KR100911030B1 - Pyrolysis Reactor and char Combustor intergrally formed Pyrolysis-Combustor System - Google Patents

Pyrolysis Reactor and char Combustor intergrally formed Pyrolysis-Combustor System Download PDF

Info

Publication number
KR100911030B1
KR100911030B1 KR1020070105241A KR20070105241A KR100911030B1 KR 100911030 B1 KR100911030 B1 KR 100911030B1 KR 1020070105241 A KR1020070105241 A KR 1020070105241A KR 20070105241 A KR20070105241 A KR 20070105241A KR 100911030 B1 KR100911030 B1 KR 100911030B1
Authority
KR
South Korea
Prior art keywords
pyrolysis
combustion
gas
pyrolysis reactor
combustion furnace
Prior art date
Application number
KR1020070105241A
Other languages
Korean (ko)
Other versions
KR20090039534A (en
Inventor
진경태
선도원
박재현
이창근
배달희
조성호
유호정
박영철
이승용
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020070105241A priority Critical patent/KR100911030B1/en
Publication of KR20090039534A publication Critical patent/KR20090039534A/en
Application granted granted Critical
Publication of KR100911030B1 publication Critical patent/KR100911030B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/007Fluidised bed combustion apparatus comprising a rotating bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/002Fluidised bed combustion apparatus for pulverulent solid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • F23C10/08Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/22Fuel feeders specially adapted for fluidised bed combustion apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

본 발명은 열분해반응로와 연소로가 일체로 형성된 열분해연소시스템에 관한 것으로, 더 상세하게는 고체연료를 공급받아 유용한 가스를 수득하기 위한 열분해반응로와, 상기 열분해되고 남은 잔여물을 연소시켜 열분해반응로에 공급되는 유동층물질의 온도를 상승시키는 연소로와, 상기 연소로의 유동층물질과 재순환된 배가스를 열교환시키기 위한 외부열교환기를 포함하는 열분해시스템의 공정을 단순화시키기 위해 상기 열분해반응로 하부와 연소로의 하부를 연통시켜 두 챔버에 적재된 유동층물질간에 직접 열교환이 이루어져 열분해반응로에서의 열분해온도를 상승시키고, 연통된 부분에서의 소량 가스교환으로 인접된 열분해 또는 연소에서의 반응에 관여하여 유익한 가스의 생성량을 증가시키도록 하는 등 열분해반응공정을 단순화시키는 열분해시스템에 관한 것이다.The present invention relates to a pyrolysis combustion system in which a pyrolysis reactor and a combustion furnace are integrally formed, and more particularly, a pyrolysis reactor for obtaining a useful gas by receiving a solid fuel, and pyrolysis by burning the remaining pyrolysis residue. The pyrolysis reactor bottom and combustion to simplify the process of the pyrolysis system including a combustion furnace for raising the temperature of the fluidized bed material supplied to the reactor, and an external heat exchanger for heat-exchanging the fluidized bed material and the recycled exhaust gas of the combustion furnace. The lower part of the furnace communicates with each other and the direct heat exchange between the fluidized bed materials loaded in the two chambers raises the pyrolysis temperature in the pyrolysis reactor. To simplify the pyrolysis process, such as increasing the amount of gas produced. Pyrolysis system.

본 발명은 열분해반응로와 연소로의 하부를 연통시켜 혼합부를 형성함으로 상기 혼합부를 통해 유동층물질이 직접 열교환이 이루어지도록 하고, 혼합부를 통해 열분해반응로로 유입된 연소배가스 및 유동화가스는 열분해가 이루어져 가연성가스의 생성량을 증가시키고, 혼합부를 통해 연소로에 유입되는 소량의 열분해가스 및 유동화가스는 연소되어 CO2로 배출됨으로 공정상의 문제는 없다. 이 때 상기 열분해는 상부에서 발생됨으로 하부에 형성된 혼합부를 통해 연소로로 유통되는 생성 열분해가스의 량은 미비함으로 열분해가스의 손실을 최소화 할 수 있다. 따라서, 본 발명은 열분해반응로와 연소로를 일체화시켜 별도의 열교환과정을 생략해 전체공정을 축소시킴은 물론 일체화에 따른 생성가스의 손실량을 최소화하는 등 친환경적인 장치의 제공이 가능하게 된 것이다.According to the present invention, the bottom of the pyrolysis reactor and the combustion furnace communicate with each other to form a mixing part so that the fluidized bed material is directly heat exchanged through the mixing part, and the combustion flue gas and the fluidized gas introduced into the pyrolysis reactor through the mixing part are pyrolyzed. There is no process problem because the amount of flammable gas is increased and a small amount of pyrolysis gas and fluidized gas introduced into the combustion furnace through the mixing part is combusted and discharged into CO 2 . At this time, since the pyrolysis is generated in the upper portion, the amount of generated pyrolysis gas circulated to the combustion furnace through the mixing unit formed in the lower portion is insufficient, thereby minimizing the loss of the pyrolysis gas. Therefore, the present invention enables the provision of an environment-friendly device such as minimizing the loss of the generated gas as well as minimizing the overall process by omitting a separate heat exchange process by integrating the pyrolysis reactor and the combustion furnace.

열분해반응로, 연소로, 열분해연소장치, 석탄, 직접 열교환, Pyrolysis reactor, combustion furnace, pyrolysis combustion apparatus, coal, direct heat exchange,

Description

열분해반응로와 연소로가 일체로 형성된 열분해연소시스템{Pyrolysis Reactor and char Combustor intergrally formed Pyrolysis-Combustor System}Pyrolysis Reactor and char Combustor intergrally formed Pyrolysis-Combustor System

본 발명은 열분해반응로와 연소로가 일체로 형성된 열분해연소시스템에 관한 것으로, 더 상세하게는 고체연료를 공급받아 유용한 가스를 수득하기 위한 열분해반응로와, 상기 열분해되고 남은 잔여물을 연소시켜 열분해반응로에 공급되는 유동층물질의 온도를 상승시키는 연소로와, 상기 연소로의 유동층물질과 재순환된 배가스를 열교환시키기 위한 외부열교환기를 포함하는 열분해시스템의 공정을 단순화시키기 위해 상기 열분해반응로 하부와 연소로의 하부를 연통시켜 두 챔버에 적재된 유동층물질간에 직접 열교환이 이루어져 열분해반응로에서의 열분해온도를 상승시키고, 연통된 부분에서의 소량 가스교환으로 인접된 열분해 또는 연소에서의 반응에 관여하여 유익한 가스의 생성량을 증가시키도록 하는 등 열분해반응공정을 단순화시키는 열분해시스템에 관한 것이다.The present invention relates to a pyrolysis combustion system in which a pyrolysis reactor and a combustion furnace are integrally formed, and more particularly, a pyrolysis reactor for obtaining a useful gas by receiving a solid fuel, and pyrolysis by burning the remaining pyrolysis residue. The pyrolysis reactor bottom and combustion to simplify the process of the pyrolysis system including a combustion furnace for raising the temperature of the fluidized bed material supplied to the reactor, and an external heat exchanger for heat-exchanging the fluidized bed material and the recycled exhaust gas of the combustion furnace. The lower part of the furnace communicates with each other and the direct heat exchange between the fluidized bed materials loaded in the two chambers raises the pyrolysis temperature in the pyrolysis reactor. To simplify the pyrolysis process, such as increasing the amount of gas produced. Pyrolysis system.

일반적으로 고체연료열분해시스템은 열분해반응로의 내부에 유동층물질을 충전하고, 용기의 밑부분에 설치된 다수의 분무노즐을 통해 공기를 유입시켜 유동층물질을 공기와 함께 유동시킨다. 상기 유동되는 유동층물질은 가스버너나 오일버너를 이용하여 고체연료를 분해할 수 있을 정도의 온도까지 예열시키고, 상기 예열된 유동층물질이 충전된 용기내에 석탄이나 고체연료를 투입시켜 열분해가 이루어지도록 한다. 또한 상기 열분해반응로의 열분해가 완료된 잔여물인 char와 유동층물질은 연소로에 공급되어 연소로에서 고열을 통해 연소시키고, 상기 연소열은 유동층물질을 고온으로 가열하고 가열된 유동층물질은 열분해반응로로 공급되어 열분해가 용이하게 이루어지도록 하고 있다. 이러한 과정에서 상기 열분해반응로와 연소로는 별도의 공급장치를 이용하여 유동층물질의 순환이 이루어져 이동과정에서 열손실이 발생하며, 유동층물질을 이송시키기 위한 이동가스가 열분해반응로 및 연소로에 공급됨으로 이로인한 열분해 또는 연소반응이 저하되는 단점이 있으므로, 상기 열교환이 용이하게 이루어지면서 가스이동을 제한할 수 있는 방법의 연구가 필요하다.In general, a solid fuel pyrolysis system fills a fluidized bed material in a pyrolysis reactor, and introduces air through a plurality of spray nozzles installed at the bottom of the vessel to flow the fluidized bed material together with the air. The fluidized fluidized bed material is preheated to a temperature sufficient to decompose solid fuel using a gas burner or an oil burner, and thermal decomposition is performed by injecting coal or solid fuel into a container filled with the preheated fluidized bed material. . In addition, the char and fluidized bed material, the residue of which pyrolysis of the pyrolysis reactor is completed, is supplied to a combustion furnace to combust through a high temperature in the combustion furnace, and the combustion heat is heated to a high temperature of the fluidized bed material and the heated fluidized bed material is supplied to the pyrolysis reactor. In order to facilitate pyrolysis. In this process, the pyrolysis reactor and the combustion furnace are circulated with the fluidized bed material by using a separate supply device, so that heat loss occurs during the movement, and the moving gas for transporting the fluidized bed material is supplied to the pyrolysis reactor and the combustion furnace. Due to this, there is a disadvantage in that pyrolysis or combustion reaction is lowered, and thus, a study of a method of limiting gas movement is required while the heat exchange is easily performed.

상기 과제를 해소하기 위한 본 발명의 열분해반응로와 연소로가 일체로 형성된 열분해연소시스템은,Pyrolysis combustion system formed integrally with the pyrolysis reaction furnace and the combustion furnace of the present invention for solving the above problems,

고체연료를 유동층물질이 충전된 열분해반응로에 투입하여 열분해로 필요성분인 가연성가스와 오일성분을 수취하여 저장하고, 잔여물은 연소로에 공급하여 연소시킴으로써 연소열은 유동층물질을 통해 열분해반응로로 공급되도록 하고, 상기 열분해반응로의 상부에는 사이클론을 연통설치하여 분리된 고체성분을 연소로로 공급하도록 하고, 상기 연소로의 상부에는 CO2이송관을 연통설치하여 발생된 CO2를 포집하도록 하고, 연소가스인 CO2는 유동화가스로 재순환시켜 고농도로 저장하는 열분해연소시스템에 있어서, 수직통체의 챔버 중앙에 수직격벽을 형성하여 챔버를 열분해반응로와 연소로로 구획하고, 상기 수직격벽의 하부에 혼합부를 형성해 열분해반응로와 연소로의 하부를 연통시켜 충전된 유동층물질 간에 열교환이 직접 이루어지도록 하되 상기 연통된 혼합부는 충전된 유동층물질 내에 위치하도록 하여 열분해반응로와 연소로의 가스교환이 차단되도록 하고, 상기 열분해반응로와 연소로에는 구비된 분사노즐에서 분사되는 유동화가스에 의해 유동층물질의 유동이 이루어지도록 하고, 상기 열분해반응로의 일측에는 공급피터가 연통되어 정량으로 고체연료를 공급하는 열분해연소장치를 포함하여 구성된다.The solid fuel is put into a pyrolysis reactor filled with fluidized bed material, and it receives and stores the combustible gas and oil components necessary for pyrolysis, and the residue is fed to the combustion furnace to combust the combustion heat through the fluidized bed material to the pyrolysis reactor. In the upper part of the pyrolysis reactor, a cyclone is installed in communication to supply the separated solid component to the combustion furnace, and a CO 2 transfer pipe is installed in the upper part of the combustion furnace to collect the generated CO 2 . In the pyrolysis combustion system in which the combustion gas CO 2 is recycled to the fluidized gas and stored at a high concentration, a vertical partition wall is formed at the center of the chamber of the vertical cylinder to partition the chamber into a pyrolysis reactor and a combustion furnace, and the lower part of the vertical partition wall. May form a mixing part to connect the pyrolysis reactor and the lower part of the combustion furnace to directly exchange heat between the charged fluidized bed material However, the communicating mixture is positioned in the packed fluidized bed material to block gas exchange between the pyrolysis reactor and the combustion furnace, and the fluidized bed material is injected by the fluidized gas injected from the injection nozzle provided in the pyrolysis reactor and the combustion furnace. The flow is made, and one side of the pyrolysis reactor is configured to include a pyrolysis combustion device for supplying solid fuel in a quantitative manner in communication with the feeder.

이상에서 상세히 기술한 바와 같이 본 발명의 열분해반응로와 연소로가 일체로 형성된 열분해연소시스템은,As described in detail above, the pyrolysis combustion system in which the pyrolysis reactor and the combustion furnace of the present invention are integrally formed,

열분해반응로와 연소로의 하부를 연통시켜 혼합부를 형성함으로 상기 혼합부를 통해 유동층물질이 직접 열교환이 이루어지도록 하고, 혼합부를 통해 열분해반응로로 유입된 연소배가스 및 유동화가스는 열분해가 이루어져 가연성가스의 생성량을 증가시키고, 혼합부를 통해 연소로에 유입되는 소량의 열분해가스 및 유동화가스는 연소되어 CO2로 배출됨으로 공정상의 문제는 없다. 이 때 상기 열분해는 상부에서 발생됨으로 하부에 형성된 혼합부를 통해 연소로로 유통되는 생성 열분해가스의 량은 미비함으로 열분해가스의 손실을 최소화 할 수 있다. 따라서, 본 발명은 열분해반응로와 연소로를 일체화시켜 별도의 열교환과정을 생략해 전체공정을 축소시킴은 물론 일체화에 따른 생성가스의 손실량을 최소화하는 등 친환경적인 장치의 제공이 가능하게 된 것이다.The pyrolysis reactor and the lower part of the combustion furnace communicate with each other to form a mixing unit so that the fluidized bed material is directly heat exchanged through the mixing unit, and the combustion flue gas and the fluidized gas introduced into the pyrolysis reactor through the mixing unit are pyrolyzed to obtain the combustible gas. There is no process problem as the amount of production is increased, and a small amount of pyrolysis gas and fluidizing gas introduced into the combustion furnace through the mixing part is burned and discharged to CO 2 . At this time, since the pyrolysis is generated in the upper portion, the amount of generated pyrolysis gas circulated to the combustion furnace through the mixing unit formed in the lower portion is insufficient, thereby minimizing the loss of the pyrolysis gas. Therefore, the present invention enables the provision of an environment-friendly device such as minimizing the loss of the generated gas as well as minimizing the overall process by omitting a separate heat exchange process by integrating the pyrolysis reactor and the combustion furnace.

이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

본 발명에 따른 열분해연소시스템(10)은 열분해반응로(21)와 연소로(22)가 일체로 형성된 열분해연소장치(20)를 구비한다.The pyrolysis combustion system 10 according to the present invention includes a pyrolysis combustion device 20 in which a pyrolysis reactor 21 and a combustion furnace 22 are integrally formed.

도 1을 참조한 바와같이 상기 열분해연소장치(20)는 통체의 챔버내에 수직격벽(23)이 형성되어 챔버 내부공간을 구획하고, 구획된 일측에는 공급피더(25)가 연통설치되어 정량공급되는 고체연료를 열분해시키는 열분해반응로(21)로 형성하고, 타측은 열분해하고 남은 잔여고체를 연소시켜 제거하는 연소로(22)로 구성한다.As shown in FIG. 1, the pyrolysis combustion device 20 forms a vertical partition 23 in a chamber of a cylinder to partition an internal space of a chamber, and on one side of the compartment, a feed feeder 25 is installed to communicate a fixed quantity of solid. A pyrolysis reactor 21 for pyrolyzing fuel is formed, and the other side is composed of a combustion furnace 22 for pyrolyzing and removing residual solids.

그리고 상기 수직격벽(23)의 하부에는 혼합부(24)를 형성하여 상기 열분해반응로(21)와 연소로(22)의 하부공간이 서로 연통되도록 함으로써 열분해반응로와 연소로에 충전되는 유동층물질이 혼합부(24)를 통해 두 로 사이를 유동 또는 직접 열교환이 이루어지도록 한다.In addition, a fluidized-bed material filled in the pyrolysis reactor and the combustion furnace by forming a mixing part 24 in the lower portion of the vertical bulkhead 23 so that the lower spaces of the pyrolysis reactor 21 and the combustion furnace 22 communicate with each other. The mixing part 24 allows flow or direct heat exchange between the two furnaces.

이와같이 구성된 열분해연소장치(20)는 도 2를 참조한 바와같이 사이클론이 더 장착되어 열분해반응로(21)에서 열분해된 물질을 공급받아 고체와 기체를 분리한 후 분리된 고체는 연소로에 재공급하고 기체는 별도의 처리공정을 통해 저장하도록 할 수 있다. 또한, 도 3에 도시된 바와같이 연소로의 상부에는 연소과정에서 발생된 CO2를 포집하기 위한 CO2이송관(40)이 연통 설치될 수 있다.The pyrolysis combustion apparatus 20 configured as described above is further equipped with a cyclone as shown in FIG. 2 to receive the pyrolyzed material from the pyrolysis reactor 21 to separate the solid and the gas, and then supply the separated solid to the combustion furnace again. The gas can be stored in a separate treatment process. In addition, as illustrated in FIG. 3, a CO 2 transfer pipe 40 for collecting CO 2 generated in a combustion process may be installed at an upper portion of the combustion furnace.

이러한 구성을 갖는 본 발명의 열분해연소시스템(10)은 열분해연소장치(20)의 열분해반응로(21)에서 유동화가스에 의해 충전된 고열의 유동층물질(모래)가 유동되고, 이 과정에서 정량의 고체연료인 석탄이 공급되면 석탄은 열분해반응로(21)에서 열분해되고, 상기 열분해된 열분해물은 상부의 관체를 따라 사이클론(30)으로 이송된다. 사이클론으로 이송된 열분해물은 고체성분인 char와 유동층물질과 열분해기체가 분리되어 char와 유동층물질은 연소로(22)로 이송되어 연소가 이루어지도록 하고, 열분해기체는 필터링 후 저장된다. In the pyrolysis combustion system 10 of the present invention having such a configuration, a high-temperature fluidized bed material (sand) filled with fluidized gas is flowed in the pyrolysis reactor 21 of the pyrolysis combustion apparatus 20, and in this process, When coal as a solid fuel is supplied, coal is pyrolyzed in the pyrolysis reactor 21, and the pyrolyzed pyrolysate is transferred to the cyclone 30 along the upper tube. The pyrolysis product transferred to the cyclone is separated from the solid component char, the fluidized bed material and the pyrolysis gas so that the char and the fluidized bed material are transferred to the combustion furnace 22 to be combusted, and the pyrolyzed gas is stored after filtering.

상기 사이클론(30)에 의해 분리된 열분해기체는 다수의 오일성분과 가연성기체가 포함되어 있는 것으로, 필터링에 의해 불순물을 제거한 후 오일분리기를 통과시켜 기체내에 포함되어있는 오일성분을 추출하여 오일성분과 가연성기체를 각각 저장하도록 한다. 이 때 상기 가연성기체는 회류관(60)을 통해 열분해반응로의 유동화가스로 사용하여 열분해시 발생되는 가연성기체 중 H2의 생성비율을 증가시키도록 할 수 있다.The pyrolysis gas separated by the cyclone 30 includes a plurality of oil components and flammable gases, and after removing impurities by filtering, extracts the oil components contained in the gas by passing through an oil separator. Store each flammable gas. At this time, the combustible gas may be used as the fluidizing gas of the pyrolysis reactor through the circulating pipe 60 to increase the production rate of H 2 in the combustible gas generated during pyrolysis.

한편, 상기 사이클론(30)에서 분리된 char와 유동층물질은 연소로(22)에 유입되어 연소가 이루어진다. 상기 char는 연소가 이루어지면서 다량의 연소열과 CO2를 발생시키는데 상기 연소열은 유동층물질을 가열시키고 혼합부를 통해 열분해반응로(21)의 유동층물질과 직접 열교환이 이루어져 열분해반응로에서 열분해가 용이하게 이루어지도록 한다. 상기 연소로(22)의 상부에는 CO2이송관(40)이 연통설치되어 발생된 CO2를 저장조로 이송하는데 상기 CO2이송관에는 순환관(50)이 연통설치되어 이송되는 CO2를 연소로(22)와 열분해반응로(21)의 유동화가스로 사용되도록 할 수 있다. 이 때 상기 연소로(22)에 공급되는 CO2는 연소시 발생되는 CO2와 혼합되어 고농도의 CO2를 발생시키고, 열분해반응로(21)에는 다량의 CO가 발생되도록 한다. 물론 상기 유동화가스로 사용시 CO2에 O2를 혼합하여 연소로에서의 연소기체로 사용할 수 있다.On the other hand, the char and the fluidized bed material separated from the cyclone 30 is introduced into the combustion furnace 22 and combustion occurs. The char generates a large amount of combustion heat and CO 2 as the combustion takes place. The combustion heat heats the fluidized bed material and directly heat exchanges with the fluidized bed material of the pyrolysis reactor 21 through the mixing unit, so that pyrolysis is easily performed in the pyrolysis reactor. To lose. The CO 2 transfer pipe 40 is installed in the upper portion of the combustion furnace 22 to transfer the generated CO 2 to the storage tank, and the CO 2 transfer pipe is installed in the circulation pipe 50 in communication with the combustion CO 2 It can be used as the fluidizing gas of the furnace 22 and the pyrolysis reactor 21. At this time, the CO 2 supplied to the combustion furnace 22 is mixed with CO 2 generated during combustion to generate a high concentration of CO 2 , so that a large amount of CO is generated in the pyrolysis reactor 21. Of course, when used as the fluidizing gas, O 2 may be mixed with CO 2 and used as a combustion gas in a combustion furnace.

상기한 바와같이 구동되는 열분해연소시스템(10)은 열분해반응로(21)와 연소로(22)를 하나의 열분해연소장치(20)로 일체화 시킴으로써 열교환기를 제거하여 공정단계를 간소화하였다.The pyrolysis combustion system 10 driven as described above simplifies the process step by removing the heat exchanger by integrating the pyrolysis reactor 21 and the combustion furnace 22 into one pyrolysis combustion apparatus 20.

또한, 하부가 서로 연통되어 각 챔버에서 발생된 가스의 교환이 소량 발생되는데, 상기 열분해반응로(21)에는 대부분이 상부에서 열분해가 이루어짐으로 연통된 하부의 혼합부(24)를 통한 가스손실은 극히 미약하다. 일부 유동화가스로 공급되는 CO2 또는 열분해가스가 일부 혼합부를 통해 연소로(22)로 유입되나, CO2의 경우에는 연소로로부터 회수하는 CO2의 농도를 증가시키고, 열분해가스의 경우에는 가연성이므로 연소되고 최종적으로 열분해반응로로부터 유입된 가스는 CO2와 H2O만 발생됨으로 배가스중 환경오염물질을 증가시키지 않는다.In addition, the lower portion is in communication with each other a small amount of gas generated in each chamber is generated, the thermal decomposition reactor 21, the gas loss through the mixing portion 24 of the lower portion is in communication with most of the thermal decomposition takes place at the top Extremely weak Although CO 2 or pyrolysis gas to some fluidizing gas is introduced as part mixture 22 to the combustion through the, in the case of the CO 2 it is to increase the concentration of CO 2 that is recovered from the furnace, in the case of the thermal decomposition gas, because it is flammable The gas which is combusted and finally introduced from the pyrolysis reactor does not increase the environmental pollutants in the flue gas since only CO 2 and H 2 O are generated.

이와는 반대로 연소로(22)에서 발생 및 유동화가스로 공급된 CO2가 일부 열분해반응로(21)로 이동되어 열분해과정에 관여하게되는데 이 때 소량의 산소는 일부 석탄을 연소시킬 수 있으나, 발생된 CO2, H2O는 열분해 반응가스로 작용하고, 연소열은 열분해 반응열을 공급해주는 역할을 하므로 열분해가스를 희석시키지 않는다.On the contrary, the CO 2 generated in the combustion furnace 22 and supplied as the fluidizing gas is transferred to some pyrolysis reactor 21 to be involved in the pyrolysis process, where a small amount of oxygen may burn some coal. CO 2 and H 2 O act as a pyrolysis reaction gas, and the combustion heat does not dilute the pyrolysis gas because it serves to supply the heat of the pyrolysis reaction.

그리고 상기 혼합부(24)는 밑면을 연통시킨 것이 수직격벽 중간부분을 연통시킨 것보다 가스의 혼합량을 최소화 할 수 있고, 충전되는 유동층물질 내에 형성되도록 함으로써 열교환이 이루어지면서 가스의 혼합은 최소로 발생되게해 생성되는 가스의 농도를 유지하도록 할 수 있다.In addition, the mixing part 24 may minimize the amount of gas mixed with the bottom surface communicating with the middle portion of the vertical bulkhead, and may be formed in the fluidized bed material to be exchanged, thereby minimizing gas mixing. In order to maintain the concentration of the gas produced.

한편, 상기 서술한 예는, 본 발명을 설명하고자하는 예일 뿐이다. 따라서 본 발명이 속하는 기술분야의 통상적인 전문가가 본 상세한 설명을 참조하여 부분변경 사용한 것도 본 발명의 범위에 속하는 것은 당연한 것이다.In addition, the above-mentioned example is only an example to demonstrate this invention. Therefore, it is obvious that the ordinary skilled in the art to which the present invention pertains uses the partial change with reference to the detailed description.

본 발명에 따른 열분해연소장치를 실시예를 통해 상세히 설명한다.The pyrolysis combustion apparatus according to the present invention will be described in detail through examples.

실시예1Example 1 - 유동화가스의 배출속도에 따른 -According to the discharge rate of the fluidization gas 혼합량측정Mixed volume measurement

본 실험에서 열분해반응로와 연소로의 면적은 동일하게 형성하였다.In this experiment, the area of pyrolysis furnace and combustion furnace was formed equally.

열분해반응로와 연소로를 연통시키는 혼합부의 높이는 7cm로 형성하였다.The height of the mixing unit communicating the pyrolysis reactor and the combustion furnace was 7 cm.

열분해반응로에는 CO2를 유동화가스로 사용하고, 연소로에는 공기를 유동화가스로 사용하였다.CO 2 was used as the fluidizing gas in the pyrolysis reactor, and air was used as the fluidizing gas in the combustion furnace.

실험예1Experimental Example 1

도 4a에 도시된 바와같이 혼합부가 수직격벽 최하단의 3cm 상부로부터 7cm높이로 형성하였다.As shown in FIG. 4A, the mixing part was formed at a height of 7 cm from the top of 3 cm at the bottom of the vertical bulkhead.

유동화속도는 1, 1.5, 2, 2.5 Umf로 하였으며, 열분해반응로와 연소로의 유동화속도를 서로 다르게 변경하여 각 속도에 따른 열분해반응로와 연소로 간에 혼합되는 가스량을 측정하였다. 이 때 유동화가스로 열분해반응로와 연소로에 각각 CO2 및 공기를 공급하여 CO2농도를 기준으로 계산한 기체 혼합량을 측정하여 도 4b에 도시하였으며, 산소농도를 기준으로 측정한 기체혼합량을 도 4c에 도시하였다.The fluidization rates were 1, 1.5, 2, and 2.5 Umf, and the amount of gas mixed between the pyrolysis reactors and the combustion furnace was measured by changing the fluidization rates of the pyrolysis reactor and the combustion furnace differently. At this time, by supplying CO 2 and air to the pyrolysis reactor and the combustion furnace as the fluidized gas, respectively, the gas mixture amount calculated based on the CO 2 concentration was measured and shown in FIG. 4B, and the gas mixture amount measured on the basis of the oxygen concentration. Shown in 4c.

상기 도 4b와 도 4c는 x축은 유동화속도이고, y축은 가스 이동량을 표시하여 열분해반응로의 유동화속도변화에 따른 X값(실선)과 Y값(점선)의 변화량을 측정하여 도시하였다.4B and 4C, the x-axis represents the fluidization rate, and the y-axis represents the gas flow rate, and the change amount of the X value (solid line) and the Y value (dotted line) according to the fluidization rate of the pyrolysis reactor is measured and illustrated.

도시된 바와같이 열분해반응로와 연소로 중 상대적으로 어느 한쪽의 유동화속도가 커지면 다른 쪽의 가스가 높은 유동화 속도를 갖는 챔버내로 유입되는 것을 알 수 있다. 또한, 연소로에서의 배출속도를 2.0 ~ 2.5 Umf 정도로 유지할 경우 가스혼합량이 감소됨을 알수 있다. As shown, it can be seen that when the fluidization rate of either one of the pyrolysis reactor and the combustion furnace is increased, the other gas is introduced into the chamber having a high fluidization rate. In addition, it can be seen that the gas mixture is reduced when the discharge rate from the combustion furnace is maintained at about 2.0 to 2.5 Umf.

실험예2Experimental Example 2

도 5a에 도시된 바와같이 결합부를 수직격벽의 최하단에 7cm 높이로 형성하였다.As shown in FIG. 5A, the coupling part was formed at a height of 7 cm at the bottom of the vertical bulkhead.

실험예1과 동일한 조건으로 혼합가스량을 측정하였다. 이 때 유동화가스로 열분해반응로와 연소로에 CO2 및 공기를 각각 공급하여 CO2의 농도를 기준으로 가스 혼합량을 측정하여 도 5b에 도시하였으며, 산소농도를 기준으로 가스 혼합량을 측정하여 도 5c에 도시하였다.The amount of mixed gas was measured under the same conditions as in Experimental Example 1. At this time, CO 2 and air were respectively supplied to the pyrolysis reactor and the combustion furnace as the fluidizing gas, and the amount of gas mixed was measured based on the concentration of CO 2 , and is illustrated in FIG. 5B, and the amount of gas mixed was measured based on the oxygen concentration. Shown in

도시된 바와같이 유동화가스의 배출속도를 2.0 ~ 2.5 Umf 정도로 유지할 경우 가스혼합량이 감소됨을 알 수 있다. As shown, it can be seen that the amount of gas mixture is reduced when the discharge rate of the fluidization gas is maintained at about 2.0 to 2.5 Umf.

상기 실험예1과 실험예2에서 연소로에서 열분해반응로로 유입되는 가스량인 X값과 열분해반응로에서 연소로 유입되는 가스량인 Y값을 비교하여 도 6a와 6b에 도시하였다.6a and 6b comparing the X value of the gas amount introduced into the pyrolysis reactor from the combustion furnace and the Y value of the gas amount introduced into the combustion reactor from the pyrolysis reactor in Experimental Example 1 and Experimental Example 2 are shown.

실험예1과 실험예2의 모델을 비교하였을 때 유동화속도와는 무관하게 저면에 혼합부가 형성된 실험예2의 모델이 실험예1보다는 열분해반응로와 연소로의 혼합량이 적은 것을 알수 있다. 따라서, 본 발명에 따른 열분해반응로와 연소로가 일체로 형성된 열분해연소장치는 단턱없이 하부를 연통시켜 열교환이 직접 이루어지도록 하는 것이 바람직하다.Comparing the models of Experimental Example 1 and Experimental Example 2, it can be seen that the model of Experimental Example 2, in which the mixing part was formed on the bottom surface, regardless of the fluidization rate, was less mixed in the pyrolysis reactor and the combustion furnace than Experimental Example 1. Therefore, the pyrolysis combustion apparatus in which the pyrolysis reactor and the combustion furnace are integrally formed according to the present invention is preferably configured such that heat exchange is directly performed by communicating the lower portion without step.

도 1은 본 발명에 따른 열분해연소시스템의 열분해연소장치를 도시한 개략도.1 is a schematic diagram showing a pyrolysis combustion apparatus of a pyrolysis combustion system according to the present invention.

도 2는 본 발명에 따른 열분해연소장치에 사이클론을 더 장착한 개략도.Figure 2 is a schematic diagram further equipped with a cyclone in the pyrolysis combustion apparatus according to the present invention.

도 3은 본 발명에 따른 열분해연소시스템을 도시한 개략도.3 is a schematic view showing a pyrolysis combustion system according to the present invention.

도 4a는 본 발명의 실험예1에 따른 열분해연소장치를 도시한 개략도.Figure 4a is a schematic diagram showing a pyrolysis combustion apparatus according to Experimental Example 1 of the present invention.

도 4b는 실험예1을 이용해 CO2농도를 이용하여 혼합량을 측정한 그래프.Figure 4b is a graph measuring the mixing amount using the concentration of CO 2 using Experimental Example 1.

도 4c는 실험예1을 이용해 산소농도를 이용하여 혼합량을 측정한 그래프.Figure 4c is a graph measuring the mixing amount using the oxygen concentration using Experimental Example 1.

도 5a는 본 발명의 실험예2에 따른 열분해연소장치를 도시한 개략도.Figure 5a is a schematic diagram showing a pyrolysis combustion device according to Experimental Example 2 of the present invention.

도 5b는 실험예2을 이용해 CO2농도를 이용하여 혼합량을 측정한 그래프.Figure 5b is a graph measuring the mixing amount using the concentration of CO 2 using Experimental Example 2.

도 5c는 실험예2을 이용해 산소농도를 이용하여 혼합량을 측정한 그래프.Figure 5c is a graph measuring the mixing amount using the oxygen concentration using Experimental Example 2.

도 6a와 6b는 실험예1과 실험예2의 측정데이터를 비교한 그래프.Figure 6a and 6b is a graph comparing the measurement data of Experimental Example 1 and Experimental Example 2.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10 : 열분해시스템 20 : 열분해연소장치10: pyrolysis system 20: pyrolysis combustion device

21 : 열분해반응로 22 : 연소로21: pyrolysis reactor 22: combustion furnace

23 : 수직격벽 24 : 혼합부23: vertical bulkhead 24: mixing section

25 : 공급피더 30 : 사이클론25: feed feeder 30: cyclone

40 : CO2이송관 50 : 순환관40: CO 2 transfer pipe 50: circulation pipe

60 : 회류관60: flow pipe

Claims (4)

고체연료를 유동층물질이 충전된 열분해반응로에 투입하여 열분해로 필요성분인 가연성가스와 오일성분을 수취하여 저장하고, 잔여물은 연소로에 공급하여 연소시킴으로써 연소열은 유동층물질을 통해 열분해반응로로 공급되도록 하고, 상기 열분해반응로의 상부에는 사이클론을 연통설치하여 분리된 고체성분을 연소로로 공급하도록 하고, 상기 연소로의 상부에는 CO2이송관을 연통설치하여 발생된 CO2를 포집하도록 하고, 연소가스인 CO2는 유동화가스로 재순환시켜 고농도로 저장하는 열분해연소시스템(10)에 있어서,The solid fuel is put into a pyrolysis reactor filled with fluidized bed material, and it receives and stores the combustible gas and oil components necessary for pyrolysis, and the residue is fed to the combustion furnace to combust the combustion heat through the fluidized bed material to the pyrolysis reactor. In the upper part of the pyrolysis reactor, a cyclone is installed in communication to supply the separated solid component to the combustion furnace, and a CO 2 transfer pipe is installed in the upper part of the combustion furnace to collect the generated CO 2 . In the pyrolysis combustion system (10), the combustion gas CO 2 is recycled to the fluidized gas and stored at a high concentration. 수직통체의 챔버 중앙에 수직격벽(23)을 형성하여 챔버를 열분해반응로(21)와 연소로(22)로 구획하고, 상기 수직격벽의 하부에 혼합부(24)를 형성해 열분해반응로와 연소로의 하부를 연통시켜 충전된 유동층물질 간에 열교환이 직접 이루어지도록 하되 상기 연통된 혼합부는 충전된 유동층물질 내에 위치하도록 하여 열분해반응로와 연소로의 가스교환이 차단되도록 하고, 상기 열분해반응로와 연소로에는 구비된 분사노즐에서 분사되는 유동화가스에 의해 유동층물질의 유동이 이루어지도록 하고, 상기 열분해반응로의 일측에는 공급피터(25)가 연통되어 정량으로 고체연료를 공급하는 열분해연소장치(20)를 포함하여 구성됨을 특징으로 하는 열분해반응로와 연소로가 일체로 형성된 열분해연소시스템.A vertical bulkhead 23 is formed at the center of the chamber of the vertical cylinder to partition the chamber into a pyrolysis reactor 21 and a combustion furnace 22, and a mixing unit 24 is formed at the lower portion of the vertical bulkhead to form a pyrolysis reactor and combustion. The lower part of the furnace communicates with each other so that the heat exchange is directly performed between the packed fluidized bed materials, but the communicating mixture is located in the packed fluidized bed material so that gas exchange between the pyrolysis reactor and the combustion furnace is blocked, and the pyrolysis reactor and the combustion are carried out. Pyrolysis combustion apparatus 20 for the flow of the fluidized bed material by the fluidized gas injected from the injection nozzle provided in the furnace, and the supply peter 25 is connected to one side of the pyrolysis reaction furnace to supply the solid fuel in a quantitative manner. A pyrolysis combustion system in which a pyrolysis reactor and a combustion furnace are integrally formed. 삭제delete 삭제delete 제1항에 있어서,The method of claim 1, 상기 CO2이송관(40)에는 순환관(50)을 연통설치하고, 상기 순환관을 통해 CO2는 열분해연소장치인 열분해반응로(21)와 연소로(22)에 각각 유동화가스로 공급되어 유동층물질이 유동되도록 한 것을 특징으로 하는 열분해반응로와 연소로가 일체로 형성된 열분해연소시스템.The circulation pipe 50 is installed in communication with the CO 2 transfer pipe 40, and through the circulation pipe, CO 2 is supplied as a fluidization gas to the pyrolysis reactor 21 and the combustion furnace 22, respectively. A pyrolysis combustion system in which a pyrolysis reactor and a combustion furnace are integrally formed.
KR1020070105241A 2007-10-18 2007-10-18 Pyrolysis Reactor and char Combustor intergrally formed Pyrolysis-Combustor System KR100911030B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070105241A KR100911030B1 (en) 2007-10-18 2007-10-18 Pyrolysis Reactor and char Combustor intergrally formed Pyrolysis-Combustor System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070105241A KR100911030B1 (en) 2007-10-18 2007-10-18 Pyrolysis Reactor and char Combustor intergrally formed Pyrolysis-Combustor System

Publications (2)

Publication Number Publication Date
KR20090039534A KR20090039534A (en) 2009-04-22
KR100911030B1 true KR100911030B1 (en) 2009-08-05

Family

ID=40763399

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070105241A KR100911030B1 (en) 2007-10-18 2007-10-18 Pyrolysis Reactor and char Combustor intergrally formed Pyrolysis-Combustor System

Country Status (1)

Country Link
KR (1) KR100911030B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230163231A (en) 2022-05-23 2023-11-30 한국에너지기술연구원 Inner dual fluidized bed pyrolysis combustion reactor for high-efficiency heat exchange and operating method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110006030B (en) * 2019-03-19 2020-05-19 西安交通大学 Device and method for efficient burnout and low-nitrogen reduction of pulverized coal pre-pyrolysis
KR102503537B1 (en) * 2020-11-23 2023-02-24 한국에너지기술연구원 Inner dual fluidized bed pyrolysis combustion reactor and its system for high-efficiency heat exchange

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920001094B1 (en) * 1988-01-12 1992-02-01 미쯔비시주우고오교오 가부시기가이샤 Method of buring solid fuel by means of a fluidized bed
KR20010031757A (en) * 1997-11-04 2001-04-16 마에다 시게루 Fluidized bed gasification combustion furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920001094B1 (en) * 1988-01-12 1992-02-01 미쯔비시주우고오교오 가부시기가이샤 Method of buring solid fuel by means of a fluidized bed
KR20010031757A (en) * 1997-11-04 2001-04-16 마에다 시게루 Fluidized bed gasification combustion furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230163231A (en) 2022-05-23 2023-11-30 한국에너지기술연구원 Inner dual fluidized bed pyrolysis combustion reactor for high-efficiency heat exchange and operating method thereof

Also Published As

Publication number Publication date
KR20090039534A (en) 2009-04-22

Similar Documents

Publication Publication Date Title
CN101622508B (en) Apparatus for controlling grain circulation amount in circulatory fluidized bed furnace
CN101625117B (en) Biomass vaporizing combustion coupled type cyclone boiler
RU2448765C2 (en) Fluid bed reactor with furnace-type pulsed heat transfer modules
WO2010124406A1 (en) Equipment and a method for generating biofuel based on rapid pyrolysis of biomass
PL192012B1 (en) Apparatus for gasifying carbon-containing batch substances
CN101555410B (en) A method for performing pyrolysis and a pyrolysis apparatus
CN108026458A (en) Industrial furnace is integrated with biomass gasification system
CN106995708A (en) A kind of biomass charcoal making system and method
KR100911030B1 (en) Pyrolysis Reactor and char Combustor intergrally formed Pyrolysis-Combustor System
CN116694344A (en) Pyrolysis reaction system and method for pyrolyzing organic feed
CN105602628B (en) Biomass/coal carbonization gas metaplasia production high heating value synthesis gas device and method
CN107892932A (en) A kind of technology with circulating gas destructive distillation low-order coal
JP6098129B2 (en) Circulating fluidized bed gasifier
KR20220147600A (en) Raw material processing equipment and processing method
KR101273312B1 (en) Fluidized bed combustion apparatus with stair type air supplier
US4428308A (en) Linear down-draft biomass gasifier
CH693034A5 (en) A method for the treatment of solid materials and device for carrying out the process.
US8257453B2 (en) Method and device for gasifying gasification fuel
JP6008082B2 (en) Gasification apparatus and gasification method
CN101627103A (en) Equipment for gasification in fluidized bed
KR20100038915A (en) Multi-pyrolysis reactor and char combustor intergrally formed pyrolysis-combustor system
KR100913163B1 (en) Pyrolysis System of Obtaining High Concentration ??2 and Useful Ingredient
CN101072852A (en) Method for the gasification of carbonaceous materials and device for implementing same
CN103148696B (en) Device for preparing hot air for drying of clay mineral powder
NZ201277A (en) Combustible gas producer plant:fluidised bed divided into combustible gas producing section and heating section

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120718

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130731

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140724

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150728

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20161118

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee