KR100906933B1 - Desufurization process method and system having naoh regeneration process using a decompression evaporation - Google Patents

Desufurization process method and system having naoh regeneration process using a decompression evaporation Download PDF

Info

Publication number
KR100906933B1
KR100906933B1 KR1020080089914A KR20080089914A KR100906933B1 KR 100906933 B1 KR100906933 B1 KR 100906933B1 KR 1020080089914 A KR1020080089914 A KR 1020080089914A KR 20080089914 A KR20080089914 A KR 20080089914A KR 100906933 B1 KR100906933 B1 KR 100906933B1
Authority
KR
South Korea
Prior art keywords
naoh
waste liquid
reduced pressure
desulfurization
pipe
Prior art date
Application number
KR1020080089914A
Other languages
Korean (ko)
Inventor
성관진
Original Assignee
주식회사 한맥씨엔이
성관진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한맥씨엔이, 성관진 filed Critical 주식회사 한맥씨엔이
Priority to KR1020080089914A priority Critical patent/KR100906933B1/en
Application granted granted Critical
Publication of KR100906933B1 publication Critical patent/KR100906933B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Abstract

A desulfurization process method and a system thereof using a decompression evaporation process are provided to prevent environmental contamination, and to minimize generation of wastewater. A desulfurization process system(1) includes a desulfurization washing tower(20), a NaOH reservoir(10), a micro filter(30), a NaOH wastewater reservoir(40), a heat exchanger(60), a decompression tank(50) and a boiler(80). The desulfurization washing tower includes a gas inflow pipe(2), a gas collecting pipe(3), and a spraying nozzle pipe(22). The desulfurization washing tower further includes a NaOH supply pump. The desulfurization process system further includes a NaOH transfer pipe(71), a waste liquid transfer pump, a waste liquid transfer pipe(73) having the micro filter, a waste liquid supply pump, a waste liquid supply pipe, a steam transfer pipe(75), a discharge pipe(77), a concentration transfer pipe(76), a waste liquid circulating pipe(76a), a first and second three-way switch valves.

Description

감압증발을 이용한 NaOH 재활용 공정을 가지는 탈황공정 방법 및 시스템{Desufurization process method and system having NaOH regeneration process using a decompression evaporation}Desulfurization process method and system having NaOH regeneration process using a decompression evaporation}

본 발명은 바이오가스(biogas)생산시 더불어 발생하는 유기황화합물인 황화수소(H2S)를 제거하는 탈황공정에 관한 것으로, 보다 상세하게는 습식 탈황공정에서 사용되는 탈황반응제 중 수산화나트륨(NaOH) 용액을 감압증발 방식을 이용해 필요 농도로 응축시키고 순환시켜 재활용함으로써 폐수의 발생을 최소한으로 줄이고 환경 오염을 방지할 수 있도록 구성된 감압증발을 이용한 NaOH 재활용 공정을 가지는 탈황공정 방법 및 시스템에 관한 것이다. The present invention relates to a desulfurization process for removing hydrogen sulfide (H 2 S), which is an organic sulfur compound generated in the production of biogas, and more specifically, sodium hydroxide (NaOH) in a desulfurization reagent used in a wet desulfurization process. The present invention relates to a desulfurization process method and system having a NaOH recycling process using reduced pressure evaporation configured to condense, circulate, and recycle a solution to a required concentration using a reduced pressure evaporation method to minimize waste generation and prevent environmental pollution.

일반적으로 고농도의 유기물 함량을 갖는 음식물 쓰레기나 축산분뇨의 처리를 위하여 다양한 방법이 활용되고 있으며, 그 중에서 수처리 단위 조작에 의해 혐기성 처리 후 발생된 유기물을 처리하는 액상부식법과 장기 폭기에 의해 호기성 발효 방식으로 처리하는 방법이 널리 사용되어 왔다. In general, various methods are used for the treatment of food waste or livestock manure having a high concentration of organic matter, and among them, aerobic fermentation method by liquid corrosion and long-term aeration to treat organic matter generated after anaerobic treatment by water treatment unit operation. Processes have been widely used.

이러한 고농도의 유기물 함량을 가지는 축산분뇨 등의 처리과정에서 흔히 메 탄(CH4)을 포함한 바이오가스(Biogas)가 생성되는데 상기 바이오가스는 에너지원으로의 활용이 가능할 뿐만 아니라 바이오가스를 생산하고 남은 발효액은 비료로 활용 가능하기 때문에 현재 여러 선진국가에서 상기의 처리방법이 이용되고 있다. In the processing of livestock manure, which has a high concentration of organic matter, biogas, including methane (CH 4 ), is often produced. The biogas can be used as an energy source and is produced after producing biogas. Since fermentation broth can be used as fertilizer, the above treatment method is currently used in many developed countries.

한편, 이러한 최초 발생되는 바이오가스에는 유기물에 따라 그 성상이 달라지지만 대개 함유량의 변화는 있을 수 있으나 메탄(CH4)과, 이산화탄소(CO2), 황화수소(H2S)를 포함하여 구성된다. On the other hand, the first biogas generated by the organic matter, but the properties vary, but may vary in content, but is composed of methane (CH 4 ), carbon dioxide (CO 2 ), hydrogen sulfide (H 2 S).

이중, 황화수소(H2S) 가스는 계란 썩는 냄새가 나는 무색의 기체로서 인체의 위장이나 폐에 흡수되어 질식, 폐질환, 신경중추마비 등을 일으키는 위해성이 큰 기체로 분류되고 있어, 이를 처리하는 탈황공정이 반드시 요구되고 있다. 이러한 탈황공정은 대개 심냉법, 흡수법, 막분리법 및 흡착법 등의 처리방법이 제시되고 있다. Among these, hydrogen sulfide (H 2 S) gas is a colorless gas with a rotting smell of eggs, and is classified as a gas with a high risk of being absorbed into the stomach or lungs of the human body, causing asphyxiation, lung disease, and nerve palsy. Desulfurization is a must. Such a desulfurization process is usually proposed a treatment method such as deep cooling method, absorption method, membrane separation method and adsorption method.

한편, 상기 황화수소가 수산화나트륨(NaOH)과 같은 알칼리성 수용액 중에 흡수됨으로써, 또는 모노에탄올아미 및 디에탄올아민과 같은 에탄올아민을 사용함으로써 황화수소 함유 기체로부터 분리될 수 있음은 널리 공지되어 있다. 그리고, 이산화탄소 또한 상기 황화수소와 거의 동일한 수중용해도를 가져 상기 이산화탄소도 알칼리성 용액 중에 흡수되는 공정을 통해 제거할 수 있다. On the other hand, it is well known that the hydrogen sulfide can be separated from the hydrogen sulfide containing gas by being absorbed in an alkaline aqueous solution such as sodium hydroxide (NaOH) or by using ethanolamine such as monoethanolami and diethanolamine. In addition, carbon dioxide also has substantially the same solubility in water as the hydrogen sulfide, so that the carbon dioxide may be removed through a process of being absorbed in an alkaline solution.

이러한, 탈황 반응제로서 NaOH 용액은 바이오가스의 성상 변화 및 시간대별로 변동하는 가스 생산량의 변화에 관계없이 적용할 수 있어 효용성이 큰 탈황 방법으로 이용되고 있다. As such a desulfurization reagent, NaOH solution can be applied irrespective of changes in the properties of biogas and changes in the gas production amount fluctuating with time, and thus are used as a highly effective desulfurization method.

이러한 성질을 이용하여 바이오가스 발생시 더불어 발생하는 유기황화합물, 즉 황화수소(H2S)를 제거하는 탈황공정을 도 1을 참조하여 살펴보면 다음과 같다. The desulfurization process for removing organic sulfur compounds, that is, hydrogen sulfide (H 2 S), which is generated when biogas is generated by using such a property, will be described with reference to FIG. 1.

도 1은 종래기술에 따라 NaOH를 이용한 탈황공정을 보여주는 개략적인 계통도로서, 상기 탈황공정(100)은 바이오가스가 인입되고 배출되어 포집되도록 구성된 탈황세정탑(120)에서 이루어진다. 1 is a schematic system diagram showing a desulfurization process using NaOH according to the prior art, wherein the desulfurization process 100 is performed in a desulfurization washing tower 120 configured to collect and discharge biogas.

그리고, 이러한 시스템은 상기 탈황세정탑(120) 내부로 상기 NaOH 용액을 분사노즐(122)을 통해 분사시킬 수 있도록 NaOH 저장조(110)와, 사용된 NaOH 폐액이 저장되는 저장조(130)를 포함하여 구성된다. In addition, such a system includes a NaOH reservoir 110 and a reservoir 130 in which used NaOH waste liquid is stored so as to spray the NaOH solution into the desulfurization washing tower 120 through an injection nozzle 122. It is composed.

보다 상세하게, 상기 NaOH 저장조(110)에는 탈황공정(100)에 사용되는 NaOH 용액이 외부 이송관(151)을 통해 인입되어 저장된 상태로, 이는 외부펌프(P1)력에 따라 필요에 따라 NaOH 이송관(152)을 이용해 상기 탈황세정탑(120)으로 이송된다. More specifically, the NaOH solution used in the desulfurization process 100 is introduced into and stored in the NaOH storage tank 110 through an external transfer pipe 151, which is transferred to NaOH as necessary according to the external pump (P1) force. It is transferred to the desulfurization washing tower 120 using a pipe 152.

그리고, 상기 탈황세정탑(120)에는 메탄(CH4)과, 이산화탄소(CO2), 황화수소(H2S)를 포함한 바이오가스가 유입되는데, 이때 외부조작에 따라 세정탑 내의 분사노즐(122)은 NaOH를 분사하게 되고, 상기 탈황세정탑(120) 내에서 황화수소는 상기 수산화나트륨과 화학반응하는 탈황공정이 이루어진다. In addition, the desulfurization washing tower 120 has a biogas including methane (CH 4 ), carbon dioxide (CO 2 ), and hydrogen sulfide (H 2 S), wherein the injection nozzle 122 in the washing tower is operated according to an external operation. Silver NaOH is injected, and the hydrogen sulfide in the desulfurization washing tower 120 is a desulfurization process of chemically reacting with the sodium hydroxide.

이때, 탈황공정에서 사용된 NaOH 용액은 화학반응시 발생된 Na2S와 함께 폐액이송관(153)을 통해 폐액저장조(130)로 이송되어 저장되고, 상기 폐액저장조(130)에 저장된 폐액은 별도의 폐수처리장으로 이송되어 다양한 수처리 조작에 따라 처리되어 방류되는 과정을 가진다. At this time, the NaOH solution used in the desulfurization process is transferred to and stored in the waste liquid storage tank 130 through the waste liquid transfer pipe 153 together with Na 2 S generated during the chemical reaction, the waste liquid stored in the waste liquid storage tank 130 is separately It is transported to the wastewater treatment plant, and is treated and discharged according to various water treatment operations.

그러나, 종래에는 이와 같이 탈황공정에 사용된 NaOH 폐액이 폐수로 처리되기 때문에 그 처리비용이 고비용으로 탈황공정을 위한 플랜트 운영에 수지 악화요인으로 작용하고 있다. However, conventionally, since NaOH waste liquor used in the desulfurization process is treated with wastewater, the treatment cost is a deterioration factor in the operation of the plant for the desulfurization process at a high cost.

더불어, 탈황 반응제 중 NaOH 용액은 탈황성능 및 효과가 대단히 우수한 화학 반응제로 알려져 있으나, 탈황 세정탑에서의 탈황공정 반응 후 폐수의 처리에 많은 경비가 소요되어 현실적으로 적게 사용되고 있다. In addition, the NaOH solution in the desulfurization reactant is known as a chemical reactant with excellent desulfurization performance and effect, but it is practically used in the desulfurization scrubber because it requires a lot of expenses for the treatment of wastewater after the desulfurization process.

본 발명은 전술한 문제점들을 해결하고자 안출된 것으로, 바이오가스의 탈황공정에서 탈황반응제로 사용되는 수산화나트륨(NaOH) 용액을 감압증발방식을 이용하여 수분을 증발시키고 재차 필요 농도로 응축시켜 재활용할 수 있어 폐수의 발생을 최소한으로 줄이고 환경오염을 방지할 수 있도록 이루어진 감압증발을 이용한 NaOH 재활용 공정을 가지는 탈황공정 방법을 제공하는 것을 그 목적으로 한다. The present invention has been made to solve the above problems, the sodium hydroxide (NaOH) solution used as a desulfurization reaction in the desulfurization process of biogas can be recycled by evaporating the water using a reduced pressure evaporation method and condensed again to the required concentration. It is an object of the present invention to provide a desulfurization process method having a NaOH recycling process using a reduced pressure evaporation that is made to minimize the generation of waste water and to prevent environmental pollution.

또한, 탈황공정에서 이용된 NaOH을 재활용하기 위해 상기 탈황공정의 화학반응에 의해 생성된 Na2S를 제거하는 마이크로 필터와, NaOH 저장조, NaOH 폐액저장조, 열교환기, 감압탱크로 구성된 감압증발을 이용한 NaOH 재활용 공정을 가지는 탈황공정 시스템을 제공하는 것을 그 목적으로 한다. In addition, in order to recycle NaOH used in the desulfurization process using a micro filter to remove Na 2 S produced by the chemical reaction of the desulfurization process, using a reduced pressure evaporator consisting of NaOH storage tank, NaOH waste liquid storage tank, heat exchanger, pressure reduction tank It is an object to provide a desulfurization process system having a NaOH recycling process.

상기와 같은 목적을 달성하기 위해 본 발명은, 탈황세정탑내로 유입된 바이오가스에 포함된 H2S를 NaOH 저장조에서 공급된 pH14의 NaOH 용액을 이용한 화학반응을 통해 Na2S로서 제거하는 탈황공정 방법에 있어서, 상기 탈황세정탑내의 화학반응 후 pH가 떨어진 NaOH 폐액중에 포함된 Na2S 고형물을 제거하는 Na2S 제거공정과; 상기 Na2S 고형물이 제거된 NaOH 폐액을 이송하여 NaOH 폐액 저장조에 저장하는 NaOH 폐액 저장공정과; 상기 NaOH 폐액 저장공정에 따라 저장된 NaOH 폐액을 스팀 을 이용해 열교환시키는 열교환공정과; 상기 열교환공정을 통과한 NaOH 폐액의 온도가 감압비등온도가 아닐 경우에는 재차 상기 열교환공정으로 순환시키고, 상기 감압비등온도에 도달한 NaOH 폐액은 감압·농축시킴으로써 pH14의 NaOH 용액으로 재생시키는 감압증발공정과; 상기 감압증발공정을 통과한 농축 NaOH 용액을 상기 NaOH 저장조에 저장하고, 화학반응에 사용된 NaOH 용액을 보충하는 NaOH 용액 저장공정을 포함하여 이루어져; 상기 탈황세정탑 내에서 화학반응에 사용된 NaOH 폐액을 폐수로서 별도 처리하지 않고, 감압증발 방식에 따라 순환 재생시켜 재활용할 수 있도록 이루어진 것을 특징으로 한다. In order to achieve the above object, the present invention, the desulfurization process to remove the H 2 S contained in the biogas introduced into the desulfurization washing tower as a Na 2 S through a chemical reaction using a NaOH solution of pH 14 supplied from the NaOH storage tank. A method, comprising: a Na 2 S removal step of removing Na 2 S solids contained in NaOH waste liquid having a pH drop after the chemical reaction in the desulfurization washing tower; NaOH waste liquid storage step of transferring the NaOH waste liquid from which the Na 2 S solids are removed and stored in the NaOH waste liquid storage tank; A heat exchange step of heat-exchanging NaOH waste solution stored according to the NaOH waste solution storage process using steam; When the temperature of the NaOH waste liquid that has passed through the heat exchange process is not the reduced pressure boiling temperature, the process is circulated again to the heat exchange process, and the NaOH waste liquid which has reached the reduced pressure boiling temperature is decompressed and concentrated to regenerate the NaOH solution at a pH of 14 to evaporate. and; A NaOH solution storage step of storing the concentrated NaOH solution passed through the reduced pressure evaporation process in the NaOH storage tank and replenishing the NaOH solution used for the chemical reaction; The NaOH waste liquid used for the chemical reaction in the desulfurization scrubber is characterized in that it is made to recycle and recycle by recycling under reduced pressure evaporation, without separately treating as waste water.

그리고, 상기 감압증발공정에서 증발된 NaOH 폐액 중의 스팀은 상기 열교환공정으로 순환되어 열교환에 이용된다. In addition, steam in the NaOH waste liquid evaporated in the reduced pressure evaporation process is circulated to the heat exchange process and used for heat exchange.

또한, 상기 Na2S 제거공정은, 상기 탈황세정탑에서 NaOH 폐액 저장조까지 연통된 폐액 이송관의 일측에 구비된 마이크로필터에 의해 Na2S 가 걸러져 제거된다. 이때, 상기 감압증발공정의 감압비등온도는 55∼60℃인 것을 특징으로 한다. In addition, the Na 2 S removal step, Na 2 S is filtered out by a micro filter provided on one side of the waste liquid transfer pipe communicated from the desulfurization washing tower to the NaOH waste liquid storage tank. At this time, the reduced pressure boiling temperature of the reduced pressure evaporation process is characterized in that 55 ~ 60 ℃.

한편, 본 발명은 바이오가스에 포함된 H2S를 pH14의 NaOH 용액을 이용한 화학반응을 통해 Na2S로서 제거하도록 이루어진 탈황공정 시스템에 있어서, 일측에 상기 H2S를 포함한 바이오가스가 유입되는 가스유입관과, 타측에 H2S가 제거된 바이오가스가 배출되는 가스포집관과, 상기 NaOH 용액을 분사하는 분사노즐관을 가지는 탈황세정탑과; 상기 탈황세정탑 내의 화학반응 후 NaOH 폐액 중의 Na2S를 여과시켜 제거하는 마이크로 필터와; 상기 마이크로 필터를 통과한 NaOH 폐액을 저장하는 NaOH 폐액저장조와; 상기 폐액저장조내의 NaOH 폐액을 스팀을 이용해 열교환시키는 열교환기와; 상기 열교환기를 통과한 NaOH 폐액의 온도가 감압비등온도가 아닐 경우에는 재차 상기 열교환기로 순환시키고, 상기 감압비등온도에 도달한 NaOH 폐액은 감압·농축시켜 pH14의 NaOH 용액으로 재생시키도록 일측에 감압펌프가 구비된 감압탱크와; 상기 감압탱크를 통과한 농축 NaOH 용액을 저장하고, 상기 저장된 NaOH 용액을 상기 탈황세정탑내로 이송시키는 NaOH 저장조를 포함하여; 상기 탈황세정탑 내에서 화학반응에 사용된 NaOH 폐액을 폐수로서 별도 처리하지 않고, 감압탱크에서 감압증발 방식에 따라 순환 재생시켜 재활용할 수 있도록 이루어진다. On the other hand, the present invention relates to an H 2 S contained in biogas in the desulfurization process system configured to remove as Na 2 S through a chemical reaction using a NaOH solution of pH14, which the bio-gas, including the H 2 S to a side inlet A desulphurization scrubber tower having a gas inlet pipe, a gas collecting pipe through which H 2 S is removed, and a gas injection pipe through which the Na 2 solution is injected; A micro filter for filtering and removing Na 2 S in NaOH waste liquid after a chemical reaction in the desulfurization washing tower; A NaOH waste liquid storage tank for storing NaOH waste liquid passed through the micro filter; A heat exchanger for heat-exchanging NaOH waste liquid in the waste liquid storage tank with steam; If the temperature of the NaOH waste liquid that passed through the heat exchanger is not the reduced pressure boiling temperature, the NaOH waste liquid which has reached the reduced pressure boiling temperature is circulated again. A decompression tank equipped with; A NaOH reservoir for storing the concentrated NaOH solution passed through the decompression tank and transferring the stored NaOH solution into the desulfurization washing tower; The NaOH waste liquid used in the chemical reaction in the desulfurization washing tower is recycled by recirculating and recirculating according to a reduced pressure evaporation method in a decompression tank without separately treating wastewater as wastewater.

이때, 상기 탈황세정탑은, 상기 NaOH 저장조와 연통된 NaOH이송관과 연결된 NaOH 투입조절조와, 상기 NaOH 투입조절조의 NaOH 용액을 분사이송관을 통해 분사노즐관으로 이송시키는 NaOH 공급펌프를 더 포함하여 구성된다. At this time, the desulfurization washing tower further comprises a NaOH input control tank connected to the NaOH transfer pipe communicating with the NaOH storage tank, and a NaOH supply pump for transferring the NaOH solution of the NaOH input control tank to the injection nozzle pipe through the injection transfer pipe. It is composed.

그리고, 본 발명에 따른 상기 탈황공정 시스템은, 상기 탈황세정탑과 연통되어 NaOH 폐액을 NaOH 폐액저장조로 이송시키되, 일측에 폐액이송펌프와 마이크로필터가 연통된 폐액이송관과; 상기 NaOH 폐액저장조와 연통되고 일측에 폐액공급펌프가 구비되어 상기 열교환기를 통과하는 제1공급관과, 상기 제1공급관이 연장되어 상기 감압탱크와 연통된 제2공급관을 가지는 폐액공급관과; 상기 감압탱크와 연통되어 상기 열교환기로 감압증발된 NaOH 폐액 중의 스팀을 상기 열교환기로 공급하 고, 일측에 블로어가 구비된 스팀이송관과; 상기 열교환기의 일측에 연통되어 열교환에 의해 응축된 응축수를 외부로 방류하는 방류관과; 상기 감압탱크와 연통되어 감압농축된 NaOH 폐액을 상기 NaOH 저장조로 이송시키는 농축이송관과; 상기 농축이송관과 연통되어 상기 감압탱크로 유입된 감압비등온도에 도달하지 않은 NaOH 폐액을 상기 폐액공급관의 제1공급관으로 순환시키는 폐액순환관을 더 포함하여 구성된다. In addition, the desulfurization process system according to the present invention is in communication with the desulfurization washing tower to transfer the NaOH waste liquid to the NaOH waste liquid storage tank, the waste liquid transfer pipe and the micro-filter is connected to the waste liquid transfer pump on one side; A waste liquid supply pipe communicating with the NaOH waste liquid storage tank and provided with a waste liquid supply pump on one side and passing through the heat exchanger, and a first supply pipe extending to communicate with the decompression tank; A steam transfer pipe communicating with the decompression tank and supplying steam in the NaOH waste liquid which has been evaporated under reduced pressure to the heat exchanger to the heat exchanger, and having a blower at one side; A discharge pipe communicating with one side of the heat exchanger to discharge condensed water condensed by heat exchange to the outside; A concentrated conveying tube communicating with the decompression tank and transferring the concentrated NaOH waste liquid to the NaOH storage tank; And a waste liquid circulation tube communicating with the concentrated transfer tube and circulating the NaOH waste liquid which does not reach the reduced pressure boiling temperature introduced into the decompression tank to the first supply pipe of the waste liquid supply pipe.

이때, 상기 제1공급관과 상기 폐액순환관의 연통된 지점에는 제1 3방향전환밸브(V1)가 더 포함되고, 상기 농축이송관과 상기 폐액순환관의 연통된 지점에는 제2 3방향전환밸브(V2)가 더 포함되어 구성된다. In this case, a first three-way switching valve (V1) is further included in the communication point between the first supply pipe and the waste liquid circulation pipe, and a second three-way switching valve is in communication with the concentrated transfer pipe and the waste liquid circulation pipe. (V2) is further included.

한편, 상기 감압탱크의 감압비등온도는 55∼60℃인 것을 특징으로 한다. 또한, 상기 열교환기는 일측에 보일러를 더 포함하여 구성된다. On the other hand, the decompression boiling temperature of the decompression tank is characterized in that 55 ~ 60 ℃. In addition, the heat exchanger is configured to further include a boiler on one side.

상기와 같이 본 발명에 따른 감압증발을 이용한 NaOH 재활용 공정을 가지는 탈황공정 방법 및 시스템에 따르면, 첫째, 탈황공정의 화학반응에 사용되는 NaOH 용액을 폐수로 처리하지 않고 감압증발 방식에 따라 재활용하여 사용함으로써 공정 효율을 높이고 전체 시스템의 유지비용을 줄일 수 있는 효과가 있다. According to the desulfurization process method and system having a NaOH recycling process using a reduced pressure evaporation according to the present invention as described above, First, the NaOH solution used in the chemical reaction of the desulfurization process is recycled according to the reduced pressure evaporation method without treating with waste water This increases the efficiency of the process and reduces the cost of maintaining the entire system.

둘째, 탈황세정탑에서 사용된 NaOH 폐액을 재활용하여 폐수의 발생을 최소환으로 줄여 환경오염을 방지할 수 있는 효과가 있다. Second, by recycling the NaOH waste liquid used in the desulfurization washing tower has the effect of reducing the generation of waste water to the minimum ring to prevent environmental pollution.

이하에는 첨부한 도면을 참조하여 본 발명에 따른 감압증발을 이용한 NaOH 재활용 공정을 가지는 탈황공정 방법 및 시스템의 바람직한 실시예에 대해 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the desulfurization process method and system having a NaOH recycling process using reduced pressure evaporation according to the present invention.

도 2는 본 발명에 따른 감압증발을 이용한 NaOH 재활용 공정을 가지는 탈황공정 방법을 보여주는 처리공정도이고, 도 3은 본 발명에 따른 감압증발을 이용한 NaOH 재활용 공정을 가지는 탈황공정 시스템을 보여주는 개략적인 도면이며, 도 4는 본 발명에 따른 탈황공정에서의 감압증발을 이용한 NaOH 재활용 공정을 가지는 탈황공정 시스템을 보여주는 계통도이다. 2 is a process flow chart showing a desulfurization process method having a NaOH recycling process using a reduced pressure evaporation according to the present invention, Figure 3 is a schematic diagram showing a desulfurization process system having a NaOH recycling process using a reduced pressure evaporation according to the present invention. 4 is a system diagram showing a desulfurization process system having a NaOH recycling process using reduced pressure evaporation in a desulfurization process according to the present invention.

도시한 바와 같이, 본 발명에 따른 감압증발을 이용한 NaOH 재활용 공정을 가지는 탈황공정 방법 및 시스템(1)은, 메탄(CH4)과, 이산화탄소(CO2), 황화수소(H2S)를 포함한 바이오가스 내의 상기 H2S를 제거하기 위한 것으로, 유기화합물인 H2S 제거 효율을 높이기 위해 탈황공정을 수행하는 탈황세정탑(20)은 세정탑내의 pH를 12 내외로 유지하게 되는데 상기 pH12를 유지하기 위해 투입되는 상기 NaOH 용액은 pH14가 투입된다. As shown, the desulfurization process method and system (1) having a NaOH recycling process using a reduced pressure evaporation according to the present invention is bio-containing methane (CH 4 ), carbon dioxide (CO 2 ), hydrogen sulfide (H 2 S) In order to remove the H 2 S in the gas, the desulfurization washing tower 20 which performs the desulfurization process to increase the H 2 S removal efficiency of the organic compound is to maintain the pH in the washing tower to about 12, maintaining the pH 12 The NaOH solution to be added to pH14 is added.

이때, 상기 탈황세정탑(20) 내의 화학반응은 H2S + 2NaOH ---> Na2S + 2H2O 로서, 상기 H2S는 Na2S로서 고형물로 침전되어 제거된다. In this case, the chemical reaction in the desulfurization washing tower 20 is H 2 S + 2NaOH ---> Na 2 S + 2H 2 O, the H 2 S is removed as a solid precipitated as Na 2 S.

그리고, 본 발명은 상기 화학반응 후 pH가 14미만, 즉 12내외로 떨어진 NaOH 폐액을 감압탱크(50)를 이용한 감압증발방식을 이용하여 수분을 증발시킴으로서 농도를 높이고 필요 농도로 응축시켜 재차 탈황세정탑(20)내로 투입하여 재활용시키 는데, 이로 인해 NaOH 폐액으로 인한 폐수의 발생을 최소한으로 줄여 환경오염을 방지하는 것을 특징으로 한다. In addition, the present invention increases the concentration by evaporating the water by using a reduced pressure evaporation method using a reduced pressure tank 50 to reduce the NaOH waste liquid having a pH of less than 14 or 12 after the chemical reaction, condensing to the required concentration, and desulfurization washing again. Into the tower 20 is recycled, it is characterized in that to minimize the generation of waste water due to NaOH waste liquid to prevent environmental pollution.

보다 상세하게, 본 발명에 따른 감압증발을 이용한 NaOH 재활용 공정을 가지는 탈황공정 방법은, 탈황세정탑(20)내로 유입된 바이오가스에 포함된 H2S를 NaOH 저장조(10)에서 공급된 pH14의 NaOH 용액을 이용한 화학반응을 통해 Na2S로서 제거하는 탈황공정 방법에 있어서, 탈황공정과 더불어 크게 Na2S 제거공정(S1)과, NaOH 폐액 저장공정(S2)과, 열교환공정(S3)과, 감압증발공정(S4) 그리고 상기 공정들을 거친 NaOH 용액을 저장하는 NaOH 용액 저장공정(S5)을 포함하여 이루어진다. More specifically, the desulfurization process method having a NaOH recycling process using a reduced pressure evaporation according to the present invention, pH 2 supplied from the NaOH storage tank 10 H 2 S contained in the biogas introduced into the desulfurization washing tower 20 In the desulfurization process to remove as Na 2 S through a chemical reaction using a NaOH solution, in addition to the desulfurization step, Na 2 S removal step (S1), NaOH waste liquid storage step (S2), heat exchange step (S3) and It comprises a reduced pressure evaporation step (S4) and a NaOH solution storage step (S5) for storing the NaOH solution passed through the above steps.

이때, 상기 Na2S 제거공정(S1)은, 상기 탈황세정탑(20)내의 화학반응 후 pH가 떨어진 NaOH 폐액 중에 포함된 Na2S 고형물을 제거하는 공정으로, 상기 탈황세정탑(20)에서 화학반응 후 배출되는 NaOH 폐액을 이송하여 NaOH 폐액저장조(40)까지 연통된 폐액이송관(73) 일측에 구비된 마이크로 필터(30)에 의해 Na2S 가 걸러져 제거된다. At this time, the Na 2 S removal step (S1) is a step of removing the Na 2 S solids contained in the NaOH waste liquid pH dropped after the chemical reaction in the desulfurization washing tower 20, in the desulfurization washing tower 20 Na 2 S is filtered out and removed by the micro filter 30 provided on one side of the waste liquid conveying pipe 73 which is connected to the NaOH waste liquid storage tank 40 by transferring the NaOH waste liquid discharged after the chemical reaction.

그리고, 상기 NaOH 폐액 저장공정(S2)은 상기 Na2S 고형물이 제거된 NaOH 폐액을 이송하여 NaOH 폐액저장조(40)에 저장하는 공정으로, 상기 NaOH 폐액저장조(40)에 저장된 NaOH 폐액은 이어지는 열교환공정(S3)과 감압증발공정(S4)을 거치면서 농축되어 재활용되게 된다. And, the NaOH waste liquid storage step (S2) is a step of transferring the NaOH waste liquid from which the Na 2 S solids are removed and stored in the NaOH waste liquid storage tank 40, NaOH waste liquid stored in the NaOH waste liquid storage tank 40 is a heat exchange that is continued Through the process (S3) and reduced pressure evaporation process (S4) is concentrated and recycled.

이때, 상기 열교환공정(S3)은 상기 NaOH 폐액 저장공정(S2)에 따라 저장된 NaOH 폐액을 일정온도를 가지는 스팀을 이용해 열교환시키는 공정으로, 상기 NaOH 폐액은 상기 열교환공정(S3)을 통해 감압탱크(50) 내의 감압비등온도로 온도가 높아진다. At this time, the heat exchange step (S3) is a step of heat-exchanging the NaOH waste liquid stored in accordance with the NaOH waste liquid storage process (S2) by using a steam having a predetermined temperature, the NaOH waste liquid through the heat exchange process (S3) The temperature rises due to the reduced pressure boiling temperature in 50).

일반적으로 상기 탈황세정탑(20)내로 유입되는 바이오가스의 온도는 대개 55℃ 내외로 상기 탈황세정탑(20)내에서 화학반응을 거친 NaOH 용액은 상기 바이오가스와 유사한 55℃ 내외의 온도를 가지면서 이송된다. 그리고, 이송되는 과정에서 온도는 55℃ 이하로 더 낮아질 수 있다. In general, the temperature of the biogas flowing into the desulfurization washing tower 20 is about 55 ° C., and the NaOH solution subjected to chemical reaction in the desulfurization washing tower 20 has a temperature of about 55 ° C. similar to the biogas. Is transferred. In addition, the temperature may be lowered to 55 ° C. or lower in the process of being transferred.

한편, 상기 감압증발공정(S4)은 감압탱크(50)와 감압펌프(P5)를 이용해 상기 NaOH 폐액을 감압증발 방식에 따라 감압하여 농축시키는 것으로, 상기 열교환공정(S3)을 통과한 NaOH 폐액의 온도가 상기 감압탱크(50) 내의 감압비등온도가 아닐 경우에는 재차 NaOH 폐액을 상기 열교환공정(S3)으로 순환시키고, 상기 감압비등온도에 도달한 NaOH 폐액은 감압·농축시킴으로써 pH14의 NaOH 용액으로 재생시키게된다. On the other hand, the reduced pressure evaporation step (S4) is to reduce the concentration of the NaOH waste liquid by the reduced pressure evaporation method using a pressure reduction tank 50 and a pressure reduction pump (P5), the concentration of NaOH waste liquid passed through the heat exchange step (S3) If the temperature is not the decompression boiling temperature in the decompression tank 50, NaOH waste liquid is circulated again to the heat exchange step (S3), and NaOH waste liquid which has reached the decompression boiling temperature is decompressed and concentrated to regenerate with NaOH solution of pH14. Will let you.

이때, 상기 감압증발공정(S4)에서 감압에 따른 감압비등온도의 차이에 의해 증발된 NaOH 폐액 중의 스팀은 상기 열교환공정(S3)으로 순환되어 이송되는 NaOH 폐액의 온도를 올리는 열교환에 이용된다. At this time, the steam in the NaOH waste liquid evaporated by the difference in the reduced pressure boiling temperature according to the reduced pressure in the reduced pressure evaporation process (S4) is used for heat exchange to raise the temperature of the NaOH waste liquid circulated to the heat exchange process (S3).

바람직하게 상기 감압증발공정(S4)의 감압비등온도는 55∼60℃인 것을 특징으로 하는데, 이는 상기 탈황세정탑(20)내로 유입되는 바이오가스의 온도가 55℃ 내외인 바 열손실을 최소화하고 연료비를 감소시키면서도 용이하게 NaOH 폐액을 감 압 농축시키기 위한 온도로 최초 전체 시스템의 구성시 설정된 관리 감압비등온도이다. Preferably, the reduced pressure boiling temperature of the reduced pressure evaporation process (S4) is 55 to 60 ° C., which minimizes heat loss as the temperature of the biogas introduced into the desulfurization washing tower 20 is about 55 ° C. This is the temperature for easily condensing and concentrating NaOH waste liquids while reducing fuel costs.

이러한 상기 감압탱크(50) 내의 감압비등온도는 하기에 보다 상세하게 기술하기로 한다. The decompression boiling temperature in the decompression tank 50 will be described in more detail below.

한편, 상기 감압증발공정(S4)을 통과한 농축 NaOH 용액은 NaOH 용액 저장공정(S5)에 따라 NaOH 저장조(10)에 저장된다. 그리고, NaOH 용액 저장공정(S5)에서 탈황공정에서 화학반응에 의해 사용된 NaOH 용액을 외부에서 보충하게 된다. On the other hand, the concentrated NaOH solution passed through the reduced pressure evaporation step (S4) is stored in the NaOH storage tank 10 according to the NaOH solution storage step (S5). In the NaOH solution storage step (S5), the NaOH solution used by the chemical reaction in the desulfurization step is replenished externally.

상기에 기술한 본 발명의 실시예에서와 같이, Na2S 제거공정(S1)과, NaOH 폐액 저장공정(S2)과, 열교환공정(S3)과, 감압증발공정(S4) 그리고 상기 공정들을 거친 NaOH 용액을 저장하는 NaOH 용액 저장공정(S5)을 통해 본 발명은, 상기 탈황세정탑(20) 내에서 화학반응에 사용된 NaOH 폐액을 폐수로서 별도 처리하지 않고, 감압증발방식에 따라 순환 재생시켜 재활용할 수 있도록 이루어진 것을 특징으로 한다. As in the embodiment of the present invention described above, Na 2 S removal step (S1), NaOH waste liquid storage step (S2), heat exchange step (S3), reduced pressure evaporation step (S4) and the above The present invention through the NaOH solution storage step (S5) for storing the NaOH solution, the NaOH waste solution used for the chemical reaction in the desulfurization washing tower 20 is recycled according to the reduced pressure evaporation method without separately treating as waste water Characterized in that made to be recycled.

하기에는 상기에 기술된 본 발명에 따른 감압증발을 이용한 NaOH 재활용 공정을 가지는 탈황공정 방법을 수행하기 위한 시스템을 보다 상세하게 살펴보면 다음과 같다. Hereinafter, a system for performing a desulfurization process method having a NaOH recycling process using reduced pressure evaporation according to the present invention described above will be described in detail.

재차 도 2내지 도 4를 참조하면, 본 발명에 따른 탈황공정 시스템(1)은, 바이오가스에 포함된 H2S를 pH14의 NaOH 용액을 이용한 화학반응을 통해 Na2S로서 제 거하도록 이루어진 탈황공정 시스템에 있어서, 탈황세정탑(20)과 더불어 NaOH 저장조(10), 마이크로 필터(30), NaOH 폐액저장조(40), 열교환기(60), 감압탱크(50)로 구성되고 각각의 장치를 연결하고 NaOH 용액 및 폐액을 이송하기 위한 이송관 또는 공급관들을 포함하여 구성된다. Referring again to FIGS. 2 to 4, the desulfurization process system 1 according to the present invention is a desulfurization system configured to remove H 2 S contained in biogas as a Na 2 S through a chemical reaction using a pH 14 NaOH solution. In the process system, the desulfurization scrubber 20 is composed of NaOH storage tank 10, micro filter 30, NaOH waste liquid storage tank 40, heat exchanger 60, pressure reduction tank 50, each device is And a feed or feed tube for connecting and transferring NaOH solution and waste liquid.

보다 상세하게, 상기 NaOH 저장조(10)는, 상기 감압탱크(50)를 통과한 농축 NaOH 용액을 저장하고, 상기 저장된 NaOH 용액을 상기 탈황세정탑(20) 내로 이송시키는 장치이다. In more detail, the NaOH storage tank 10 is a device for storing the concentrated NaOH solution passed through the decompression tank 50 and transferring the stored NaOH solution into the desulfurization washing tower 20.

이때, 상기 NaOH 저장조(10)는 탈황공정에서 화학반응에 사용된 NaOH 용액 만큼을 재차 외부에서 유입시켜 항상 탈황세정탑(20)내로 pH14의 NaOH 용액을 제공할 수 있게 한다. At this time, the NaOH storage tank 10 can be introduced from the outside as much as NaOH solution used in the chemical reaction in the desulfurization process to always provide a NaOH solution of pH 14 into the desulfurization washing tower (20).

또한, 상기 NaOH 저장조(10)에 저장되는 NaOH 용액은 20∼30N 농도를 가지는 것이 바람직하다. In addition, the NaOH solution stored in the NaOH reservoir 10 preferably has a concentration of 20 to 30N.

일반적으로 노르말(N)농도는 용액 1g 속에 녹아있는 용질의 g 당량수로서 결국 당량수(가수) × 몰농도로서 나타낸다. 이때 상기 NaOH 용액은 1당량으로 1몰이 곧 1N 농도를 나타낸다. In general, the normal (N) concentration is the number of g equivalents of the solute dissolved in 1 g of the solution, which is ultimately expressed as the equivalent number (singer) x molarity. At this time, the NaOH solution is 1 equivalent to 1 molar represents 1N concentration.

상기 NaOH 용액이 20N 농도 미만이면 농도가 낮아 탈황세정탑(20)내에서의 탈황공정 효율이 떨어지며, 30N 농도 초과이면 농도가 높아 이송관 등을 통과하는데 있어 펌프력이 많이 소요되며 이송이 어려워 이송관 내에서의 NaOH 용액의 이송효율이 떨어지게 된다. When the NaOH solution is less than 20N concentration, the concentration is low, so the efficiency of the desulfurization process in the desulfurization washing tower 20 decreases. When the NaOH solution is higher than 30N, the concentration is high and the pumping power is required to pass through the transfer pipe. The transport efficiency of NaOH solution in the tube is reduced.

따라서, 본 발명에서는 탈황공정의 효율을 높이면서도 NaOH 용액의 이송효율 이 높도록 NaOH 용액은 20∼30N 농도를 가지는 것이 바람직하다. Therefore, in the present invention, it is preferable that the NaOH solution has a concentration of 20 to 30N so as to increase the efficiency of the desulfurization process while increasing the transport efficiency of the NaOH solution.

그리고, 상기 NaOH 저장조(10)와 연결된 NaOH 이송관(71)을 통해 NaOH 용액을 공급받는 상기 탈황세정탑(20)은, 일측에 상기 H2S를 포함한 바이오가스가 유입되는 가스유입관(2)과, 타측에 H2S가 제거된 바이오가스가 배출되는 가스포집관(3)과, 상기 NaOH 용액을 분사하는 분사노즐관(22)을 포함하여 구성된다. In addition, the desulfurization washing tower 20 receiving NaOH solution through a NaOH transfer pipe 71 connected to the NaOH storage tank 10 may include a gas inlet pipe 2 through which a biogas including the H 2 S is introduced. ), A gas collection tube 3 through which the H 2 S biogas from which the H 2 S has been removed is discharged, and an injection nozzle tube 22 for injecting the NaOH solution.

또한, 상기 탈황세정탑(20)은, 필요에 따라 상기 NaOH 저장조(10)와 연통되어 상기 NaOH 이송관(71)과 연결된 NaOH 투입조절조(21)와, 상기 NaOH 투입조절조(21)내의 NaOH 용액을 분사이송관(72)을 통해 분사노즐관(22)으로 이송시키는 NaOH 공급펌프(P2)를 더 포함하여 구성된다. In addition, the desulfurization washing tower 20 is in communication with the NaOH storage tank 10, if necessary, connected to the NaOH feed pipe 71 and the NaOH feed pipe 71, and in the NaOH feed control tank 21 It further comprises a NaOH supply pump (P2) for transferring the NaOH solution to the injection nozzle pipe (22) through the injection feed pipe (72).

이어서, 상기 마이크로 필터(Micro Filter, 30)는, 이를 통과하는 NaOH 폐액 중의 Na2S를 여과시켜 제거하는 것으로, 상기 NaOH 폐액이 이송되는 폐액이송관(73)의 일측에 구비되어 여과걸림에 따라 걸러지는 Na2S 고형물을 일정시간의 경과 후 필터를 처리하는 과정 중에서 별도 수거하여 처리하게 된다. Subsequently, the micro filter 30 removes Na 2 S in the NaOH waste liquid passing through the filter, and is provided on one side of the waste liquid transfer pipe 73 through which the NaOH waste liquid is transferred. The filtered Na 2 S solids are collected and treated separately during the process of filtering the filter after a certain period of time.

또한, 상기 마이크로 필터(30)를 통과하여 상기 Na2S 고형물이 제거된 NaOH 폐액은 상기 NaOH 폐액저장조(40)에 일시 저장되고 상기 NaOH 폐액 중에 남아있는 미량의 Na2S 고형물을 침전시켜 처리한다. 그리고, NaOH 폐액저장조(40)의 상등액으로 존재하는 NaOH 폐액은 펌프력에 의해 이어지는 다음 공정으로 공급된다. In addition, the NaOH waste liquid from which the Na 2 S solids are removed by passing through the micro filter 30 is temporarily stored in the NaOH waste liquid storage tank 40 and treated by precipitating a small amount of Na 2 S solids remaining in the NaOH waste liquid. . Then, the NaOH waste liquor present as the supernatant of the NaOH waste liquor storage tank 40 is supplied to the next process followed by the pumping force.

그리고, 상기 열교환기(60)는 상기 폐액저장조(40)내의 NaOH 폐액을 스팀을 이용해 열교환시켜 이어지는 감압탱크(50)의 감압비등온도인 55∼60℃로 상승시킨다. The heat exchanger 60 raises the NaOH waste liquid in the waste liquid storage tank 40 to 55-60 ° C., which is a reduced pressure boiling temperature of the reduced pressure tank 50 which is subsequently heat-exchanged using steam.

상기 탈황세정탑(20)내로 유입되는 바이오가스의 온도가 55℃ 내외인 바 화학반응 후 배출되는 NaOH 폐액은 대략 55℃ 내외의 온도를 가지게 된다. 그러나, 폐액이송관(73)과 폐액저장조(40)를 거치면서 상기 이송되는 NaOH 폐액의 온도는 떨어지게 된다. 따라서, 상기 열교환기(60)는 감압탱크(50)의 감압비등온도인 55∼60℃에 맞도록 열교환을 통해 상기 NaOH 용액의 온도를 상승시킨다. The temperature of the biogas flowing into the desulfurization washing tower 20 is about 55 ° C., and thus the NaOH waste liquid discharged after the chemical reaction has a temperature of about 55 ° C. However, the temperature of the NaOH waste liquid to be transferred is reduced while passing through the waste liquid transfer pipe 73 and the waste liquid storage tank 40. Therefore, the heat exchanger 60 raises the temperature of the NaOH solution through heat exchange to match the reduced pressure boiling temperature of the reduced pressure tank 50 to 55 to 60 ℃.

이때, 상기 열교환기(60)는 상기 감압탱크(50) 내에서 증발된 NaOH 폐액 중의 수분, 즉 스팀을 열교환공정에 이용하게 되는데, 본 발명의 시스템 최초 작동시 상기 열교환기(60)를 통과하는 NaOH 폐액을 감압비등온도로 올리기 위해 상기 열교환기는 일측에 별도의 연료를 소비하여 스팀을 생성하는 보일러(80)를 더 포함하여 구성된다. At this time, the heat exchanger 60 is to use the water in the NaOH waste liquid evaporated in the decompression tank 50, that is, steam for the heat exchange process, which passes through the heat exchanger 60 during the initial operation of the system of the present invention. In order to raise the NaOH waste liquid to a reduced pressure boiling temperature, the heat exchanger further includes a boiler 80 that consumes a separate fuel to generate steam.

최초 상기 보일러(80)를 통해 생성된 스팀을 이용해 NaOH 폐액을 열교환시키고, 상기 감압탱크(50)내에서 NaOH 폐액이 감압증발되면 상기 보일러(80)는 작동 중지되고 감압증발된 폐액 중의 발생된 스팀을 이용해 스팀이송관(75)을 통해 열교환기로 이송시켜 이를 열교환에 이용하게 된다. First, the NaOH waste liquid is heat-exchanged using the steam generated through the boiler 80, and when NaOH waste liquid is evaporated under reduced pressure in the decompression tank 50, the boiler 80 is stopped and steam generated in the reduced-pressure evaporated waste liquid. The transfer to the heat exchanger through the steam transfer pipe (75) is used for heat exchange.

이때, 상기 스팀이송관(75)을 통해 감압탱크(50)에서 이송되는 스팀은 감압탱크(50) 내에서는 감압비등온도인 55∼60℃ 를 가지지만, 상기 스팀이송관(75)을 통과하면서 압력의 차이에 의해 온도가 약 10∼12℃ 정도 상승하게 된다. 이와 같이 온도가 상승한 스팀에 의해 열교환기(60)에서 낮은 온도의 NaOH 폐액은 열교환 되어 감압비등온도로 상승하게 되어 상기 감압탱크(50) 내로 인입하게 된다. At this time, the steam transferred from the decompression tank 50 through the steam transfer pipe 75 has a reduced pressure boiling temperature of 55 ~ 60 ℃ in the decompression tank 50, while passing through the steam transfer pipe 75 The temperature is increased by about 10 to 12 ° C. due to the difference in pressure. As such, the NaOH waste solution of the low temperature is exchanged by the steam having the elevated temperature to be heated to a reduced pressure boiling temperature to be introduced into the reduced pressure tank 50.

또한, 상기 감압탱크(50)는 내부로 유입된 NaOH 폐액을 감압농축시켜 탈황세정탑(20)의 탈황공정에서 사용될 수 있는 농도가 pH로 만드는 것으로, 상기 열교환기(60)를 통과한 NaOH 폐액의 온도가 상기 감압비등온도가 아닐 경우에는 재차 상기 열교환기(60)로 순환시키고, 상기 감압비등온도에 도달한 NaOH 폐액은 감압·농축시켜 pH14의 NaOH 용액으로 재생시키도록 일측에 감압펌프(P5)가 구비된다. In addition, the decompression tank 50 is a concentration that can be used in the desulfurization process of the desulfurization washing tower 20 to reduce the concentration of NaOH waste liquid introduced into the interior to a pH, NaOH waste liquid passed through the heat exchanger (60) If the temperature is not the decompression boiling temperature again, the heat exchanger 60 is circulated again, and the NaOH waste liquid which reaches the decompression boiling temperature is decompressed and concentrated to regenerate the NaOH solution at pH 14 to one side of a decompression pump (P5). ) Is provided.

바람직하게 상기 감압탱크(50)의 감압비등온도는 55∼60℃인 것을 특징으로 하는데, 이는 상기 탈황세정탑(20)내로 유입되는 바이오가스의 온도가 55℃ 내외인 바 열손실을 최소화하고 연료비를 감소시키면서도 용이하게 NaOH 폐액을 감압 농축시키기 위한 온도로 최초 시스템의 구성시 설정된 관리 감압비등온도이다. Preferably, the decompression boiling temperature of the decompression tank 50 is 55 to 60 ° C., which means that the temperature of the biogas flowing into the desulfurization washing tower 20 is about 55 ° C., thus minimizing heat loss and reducing fuel costs. The reduced pressure boiling temperature set during the initial system configuration is a temperature for easily condensing the NaOH waste liquid while reducing the pressure.

만약, 상기 감압탱크(50)의 감압비등온도를 55℃ 미만으로 설정한다면, 상기 열교환기(60) 내에서 최초 사용되는 에너지 소비량은 줄겠지만 상기 NaOH 폐액을 감압 농축시키기 위해 감압펌프(P5)의 감압력은 높아지고 이는 상기 감압탱크(50)가 압력에 의해 내부로 찌그러지는 것을 방지하기 위해 상기 감압탱크(50)의 두께를 두껍고 튼튼하게 만들어야 하는 문제점을 발생시킨다. If the decompression boiling temperature of the decompression tank 50 is set below 55 ° C., the energy consumption initially used in the heat exchanger 60 will be reduced, but the pressure of the decompression pump P5 will be reduced to concentrate the NaOH waste liquid. The decompression force becomes high, which causes a problem that the thickness of the decompression tank 50 should be made thick and strong in order to prevent the decompression tank 50 from being crushed inside by the pressure.

또한, 상기 감압탱크(50)의 감압비등온도를 60℃ 초과로 설정한다면, 상기 폐액저장조(40)에서 이송되는 NaOH 폐액의 온도차가 너무 커 보일러(80)의 에너지 소모가 커질 뿐만 아니라 전체적인 소모 에너지의 효율을 떨어뜨리는 문제점을 가져온다. In addition, if the reduced pressure boiling temperature of the decompression tank 50 is set to more than 60 ℃, the temperature difference of the NaOH waste liquid conveyed from the waste liquid storage tank 40 is too large not only increases the energy consumption of the boiler 80 but also the overall energy consumption This brings down the problem of deteriorating the efficiency.

따라서, 본 발명에서는 상기 감압탱크(50) 내의 감압비등온도를 바이오가스 의 유입온도와 유사한 55∼60℃로 설정하여 최적의 감압효율과 에너지 효율을 가지게 한다. Therefore, in the present invention, the decompression boiling temperature in the decompression tank 50 is set to 55 to 60 ° C. similar to the inflow temperature of the biogas to have an optimum decompression efficiency and energy efficiency.

상기에 기술한 바와 같이, 본 발명에 따른 감압증발을 이용한 NaOH 재활용 공정을 가지는 탈황공정 시스템(1)은, 상기 탈황세정탑(20) 내에서 화학반응에 사용된 NaOH 폐액을 폐수로서 별도 처리하지 않고, 감압탱크(50)에서 감압증발 방식에 따라 순환 재생시켜 재활용할 수 있도록 이루어진 것을 특징으로 한다. As described above, the desulfurization process system (1) having a NaOH recycling process using reduced pressure evaporation according to the present invention does not separately treat NaOH waste liquor used for chemical reaction in the desulfurization scrubber (20) as wastewater. Instead, the pressure reduction tank 50 is characterized in that it is made to recycle by recycling according to the reduced pressure evaporation method.

한편, 본 발명에 따른 감압증발을 이용한 NaOH 재활용 공정을 가지는 탈황공정 시스템(1)은, 탈황공정에 사용되는 NaOH 용액과 폐액의 이송을 원할하게 하기 위해 다수의 이송관과 공급관 등을 사용하는데, 도 4를 참조하여 보다 상세하게 설명하면 다음과 같다. On the other hand, the desulfurization process system (1) having a NaOH recycling process using a reduced pressure evaporation according to the present invention, using a plurality of transfer pipes and supply pipes, etc. to smoothly transfer the NaOH solution and waste liquid used in the desulfurization process, Referring to Figure 4 in more detail as follows.

먼저, 상기 탈황공정 시스템(1)은, 상기 NaOH 저장조(10)의 NaOH를 탈황세정탑(20)을 이송하기 위해 일측에 NaOH 이송펌프(P1)가 구비된 NaOH 이송관(71)을 가진다. First, the desulfurization process system 1 has a NaOH transfer pipe 71 provided with a NaOH transfer pump P1 on one side in order to transfer the NaOH in the NaOH storage tank 10 to the desulfurization washing tower 20.

그리고, 상기 탈황세정탑(20)과 연통되어 사용된 NaOH 폐액을 NaOH 폐액저장조(40)로 이송시키되 일측에 폐액이송펌프(P3)와 마이크로 필터(30)가 구비된 폐액이송관(73)을 가진다. In addition, the NaOH waste liquid used in communication with the desulfurization washing tower 20 is transferred to a NaOH waste liquid storage tank 40, but a waste liquid transfer pipe 73 having a waste liquid transfer pump P3 and a micro filter 30 on one side thereof. Have

또한, 상기 NaOH 폐액저장조(40)와 연통되고 일측에 폐액공급펌프(P4)가 구비되어 상기 열교환기(60)를 통과하는 제1공급관(74a)과, 상기 제1공급관(74a)이 연장되어 상기 감압탱크(50)와 연통된 제2공급관(74b)을 가지는 폐액공급관(74)을 가진다. In addition, the first supply pipe (74a) and the first supply pipe (74a) is in communication with the NaOH waste liquid storage tank 40 is provided with a waste liquid supply pump (P4) passing through the heat exchanger (60) It has a waste liquid supply pipe 74 having a second supply pipe (74b) in communication with the decompression tank (50).

상기 폐액공급관(74)이 열교환기(60)를 통과하면서 이송되는 NaOH 폐액은 감압탱크(50)의 감압비등온도로 열교환된다. The NaOH waste liquid conveyed while the waste liquid supply pipe 74 passes through the heat exchanger 60 is heat-exchanged at a reduced pressure boiling temperature of the pressure reduction tank 50.

또한, 상기 감압탱크(50)와 연통되어 상기 열교환기(60)로 감압증발된 NaOH 폐액 중의 스팀을 상기 열교환기(60)로 공급하고, 상기 스팀을 이송하기 위해 일측에 블로어(B)가 구비된 스팀이송관(75)을 가진다. In addition, the blower (B) is provided on one side to communicate with the decompression tank 50 to supply steam in the NaOH waste liquid evaporated under reduced pressure to the heat exchanger 60 to the heat exchanger 60, and to transfer the steam. It has a steam transfer pipe (75).

이때, 상기 스팀이송관(75)을 통해 감압탱크(50)에서 이송되는 스팀은 감압탱크(50) 내에서는 감압비등온도인 55∼60℃ 를 가지지만, 상기 스팀이송관(75)을 통과하면서 압력의 차이에 의해 온도가 약 10∼12℃ 정도 상승하게 된다. 이에 따라 열교환기(60)에서 낮은 온도의 NaOH 폐액은 높은 온도의 스팀과 열교환되어 감압비등온도로 상승하게 된 상태로 상기 감압탱크(50) 내로 인입하게 된다. At this time, the steam transferred from the decompression tank 50 through the steam transfer pipe 75 has a reduced pressure boiling temperature of 55 ~ 60 ℃ in the decompression tank 50, while passing through the steam transfer pipe 75 The temperature is increased by about 10 to 12 ° C. due to the difference in pressure. Accordingly, the NaOH waste liquid of low temperature in the heat exchanger 60 is introduced into the decompression tank 50 in a state in which it is heat-exchanged with the high temperature steam and rises to a reduced pressure boiling temperature.

한편, 상기 열교환기(60)의 일측에는 열교환에 의해 응축된 응축수를 외부로 방류하기 위해 방류관(77)이 연통되게 형성된다. 상기 방류관(77)을 통해 외부로 배출되는 응축수는 외부로 배출되어 별도 처리되거나 하천 등에 방류하게 된다. On the other hand, one side of the heat exchanger 60 is formed in communication with the discharge pipe 77 to discharge the condensed water condensed by the heat exchange to the outside. The condensed water discharged to the outside through the discharge pipe 77 is discharged to the outside to be treated separately or discharged to the river.

또한, 본 발명은 상기 감압탱크(50)와 연통되어 감압농축된 NaOH 폐액을 상기 NaOH 저장조(10)로 이송시키는 농축이송관(76)을 가진다. In addition, the present invention has a concentrated conveying tube (76) which communicates with the decompression tank (50) to convey the concentrated NaOH waste liquid to the NaOH storage tank (10).

그리고, 상기 농축이송관(76)과 연통되어 상기 감압탱크(50)로 유입된 감압비등온도에 도달하지 않은 NaOH 폐액을 상기 폐액공급관(74)의 제1공급관(74a)으로 순환시키는 폐액순환관(76a)을 더 포함하여 구성된다. In addition, the waste liquid circulation pipe communicating with the concentrated transfer pipe 76 and circulating the NaOH waste liquid which does not reach the reduced pressure boiling temperature introduced into the decompression tank 50 to the first supply pipe 74a of the waste liquid supply pipe 74. It further comprises 76a.

한편, 상기 제1공급관(74a)과 상기 폐액순환관(76a)의 연통된 지점에는 제1 3방향전환밸브(V1)가 더 포함되고, 상기 농축이송관(76)과 상기 폐액순환관(76a)의 연통된 지점에는 제2 3방향전환밸브(V2)가 더 포함되어 구성된다. On the other hand, the first supply pipe (74a) and the point of communication with the waste circulating pipe (76a) further comprises a first three-way switching valve (V1), the concentrated transfer pipe 76 and the waste circulating pipe (76a) At the point of communication), the second three-way switching valve (V2) is further included.

상기 감압탱크(50)에는 온도센서가 구비되어 있는데, 상기 온도센서의 감지값에 따라 상기 3방향 전환밸브(V1, V2)의 흐름을 바꿔 NaOH 폐액의 이송방향을 제어하게 된다. The pressure reduction tank 50 is provided with a temperature sensor, the flow direction of the NaOH waste liquid is controlled by changing the flow of the three-way switching valve (V1, V2) in accordance with the detected value of the temperature sensor.

상기와 같이 기술된 본 발명의 감압증발을 이용한 NaOH 재활용 공정을 가지는 탈황공정 방법 및 시스템(1)은, 외부에 별도 설치되는 자동제어장치(PLC)에 의해 자동제어된다. The desulfurization process method and system 1 having the NaOH recycling process using the reduced pressure evaporation of the present invention described above is automatically controlled by an automatic control device (PLC) which is separately installed outside.

이상에서 설명한 본 발명은 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 한정되는 것은 아니다.The present invention described above is limited to the above-described embodiment and the accompanying drawings as various substitutions and modifications can be made within a range without departing from the technical spirit of the present invention for those skilled in the art. It doesn't happen.

도 1은 종래기술에 따른 NaOH를 이용한 탈황공정을 보여주는 개략적인 계통도. 1 is a schematic system diagram showing a desulfurization process using NaOH according to the prior art.

도 2는 본 발명에 따른 감압증발을 이용한 NaOH 재활용 공정을 가지는 탈황공정 방법을 보여주는 처리공정도. Figure 2 is a process showing a desulfurization process method having a NaOH recycling process using a reduced pressure evaporation according to the present invention.

도 3은 본 발명에 따른 감압증발을 이용한 NaOH 재활용 공정을 가지는 탈황공정 시스템을 보여주는 개략적인 도면. Figure 3 is a schematic diagram showing a desulfurization process system having a NaOH recycling process using a reduced pressure evaporation according to the present invention.

도 4는 본 발명에 따른 탈황공정에서의 감압증발을 이용한 NaOH 재활용 공정을 가지는 탈황공정 시스템을 보여주는 계통도. Figure 4 is a schematic diagram showing a desulfurization process system having a NaOH recycling process using a reduced pressure evaporation in the desulfurization process according to the present invention.

***도면의 주요 부분에 대한 부호 설명****** Explanation of symbols for main parts of drawings ***

1 : 감압증발을 이용한 NaOH 재활용 공정을 가지는 탈황공정 방법 및 시스템1: Desulfurization process method and system having NaOH recycling process using reduced pressure evaporation

10 : NaOH 저장조 20 : 탈황세정탑10: NaOH storage tank 20: desulfurization washing tower

30 : 마이크로 필터 40 : NaOH 폐액저장조30: micro filter 40: NaOH waste solution storage tank

50 : 감압탱크 60 : 열교환기50: decompression tank 60: heat exchanger

80 : 보일러 73 : 폐액이송관80: boiler 73: waste liquid transfer pipe

74 : 폐액공급관 75 : 스팀이송관74: waste liquid supply pipe 75: steam transfer pipe

76 : 농축이송관 76a : 폐액순환관76: concentrated transfer pipe 76a: waste fluid circulation pipe

Claims (10)

탈황세정탑내로 유입된 바이오가스에 포함된 H2S를 NaOH 저장조에서 공급된 pH14의 NaOH 용액을 이용한 화학반응을 통해 Na2S로서 제거하는 탈황공정 방법에 있어서, In the desulfurization process method of removing H 2 S contained in the biogas introduced into the desulfurization washing tower as a Na 2 S through a chemical reaction using a NaOH solution of pH 14 supplied from the NaOH storage tank, 상기 탈황세정탑내의 화학반응 후 pH가 떨어진 NaOH 폐액중에 포함된 Na2S 고형물을 제거하는 Na2S 제거공정과; A Na 2 S removal step of removing Na 2 S solids contained in NaOH waste liquid having a pH drop after the chemical reaction in the desulfurization washing tower; 상기 Na2S 고형물이 제거된 NaOH 폐액을 이송하여 NaOH 폐액 저장조에 저장하는 NaOH 폐액 저장공정과; NaOH waste liquid storage step of transferring the NaOH waste liquid from which the Na 2 S solids are removed and stored in the NaOH waste liquid storage tank; 상기 NaOH 폐액 저장공정에 따라 저장된 NaOH 폐액을 스팀을 이용해 열교환시키는 열교환공정과; A heat exchange step of heat-exchanging NaOH waste solution stored according to the NaOH waste solution storage process using steam; 상기 열교환공정을 통과한 NaOH 폐액의 온도가 감압비등온도가 아닐 경우에는 재차 상기 열교환공정으로 순환시키고, 상기 감압비등온도에 도달한 NaOH 폐액은 감압·농축시킴으로써 pH14의 NaOH 용액으로 재생시키는 감압증발공정과; When the temperature of the NaOH waste liquid that has passed through the heat exchange process is not the reduced pressure boiling temperature, the process is circulated again to the heat exchange process, and the NaOH waste liquid which has reached the reduced pressure boiling temperature is decompressed and concentrated to regenerate the NaOH solution at a pH of 14 to evaporate. and; 상기 감압증발공정을 통과한 농축 NaOH 용액을 상기 NaOH 저장조에 저장하고, 화학반응에 사용된 NaOH 용액을 보충하는 NaOH 용액 저장공정을 포함하여 이루어져;A NaOH solution storage step of storing the concentrated NaOH solution passed through the reduced pressure evaporation process in the NaOH storage tank and replenishing the NaOH solution used for the chemical reaction; 상기 탈황세정탑 내에서 화학반응에 사용된 NaOH 폐액을 폐수로서 별도 처리하지 않고, 감압증발 방식에 따라 순환 재생시켜 재활용할 수 있도록 이루어지고,The NaOH waste liquid used for the chemical reaction in the desulfurization washing tower is recycled by recycling and recirculating according to the reduced pressure evaporation method, without separately treating wastewater as wastewater. 상기 감압증발공정에서 증발된 NaOH 폐액 중의 스팀은 상기 열교환공정으로 순환되어 열교환에 이용되며,Steam in the NaOH waste liquid evaporated in the reduced pressure evaporation process is circulated in the heat exchange process and used for heat exchange, 상기 감압증발공정의 감압비등온도는 55∼60℃인 것을 특징으로 하는 감압증발을 이용한 NaOH 재활용 공정을 가지는 탈황공정 방법. Desulfurization process method having a NaOH recycling process using reduced pressure evaporation, characterized in that the reduced pressure boiling temperature of the reduced pressure evaporation process is 55 ~ 60 ℃. 삭제delete 제 1항에 있어서, The method of claim 1, 상기 Na2S 제거공정은, 상기 탈황세정탑에서 NaOH 폐액 저장조까지 연통된 폐액 이송관의 일측에 구비된 마이크로필터에 의해 Na2S 가 걸러져 제거되는 것을 특징으로 하는 감압증발을 이용한 NaOH 재활용 공정을 가지는 탈황공정 방법.The Na 2 S removal process is NaOH recycling process using a reduced pressure evaporation characterized in that the Na 2 S is filtered out by a micro filter provided on one side of the waste liquid transfer pipe communicated from the desulfurization washing tower to the NaOH waste liquid storage tank. Eggplant desulfurization process method. 삭제delete 바이오가스에 포함된 H2S를 pH14의 NaOH 용액을 이용한 화학반응을 통해 Na2S로서 제거하도록 이루어진 탈황공정 시스템에 있어서, In the desulfurization process system configured to remove H 2 S contained in biogas as Na 2 S through a chemical reaction using a pH 14 NaOH solution, 일측에 상기 H2S를 포함한 바이오가스가 유입되는 가스유입관과, 타측에 H2S가 제거된 바이오가스가 배출되는 가스포집관과, 상기 NaOH 용액을 분사하는 분사노즐관을 가지는 탈황세정탑과;Desulfurization washing tower having a gas inlet pipe into which the biogas containing the H 2 S is introduced, a gas collecting pipe through which the biogas from which the H 2 S is removed is discharged, and an injection nozzle pipe injecting the NaOH solution on one side thereof. and; 상기 탈황세정탑 내의 화학반응 후 NaOH 폐액 중의 Na2S를 여과시켜 제거하는 마이크로 필터와; A micro filter for filtering and removing Na 2 S in NaOH waste liquid after a chemical reaction in the desulfurization washing tower; 상기 마이크로 필터를 통과한 NaOH 폐액을 저장하는 NaOH 폐액저장조와; A NaOH waste liquid storage tank for storing NaOH waste liquid passed through the micro filter; 상기 폐액저장조내의 NaOH 폐액을 스팀을 이용해 열교환시키는 열교환기와; A heat exchanger for heat-exchanging NaOH waste liquid in the waste liquid storage tank with steam; 상기 열교환기를 통과한 NaOH 폐액의 온도가 감압비등온도가 아닐 경우에는 재차 상기 열교환기로 순환시키고, 상기 감압비등온도에 도달한 NaOH 폐액은 감압·농축시켜 pH14의 NaOH 용액으로 재생시키도록 일측에 감압펌프가 구비된 감압탱크와; If the temperature of the NaOH waste liquid that passed through the heat exchanger is not the reduced pressure boiling temperature, the NaOH waste liquid which has reached the reduced pressure boiling temperature is circulated again. A decompression tank equipped with; 상기 감압탱크를 통과한 농축 NaOH 용액을 저장하고, 상기 저장된 NaOH 용액을 상기 탈황세정탑내로 이송시키는 NaOH 저장조와;A NaOH storage tank for storing the concentrated NaOH solution passing through the decompression tank and transferring the stored NaOH solution into the desulfurization washing tower; 상기 탈황세정탑과 연통되어 NaOH 폐액을 NaOH 폐액저장조로 이송시키되, 일측에 폐액이송펌프와 마이크로필터가 연통된 폐액이송관과;A waste liquid transfer pipe communicating with the desulfurization washing tower to transfer the NaOH waste liquid to the NaOH waste liquid storage tank, wherein the waste liquid transfer pump and the micro filter are in communication with each other; 상기 NaOH 폐액저장조와 연통되고 일측에 폐액공급펌프가 구비되어 상기 열교환기를 통과하는 제1공급관과, 상기 제1공급관이 연장되어 상기 감압탱크와 연통된 제2공급관을 가지는 폐액공급관과;A waste liquid supply pipe communicating with the NaOH waste liquid storage tank and provided with a waste liquid supply pump on one side and passing through the heat exchanger, and a first supply pipe extending to communicate with the decompression tank; 상기 감압탱크와 연통되어 상기 열교환기로 감압증발된 NaOH 폐액 중의 스팀을 상기 열교환기로 공급하고, 일측에 블로어가 구비된 스팀이송관과;A steam transfer pipe communicating with the decompression tank and supplying steam in the NaOH waste liquid which has been evaporated under reduced pressure to the heat exchanger to the heat exchanger, and having a blower at one side; 상기 열교환기의 일측에 연통되어 열교환에 의해 응축된 응축수를 외부로 방류하는 방류관과;A discharge pipe communicating with one side of the heat exchanger to discharge condensed water condensed by heat exchange to the outside; 상기 감압탱크와 연통되어 감압농축된 NaOH 폐액을 상기 NaOH 저장조로 이송시키는 농축이송관과;A concentrated conveying tube communicating with the decompression tank and transferring the concentrated NaOH waste liquid to the NaOH storage tank; 상기 농축이송관과 연통되어 상기 감압탱크로 유입된 감압비등온도에 도달하지 않은 NaOH 폐액을 상기 폐액공급관의 제1공급관으로 순환시키는 폐액순환관를 포함하여;A waste liquid circulation tube communicating with the concentrated transfer pipe and circulating NaOH waste liquid not reaching the reduced pressure boiling temperature introduced into the decompression tank to the first supply pipe of the waste liquid supply pipe; 상기 탈황세정탑 내에서 화학반응에 사용된 NaOH 폐액을 폐수로서 별도 처리하지 않고, 감압탱크에서 감압증발 방식에 따라 순환 재생시켜 재활용할 수 있도록 이루어지고,The NaOH waste liquor used in the chemical reaction in the desulfurization scrubber is not treated as wastewater, but is recycled by recycling in a reduced pressure tank according to the reduced pressure evaporation method. 상기 감압탱크의 감압비등온도는 55∼60℃인 것을 특징으로 하는 감압증발을 이용한 NaOH 재활용 공정을 가지는 탈황공정 시스템. Desulfurization process system having a NaOH recycling process using a reduced pressure evaporation, characterized in that the reduced pressure boiling temperature of the decompression tank is 55 ~ 60 ℃. 제 5항에 있어서, The method of claim 5, 상기 탈황세정탑은, 상기 NaOH 저장조와 연통된 NaOH이송관과 연결된 NaOH 투입조절조와, 상기 NaOH 투입조절조의 NaOH 용액을 분사이송관을 통해 분사노즐관으로 이송시키는 NaOH 공급펌프를 더 포함하여 구성된 것을 특징으로 하는 감압증발을 이용한 NaOH 재활용 공정을 가지는 탈황공정 시스템. The desulfurization washing tower further comprises a NaOH feed control tank connected to the NaOH feed pipe communicating with the NaOH storage tank, and a NaOH feed pump for transferring the NaOH solution of the NaOH feed control tank to the injection nozzle pipe through the injection feed pipe. Desulfurization process system having a NaOH recycling process using a reduced pressure evaporation. 삭제delete 제 5항에 있어서, The method of claim 5, 상기 제1공급관과 상기 폐액순환관의 연통된 지점에는 제1 3방향전환밸브가 더 포함되고, 상기 농축이송관과 상기 폐액순환관의 연통된 지점에는 제2 3방향전환밸브가 더 포함되어 구성된 것을 특징으로 하는 감압증발을 이용한 NaOH 재활용 공정을 가지는 탈황공정 시스템. A first three-way switching valve is further included in the communication point between the first supply pipe and the waste liquid circulation pipe, and a second three-way switching valve is further included in the communication point between the concentrated transfer pipe and the waste liquid circulation pipe. Desulfurization process system having a NaOH recycling process using reduced pressure evaporation, characterized in that. 삭제delete 제 5항에 있어서, The method of claim 5, 상기 열교환기는 일측에 보일러를 더 포함하여 구성된 것을 특징으로 하는 감압증발을 이용한 NaOH 재활용 공정을 가지는 탈황공정 시스템. The heat exchanger desulfurization process system having a NaOH recycling process using reduced pressure evaporation, characterized in that further comprises a boiler on one side.
KR1020080089914A 2008-09-11 2008-09-11 Desufurization process method and system having naoh regeneration process using a decompression evaporation KR100906933B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080089914A KR100906933B1 (en) 2008-09-11 2008-09-11 Desufurization process method and system having naoh regeneration process using a decompression evaporation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080089914A KR100906933B1 (en) 2008-09-11 2008-09-11 Desufurization process method and system having naoh regeneration process using a decompression evaporation

Publications (1)

Publication Number Publication Date
KR100906933B1 true KR100906933B1 (en) 2009-07-10

Family

ID=41337425

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080089914A KR100906933B1 (en) 2008-09-11 2008-09-11 Desufurization process method and system having naoh regeneration process using a decompression evaporation

Country Status (1)

Country Link
KR (1) KR100906933B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112881606A (en) * 2021-01-16 2021-06-01 佰利天控制设备(北京)股份有限公司 Coal gas fine desulfurization reactant detection experimental device
KR102302919B1 (en) 2021-02-15 2021-09-16 정재억 Hydrogen sulfide removing equipment using microbubble
CN115959731A (en) * 2022-11-22 2023-04-14 苏州海派特热能设备有限公司 Concentration and evaporation device for zero discharge of power plant wastewater

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108695A (en) * 1984-11-02 1986-05-27 Nippon Steel Corp Removal of sulfur deposit adherent to coke oven gas desulfurizer
US4692319A (en) 1984-01-18 1987-09-08 Deutsche Forschungs- und Versuch-Sanstalt fur Luft- und Raumfahrt E.V. Method for desulfurizing flue gas in fuel oil firing systems
JPH054023A (en) * 1991-06-27 1993-01-14 Chubu Electric Power Co Inc Control device for treating equipment of waste water discharged from desulfurization equipment
KR19990047310A (en) * 1997-12-03 1999-07-05 이종구 Mercer Wastewater Reuse Method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4692319A (en) 1984-01-18 1987-09-08 Deutsche Forschungs- und Versuch-Sanstalt fur Luft- und Raumfahrt E.V. Method for desulfurizing flue gas in fuel oil firing systems
JPS61108695A (en) * 1984-11-02 1986-05-27 Nippon Steel Corp Removal of sulfur deposit adherent to coke oven gas desulfurizer
JPH054023A (en) * 1991-06-27 1993-01-14 Chubu Electric Power Co Inc Control device for treating equipment of waste water discharged from desulfurization equipment
KR19990047310A (en) * 1997-12-03 1999-07-05 이종구 Mercer Wastewater Reuse Method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112881606A (en) * 2021-01-16 2021-06-01 佰利天控制设备(北京)股份有限公司 Coal gas fine desulfurization reactant detection experimental device
CN112881606B (en) * 2021-01-16 2023-11-10 佰利天控制设备(北京)股份有限公司 Gas fine desulfurization reactant detection experimental device
KR102302919B1 (en) 2021-02-15 2021-09-16 정재억 Hydrogen sulfide removing equipment using microbubble
CN115959731A (en) * 2022-11-22 2023-04-14 苏州海派特热能设备有限公司 Concentration and evaporation device for zero discharge of power plant wastewater
CN115959731B (en) * 2022-11-22 2023-10-10 苏州海派特热能设备有限公司 Concentrating and evaporating device for zero discharge of power plant wastewater

Similar Documents

Publication Publication Date Title
CN107399876B (en) A kind of processing method of high ammonia-nitrogen wastewater
KR101757118B1 (en) Multistage sulfur removal system
JP5394340B2 (en) Ammonia removal equipment
CN102942973A (en) Method and system for combined air stripping biogas slurry depth treatment and biogas purification and desulfurization
CN105859057A (en) Method and system for extracting substances and energy from sewage
CN100482308C (en) Removal method and equipment for sucking ammonia nitrogen in waste water through negative pressure of vacuum
CN103073164B (en) Treating system for sewage containing guanidine salt and treating method thereof
CN107537293A (en) A kind of closed cycle bacterial desulfurization and the method for reclaiming elemental sulfur
KR100906933B1 (en) Desufurization process method and system having naoh regeneration process using a decompression evaporation
CN110436689A (en) Dense salt Sewage advanced treatment and high efficiente callback utilize technique
CN104628065A (en) Chemical pharmaceutical wastewater treatment system and method
CN101602560A (en) The concentrated recovery method and the device of low-concentration industrial waste acid water
CN111285493B (en) Integrated device for source separation urine treatment by using supergravity technology
CN105174581B (en) A kind of sulfur Gas Fields produced water treatment technique
CN101591084A (en) A kind of method for treating glyphosate waste water that reduces Carbon emission
CN107473481A (en) The garbage percolation liquid treating system and method for ultrasonic stripping film distillation technology combination
CN210645170U (en) Double-effect external circulation evaporator
CN204237642U (en) A kind of special purpose device of Coal Chemical Industry haline water purification process technique
CN206570147U (en) A kind of salt-containing waste water treating device
KR101068846B1 (en) System and method for treatment waste water
CN105688629A (en) Method and system for purifying anaerobic fermentation gas and recycling phosphate and carbon dioxide
CN214654296U (en) High salt industrial waste water resource utilization processing system
KR100752332B1 (en) Composting system for sewage sludge using by autothermal thermophilic aerobic digestion
CN110642479A (en) Membrane concentrated solution reduction treatment system and treatment process thereof
KR20160033967A (en) System for Reduction Treating and Energy Producing of Organic Waste

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130430

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140430

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150430

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee