composition of each crystal structure from the XRD analysis results of the rutile (rutile) peaks and the anatase (anatase) peaks are summarized numerically.
합성조건에 따른 결정구조의 조성은 아래의 계산식으로부터 구할 수 있다.The composition of the crystal structure according to the synthesis conditions can be obtained from the following formula.
[계산식 1][Calculation 1]
Fraction of rutile(%) = Fraction of rutile (%) =
[계산식 2][Calculation 2]
Fraction of anatase(%) = 100 - Fraction of rutileFraction of anatase (%) = 100-Fraction of rutile
이산화티타늄은 다양한 결정면을 가지고 있는 세라믹 결정체이고, 상기 계산식 1에서 IA는 아나타제(anatase) 결정구조 중 101면에서 회절되는 피크의 세기를 나타내며, IR은 루타일(rutile) 결정구조를 110면에서 회절되는 피크의 세기를 나타내는 것이고, 표2의 결과로부터 본 발명의 제3공정에서 염소(Cl_)와 황산염(SO4 2 -)의 몰비를 적절히 조절하면, 다양한 구조의 이산화티타늄을 제조할 수 있으며, 그 조성도 정밀하게 조성할 수 있음을 알 수 있다.Titanium dioxide is a ceramic crystal having a variety of crystal planes, I A in the formula 1 represents the intensity of the peak diffracted in the 101 planes of the anatase (anatase) crystal structure, I R is 110 planes rutile crystal structure will represent the intensity of the peak that is diffracted in, chlorine (Cl _) and sulfate (SO 4 2 -) in the third step of the present invention from the results in Table 2 by properly controlling the molar ratio of a, to prepare the titanium dioxide of the various structures It can be seen that the composition can also be precisely formulated.
도1은 본 발명에 적용되는 이산화티타늄 광촉매의 합성공정을 도시한 흐름도1 is a flow chart showing the synthesis process of titanium dioxide photocatalyst applied to the present invention
도2는 본 발명에 적용되는 소성전 이산화티타늄의 다양한 결정구조를 XRD로 분석한 스펙트럼의 예시도Figure 2 is an illustration of the spectrum of XRD analysis of various crystal structures of titanium dioxide before firing applied to the present invention
도3은 본 발명에 적용되는 소성후 이산화티타늄의 다양한 결정구조를 XRD로 분석한 스펙트럼의 예시도Figure 3 is an illustration of the spectrum of XRD analysis of various crystal structures of titanium dioxide after firing applied to the present invention
*도면의 주요부분에 대한 부호설명** Description of Signs of Main Parts of Drawings *
100. 제1공정 200. 제2공정100.
300. 제3공정 400. 제4공정300.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080052390A KR100912601B1 (en) | 2008-06-04 | 2008-06-04 | Synthetic method of titanium dioxide photocatalysts to change crystal structure by rate of sulfate and chlorine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080052390A KR100912601B1 (en) | 2008-06-04 | 2008-06-04 | Synthetic method of titanium dioxide photocatalysts to change crystal structure by rate of sulfate and chlorine |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100912601B1 true KR100912601B1 (en) | 2009-08-19 |
Family
ID=41209899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020080052390A KR100912601B1 (en) | 2008-06-04 | 2008-06-04 | Synthetic method of titanium dioxide photocatalysts to change crystal structure by rate of sulfate and chlorine |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100912601B1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010085139A (en) * | 2000-02-29 | 2001-09-07 | 장인순 | Photocatalytic TiO2 powder with large specific surface area by homogeneous precipitation process at low temperature and method for manufacturing |
KR100769481B1 (en) | 2006-06-16 | 2007-10-23 | 계명대학교 산학협력단 | Synthetic method of titanium dioxide photocatalysts to change crystal structure by low heat treatment |
-
2008
- 2008-06-04 KR KR1020080052390A patent/KR100912601B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010085139A (en) * | 2000-02-29 | 2001-09-07 | 장인순 | Photocatalytic TiO2 powder with large specific surface area by homogeneous precipitation process at low temperature and method for manufacturing |
KR100769481B1 (en) | 2006-06-16 | 2007-10-23 | 계명대학교 산학협력단 | Synthetic method of titanium dioxide photocatalysts to change crystal structure by low heat treatment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6576589B1 (en) | Method for making anatase type titanium dioxide photocatalyst | |
Zaleska | Doped-TiO2: a review | |
DE102004027549A1 (en) | Carbonaceous titania photocatalyst and process for its preparation | |
Dhmees et al. | Preparation and characterization of nano SiO2@ CeO2 extracted from blast furnace slag and uranium extraction waste for wastewater treatment | |
US8454932B2 (en) | Titanium dioxide nanoparticles | |
KR101146899B1 (en) | Photocatalyst having titanium dioxide and a metal tungsten oxide junction structure and preparation method thereof | |
JP2009521392A (en) | Method for producing titanium oxide particles, and particles and preparations produced thereby | |
WO2005087372A1 (en) | Titanium oxide photocatalyst and method for preparation thereof | |
He et al. | Preparation and photocatalytic activity of anatase TiO2 nanocrystallites with high thermal stability | |
KR101109991B1 (en) | Visible light active nanohybrid photocatalyst and manufacuring method thereof | |
Samuel et al. | Synthesis of nanocrystalline rutile | |
KR100769481B1 (en) | Synthetic method of titanium dioxide photocatalysts to change crystal structure by low heat treatment | |
KR100912601B1 (en) | Synthetic method of titanium dioxide photocatalysts to change crystal structure by rate of sulfate and chlorine | |
Lim et al. | The influence of cobalt doping on photocatalytic nano-titania: Crystal chemistry and amorphicity | |
KR102578964B1 (en) | Titanium oxide particles and method for producing the same | |
Kien et al. | SYNTHESIS OF TiO2–SiO2 FROM TETRA-N-BUTYL ORTHOTITANATE AND TETRAETHYL ORTHOSILICATE BY THE SOL-GEL METHOD APPLIED AS A COATING ON THE SURFACE OF CERAMICS | |
Mal’chik et al. | Sol–gel synthesis of Ta 2 O 5–SiO 2 composites from tantalum (V) chloride and tetraethyl orthosilicate in ethanol | |
JP3819575B2 (en) | Cerium phosphate UV absorber and method for producing the same | |
Ramadhani et al. | Improving method of TiO2-Fe2O3 composite materials for self-cleaning glass preparation | |
KR100385903B1 (en) | Method for making titanium dioxide powder | |
WO2019088017A1 (en) | Method for producing titanium hydroxide | |
KR101899886B1 (en) | Manufacturemethod of titania using titanate | |
JP4604175B2 (en) | Method for producing visible light responsive photocatalyst | |
Lokshin et al. | Photocatalytic activity of fluorine-doped titanium dioxide | |
JP2008169058A (en) | Method for producing titanium oxide precursor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130725 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20140708 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20150811 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20160726 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20170720 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20180813 Year of fee payment: 10 |
|
R401 | Registration of restoration |