KR100894959B1 - Method for preparing ? nitride cristal powder and ? nitride cristal powder prepared the same method - Google Patents
Method for preparing ? nitride cristal powder and ? nitride cristal powder prepared the same method Download PDFInfo
- Publication number
- KR100894959B1 KR100894959B1 KR1020060071457A KR20060071457A KR100894959B1 KR 100894959 B1 KR100894959 B1 KR 100894959B1 KR 1020060071457 A KR1020060071457 A KR 1020060071457A KR 20060071457 A KR20060071457 A KR 20060071457A KR 100894959 B1 KR100894959 B1 KR 100894959B1
- Authority
- KR
- South Korea
- Prior art keywords
- group iii
- powder
- crystal powder
- gan
- nitride crystal
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
- C01B21/0632—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with gallium, indium or thallium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G15/00—Compounds of gallium, indium or thallium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
본 발명은, Ⅲ족 원소에 Li3N과 Bi, Sb 및 As 중에서 선택되는 1종 이상의 첨가제를 첨가하여 Ⅲ족 원소 질화물 결정체 분말을 합성하는 방법 및 이 방법에 의하여 제조된 Ⅲ족 원소 질화물 결정체 분말을 제공한다. The present invention is a method for synthesizing Group III element nitride crystal powder by adding at least one additive selected from Li 3 N, Bi, Sb and As to the Group III element, and Group III element nitride crystal powder produced by the method. To provide.
본 발명에 따른 Ⅲ족 원소 질화물 결정체 분말을 합성하는 방법을 이용하여 낮은 압력하에서 고수율로 다량의 Ⅲ족 원소 질화물 결정체 분말을 공정상 매우 쉽게 얻을 수 있으며, 결정성(Crystal Quality)이 높은 Ⅲ족 원소 질화물 결정체 분말을 얻을 수 있다.By using the method of synthesizing the group III elemental nitride crystal powder according to the present invention, a large amount of group III elemental nitride crystal powder can be obtained very easily in a high yield under low pressure, and the group III having high crystal quality (Crystal Quality) is obtained. Elemental nitride crystal powders can be obtained.
Ⅲ족 원소 질화물 결정체 분말, GaN 결정체 분말, 계면활성제 Group III element nitride crystal powder, GaN crystal powder, surfactant
Description
도 1a는 본 발명에 따른 GaN 결정체 분말의 XRD(X-Ray-Diffraction) 데이터이다.1A is X-Ray-Diffraction (XRD) data of GaN crystal powder according to the present invention.
도 1b는 암열합성법에 의해 합성된 GaN 분말의 XRD 데이터이다.1B is XRD data of GaN powder synthesized by dark thermal synthesis.
도 2a는 본 발명에 따른 GaN 결정체 분말의 광학현미경(×200) 사진이다.Figure 2a is an optical microscope (x200) photograph of the GaN crystal powder according to the present invention.
도 2b는 암열합성법에 의해 합성된 GaN 분말의 광학현미경(×5000) 사진이다.2B is an optical microscope (× 5000) photograph of GaN powder synthesized by dark thermal synthesis.
도 3은 본 발명에 따른 GaN 결정체 분말의 XRD 데이터이다.3 is XRD data of GaN crystal powder according to the present invention.
본 발명은 Ⅲ족 원소 질화물 결정체 분말의 합성방법 및 이에 의하여 제조된 Ⅲ족 원소 질화물 결정체 분말에 관한 것이다. 보다 상세하게는, 낮은 압력하에서 결정성이 높은 Ⅲ족 원소 질화물 결정체 분말을 공정상 매우 간단히 합성할 수 있는 방법 및 이에 의하여 제조된 결정성이 높은 Ⅲ족 원소 질화물 결정체 분말에 관 한 것이다. The present invention relates to a method for synthesizing Group III elemental nitride crystal powder and to a Group III elemental nitride crystal powder produced thereby. More specifically, the present invention relates to a method for synthesizing a highly crystalline Group III element nitride crystal powder under low pressure in a very simple manner, and to a highly crystalline Group III element nitride crystal powder produced thereby.
GaN 반도체는, 헤테로 접합 고속 전자 디바이스나 광전자 디바이스, 예컨대 반도체 레이저, 발광 다이오드, 센서 등의 분야에 사용되어 왔지만, 고품질의 GaN 박막을 성장시키기 어려워 보다 고기능성의 디바이스 개발에는 미치지 못하고 있는 실정이다. 고품질의 GaN 박막을 성장시키기 위해서는 GaN 단결정 기판이 필요하다.GaN semiconductors have been used in the fields of heterojunction high-speed electronic devices and optoelectronic devices such as semiconductor lasers, light emitting diodes, sensors, etc., but are difficult to grow high quality GaN thin films, and thus, they do not reach the development of more functional devices. GaN single crystal substrates are needed to grow high quality GaN thin films.
종래에는, GaN 단결정을 얻기 위해서 Ga과 질소 가스를 직접 반응시키는 방법이 행해지고 있었다 (J. Phys. Chem. Solids, 1995, 56, 639 참조). 그러나, 이 경우 1300 내지 1600 ℃, 8000 내지 17000 atm이라는 초고온 초고압을 필요로 한다. 또한 종래 기술에서는 투명하고 전위 밀도가 적으며 균일 두께 즉, 결정 표면이 거의 수평이고 고품위이며, 또한 벌크 형상의 큰 GaN의 단결정을 제조할 수 없고 수율도 나빴다. 즉, 종래 기술에서는 성장 속도가 현저하게 늦고, 지금까지 보고된 GaN 단결정의 최대 직경이 1 ㎝ 정도이며, 이것으로는 GaN의 실용화로 연결되지 않는다.Conventionally, in order to obtain GaN single crystal, a method of directly reacting Ga with nitrogen gas has been performed (see J. Phys. Chem. Solids, 1995, 56, 639). However, in this case, ultra high temperature ultra high pressure of 1300 to 1600 ° C and 8000 to 17000 atm is required. Further, in the prior art, single GaN crystals with large dislocation density, transparent thickness, that is, almost horizontal, high quality, bulky, and bulky bulks were not produced, and the yield was also poor. That is, in the prior art, the growth rate is remarkably slow, and the maximum diameter of the GaN single crystal reported so far is about 1 cm, which does not lead to the practical use of GaN.
최근, GaAs 반도체 벌크 단결정 제조와 같이, 가장 통상적인 방법인 용액법(Solution Growth) 및 융액법(Melt Growth)에 의해 GaN 벌크 단결정체를 제조하려는 연구개발이 활성화되고 있다. 이를 위해서는 출발물질이 되는 GaN 분말의 필요하며, 특히 개개의 입자가 고유의 결정학적 형상을 지니며 그 크기가 수십 ㎛ 내지 수 ㎜로서 비교적 큰 고품질의 결정체 분말로 다량으로 합성될 수 있어야 한다.Recently, research and development to manufacture GaN bulk single crystals by the solution method (Solution Growth) and the melt method (Melt Growth), which is the most common method, such as GaAs semiconductor bulk single crystal production has been activated. This requires a GaN powder to be a starting material, and in particular, the individual particles must have a unique crystallographic shape and can be synthesized in large quantities into relatively large, high quality crystal powders having a size of several tens of micrometers to several millimeters.
이러한 GaN 결정체 분말을 합성하는 방법으로는, Ga-액체암모니아를 이용하는 암열합성법(Ammonothermalysis)과 나트륨(Na) 플럭스 중에서 GaN 단결정을 육성 하는 기술(이하, 「Na 플럭스법)이라고도 함)이 개발되었다(예를 들면, 미국 특허 공보 제5868837호 참조). 암열합성법은 초임계 암모니아(약 500 ℃, 약 1500 atm)에서 Ga 금속을 질화반응시키는 방법으로서, 고압의 반응환경에 따른 고가의 고압반응장치를 필요로 하며, 초임계 암모니아의 형성을 위한 승온과정이나 Ga의 질화반응 및 냉각과정에 상당한 시간(예를 들면, 고압반응용기 160 cc에서 GaN 10 g을 합성하기 위해 약 5 일이 소요됨)이 소요된다는 문제점을 갖고 있다. 또한, 합성된 GaN 결정체 분말의 결정성(Crystal Quality)이 비교적 낮다. Na 플럭스법은, 암열합성법과 비교하여 약 800 ℃에서 비교적 저압(약 80 atm)에서 질화반응을 일으킬 수 있다는 장점이 있으나, Ga의 질화반응 속도가 비교적 느리며, Na 사용에 따른 Na 증기 발생, Na의 급격한 산화반응 등과 같은 화학적 불안정성의 문제가 존재한다. 또한, 이 방법에 의해서 얻어지는 결정체는 흑화하여 품질에 문제가 있었다.As a method for synthesizing such GaN crystal powder, a technique for growing GaN single crystals in the dark heat synthesis method using Ga-liquid ammonia and sodium (Na) flux (hereinafter also referred to as "Na flux method") has been developed ( See, eg, US Patent Publication No. 5868837). The dark thermal synthesis method is a method of nitriding Ga metal in supercritical ammonia (about 500 ℃, about 1500 atm), and requires an expensive high-pressure reactor according to the high pressure reaction environment, and the temperature raising process for the formation of supercritical ammonia However, the nitriding reaction and the cooling process of Ga require a considerable time (for example, about 5 days to synthesize 10 g of GaN in a high-pressure reaction vessel 160 cc). In addition, the crystal quality (Crystal Quality) of the synthesized GaN crystal powder is relatively low. The Na flux method has the advantage of being able to cause nitriding reaction at a relatively low pressure (about 80 atm) at about 800 ° C. compared with the dark thermal synthesis method, but the nitrification rate of Ga is relatively slow, and Na vapor is generated by using Na, There is a problem of chemical instability such as rapid oxidation of. In addition, the crystals obtained by this method were blackened and there was a problem in quality.
최근, 질화리튬(Li3N)과 Ga을 약 800 ℃에서 매우 낮은 압력(약 5 atm)에서 반응시켜 결정성(Crystal Quality)이 매우 우수한 GaN 결정체를 얻을 수 있는 방법이 보고되고 있지만(Journal of Crystal Growth 247(2003) 275-278 참조), 얻어진 결정의 크기는 1 내지 4 ㎜ 정도이며, 사용한 Li3N의 양에 따라 Li3GaN2와 같은 바람직하지 않은 중간화합물이 형성되어 GaN 결정체의 수율을 떨어뜨리게 된다. 또한, 상온에서의 초기 반응물 충전시 Ga과 Li3N 분말의 혼합이나 고온에서 이들의 액상의 혼합이 원활하지 않아 반응의 균일성을 확보하기 어려워 GaN 결정체의 다량 합성에는 미치지 못하고 있다. 이러한 문제는, GaN에 한정하지 않고, 다른 Ⅲ족 원 소 질화물의 결정체에 있어서도 마찬가지이다.Recently, a method has been reported to obtain GaN crystals having excellent crystal quality by reacting lithium nitride (Li 3 N) and Ga at a very low pressure (about 5 atm) at about 800 ° C. (Journal of Crystal Growth 247 (2003) 275-278), the size of the obtained crystal is about 1 to 4 mm, depending on the amount of Li 3 N used, an undesirable intermediate compound such as Li 3 GaN 2 is formed, yielding GaN crystals. Will drop. In addition, when the initial reactants are charged at room temperature, the mixing of Ga and Li 3 N powders or the mixing of their liquid phases at a high temperature is not smooth, and thus it is difficult to ensure uniformity of the reaction, which is not sufficient for the synthesis of large amounts of GaN crystals. This problem is not limited to GaN, but the same also applies to crystals of other Group III element nitrides.
따라서, 본 발명의 목적은 Ⅲ족 원소 질화물 결정체 분말 제조시 Bi, Sb 및 As 중에서 선택되는 1종 이상의 첨가제를 첨가함으로써, 비교적 낮은 압력, 구체적으로 50 atm 하에서 결정성이 높은 다량의 Ⅲ족 원소 질화물 걸정체 분말을 용이하게 제조할 수 있는 합성방법 및 이 방법에 의하여 제조된 결정성이 높은 Ⅲ족 원소 질화물 결정체 분말을 제공하는 것이다. Accordingly, it is an object of the present invention to add at least one additive selected from Bi, Sb and As in the preparation of Group III element nitride crystal powder, thereby providing a large amount of Group III element nitride having high crystallinity under relatively low pressure, specifically 50 atm. The present invention provides a synthesis method capable of easily preparing a macrocrystalline powder, and a Group III elemental nitride crystal powder having high crystallinity prepared by the method.
본 발명은 Ⅲ족 원소에 Li3N과 Bi, Sb 및 As 중에서 선택되는 1종 이상의 첨가제를 첨가하여 Ⅲ족 원소 질화물 결정체 분말을 합성하는 방법을 제공한다. The present invention provides a method for synthesizing Group III element nitride crystal powder by adding at least one additive selected from Li 3 N and Bi, Sb and As to the Group III element.
또한, 상기 방법에 의하여 합성된 Ⅲ족 원소 질화물 결정체 분말를 제공한다. Furthermore, the group III element nitride crystal powder synthesize | combined by the said method is provided.
이하에서는 본 발명에 대해 상세히 설명한다. Hereinafter, the present invention will be described in detail.
본 발명은 Ⅲ족 원소와 Li3N을 이용한 Ⅲ족 원소 질화물 결정체 분말의 제조 방법에서 Bi, Sb 및 As 중에서 선택되는 1 이상의 첨가제를 첨가하는 것을 특징으로 한다. 상기 방법을 이용하여 낮은 압력하에서 Ⅲ족 원소 질화물 결정체 분말을 쉽게 얻을 수 있으며, 결정성이 높은 Ⅲ족 원소 질화물 결정체 분말을 얻을 수 있다.The present invention is characterized in that at least one additive selected from Bi, Sb, and As is added in the method for producing a group III element nitride crystal powder using a group III element and Li 3 N. By using the above method, the Group III element nitride crystal powder can be easily obtained under low pressure, and the Group III element nitride crystal powder having high crystallinity can be obtained.
상기 Ⅲ족 원소는 B, Al, Ga, In 및 Ti 등이며, 본 발명에서는 Ga가 바람직 하다. 이하에서는 Ⅲ족 원소 중 Ga를 예를 들어 설명하나 다른 Ⅲ족 원소도 같은 원리가 적용된다. The Group III elements are B, Al, Ga, In, Ti and the like, and Ga is preferred in the present invention. Hereinafter, Ga will be described as an example of Group III elements, but the same principle applies to other Group III elements.
상기 Ⅲ족 원소 질화물 결정체 분말 합성시 Li3N은 Ⅲ족 원소의 질화반응에 필요한 활성화된 N-를 공급해 주는 역할을 한다. In synthesizing the Group III element nitride crystal powder, Li 3 N serves to supply activated N − required for the nitriding reaction of the Group III element.
또한, Li3N은 Ⅲ족 원소 대비 10 내지 25 mol%인 것이 바람직하다.In addition, Li 3 N is preferably 10 to 25 mol% relative to the Group III element.
상기 Li3N이 10 mol% 이하이면 Ⅲ족 원소와의 반응성이 떨어져 미반응 상태로 많은 양의 Ⅲ족 원소가 남아있게 되고, 25 mol% 이상이면 Li3(Ⅲ족 원소)N2와 같은 바람직하지 않은 중간화합물이 형성되어 Ⅲ족 원소 질화물 결정체 분말의 수율을 떨어뜨리게 되는 문제점이 있다.When Li 3 N is 10 mol% or less, the reactivity with the Group III element is poor, and a large amount of Group III elements remain in an unreacted state, and when 25 mol% or more, Li 3 (Group III element) N 2 is preferable. The intermediate compound is not formed to reduce the yield of the group III element nitride crystal powder.
상기 Ⅲ족 원소 질화물 결정체 분말 합성시, Bi, Sb 및 As 중에서 선택되는 1 이상의 첨가제는 계면활성제(Surfactant)로 작용하여 Ⅲ족 원소와 질소가스와의 반응면적을 효과적으로 넓혀주어 Ⅲ족 원소 대부분을 질화반응 시켜줄 수 있으며, 질화반응 속도 또한 촉진시키는 역할을 한다.When synthesizing the Group III element nitride crystal powder, at least one additive selected from Bi, Sb and As acts as a surfactant to effectively widen the reaction area between the Group III element and nitrogen gas, thereby nitriding most of the Group III element. It can react, and also accelerates the rate of nitriding reaction.
상기 Bi, Sb 및 As 중에서는 Bi가 바람직하다.Among Bi, Sb and As, Bi is preferable.
상기 Bi, Sb 및 As 중에서 선택되는 1 이상의 첨가제는 Ⅲ족 원소대비 50 mol% 이하인 것이 바람직하다. 상기 Bi, Sb 및 As 중에서 선택되는 1 이상의 첨가제가 50 mol%를 초과하면 Ⅲ족 원소 질화물 생성 후 남아있는 Bi, Sb 및 As를 제거하는데 문제점이 있다. At least one additive selected from Bi, Sb, and As is preferably 50 mol% or less with respect to the Group III element. If at least one additive selected from Bi, Sb and As exceeds 50 mol%, there is a problem in removing Bi, Sb and As remaining after the Group III element nitride is formed.
상기 반응의 조건은 온도 700 내지 850 ℃, 압력 30 내지 100 atm 것이 바람직하다. It is preferable that the conditions of the said reaction are the temperature of 700-850 degreeC, and the pressure of 30-100 atm.
또한 본 발명은 Ⅲ족 원소 질화물 결정체 분말 합성방법에 의해 제조된 Ⅲ족 원소 질화물 결정체 분말을 제공한다. 상기 제조된 Ⅲ족 원소 질화물 결정체 분말의 평균 입경은 1 내지 300 ㎛ 인 것이 바람직하다. The present invention also provides a group III element nitride crystal powder prepared by the method of synthesizing the group III element nitride crystal powder. The average particle diameter of the prepared Group III element nitride crystal powder is preferably 1 to 300 μm.
상기 방법으로 합성된 GaN 결정체 분말은 암열합성법으로 합성된 GaN 분말에 비하여 (002)면이 매우 발달하여 해당 결정면이 주로 성장한 다결정 특성을 나타내며 높은 결정성을 지닌다. 상기 본 발명에 의해 합성된 GaN 결정체 분말과 암열합성법으로 합성된 GaN 분말의 XRD(x-ray diffraction) 데이터를 각각 도 1a 및 도 1b를 통해 확인할 수 있다. The GaN crystal powder synthesized by the above method has a much higher development of (002) plane than the GaN powder synthesized by the dark thermal synthesis method, and shows a polycrystalline characteristic in which the crystal plane is grown. XRD (x-ray diffraction) data of the GaN crystal powder synthesized by the present invention and the GaN powder synthesized by dark thermal synthesis method can be confirmed through FIGS. 1A and 1B, respectively.
상기 본 발명에 의한 GaN 결정체 분말과 암열합성법에 의한 GaN 결정체 분말은 입자의 형태학(morphology)적으로도 많이 다르며, 암열합성에 의한 GaN는 불규칙한 형태(irregular shape)를 가지는 10 ㎛이하의 분말인 반면, 상기 방법으로 합성된 GaN 결정체 분말은 50 내지 300 ㎛ 정도의 육각판상 단결정 또는 다결정이다. 상기 본 발명에 의해서 합성된 GaN 결정체 분말과 암열합성법으로 합성된 GaN 결정체 분말을 각각 광학현미경으로 이용하여 도 2a 및 도 2b에 나타내였다.The GaN crystal powder according to the present invention and the GaN crystal powder by the dark thermal synthesis method are also different in the morphology (morphology) of the particles, while the dark thermal synthesis GaN is a powder of less than 10 ㎛ having an irregular shape (irregular shape) , The GaN crystal powder synthesized by the above method is hexagonal plate-shaped single crystal or polycrystal of about 50 to 300 μm. The GaN crystal powder synthesized by the present invention and the GaN crystal powder synthesized by the dark thermal synthesis method are shown in FIGS. 2A and 2B using optical microscopes, respectively.
또한, Na을 사용하는 종래 방법은 결정의 성장 속도가 느려 100 ㎛ 이상의 결정체를 얻기 위해서는 72 시간 이상의 반응 시간이 요구되며, 반응 종료 후 잔여 Na 제거와 같은 단계를 거쳐야 하므로 양산화에 있어서 안전성이 큰 문제가 될 수 있다. In addition, the conventional method using Na requires a reaction time of 72 hours or longer in order to obtain crystals of 100 μm or more due to the slow growth of crystals, and requires a step such as removal of residual Na after completion of the reaction. Can be
이하, 본 발명은 실시예에 의하여 더욱 상세히 설명한다. 다만, 이하의 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위를 한정하지 않는다. Hereinafter, the present invention will be described in more detail by examples. However, the following examples are for illustrating the present invention and do not limit the scope of the present invention.
실시예Example 1~3 1 to 3
실시예 1Example 1
내부 부피 20 cc의 반응용기에 고순도 Ga 5 g과 Li3N 분말 0.63 g, Bi 분말 0.30 g을 넣은 후 반응용기를 밀폐하였다. 반응용기를 진공펌프에 연결하여 반응용기 내의 수분과 공기를 제거한 후, 반응용기에 N2 가스 50 기압을 충진하였다. 반응용기를 800 ℃로 가열하여 20 시간 유지하였다. 반응용기를 상온으로 냉각시킨후 반응용기를 개방하여 용기내의 내용물을 확인한 결과, 대부분 Ga이 반응하여 비교적 딱딱하게 덩어리져 있는 GaN를 형성하였다.A high purity Ga 5 g, 0.63 g of Li 3 N powder, and 0.30 g of Bi powder were placed in a reaction vessel having an internal volume of 20 cc, and then the reaction vessel was sealed. After the reaction vessel was connected to a vacuum pump to remove moisture and air in the reaction vessel, the reaction vessel was filled with 50 atm of N 2 gas. The reaction vessel was heated to 800 ° C. and maintained for 20 hours. After the reaction vessel was cooled to room temperature, the reaction vessel was opened to confirm the contents in the vessel. As a result, most of Ga reacted to form relatively hard agglomerated GaN.
실시예 2Example 2
상기 실시예 1과 동일한 방법으로 Li3N을 각각 10 mol%(0.25 g), 15 mol%(0.38 g), 20 mol%(0.50 g) 첨가된 실험을 진행한 결과 상기 실시예 1과 거의 유사한 실험 결과를 얻을 수 있었다.In the same manner as in Example 1, Li 3 N, 10 mol% (0.25 g), 15 mol% (0.38 g), 20 mol% (0.50 g) was added to the experiment was almost similar to Example 1 Experimental results were obtained.
실시예 3Example 3
상기 실시예 1과 동일한 방법으로 Bi 대신 Sb을 동일한 비율로 사용하여 실험을 진행한 결과를 상기 실시예 1과 유사한 실험결과를 얻었으며 이의 XRD 데이터를 도 3에 나타내었다.In the same manner as in Example 1, instead of Bi, Sb was used in the same ratio, and the result of the experiment was obtained similar to Example 1, and the XRD data thereof is shown in FIG. 3.
비교예Comparative example 1~4 1 ~ 4
비교예 1Comparative Example 1
내부 부피 100 cc의 반응용기에 고순도 Ga 12 g과 Li3N 분말 3 g을 넣은 후 반응용기를 밀폐하였다. 반응용기를 진공펌프에 연결하여 반응용기 내의 수분과 공기를 제거한 후, 반응용기에 N2 가스 5 내지 7 기압을 충진하였다. 반응용기를 800 ℃로 가열하여 125 시간 유지하면서 서서히 온도를 낮추어 주었다(0.004 ℃/min). 반응용기를 상온으로 냉각시킨 후 반응용기를 개방하여 용기내의 내용물을 확인한 결과, 일부 Ga이 반응하지 않고 남아있었으며, 상층부는 Li3GaN2, 중간부분은 GaN 분말이었다. 12 g of high purity Ga and 3 g of Li 3 N powder were placed in a reaction vessel having an internal volume of 100 cc, and then the reaction vessel was sealed. After the reaction vessel was connected to a vacuum pump to remove moisture and air in the reaction vessel, the reaction vessel was filled with 5 to 7 atmospheres of N 2 gas. The temperature was gradually lowered (0.004 ° C / min) while maintaining the reaction vessel at 800 ° C for 125 hours. After cooling the reaction vessel to room temperature, the contents of the vessel were confirmed by opening the reaction vessel, and some of Ga remained unreacted. The upper layer was Li 3 GaN 2 and the middle was GaN powder.
비교예 2Comparative Example 2
내부 부피 20 cc의 반응용기에 고순도 Ga 5 g과, Bi 분말 0.30 g을 넣은 후 반응용기를 밀폐하였다. 반응용기를 진공펌프에 연결하여 반응용기 내의 수분과 공기를 제거한 후, 반응용기에 N2 가스 50 기압을 충진 하였다. 반응용기를 800 ℃로 가열하여 20 시간 유지하였다. 반응용기를 상온으로 냉각시킨후 반응용기를 개방하여 용기내의 내용물을 확인한 결과, 대부분 Ga이 반응하지 않은 상태였다.5 g of high-purity Ga and 0.30 g of Bi powder were placed in a reaction vessel having an internal volume of 20 cc, and then the reaction vessel was sealed. After the reaction vessel was connected to a vacuum pump to remove moisture and air in the reaction vessel, the reaction vessel was filled with 50 atm of N 2 gas. The reaction vessel was heated to 800 ° C. and maintained for 20 hours. After the reaction vessel was cooled to room temperature, the reaction vessel was opened to confirm the contents of the vessel. As a result, most of Ga was not reacted.
비교예 3Comparative Example 3
내부 부피 20 cc의 반응용기에 고순도 Ga 5 g과 Li3N 분말 1.25 g, Bi 분말 0.30 g을 넣은 후 반응용기를 밀폐하였다. 반응용기를 진공펌프에 연결하여 반응용기 내의 수분과 공기를 제거한 후, 반응용기에 N2 가스 50 기압을 충진 하였다. 반 응용기를 800 ℃로 가열하여 20 시간 유지하였다. 반응용기를 상온으로 냉각시킨후 반응용기를 개방하여 용기내의 내용물을 확인한 결과, GaN와 Li3GaN2 혼합물 상태로 나왔다. XRD 측정 결과 두 물질의 비율은 각각 40:60 정도였다. A high purity Ga 5 g, 1.25 g of Li 3 N powder, and 0.30 g of Bi powder were placed in a reaction vessel having an internal volume of 20 cc, and then the reaction vessel was sealed. After the reaction vessel was connected to a vacuum pump to remove moisture and air in the reaction vessel, the reaction vessel was filled with 50 atm of N 2 gas. The half applicator was heated to 800 ° C. and held for 20 hours. After the reaction vessel was cooled to room temperature, the reaction vessel was opened to confirm the contents of the vessel. As a result, GaN and Li 3 GaN 2 mixtures were obtained. XRD measurements showed that the ratio of the two materials was about 40:60 each.
비교예 4Comparative Example 4
내부 부피 20 cc의 반응용기에 고순도 Ga 5 g과 Li3N 분말 2.51 g, Bi 분말 0.30 g을 넣은 후 반응용기를 밀폐하였다. 반응용기를 진공펌프에 연결하여 반응용기 내의 수분과 공기를 제거한 후, 반응용기에 N2 가스 50 기압을 충진하였다. 반응용기를 800 ℃로 가열하여 20 시간 유지하였다. 반응용기를 상온으로 냉각시킨후 반응용기를 개방하여 용기내의 내용물을 확인한 결과, 거의 대부분 Li3GaN2 덩어리 상태로 나왔다. Into a reaction vessel having an internal volume of 20 cc, 5 g of high purity Ga, 2.51 g of Li 3 N powder, and 0.30 g of Bi powder were sealed, and then the reaction vessel was sealed. After the reaction vessel was connected to a vacuum pump to remove moisture and air in the reaction vessel, the reaction vessel was filled with 50 atm of N 2 gas. The reaction vessel was heated to 800 ° C. and maintained for 20 hours. After the reaction vessel was cooled to room temperature, the reaction vessel was opened to confirm the contents of the vessel. As a result, almost all of them came out as Li 3 GaN 2 agglomerates.
이상 설명한 바와 같이, 본 발명에 따른 계면활성제 첨가를 통한 Ⅲ족 원소 질화물 결정체 분말의 합성방법을 이용하면, Ⅲ족 원소와 질소가스와의 반응면적을 효과적으로 넓혀주어 Ⅲ족 원소 대부분을 질화반응 시켜줄 수 있으며, 질화반응 속도 또한 촉진시킬 수 있다. 뿐만 아니라, 비교적 낮은 압력하에서 결정성이 높은 Ⅲ족 원소 질화물 결정체 분말을 쉽게 얻을 수 있다.As described above, by using the method of synthesizing the Group III element nitride crystal powder through the addition of a surfactant according to the present invention, it is possible to effectively widen the reaction area between the Group III element and the nitrogen gas to nitrify most of the Group III elements. It can also accelerate the rate of nitriding reactions. In addition, group III elemental nitride crystal powder having high crystallinity can be easily obtained under relatively low pressure.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060071457A KR100894959B1 (en) | 2006-07-28 | 2006-07-28 | Method for preparing ? nitride cristal powder and ? nitride cristal powder prepared the same method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060071457A KR100894959B1 (en) | 2006-07-28 | 2006-07-28 | Method for preparing ? nitride cristal powder and ? nitride cristal powder prepared the same method |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20080010844A KR20080010844A (en) | 2008-01-31 |
KR100894959B1 true KR100894959B1 (en) | 2009-04-27 |
Family
ID=39222775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020060071457A KR100894959B1 (en) | 2006-07-28 | 2006-07-28 | Method for preparing ? nitride cristal powder and ? nitride cristal powder prepared the same method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100894959B1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001024921A1 (en) * | 1999-10-06 | 2001-04-12 | General Electric Company | Crystalline gallium nitride and method for forming crystalline gallium nitride |
-
2006
- 2006-07-28 KR KR1020060071457A patent/KR100894959B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001024921A1 (en) * | 1999-10-06 | 2001-04-12 | General Electric Company | Crystalline gallium nitride and method for forming crystalline gallium nitride |
Non-Patent Citations (1)
Title |
---|
JPWO2006/022302 S* |
Also Published As
Publication number | Publication date |
---|---|
KR20080010844A (en) | 2008-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Ammonothermal synthesis of III-nitride crystals | |
US7097707B2 (en) | GaN boule grown from liquid melt using GaN seed wafers | |
Dwiliński et al. | GaN synthesis by ammonothermal method | |
US20110220912A1 (en) | Semi-insulating Group III Metal Nitride and Method of Manufacture | |
Yano et al. | Growth of nitride crystals, BN, AlN and GaN by using a Na flux | |
KR20070033384A (en) | Bulk single crystal of gallium-containing nitride and its application | |
KR20090064379A (en) | Process for producing nitride semiconductor, crystal growth rate enhancement agent, nitride single crystal, wafer and device | |
CN100582324C (en) | Method for producing AIN single crystal and AIN single crystal | |
JP2000327495A (en) | Method for growing gallium nitride single crystal | |
KR100322374B1 (en) | Method of fabricating nitride crystal, mixture,liquid phase growth method, nitride crystal, nitride crystal powders, and vapor phase growth method | |
JP5396569B1 (en) | Method for producing group 13 element nitride crystal and melt composition | |
CN110284195B (en) | Boron phosphide single crystal and preparation method and application thereof | |
US20130340672A1 (en) | Using boron-containing compounds, gasses and fluids during ammonothermal growth of group-iii nitride crystals | |
US20060048701A1 (en) | Method of growing group III nitride crystals | |
Bockowski | Growth and doping of GaN and AlN single crystals under high nitrogen pressure | |
WO1997013891A1 (en) | METHOD OF MANUFACTURING EPITAXIAL LAYERS OF GaN OR Ga(A1,In)N ON SINGLE CRYSTAL GaN AND MIXED Ga(A1,In)N SUBSTRATES | |
JP2007084422A (en) | Method of producing group 13 metal nitride crystal, method for manufacturing semiconductor device, and solution and melt used in those methods | |
JP4881553B2 (en) | Method for producing group 13 nitride crystal | |
KR100894959B1 (en) | Method for preparing ? nitride cristal powder and ? nitride cristal powder prepared the same method | |
CN113186590A (en) | Preparation method of centimeter-level molybdenum trioxide single crystal | |
JP5252002B2 (en) | Group 13 metal nitride crystal manufacturing method and semiconductor device manufacturing method | |
JP5573225B2 (en) | Method for producing Group 13 metal nitride crystal, Group 13 metal nitride crystal obtained by the production method, and method for producing semiconductor device | |
WO2011063365A1 (en) | Gan whiskers and methods of growing them from solution | |
JP4910760B2 (en) | Crystal growth rate control method, compound crystal and manufacturing method thereof, and manufacturing method of semiconductor device | |
Wang | Current methods for GaN synthesis and the limitations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130410 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20140318 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20160418 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20170328 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20180403 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20190401 Year of fee payment: 11 |