KR100907239B1 - 가속기 고주파 제어 방법 - Google Patents

가속기 고주파 제어 방법 Download PDF

Info

Publication number
KR100907239B1
KR100907239B1 KR1020070121520A KR20070121520A KR100907239B1 KR 100907239 B1 KR100907239 B1 KR 100907239B1 KR 1020070121520 A KR1020070121520 A KR 1020070121520A KR 20070121520 A KR20070121520 A KR 20070121520A KR 100907239 B1 KR100907239 B1 KR 100907239B1
Authority
KR
South Korea
Prior art keywords
high frequency
accelerator
tube
change
acceleration
Prior art date
Application number
KR1020070121520A
Other languages
English (en)
Other versions
KR20090054703A (ko
Inventor
권혁중
조용섭
김한성
Original Assignee
한국원자력연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구원 filed Critical 한국원자력연구원
Priority to KR1020070121520A priority Critical patent/KR100907239B1/ko
Publication of KR20090054703A publication Critical patent/KR20090054703A/ko
Application granted granted Critical
Publication of KR100907239B1 publication Critical patent/KR100907239B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/003Manipulation of charged particles by using radiation pressure, e.g. optical levitation

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Particle Accelerators (AREA)

Abstract

본 발명은 고주파 가속기의 고주파 전력을 제어하는 방법에 관한 것으로서, 더욱 상세하게는 가속관 고주파 전력 신호에 대한 주기적인 계단 응답 특성을 고려하여, 매 펄스 신호 부가시, 입자 가속과 무관한 과도응답 구간에서 가속관의 공진 주파수 변화 측정을 통해 가속관 특성 변화에 의한 위상 변화를 산출하여, 입자 가속이 이루어지는 정상상태응답 구간에서 상기 산출된 위상 변화를 보상하여 줌으로써, 가속기 운전중 가속관의 특성 변화에 따른 제어 루프의 위상 변화를 효과적으로 보상해주는 가속기 고주파 제어 방법에 관한 것이다.
본 발명에 따른 가속기 고주파 제어 방법은, 가속기 고주파 제어 시스템에서 인가되는 가속관 고주파 전력 신호값에 대한 주기적인 계단 응답 특성을 이용하여, 매 펄스 신호 부가시, 입자 가속과 무관한 과도응답 구간에서 가속관의 공진 주파수 변화 측정을 통해 가속관 특성 변화에 의한 고주파 위상 변화를 산출하여, 입자 가속이 이루어지는 정상상태응답 구간에서 상기 산출된 위상 변화를 보상해주는 점을 특징으로 한다.
고주파 가속기, 가속관, 고주파 전력, 제어, 위상 지연, 이득 계획

Description

가속기 고주파 제어 방법{A method for controlling the radio-frequency accelerator}
본 발명은 고주파 가속기의 고주파 전력을 제어하는 방법에 관한 것으로서, 더욱 상세하게는 가속관 고주파 전력 신호에 대한 주기적인 계단 응답 특성을 고려하여, 매 펄스 신호 부가시, 입자 가속과 무관한 과도응답 구간에서 가속관의 공진 주파수 변화 측정을 통해 가속관 특성 변화에 의한 위상 변화를 산출하여, 입자 가속이 이루어지는 정상상태응답 구간에서 상기 산출된 위상 변화를 보상하여 줌으로써, 가속기 운전중 가속관의 특성 변화에 따른 제어 루프의 위상 변화를 효과적으로 보상해주는 가속기 고주파 제어 방법에 관한 것이다.
고주파 가속기(radio-frequency accelerators)는 고주파 전력을 이용하여 입자를 반복적으로 가속시켜 차츰 그 에너지를 상승시킴으로써 의도한 최종에너지까지 가속시키는 장치로서, 신소재 개발, 반도체 생산, 유전자원 개발, 첨단의료기기, 유전자 조작, 반도체 생산 등의 분야에 폭넓게 활용되고 있다.
고주파 가속기는 통상적으로 고주파 전력을 발생시켜 가속기의 가속관으로 공급해주는 고주파 시스템과 연결되어 있는데, 고주파 가속기의 정상적인 작동을 위해서는 가속관에서의 고주파 크기 및 위상이 그 목표값으로부터 일정한 범위 내에서 제어되어야 한다.(선형 양성자 가속기의 경우는 통상 각각 1 %와 1 ° 이내임)
도 1은 이와 같은 고주파의 크기 및 위상 제어에 사용도는 종래의 가속기 고주파 제어 시스템의 구성도이다.
도 1에 도시된 바와 같이, 종래의 가속기 고주파 제어 시스템은 관로를 통과하는 입자를 고주파 전력에 의해 가속시키는 가속관(10)과, 가속관(10) 측으로 고출력의 고주파 전력을 공급해주는 고주파 증폭기(20)와, 고주파 증폭기(20)에 고주파 생성을 위한 펄스 신호를 공급해주는 I/Q 모듈레이터(30)와, 가속관(10)의 고주파 전력 신호를 피드백(feedback)받아 I/Q 모듈레이터(30)로 제어 신호를 출력해주는 고주파 제어기(40)를 포함하여 구성되는 피드백 제어시스템, 즉 폐루프(closed loop) 제어시스템이다.
이와 같은 가속기 고주파 제어 시스템의 제어 루프에는 다양한 위상 지연 요소가 존재하는데, 그 중 중요한 요소들로는 고주파 전송선에 의한 위상 지연(Φ1), 가속관 특성값 변화에 의한 위상 지연(Φ2), 고주파 측정 신호선에 의한 위상 지연(Φ3), 제어기 신호 처리에 의한 위상 지연(Φ4)이 있다.
여기서, 가속관 특성값 변화에 의한 위상 지연(Φ2)은 운전 중 발생하는 외부 섭동에 의해 가속관(10)의 특성이 변화하는 데에 따른 위상 지연으로서, 운전 중에 온도 변화에 의해 가속관(10)의 공진 주파수가 변동되어 발생하는 위상 지연 을 예로 들 수 있다. 따라서, 고주파 전송선에 의한 위상 지연(Φ1), 고주파 측정 신호선에 의한 위상 지연(Φ3), 제어기 신호 처리에 의한 위상 지연(Φ4)은 운전하는 동안 거의 일정한 값을 갖는데 반하여, 가속관 특성값 변화에 의한 위상 지연(Φ2)은 운전중 계속 변화하게 된다.
도 2는 제어 루프의 위상 지연을 보상하지 않은 경우 시간 경과에 따른 가속관 측 I/Q 신호를 나타내는 그래프로서, 고주파 제어기에서 I 신호만을 제어신호로 출력하였을 때 가속관으로부터 피드백되는 I/Q 신호의 변화를 보여주고 있다.
도 2를 살펴보면, 가속관의 공진 주파수 변화량이 0일 때 I/Q 선도의 기울기가 30°를 이루고 있어 제어 루프 전체의 위상 지연이 30°로 일정하게 유지됨을 알 수 있다. 한편, 가속관의 공진 주파수 변화량이 +10 kHz, -10 kHz 인 경우에는 I/Q 선도의 기울기가 시간 경과에 따라 변경되는 것으로부터 제어 루프 전체의 위상 지연이 가속기 운전 중에 지속적으로 변화함을 알 수 있다.
이와 같이 가속기 고주파 제어 시스템의 제어 루프에서 발생하는 위상 지연은 가속관 측 고주파 전력의 위상이 지연되는 결과로 나타나며, 이는 가속관의 정상적인 입자 가속 기능을 저해하는 요인으로 작용하게 된다.
따라서, 통상 가속관 운전 시작 시에 제어 루프에서 발생하는 위상 지연을 측정하고 이를 고주파 제어기의 위상 지연 보상값(위상 여유; phase margin)으로 설정해 둠으로써, 가속관 운전 중에 제어 루프에서 발생하는 위상 지연을 보상하여 가속관의 고주파 전력을 제어하고 있다.
도 3은 제어 루프의 위상 지연을 보상하는 경우 시간 경과에 따른 가속관 측 I/Q 신호를 나타내는 그래프로서, 운전 초기에 측정된 위상 지연값이 30°이고 이를 위상 지연 보상값으로 설정하였을 때 가속관으로부터 피드백되는 I/Q 신호의 변화를 보여주고 있다.
도 3을 살펴보면, 가속관의 공진 주파수 변화량이 0일 때에는 제어 루프의 위상 지연이 성공적으로 보상 되어 0°로 일정하게 유지됨을 알 수 있다.
그러나, 가속관의 공진 주파수 변화량이 +10 kHz, -10 kHz 인 경우에는 제어 루프의 위상 지연이 지속적으로 변화하며, 실제 가속기 운전 중에 가속관의 공진 주파수 변화량이 -10 kHz에서 +10 kHz 사이의 범위에서 변동하는 경우에는, 공진 주파수 변화량이 -10 kHz와 +10 kHz인 경우의 두 선도 사이에서 제어 루프의 위상 지연이 복잡하게 변화하게 됨을 알 수 있다.
따라서, 초기 설정값으로부터 벗어난 위상 지연 변화에 대한 적절한 보상이 이루어지지 않는다면, 보상되지 못한 위상 지연은 가속기 고주파 시스템 제어 특성에 영향을 미치고, 결국 가속기의 빔 특성에도 영향을 주게 되는 문제점이 발생한다.
본 발명은 상기한 종래 기술에 따른 가속기 고주파 제어 시스템의 문제점을 해결하기 위한 것이다. 즉, 본 발명의 목적은, 가속관 고주파 전력 신호에 대한 주기적인 계단 응답 특성을 고려하여, 매 펄스 신호 부가시, 입자 가속과 무관한 과도응답 구간에서 가속관의 공진 주파수 변화 측정을 통해 가속관 특성 변화에 의한 위상 변화를 산출하여, 입자 가속이 이루어지는 정상상태응답 구간에서 상기 산출된 위상 변화를 보상하여 줌으로써, 가속기 운전중 발생하는 가속관의 특성 변화에 무관하게 일정한 위상 여유를 확보하여 안정성이 높은 제어 성능을 제공하는 데에 있다.
상기의 목적을 달성하기 위한 기술적 사상으로서의 본 발명은, 가속기 고주파 제어 시스템에서 인가되는 가속관 고주파 전력 신호값에 대한 주기적인 계단 응답 특성을 이용하여, 매 펄스 신호 부가시, 입자 가속과 무관한 과도응답 구간에서 가속관의 공진 주파수 변화 측정을 통해 가속관 특성 변화에 의한 고주파 위상 변화를 산출하여, 입자 가속이 이루어지는 정상상태응답 구간에서 상기 산출된 위상 변화를 보상해주는 것을 특징으로 하는 가속기 고주파 제어 방법을 제공한다.
본 발명에 따른 가속기 고주파 제어 방법은 가속기 운전중 고주파 증폭기로 인가되는 매 펄스 신호마다 가속관의 공진 주파수 변화를 측정하여 그로 인한 위상 지연 변화를 지속적으로 보상해줌으로써, 제어 대상인 가속관의 특성 변화에 관계없이 일정한 제어 성능을 유지할 수 있으며, 빔 로딩 등의 추가적인 제어가 필요한 경우에도 제어 시스템의 부하를 경감시켜줄 수 있는 효과가 있다.
이하, 본 발명의 바람직한 실시예를 첨부 도면에 의거하여 상세하게 설명하기로 한다.
도 4는 본 발명이 적용되는 가속기 고주파 제어 시스템의 구성도이다.
본 발명이 적용되는 가속기 고주파 제어 시스템은 입자를 가속시키는 가속관(110)과, 가속관(110) 측으로 고출력의 고주파 전력을 생성하여 공급해주는 고주파 증폭기(120)와, 고주파 증폭기(120)에 고주파 생성을 위한 펄스 신호를 공급해주는 I/Q 모듈레이터(130)와, 가속관(110)의 고주파 전력 신호를 피드백받아 I/Q 모듈레이터(130)로 제어 신호를 출력해주는 고주파 제어기(140)를 포함하여 구성된다.
I/Q 모듈레이터(130)는 고주파 증폭기(120)의 고주파 생성을 위한 작은 크기의 펄스 신호를 발생시키는 장치로서, 제어 신호로 I(Inphase; 동위상) 신호와 Q(Quadrature; 직교위상) 신호를 입력받아 해당하는 I와 Q 성분을 가지는 펄스 신호를 생성한다.
고주파 증폭기(120)는 I/Q 모듈레이터(130)로부터 공급되는 펄스 신호와 외부로부터 공급되는 전원을 이용하여 고주파 전력을 발생시켜 가속관(110)으로 공급해주게 된다.
고주파 제어기(140)는 가속관(110)으로부터 검출된 고주파 전력의 Ii 및 Qi 신호를 입력받아 제어 루프의 위상 지연을 보상해주는 위상지연보상기(141)와, 위상지연보상기(141)로부터 입력되는 신호값과 제어 목표값(I/Q 설정값)을 비교하여 그 차이를 출력해주는 비교기(142)와, 비교기(142)로부터 입력되는 신호로부터 제어 연산을 통해 I/Q 모듈레이터(130)로 제어 신호인 Io, Qo를 출력해주는 제어연산기(143)로 구성된다. 여기서, 제어연산기(143)는 고주파 제어의 특성을 고려하여 비례/적분(P/I) 이득이 적용되는 비례적분(PI) 제어기가 사용된다.
여기서, 고주파 제어기(140)로부터 출력되는 제어 신호(Io, Qo)는 I/Q 모듈레이터(130)의 펄스 신호를 제어하기 위해 펄스 신호의 주기에 따라 반복되는 계단 신호의 형태를 띄게 되며, 이에 따라 제어 대상이 되는 가속관(110)의 고주파 전력 신호값은 과도응답(transient response)과 정상상태응답(steady state response)으로 이루어지는 계단 응답 특성을 반복적으로 보이게 된다. 또한, 가속관(110)으로부터 검출되는 고주파 전력의 Ii 및 Qi 값은 복소 평면 상에서 고주파 전력의 동 위상과 직교 위상을 나타내는 변수이므로, 이들 값 역시 펄스 신호의 주기에 따라 과도응답과 정상상태응답을 반복하게 된다.
따라서, 가속관 운전시 가속관으로의 입자 유입을 단속하여, 고주파 전력이 상승하고 있는 과도응답 구간(이하, 고주파 상승 구간이라 칭함; 통상적으로 10~20 μsec)에서는 입자 가속을 중지시키고, 고주파 전력이 피크치에 달하는 정상상태응답 구간에서는 정상적으로 입자를 가속시키게 된다.
이하, 상술한 바와 같이 구성된 가속기 고주파 제어 시스템의 제어 루프에서 발생하는 위상 지연을 보상하기 위한 고주파 제어기(140)의 제어 방법에 대하여 설명하기로 한다.
먼저 가속관 특성값 중에서 공진 주파수 변화와 이에 따른 제어 루프의 고주파 위상 변화는 다음의 수학식 1로 기술할 수 있다.
Figure 112007085322056-pat00001
여기서, Φ는 가속관에서의 위상 지연, QL은 가속관의 품질계수(quality factor), f는 가속관에 공급되는 고주파 전력 주파수, f0는 가속관의 공진 주파수이다.
상기 수학식 1에서 품질계수(QL)와 가속관에 공급되는 고주파 전력 주파수(f)는 가속기 운전 중에 거의 일정하게 유지되므로 가속관(110)에서의 위상 지연은 결국 가속관(110)의 공진 주파수에 따라 변화됨을 알 수 있다. 따라서, 가속기 운전 시의 공진 주파수 변화량을 구하게 되면 상기 수학식 1에 변화된 공진 주파수를 대입하여 가속관(110)에서의 위상 지연을 산출할 수 있으며, 이로부터 제어 루프 전체의 위상 지연 변화량을 구하여 고주파 제어기(140)의 위상 지연 보상값을 변경할 수 있게 된다.
한편, 개루프의 경우 고주파 제어기(140)에서 제어 신호로서 계단 신호 형태의 I 신호만을 I/Q 모듈레이터(130)로 출력해 주었을 때, 가속관(110)으로부터 검출되는 Q/I 신호의 비는 다음의 식과 같이 나타낼 수 있다.
Figure 112007085322056-pat00002
여기서, ω1/2 은 가속관의 대역폭(bandwidth), Δω는 가속관의 공진주파수 변화량, t는 시간이다.
상기 수학식 2에 대하여 매우 작은 시간(t << 1) 영역에서 시간에 대한 2차항까지 이용하여 근사식을 구하면 Q/I 신호의 비는 다음의 식과 같이 간단하게 나타낼 수 있다.
Figure 112007085322056-pat00003
상기 수학식 3을 이용하면 t << 1인 특정 시점에서 가속관(110)의 고주파 전력에 대한 Q/I 신호비로부터 가속관(110)의 공진 주파수 변화량을 산출할 수 있으며, 해당 시점에서의 공진 주파수를 상기 수학식 1에 대입하면 제어 루프의 고주파 위상 변화를 구할 수 있다.
따라서, 고주파 제어기(140)에서 P 이득 및 I 이득에 대한 이득 계획(gain schedule)을 수립하여 시간 경과에 따라 P 이득 및 I 이득을 조절함으로써, 입자 가속에 사용되지 않는 가속관 고주파 상승 구간 동안에는 제어 시스템을 개루프(open loop)로 동작시켜 제어 루프의 위상 변화를 측정하고, 입자 가속에 사용되는 정상상태응답 구간에서는 폐루프(closed loop)로 동작시켜 상기 측정된 위상 변화를 보상하여 줌으로써 가속관(110)의 고주파를 제어하게 된다. 즉, 가속관 고주파 상승 구간 동안 비교기(142)로 입력되는 피드백 신호를 제거하고 P 이득을 1로 설정하여 피드백 신호에 관계 없이 일정한 제어 신호를 출력시킴으로써 전체 제어 루프를 개루프로 동작시키며, 정상상태응답 구간에 도달하였을 때는 일반적인 폐루프 제어에서와 같이 비교기(142)로 피드백 신호를 입력시키는 동시에 P 이득을 적정값으로 재설정하여 비례적분 제어가 적용된 제어 신호를 출력시킴으로써 전체 제어 루프를 폐루프로 동작시킬 수 있다.
도 5는 종래의 고주파 제어 방법과 본 발명에 따른 제어 방법의 이득 계획을 비교해서 보여주는 도면이다.
이하에서는, 도 5를 참조하여, 위에서 설명한 고주파 제어기(140)의 이득 계획에 의한 제어 방법에 대하여 종래의 고주파 제어 방법과의 비교를 통해 상세히 설명하기로 한다.
종래의 고주파 제어 방법은 전형적인 폐루프 제어 방법에 따라, 도 5의 (a)에서와 같이, I/Q 입력 신호(Ii, Qi)에 대하여 운전 시작시에 일정하게 설정된 위상 지연 보상값을 적용하여 위상 지연이 보상된 신호를 비교기(142)에 입력하고, I/Q 설정값으로부터 비교기 입력 신호를 감산한 결과치에 기 설정된 P 이득과 I 이득을 적용하여 최종 제어 신호인 I/Q 출력 신호(Io, Qo)를 만들어 내게 된다.
이와 같이 종래의 고주파 제어 방법은 운전 시작시에 최초 1회 설정된 위상 지연 보상값을 지속적으로 적용하여 위상 지연을 보상하기 때문에, 공진 주파수와 같은 가속관 특성의 변화에 의해 발생하는 가속관에서의 고주파 위상 지연 변화에 적절하게 대응할 수 없다.
한편, 본 발명에 따른 고주파 제어 방법은, 도 5의 (b)에서와 같이, 가속관(110) 측의 고주파 전력, 즉 I/Q 입력 신호(Ii, Qi)의 과도응답 구간에서는 비교기 입력 신호를 0으로, P, I 이득 설정값은 각각 1과 0으로 설정하여 제어 시스템을 개루프로 동작시키고, 그 이후의 정상상태응답 구간에서는 위상지연보상기(141)로부터 출력되는 신호를 비교기(142)로 입력시키는 동시에 P, I 이득 값을 적절한 비례미분 제어를 위해 미리 설계된 값으로 재설정하여 폐루프로 동작시키는 과정을 통해, I/Q 모듈레이터(130)의 매 출력 펄스에 대한 제어를 개루프와 폐루프의 두 구간으로 나누어 수행하게 된다.
먼저 개루프 구간을 살펴보면, 해당 구간, 즉 가속관 고주파 상승 구간의 최초 1/10 정도 이내의 구간을 위상 지연 측정 구간으로 정하고, 위상 지연 측정 구간 동안 I/Q 설정값중 I 설정값만을 제어 목표값으로 설정하고 Q 설정값은 0으로 설정하여 I/Q 출력 신호 중에서 I 신호만 출력되게 함으로써 상기 수학식 3 및 수학식 1을 이용하여 I/Q 입력 신호(Ii, Qi)의 비로부터 가속관(110)의 공진 주파수 변화량 및 고주파 위상 변화량을 산출한다. 이와 같이 산출된 고주파 위상 변화량에 따라 기설정되어 있는 고주파 제어기(140)의 위상 지연 보상값을 가감하여 재설정하며, 위상 지연 측정 구간 이후에는 I/Q 설정값의 Q 설정값을 제어 목표값으로 설정함으로써 I 신호와 Q 신호가 모두 출력되게 한다. 여기서, 고주파 위상 변화량은 위상 지연 측정 구간 중에 한번만 산출되거나 또는 여러번 산출되어 그 평균값으로 적용될 수도 있다.
이후 폐루프 구간에서는 I/Q 입력 신호(Ii, Qi)에 상기 설정된 위상 지연 보상값을 적용하여 위상 지연을 보상해주고 위상 지연이 보상된 I/Q 신호를 비교기(142)에 입력시킴으로써 해당하는 I/Q 모듈레이터(130)의 출력 펄스에 대하여 위상 지연이 보상된 PI 제어를 수행하게 된다. 여기서, I/Q 모듈레이터(130)의 출력 펄스 주기는 가속관(110)의 공진 주파수 변화 주기에 비하여 지극히 짧은 기간이므로, 가속관(110)의 공진 주파수는 폐루프 구간 동안 거의 일정한 값으로 유지되어 제어 루프 전체의 위상 지연 역시 해당 주기 동안 일정하게 유지되며, 이는 위상 지연 측정 구간에 설정된 위상 지연 보상값에 의해 성공적으로 보상될 수 있다.
이와 같이 본 발명의 고주파 제어 방법은 제어 구간을 가속관 고주파 전력 신호값이 나타내는 계단 응답에 따라 과도응답 구간과 정상상태응답 구간으로 구분하고, 과도응답 구간, 즉 가속관 고주파 상승 구간 동안 측정된 가속관(110)의 공진 주파수 변화로부터 가속관(110)에 의한 위상 변화를 산출하여 위상 지연 보상값을 재설정하고, 정상상태응답 구간에서는 상기 재설정된 위상 지연 보상값을 적용 하여 가속관 특성 변화에 따른 위상 지연 변화를 보상해 줌으로써, 결과적으로 전체 제어 기간 동안 고주파 제어기(140)의 위상 지연 보상값에 대한 지속적인 변경을 통해 제어 대상인 가속관(110)의 특성 변화에 상관없이 운전 중 일정한 제어 성능을 갖는 가속기 고주파 제어 시스템을 제공할 수 있다.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것은 아니며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백하다 할 것이다.
도 1은 고주파의 크기 및 위상 제어에 사용도는 종래의 가속기 고주파 제어 시스템의 구성도.
도 2는 제어 루프의 위상 지연을 보상하지 않은 경우 시간 경과에 따른 가속관 측 I/Q 신호를 나타내는 그래프.
도 3은 제어 루프의 위상 지연을 보상하는 경우 시간 경과에 따른 가속관 측 I/Q 신호를 나타내는 그래프.
도 4는 본 발명이 적용되는 가속기 고주파 제어 시스템의 구성도.
도 5는 종래의 고주파 제어 방법과 본 발명에 따른 제어 방법의 이득 계획을 비교해서 보여주는 도면.
<도면의 주요 부분에 대한 부호의 설명>
10, 110 : 가속관 20, 120 : 고주파 증폭기
30, 130 : I/Q 모듈레이터 40, 140 : 고주파 제어기
141 : 위상지연보상기 142 : 비교기
143 : 제어연산기

Claims (3)

  1. 가속기 고주파 제어 시스템에서 인가되는 가속관 고주파 전력 신호값에 대한 주기적인 계단 응답 특성을 이용하여 가속관의 고주파 전력을 제어하는 방법에 있어서,
    매 펄스 신호 부가시, 입자 가속과 무관한 과도응답 구간에서 가속관의 공진 주파수 변화 측정을 통해 가속관 특성 변화에 의한 고주파 위상 변화를 산출하여, 입자 가속이 이루어지는 정상상태응답 구간에서 상기 산출된 위상 변화를 보상해주는 것을 특징으로 하는 가속기 고주파 제어 방법.
  2. 제 1항에 있어서,
    제어 구간에 따라 고주파 제어기의 비례 이득 및 적분 이득을 조절함으로써, 상기 과도응답 구간에서는 제어 시스템을 개루프(open loop)로 동작시키고, 상기 정상상태응답 구간에서는 제어 시스템을 폐루프(closed loop)로 동작시키는 것을 특징으로 하는 가속기 고주파 제어 방법.
  3. 제 1항에 있어서,
    상기 과도응답 구간에서는,
    가속관으로부터 검출되는 고주파 전력의 Q(Quadrature; 직교위상) 신호와 I(Inphase; 동위상) 신호로부터 아래의 수식 1을 이용하여 변화된 가속관의 공진주 파수를 산출하고, 상기 산출된 공진주파수를 아래의 수식 2에 대입하여 가속관의 위상 지연을 산출함으로써, 제어 루프의 고주파 위상 변화를 산출하는 것을 특징으로 하는 가속기 고주파 제어 방법.
    (수식 1)
    Figure 112007085322056-pat00004
    1/2 : 가속관의 대역폭(bandwidth), Δω : 가속관의 공진주파수 변화량, t : 시간)
    (수식 2)
    Figure 112007085322056-pat00005
    (Φ : 가속관에서의 위상 지연, QL : 가속관의 품질계수(quality factor), f : 가속관에 공급되는 고주파 전력 주파수, f0 : 가속관의 공진 주파수)
KR1020070121520A 2007-11-27 2007-11-27 가속기 고주파 제어 방법 KR100907239B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070121520A KR100907239B1 (ko) 2007-11-27 2007-11-27 가속기 고주파 제어 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070121520A KR100907239B1 (ko) 2007-11-27 2007-11-27 가속기 고주파 제어 방법

Publications (2)

Publication Number Publication Date
KR20090054703A KR20090054703A (ko) 2009-06-01
KR100907239B1 true KR100907239B1 (ko) 2009-07-10

Family

ID=40986605

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070121520A KR100907239B1 (ko) 2007-11-27 2007-11-27 가속기 고주파 제어 방법

Country Status (1)

Country Link
KR (1) KR100907239B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101310806B1 (ko) * 2011-12-28 2013-09-25 한국원자력연구원 고주파 가속기의 장 분포 튜닝 방법
KR102179422B1 (ko) * 2019-06-20 2020-11-16 한국원자력연구원 고주파 가속기의 공진 주파수 측정 방법 및 그 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263196A (ja) * 1994-03-18 1995-10-13 Toshiba Corp 高周波加速空洞
JPH11273898A (ja) 1998-03-26 1999-10-08 Toshiba Corp 高周波加速空胴
JP2007087855A (ja) 2005-09-26 2007-04-05 Natl Inst Of Radiological Sciences Hモード・ドリフトチューブ線形加速器及びその設計方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263196A (ja) * 1994-03-18 1995-10-13 Toshiba Corp 高周波加速空洞
JPH11273898A (ja) 1998-03-26 1999-10-08 Toshiba Corp 高周波加速空胴
JP2007087855A (ja) 2005-09-26 2007-04-05 Natl Inst Of Radiological Sciences Hモード・ドリフトチューブ線形加速器及びその設計方法

Also Published As

Publication number Publication date
KR20090054703A (ko) 2009-06-01

Similar Documents

Publication Publication Date Title
US11450510B2 (en) Inter-period control system for plasma power delivery system and method of operating same
KR101722381B1 (ko) 비선형 부하에 대한 전기 발생기의 감도를 변경하기 위한 방법 및 장치
US20070274114A1 (en) Non-linear droop control system and method for isochronous frequency operation
KR20100016176A (ko) 전기 발전기와 비선형 부하간의 상호작용을 수정하는 방법 및 장치
JPH08163782A (ja) 電力系統安定化装置
US20190280665A1 (en) Output power stabilization circuit and high output amplifier device using same
KR100907239B1 (ko) 가속기 고주파 제어 방법
Borer et al. Information from beam response to longitudinal and transverse excitation
EP2495607A2 (en) Optical modulation method and system
US20190348840A1 (en) Control of grid connected converter
KR102142288B1 (ko) 분산전원 계통연계 장치의 제어 시스템
US7778353B2 (en) Controller for a radio-frequency amplifier
Akai Stability analysis of rf accelerating mode with feedback loops under heavy beam loading in SuperKEKB
KR101567528B1 (ko) 레이턴시를 줄이기 위한 가속기 고주파 제어 시스템 및 그를 위한 방법
JPH0661761A (ja) マイクロ波管によって増幅された波の位相の不安定性を補償するための方法及び装置
Minty et al. Heavy beam loading in storage ring radio frequency systems
US7672649B2 (en) Controller for a radio-frequency amplifier
Dubrovskiy et al. RF pulse compression stabilization at the CTF3 CLIC test facility
US20200059238A1 (en) Method and apparatus for increasing an operation lifetime of a beam tube
Hassanzadegan et al. A transient model for RF cavity analysis under beam loading
Wang et al. Analytical study of superconducting RF cavity detuning compensation
Fox et al. Klystron linearizer for use with 1.2 MW 476 MHz klystrons in PEP-II RF systems
JPH0923585A (ja) 無効電力補償の制御方法
Errouissi et al. Extended high‐gain observer‐based DC‐link voltage regulation in dual‐stage grid‐tied PV system under balanced and unbalanced voltages
Maalberg et al. Regulation of electron bunch arrival time for a continuous-wave linac: Exploring the application of the H 2 mixed-sensitivity problem

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee