JP4604175B2 - Method for producing visible light responsive photocatalyst - Google Patents

Method for producing visible light responsive photocatalyst Download PDF

Info

Publication number
JP4604175B2
JP4604175B2 JP2004173454A JP2004173454A JP4604175B2 JP 4604175 B2 JP4604175 B2 JP 4604175B2 JP 2004173454 A JP2004173454 A JP 2004173454A JP 2004173454 A JP2004173454 A JP 2004173454A JP 4604175 B2 JP4604175 B2 JP 4604175B2
Authority
JP
Japan
Prior art keywords
titanium
powder
sulfur
visible light
titanium dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004173454A
Other languages
Japanese (ja)
Other versions
JP2005349316A (en
Inventor
博司 勝田
一昭 伊東
英雄 海野
光枝 相馬
春也 山本
昭憲 武山
正人 吉川
Original Assignee
株式会社アトックス
独立行政法人 日本原子力研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アトックス, 独立行政法人 日本原子力研究開発機構 filed Critical 株式会社アトックス
Priority to JP2004173454A priority Critical patent/JP4604175B2/en
Publication of JP2005349316A publication Critical patent/JP2005349316A/en
Application granted granted Critical
Publication of JP4604175B2 publication Critical patent/JP4604175B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、硫黄を添加した二酸化チタンからなる可視光応答型光触媒の製造方法に関する。 The present invention relates to a method for producing a visible light responsive photocatalyst comprising titanium dioxide to which sulfur is added .

紫外線の光エネルギーを利用する二酸化チタン光触媒材料は、空気及び水の浄化、殺菌、抗菌などを目的に幅広く応用されている。一方で、光触媒反応のさらなる高効率化を図り、また、地上に到達する太陽光の大部分を占める可視光領域が利用できる可視光応答型光触媒材料の開発に向けた研究も盛んに行われている。 Titanium dioxide photocatalyst materials that utilize ultraviolet light energy have been widely applied for the purpose of purifying, sterilizing, and antibacterial air and water. On the other hand, further improvement in the efficiency of photocatalytic reactions has been achieved, and active research has been conducted for the development of visible-light-responsive photocatalytic materials that can use the visible light region that occupies most of the sunlight that reaches the ground. Yes.

これまで、クロムなどの金属イオン添加による電子構造改質によって可視光応答型光触媒材料を実現させようという試みが大半を占めてきた。しかし、殆どの場合、添加された不純物イオンが、キャリアである電子・正孔の再結合中心として働くため、可視域において触媒能は見られず、さらに紫外域における二酸化チタン本来の光触媒能さえも低下していた。 Until now, most attempts have been made to realize visible light-responsive photocatalytic materials by modifying the electronic structure by adding metal ions such as chromium. However, in most cases, the added impurity ions, to serve as recombination centers of electrons and holes which are carriers, catalytic ability is not observed in the visible range, even more original photocatalytic activity of titanium dioxide in the ultraviolet region Was also falling.

最近、非金属イオンの窒素、フッ素、硫黄などを添加し、二酸化チタンの酸素格子位置に置換した場合に、光触媒能が向上することがわかってきた。窒素、フッ素よりも大きなイオン半径を持つ硫黄を酸素と置換(特許文献1,非特許文献2,非特許文献3及び非特許文献4)、或いは格子間に導入することにより(非特許文献5)、二酸化チタンの電子構造がより大幅に改質されることが報告されている。 Recently, it has been found that the photocatalytic performance is improved when nitrogen, fluorine, sulfur, etc. of non-metal ions are added and substituted at the oxygen lattice position of titanium dioxide. Sulfur having an ionic radius larger than that of nitrogen or fluorine is replaced with oxygen (Patent Document 1, Non-Patent Document 2, Non-Patent Document 3 and Non-Patent Document 4) , or introduced between lattices (Non-Patent Document 5). ), And it has been reported that the electronic structure of titanium dioxide is more significantly modified.

その合成方法には、二硫化チタン(TiS)を空気中で焼成する方法(特許文献1)、出発材料として有機物を用いる方法(非特許文献5)、二硫化炭素(CS)ガス中で二酸化チタンを部分硫化させる方法(非特許文献6)が知られている。しかしながら、硫黄添加により可視光応答性を有する二酸化チタンを簡単でしかも大量かつ安価に製造できる方法に関する報告例はない。
特願2002−161069号公報 可視光応答型光触媒: 硫黄添加二酸化チタン 工業材料(日刊工業新聞社発行),2003年7月号 34−36ページ Sulfur-doping into rutile-titanium dioxide by ion implantation: photocurrent spectroscopy and first-pinciples band calculation studies. Journal of Applied Physics 93, 2003年発行5156−5160ページ Visible light induced degradation of methylene blue on S-doped TiO2. Chemistry Letters 32, 2003年発行330−331ページ Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible Light. Chemistry Letters 32, 2003年発行364−365ページ Themogravimetric study of the sulfurization of TiO2 nanoparticles using CS2and the decomposition of their sulfurized product Thermochimica Acta, 410(1-2), 2004年発行27−34ページ
In the synthesis method, titanium disulfide (TiS 2 ) is fired in air (Patent Document 1), an organic material is used as a starting material (Non-Patent Document 5), and carbon disulfide (CS 2 ) gas is used. A method (non-patent document 6) of partially sulfiding titanium dioxide is known. However, there is no report on a method capable of producing titanium dioxide having visible light responsiveness easily and in large quantities at low cost by adding sulfur.
Japanese Patent Application No. 2002-161069 Visible light responsive photocatalyst: Sulfur-added titanium dioxide Industrial materials (published by Nikkan Kogyo Shimbun), July 2003, pages 34-36 Sulfur-doping into rutile-titanium dioxide by ion implantation: photocurrent spectroscopy and first-pinciples band calculation studies. Journal of Applied Physics 93, 2003, pages 5156-5160 Visible light induced degradation of methylene blue on S-doped TiO2. Chemistry Letters 32, 2003, 330-331 Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible Light. Chemistry Letters 32, 2003, pages 364-365 Themogravimetric study of the sulfurization of TiO2 nanoparticles using CS2and the decomposition of their sulfurized product Thermochimica Acta, 410 (1-2), 2004, pages 27-34

以上ように、アナターゼ型二酸化チタンを原料として、低温プラズマ処理により酸素欠陥を導入する方法や、加速器による金属元素のインプランテーション法、結晶を構成している酸素を窒素や硫黄で置換する方法等があるが、これらの方法による光触媒は、可視光に対して触媒活性を示すものの、可視光との反応領域が狭く、可視光領域の触媒効果も不十分である。また、これまでの製造方法は、簡単にしかも大量に製造するためには不向きであり、多くの課題が残されている。 As described above, as a raw material anatase type titanium dioxide, a method of introducing oxygen defects by low-temperature plasma treatment, the implantation method of the metal element by an accelerator, a method in which the oxygen constituting the crystal replaced with nitrogen or sulfur there is, the photocatalyst according to these methods, although exhibit catalytic activity to visible light, narrow reaction zone with visible light, the catalytic effect of the visible light region is insufficient. Moreover, the conventional manufacturing methods are not suitable for simple and mass production, and many problems remain.

本発明は、広い可視光領域で反応する高性能を有する可視光応答型光触媒を簡単かつ大量に製造することができる方法を提供することを目的とする。 An object of this invention is to provide the method which can manufacture the visible light responsive photocatalyst which has the high performance which reacts in a wide visible light area | region easily and in large quantities.

本発明の可視光応答型光触媒の製造方法は、チタン粉末に硫黄粉末を混合して空気の進入を制御しつつ容器中で350℃から500℃の間で加熱して、TiとSを反応させた後、酸素と反応させることを特徴としている。
本発明の製造方法において、前記チタン粉末は、スポンジチタンを水素雰囲気中で加熱して水素と反応させることにより、チタン水素化合物をつくり、該チタン水素化合物を粉砕して微細粉末とし、この粉末を高真空中で加熱して水素を除去することで生成することができる
また、本発明の製造方法において、チタン粉末の表面に未反応の硫黄が吸着して残留している場合には、この二酸化チタンを乳鉢などで均一化すると共に微粒化を図り、再度、大気中で400℃程度に加熱して未反応硫黄を除去し、触媒活性を向上させることができる
In the method for producing a visible light responsive photocatalyst of the present invention , a sulfur powder is mixed with a titanium powder and heated between 350 ° C. and 500 ° C. in a vessel while controlling the ingress of air to react Ti and S. After that, it is characterized by reacting with oxygen.
In the production method of the present invention, the titanium powder is produced by heating titanium sponge in a hydrogen atmosphere and reacting with hydrogen to form a titanium hydrogen compound, and pulverizing the titanium hydrogen compound into a fine powder. It can be generated by removing hydrogen by heating in a high vacuum .
In the production method of the present invention, when unreacted sulfur remains adsorbed on the surface of the titanium powder, the titanium dioxide is homogenized and atomized with a mortar or the like, and again in the atmosphere. The catalyst activity can be improved by heating to about 400 ° C. to remove unreacted sulfur.

本発明によれば、チタン粉末に硫黄を添加し、空気の進入を制御しつつ加熱して硫黄と反応させた後、酸素と反応させることにより、可視光応答性を有する二酸化チタンを容易かつ大量に製造することが可能となった。 According to the present invention, sulfur is added to titanium powder, heated while controlling the ingress of air, reacted with sulfur, and then reacted with oxygen to easily and easily produce a large amount of titanium dioxide having visible light responsiveness. It became possible to manufacture.

また、チタン粉末の大きさによっては、未反応の金属チタンが残存するが、このTi金属は金属担持させたと同様の効果を発揮するものと考えられ、触媒の特性を高めることができる。   Further, although unreacted titanium metal remains depending on the size of the titanium powder, it is considered that this Ti metal exerts the same effect as when the metal is supported, and the characteristics of the catalyst can be improved.

さらに粉末粒子の表面に吸着した硫黄が残り、触媒活性が十分現れない場合でも、この二酸化チタンを微粒化し、再度大気中で400℃程度に加熱することにより、吸着している未反応硫黄を除去し、触媒活性を向上させることができる。 Furthermore, even if the sulfur adsorbed on the surface of the powder particles remains and the catalytic activity does not appear sufficiently, the titanium dioxide is atomized and heated again to about 400 ° C in the atmosphere to remove the adsorbed unreacted sulfur. In addition, the catalytic activity can be improved.

本発明の硫黄添加の可視光応答型触媒は、金属チタン粉末に硫黄粉末を混合して空気の進入を制御しつつ容器中で350℃から500℃の間で加熱し、焼成する。そして、チタンTiと硫黄Sを反応させ、続いて酸素と反応させることで製造されるものである。 The sulfur-added visible light responsive catalyst of the present invention is calcined by mixing sulfur powder with titanium metal powder and heating between 350 ° C. and 500 ° C. in a container while controlling the ingress of air. And it is manufactured by making titanium Ti and sulfur S react, and making it react with oxygen subsequently.

前記金属チタン粉末及び硫黄粉末については特別な制限はなく、粉末であれば高純度のものが市販されており、これを使用することができる。   There is no special restriction | limiting about the said metal titanium powder and sulfur powder, If it is powder, the highly purified thing is marketed and this can be used.

金属チタン粉末の入手は簡単にできるが、安価なスポンジチタンを出発原料として金属チタン粉末を作製する場合について、図1に基づいて説明する。
まず、水素雰囲気中でスポンジチタンを400℃以上に加熱し、水素と反応させることにより、チタン水素化合物(TiH)をつくる。このチタン水素化合物をメノウ等の乳鉢を用いて粉砕し、微細粉末にする。
次に、この粉末を高真空中で800℃以上に加熱して水素を除去し、大気中に取出してチタン金属の微粉末を作り、粒度を調整する。
Although the titanium metal powder can be easily obtained, the case where the titanium metal powder is produced using inexpensive sponge titanium as a starting material will be described with reference to FIG.
First, titanium titanium compound (TiH 4 ) is produced by heating sponge titanium to 400 ° C. or higher in a hydrogen atmosphere and reacting with hydrogen. This titanium hydrogen compound is pulverized using a mortar such as agate to make a fine powder.
Next, this powder is heated to 800 ° C. or higher in a high vacuum to remove hydrogen and taken out into the atmosphere to make fine powder of titanium metal to adjust the particle size.

上記のような金属チタン粉末を使用して可視光応答型光触媒の製造方法について、図2を参照して説明する。
金属チタン粉末(Ti)と高純度硫黄粉末(S)を、S/Tiモル比でおよそ2に配合して、アルミナ製のるつぼに入れ、空気の流入量を制御しつつ加熱処理を行う。金属チタン粉末と硫黄粉末の混合粉末の焼成方法には特に制限はなく、一般的には、温度コントローラを備えた電気炉を用いて空気中で行うが、酸素を含む不活性ガス中で焼成してもよい
A method for producing a visible light responsive photocatalyst using the metal titanium powder as described above will be described with reference to FIG.
Metal titanium powder (Ti) and high-purity sulfur powder (S) are blended at an S / Ti molar ratio of about 2, and placed in an alumina crucible, and heat treatment is performed while controlling the inflow of air. There is no particular limitation on the method of firing the mixed powder of titanium metal powder and sulfur powder. Generally, the firing is performed in air using an electric furnace equipped with a temperature controller, but firing in an inert gas containing oxygen. May be .

通常、空気流入量は0.5〜2リットル/時間(好ましくは1リットル/時間前後)に制御し、焼成は350℃〜500℃(好ましくは400℃前後)の温度で、10時間〜20時間(好ましくは15時間前後)行われるUsually, the air inflow rate is controlled to 0.5 to 2 liters / hour (preferably around 1 liter / hour), and the calcination is performed at a temperature of 350 ° C. to 500 ° C. (preferably around 400 ° C.) for 10 hours to 20 hours. (preferably around 15 hours) is performed.

チタン粉末粒子の表面に吸着硫黄が残り、触媒活性が十分現れない場合は、この二酸化チタンを乳鉢などで均一化と微粒化を図り、再度大気中で約400℃程度に加熱し、吸着している未反応硫黄を除去し、触媒活性を向上させる。
以下、実施例により説明する。
If adsorbed sulfur remains on the surface of the titanium powder particles and the catalytic activity does not appear sufficiently, this titanium dioxide is homogenized and atomized with a mortar, etc., and again heated to about 400 ° C. in the atmosphere to be adsorbed. Unreacted sulfur is removed and the catalytic activity is improved.
Hereinafter, it will be explained by examples.

(実施例1)
金属チタン粉末(Ti,99.5%)と高純度硫黄粉末(S,99.5%)をS/Tiモル比でおよそ1〜2に配合し、蓋付きのアルミナ製るつぼに入れて、空気中にて電気炉で焼成した。焼成温度は380℃とし、焼成時間は15時間とした。さらに乳鉢を用いて微粒化を行い、再度空気中で400℃、6時間の熱処理を行った。
作製した粉末の結晶構造をX線回折法により評価した結果を、図3に示す。
Example 1
Titanium metal powder (Ti, 99.5%) and high-purity sulfur powder (S, 99.5%) are blended at an S / Ti molar ratio of approximately 1 to 2 and placed in an alumina crucible with a lid. Baked in a furnace. The firing temperature was 380 ° C., and the firing time was 15 hours. Furthermore, atomization was performed using a mortar, and a heat treatment was performed again in air at 400 ° C. for 6 hours.
The result of evaluating the crystal structure of the produced powder by X-ray diffraction is shown in FIG.

このX線回折測定の結果から得られた粉末は、アナターゼ型の二酸化チタンに少量のルチル型二酸化チタン及び金属チタンが混在した多結晶体から構成されていることが確認できる。得られた粉末はベージュ色を示した。
拡散反射分光法により得られた粉末試料の光吸収スペクトルを測定した結果を図4に示す。
It can be confirmed that the powder obtained from the result of the X-ray diffraction measurement is composed of a polycrystalline body in which a small amount of rutile titanium dioxide and metallic titanium are mixed in anatase type titanium dioxide. The resulting powder showed a beige color.
The result of measuring the light absorption spectrum of the powder sample obtained by diffuse reflectance spectroscopy is shown in FIG.

図4において(d)で示すように、アナターゼ型二酸化チタンの光吸収が400nmより短波長領域であったのに対して、この可視光応答型光触媒では、(a)で示すように、紫外光領域に加えて可視光領域で幅広い(400nm〜800nm)光吸収が測定された。
さらに得られた粉末試料の組成をエネルギー分散型X線分析により評価した結果、S/Ti原子数比が約0.03であった。
As shown by (d) in FIG. 4 , the light absorption of anatase-type titanium dioxide was in the wavelength region shorter than 400 nm, whereas in this visible light responsive photocatalyst, as shown by (a), ultraviolet light Broad (400 nm to 800 nm) light absorption was measured in the visible light region in addition to the region.
Furthermore, as a result of evaluating the composition of the obtained powder sample by energy dispersive X-ray analysis, the S / Ti atomic ratio was about 0.03.

(実施例2)
本発明では、出発物質及び焼成温度が重要である。
そこで、実施例1と同様な条件で、焼成温度を350℃として作製した粉末試料の光吸収特性を、図4(b)で示す。この焼成温度では、実施例1に示した粉末試料より可視光領域の光吸収が多少低くなったが、性能上差し支えない。
(比較例1)
また、実施例1と同様な条件で、二硫化チタン(TiS)粉末を出発物質として、粉末試料を作製し、拡散反射分光法により光吸収特性を評価した。その結果を、図4(c)で示す。実施例1に示した粉末試料より可視光領域の光吸収が低いことがわかる。
(Example 2)
In the present invention, the starting materials and the firing temperature are important.
Therefore, FIG. 4B shows the light absorption characteristics of the powder sample manufactured under the same conditions as in Example 1 and the baking temperature of 350 ° C. At this firing temperature, the light absorption in the visible light region is somewhat lower than that of the powder sample shown in Example 1, but there is no problem in performance.
(Comparative Example 1)
In addition, under the same conditions as in Example 1, a titanium disulfide (TiS 2 ) powder was used as a starting material, a powder sample was prepared, and light absorption characteristics were evaluated by diffuse reflection spectroscopy. The result is shown in FIG . It can be seen that the light absorption in the visible light region is lower than that of the powder sample shown in Example 1.

比較例2
本発明では、焼成中の流入空気量の制御が重要である。そこで、実施例1と同様な条件で、流入空気量を約3リットル/時間で制御して試料の焼成を行った。その結果、塊状の物質が生成し、硫黄添加の二酸化チタンは得られなかった。
( Comparative Example 2 )
In the present invention, it is important to control the amount of inflow air during firing. Therefore, the sample was fired under the same conditions as in Example 1 while controlling the inflow air amount at about 3 liters / hour. As a result, a massive substance was generated, and sulfur-added titanium dioxide was not obtained.

実施例3
実施例1で作製した粉末の光触媒性能を評価するために、メチレンブルー液の酸化分解試験を行った。濃度が0.01ミリモル/リットル(mmol/l)のメチレンブルー水溶液に作製した粉末試料を入れ、その脱色効果を従来のアナターゼ型光触媒と比較した。その結果、室内の蛍光灯照射下で、本光触媒粉末の方が十分短時間で脱色が進むことが確認された。
( Example 3 )
In order to evaluate the photocatalytic performance of the powder produced in Example 1, an oxidative decomposition test of a methylene blue solution was performed. The prepared powder sample was put in a methylene blue aqueous solution having a concentration of 0.01 mmol / liter (mmol / l), and the decolorization effect was compared with a conventional anatase photocatalyst. As a result, it was confirmed that decolorization progressed in a sufficiently short time with the present photocatalyst powder under indoor fluorescent lamp irradiation.

スポンジチタンから金属チタン粉末を作製する場合の手順を示すフロー図。 The flowchart which shows the procedure in the case of producing metal titanium powder from sponge titanium. 可視光応答型光触媒の製造方法のフロー図を示す。The flowchart of the manufacturing method of a visible light response type photocatalyst is shown. 実施例1で作った硫黄添加二酸化チタン粉末のX線回折図である。2 is an X-ray diffraction pattern of the sulfur-added titanium dioxide powder prepared in Example 1. FIG. 拡散反射分光法により得られた粉末試料の光吸収スペクトルを示し、(a)は実施例1に示した硫黄添加二酸化チタン粉末、(b)は実施例2に示した焼成温度を350℃として作製した硫黄添加二酸化チタン粉末、(c)は比較例1に示した二硫化チタン(TiS)を焼成温度400℃、焼成時間15時間で作製した硫黄添加二酸化チタン粉末、そして(d)はアナターゼ型二酸化チタン粉末に対する光吸収スペクトルを示すグラフ。The light absorption spectrum of the powder sample obtained by diffuse reflectance spectroscopy is shown, (a) is a sulfur-added titanium dioxide powder shown in Example 1, and (b) is produced at a firing temperature of 350 ° C. shown in Example 2. (C) is a sulfur-added titanium dioxide powder prepared from the titanium disulfide (TiS 2 ) shown in Comparative Example 1 at a firing temperature of 400 ° C. and a firing time of 15 hours, and (d) is an anatase type. The graph which shows the light absorption spectrum with respect to titanium dioxide powder.

Claims (3)

チタン粉末に硫黄粉末を混合して空気の進入を制御しつつ容器中で350℃〜500℃の間で加熱して、チタンと硫黄を反応させた後、酸素と反応させることを特徴とする可視光応答型光触媒の製造方法。 By mixing sulfur powder to the titanium powder is heated between 350 ° C. to 500 ° C. in a vessel while controlling the ingress of air, after reacting the titanium and sulfur, visible, characterized in that is reacted with oxygen A method for producing a photoresponsive photocatalyst. 請求項1記載の製造方法において、前記チタン粉末は、スポンジチタンを水素雰囲気中で加熱して水素と反応させることにより、チタン水素化合物をつくり、該チタン水素化合物を粉砕して微細粉末とし、この粉末を高真空中で加熱して水素を除去することで生成されることを特徴とする可視光応答型光触媒の製造方法。 2. The manufacturing method according to claim 1 , wherein the titanium powder is produced by heating titanium titanium in a hydrogen atmosphere to react with hydrogen to form a titanium hydrogen compound, and pulverizing the titanium hydrogen compound into a fine powder. A method for producing a visible light responsive photocatalyst, which is produced by heating powder in a high vacuum to remove hydrogen . 請求項1又は2に記載の製造方法で生成した二酸化チタン粉末の表面に未反応硫黄が吸着残留している場合、前記二酸化チタンの均一化と微粒化を図り、再度大気中で400℃に加熱して、吸着している未反応硫黄を除去することを特徴とする可視光応答型光触媒の製造方法。 If unreacted sulfur to the surface of the titanium dioxide powder produced by the method according to claim 1 or 2 remaining adsorbed, achieving uniform and atomization of the titanium dioxide, heated to 400 ° C. again in air And removing the adsorbed unreacted sulfur, a method for producing a visible light responsive photocatalyst.
JP2004173454A 2004-06-11 2004-06-11 Method for producing visible light responsive photocatalyst Expired - Fee Related JP4604175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004173454A JP4604175B2 (en) 2004-06-11 2004-06-11 Method for producing visible light responsive photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004173454A JP4604175B2 (en) 2004-06-11 2004-06-11 Method for producing visible light responsive photocatalyst

Publications (2)

Publication Number Publication Date
JP2005349316A JP2005349316A (en) 2005-12-22
JP4604175B2 true JP4604175B2 (en) 2010-12-22

Family

ID=35584213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004173454A Expired - Fee Related JP4604175B2 (en) 2004-06-11 2004-06-11 Method for producing visible light responsive photocatalyst

Country Status (1)

Country Link
JP (1) JP4604175B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112604698B (en) * 2020-12-30 2022-07-01 上海纳米技术及应用国家工程研究中心有限公司 Preparation method, product and application of oxygen-deficient titanium disulfide @ carbon nanodisk photocatalytic material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142333A (en) * 1984-08-03 1986-02-28 Agency Of Ind Science & Technol Titanium compound having optical catalytic activity
JP2004000863A (en) * 2002-06-03 2004-01-08 Japan Atom Energy Res Inst Method for manufacturing visible light response type photocatalyst material
JP2004136264A (en) * 2002-10-18 2004-05-13 Opto:Kk Production method of photocatalyst material, and titanium oxide-based photocatalyst material
JP2005254174A (en) * 2004-03-12 2005-09-22 Toho Titanium Co Ltd Titanium oxide photocatalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142333A (en) * 1984-08-03 1986-02-28 Agency Of Ind Science & Technol Titanium compound having optical catalytic activity
JP2004000863A (en) * 2002-06-03 2004-01-08 Japan Atom Energy Res Inst Method for manufacturing visible light response type photocatalyst material
JP2004136264A (en) * 2002-10-18 2004-05-13 Opto:Kk Production method of photocatalyst material, and titanium oxide-based photocatalyst material
JP2005254174A (en) * 2004-03-12 2005-09-22 Toho Titanium Co Ltd Titanium oxide photocatalyst

Also Published As

Publication number Publication date
JP2005349316A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
Moon et al. Preparation and characterization of the Sb-doped TiO2 photocatalysts
Wang et al. Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO2 suspensions with various light sources
Zaleska Doped-TiO2: a review
Song et al. Preparation and photocatalytic activity of alkali titanate nano materials A2TinO2n+ 1 (A= Li, Na and K)
KR100945035B1 (en) Tungstates based visible-light induced oxides photocatalysts and synthesis methods thereof
KR101124196B1 (en) Carbon-containing, titanium dioxide-based photocatalyst, and process for producing the same
US8148289B2 (en) Titanium oxide photocatalyst and method for producing the same
Dozzi et al. Photocatalytic activity of S-and F-doped TiO 2 in formic acid mineralization
Jang et al. Formation of crystalline TiO2− xNx and its photocatalytic activity
Wang et al. Preparation and characterization of TiO2 nanoparticles by two different precipitation methods
KR20010107542A (en) Titanium hydroxide, photocatalyst produced from the same and photocatalytic coating agent
JP4493282B2 (en) Method for producing a novel visible light excitation type photocatalyst
Qi et al. Thermostable photocatalytically active TiO 2 anatase nanoparticles
JP4639355B2 (en) Method for producing visible light responsive photocatalyst
Yamazaki et al. Factors affecting photocatalytic activity of TiO2
JP4604175B2 (en) Method for producing visible light responsive photocatalyst
Lim et al. The influence of cobalt doping on photocatalytic nano-titania: Crystal chemistry and amorphicity
JP2010149046A (en) Method for producing visible light-responsive photocatalyst and visible light-responsive photocatalyst
JP4351936B2 (en) Method for producing titanium oxide photocatalyst
KR100924515B1 (en) Manufacturing Method of Visible Rays Active Anatase Type Titanium Dioxide Photocatalyst
Yin et al. Theoretical and experimental study on the electronic structure and optical absorption properties of nitrogen-doped nanometer TiO2
KR100914134B1 (en) Method for manufacturing TiO2 photocatalyst as reducing agent
KR100769481B1 (en) Synthetic method of titanium dioxide photocatalysts to change crystal structure by low heat treatment
Bakardjieva et al. The relationship between microstructure and photocatalytic behavior in lanthanum-modified 2D TiO 2 nanosheets upon annealing of a freeze-cast precursor
KR101206489B1 (en) Manufacturing Method of Visible Rays Active Anatase-Brookite Type Titanium Dioxide Photocatalyst

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070611

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees