KR100893355B1 - Synthetic method of recycling polyol from wasted polyurethane foam and composition of polyurethane foam using this - Google Patents

Synthetic method of recycling polyol from wasted polyurethane foam and composition of polyurethane foam using this Download PDF

Info

Publication number
KR100893355B1
KR100893355B1 KR20080102932A KR20080102932A KR100893355B1 KR 100893355 B1 KR100893355 B1 KR 100893355B1 KR 20080102932 A KR20080102932 A KR 20080102932A KR 20080102932 A KR20080102932 A KR 20080102932A KR 100893355 B1 KR100893355 B1 KR 100893355B1
Authority
KR
South Korea
Prior art keywords
polyol
parts
weight
polyurethane foam
oil
Prior art date
Application number
KR20080102932A
Other languages
Korean (ko)
Inventor
강찬홍
Original Assignee
주식회사 세호테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 세호테크 filed Critical 주식회사 세호테크
Application granted granted Critical
Publication of KR100893355B1 publication Critical patent/KR100893355B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/82Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/06Recovery or working-up of waste materials of polymers without chemical reactions
    • C08J11/08Recovery or working-up of waste materials of polymers without chemical reactions using selective solvents for polymer components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/20Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with hydrocarbons or halogenated hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

A synthetic method of recycling polyol from waste polyurethane foam is provided to secure competitive price by recycling high-priced polyurethane foam and reducing the quantity of amine catalysts consumed. A synthetic method of recycling polyol from waste polyurethane foam comprises the following steps. The 100 parts of waste polyurethane foam is mixed to the 100-300 parts of polyether polyol or polyester polyol by weight to be decomposed at a temperature range of 120-300°C. The mixture is added to the following compositions of: amine-based oligomer selected from the group consisting of di(2,6-dimethylmorpholinoethyl)ether, bisoxazolidine, diethylated toluene diamine, N-methyl-2-pyrrolidone, morpholine and tetramethyl propylene diamine; animal or plant oil selected from the group consisting of palm oil, soybean oil, olive oil, castor oil, rape oil and rice oil; and organometallic catalyst or tertiary amine-based catalyst selected from the group consisting of triethylenediamine, 5-methyl-diethylene triamine, di-(N,N-dimethyl aminoethyl)ether and dimethylcyclohexylamine to react the mixture at 170-400°C for a predetermined time.

Description

폐 폴리우레탄폼으로부터 재생폴리올의 합성방법 및 상기 방법으로 제조된 재생폴리올을 이용한 폴리우레탄 발포폼 조성물{Synthetic Method of Recycling Polyol from Wasted PolyUrethane Foam and Composition of Polyurethane Foam Using This}Synthetic Method of Recycling Polyol from Wasted PolyUrethane Foam and Composition of Polyurethane Foam Using This}

본 발명은 폐 폴리우레탄폼으로부터 재생폴리올의 합성방법 및 상기 방법으로 합성된 재생폴리올을 포함한 폴리우레탄 발포폼 조성물에 관한 것이다.The present invention relates to a method for synthesizing recycled polyol from waste polyurethane foam and to a polyurethane foam composition comprising recycled polyol synthesized by the above method.

다공성 물질은 독립기포구조조직과 개방기포구조조직으로 되고, 독립기포형이 cellutype=expended materials이며 개방기포형이 noncellutype=sponge materiais이다. 고무계 기포구조 물질 또는 플라스틱 포장물질로 코팅 되는 스폰지와 폼의 구별은 막연(漠然)하며 폼과 스폰지는 어느 것이나 고수 기타의 플라스틱 다공성 물질과 같이 명확하게 구별하기 어렵고 폼 또는 스폰지라고 혼동되고 있다. 다공성 물질을 총칭하여 스펀지라고 칭한다.Porous material is composed of independent bubble structure and open bubble structure, with independent bubble type cellutype = expended materials and open bubble type noncellutype = sponge materiais. The distinction between sponges and foams coated with rubber-based foam materials or plastic packaging materials is vague, and foams and sponges are difficult to clearly distinguish, like coriander or other plastic porous materials, and are confused with foams or sponges. The porous material is collectively called a sponge.

현재 플라스틱 다공성 물질로 폼과 스펀지로 칭함에 불과하다. 현재 모든 고분자 기체에서 폼이 제조되나 유동성이 큰 액체상으로써 임의의 스페이스로 상온 에서 주입 또는 토출(吐出)시켜 그대로 경화 시키는 간단한 조작으로 성형 되는 것은 우레탄폼의 최대의 특징이다.Currently, plastic porous materials are just called foams and sponges. At present, foam is manufactured in all polymer gases, but it is a liquid phase with high fluidity, and it is the biggest feature of urethane foam to be molded by a simple operation which is hardened as it is injected or discharged at room temperature in an arbitrary space.

폴리우레탄 폼의 생성원리는 히드록실 말단기의 고분자체와 디이소시아네이트가 수가교에 의한 탄성체 생성 반응에 따라 침연장 가교 망상화 반응을 일으켜 분자를 거대화 시킴과 동시에 이때에 발생하는 가스에 의해 팽창하여 구형 또는 반구형 또는 다각형의 세포상 조직체가 되고 경화시켜 폴리우레탄 폼이 된다. 발포 반응의 주류는 이소시아네이트 기(基)와 물의 반응이나 여러가지가 개발되고 있다.Polyurethane foam production principle is that the polymer of the hydroxyl end group and the diisocyanate cause crosslinking crosslinking network reaction according to the formation reaction of the elastomer by the water crosslinking to enlarge the molecules and expand by the gas generated at this time. Spherical or hemispherical or polygonal cellular structures are formed and cured to form polyurethane foams. The mainstream of the foaming reaction is the reaction of isocyanate groups with water and various developments.

최근 폼 제품의 균일성 기포의 개방 또는 독립상의 차이 화학적 물리적 제성질 등의 확실한 재현성을 얻으려면 폴리올 디이소시아네이트 물 또는 발포제 촉매 첨가제 등 반응 과정에서의 변화와 속도 가스발생량과 속도 그리고 경화시간 등의 제인자가 복잡하게 얽혀 영향을 주므로 일정한 성질의 포옴을 연속적으로 얻기 위해서는 그것에 정확한 원재료와 재현성 있는 확실한 조작 방법을 필요로 한다. 셀의 크기는 교반의 속도 토출압과 공기주입량 및 그 방법에 의해 좌우되며 주의를 요한다.Uniformity of Foam Products Recently Differences in Bubble Opening or Independent Phases In order to obtain reproducible properties such as chemical physical properties, changes in the reaction process such as polyol diisocyanate water or blowing agent catalyst additives, etc. As the self-entanglement affects, continuous obtaining of certain properties of the foam requires accurate raw materials and reliable operation methods. The size of the cell depends on the speed of the stirring, the discharge pressure and the air injection amount, and the method thereof, and attention is required.

이소시안염화합물과 글리콜의 반응으로 얻어지는 폴리우레탄을 구성재료로 하고, 구성 성분인 이소시안산염과 다리결합제로 쓰는 물과의 반응으로 생기는 이산화탄소와 프레온과 같은 휘발성용제를 발포제로 섞어서 만드는 발포제품을 일컫는다. 폼의 겉보기 밀도를 비교적 자유롭게 조절할 수 있어 어디서나 현장에서 간 단히 발포시킬 수 있다.Polyurethane obtained by the reaction of isocyanate salt and glycol is used as a constituent material, and foamed product made by mixing volatile solvent such as carbon dioxide and freon produced by reaction of isocyanate salt and water used as bridge binder as foaming agent. It is called. The apparent density of the foam can be controlled relatively freely, allowing for easy foaming anywhere on site.

사용하는 원료, 글리콜의 종류에 따라 폴리에테르폼과 폴리에스테르 폼으로 나눌 수 있는데, 앞의 것은 유연성이 좋고 뒤의 것은 공업용 폼으로 쓰기에 알맞게 딱딱하다. 이와 같이 만들어지는 폼은 초연질 연질 반경질 경질 등으로 굳기를 가진다. 초연질과 연질은 쿠션이 우수하여 매트리스 등에 이용되고 경질폼은 강성이 있고 단열성과 저온 특성이 좋기 때문에 냉장고 단열재, 건축물의 단열 방수 등에 쓰이고 반경질 폼은 충격 흡수력이 좋아 자동차 내장재로 쓰인다. 폼 성형 방법으로는 원숏법과 프리 폴리머법등 2가지가 있다. 원숏법은 원료 성분을 한꺼번에 섞어 반응시켜 발포시키므로 경제적이어서 연질폼은 대부분 이 방법으로 만들어진다. 프리폴리머법은 미리 글리콜의 일부와 디이소시안염을 반응시켜 프리폴리머(부분 중합제)를 만들어 두고 여기에다 나머지 글리콜 발포제 촉매 등을 섞어서 발포시키는 방법인데 발포가 고르기 때문에 반경질폼이나 경질폼처럼 공업용으로 쓰이는 품질을 중히 여기는 폼을 만드는데 이 방법을 이용한다. 최근 일본에선 물만으로 발포시키는 non프레온 폼도 개발되어 2004년 전폐가 예정 되어있는 Hcfc 141b로 대표되는 대체프레온을 사용하지 않는 수발포에 의한 경질 우레탄 폼도 일본(日本)니시이도료 산업에 의해 개발되었다.Depending on the type of raw materials and glycol used, it can be divided into polyether foam and polyester foam. The former is flexible and the latter is suitable for use as an industrial foam. The foam made in this way has a rigidity such as super soft soft semi-hard hard. The super soft and soft cushions are used for mattresses, and the rigid foams are used for refrigerator insulation and waterproof insulation of refrigerators because of their rigidity and good thermal insulation and low temperature. There are two foam molding methods, one-shot method and prepolymer method. The one-shot method is economical because the raw material components are mixed and reacted at once, so that the foam is mostly made by this method. The prepolymer method is a method of preparing a prepolymer (partial polymerizer) by reacting a part of glycol and a diisocyanate salt in advance, and mixing the remaining glycol blowing agent catalyst with the foam, and since the foam is uniform, it is used for industrial purposes such as semi-rigid foam or rigid foam. Use this method to create a form that values. Recently, non-freon foams that only foam with water have been developed in Japan, and rigid urethane foams using water-repellent foams that do not use alternative freons, such as Hcfc 141b, which are scheduled to be closed in 2004, have also been developed by Nishi Nishi paint industry. .

폴리우레탄은 그들이 갖는 내약품성, 단열성, 반응성 등의 물성상의 우수함과 제조방법의 다양함, 제품의 경량화와 고급화 경향에 맞추어 산업분야에서 매우 중요한 고분자 물질로 사용되고 있다. 산업현장에서부터 가정에까지 널리 사용되 고 있는 폴리우테탄 폼은 그 사용년한이 다되면, 제품에 내장된 채 버려지는 경우가 많으며, 그 폐기물의 양도 점차적으로 증가하는 추세에 있다. 이러한 폐 폴리우레탄은 일부 재활용되고 있으나, 이는 전체 발생되는 양중 극히 일부분에 불구하며 대부분은 폐기물 처리업체 위탁하여 소각 혹은 매립되고 있다. 이는 재활용이 가능한 고가의 소재가 손실되는 것으로 국가 경제적인 측면에서 커다란 손실이 아닐 수 없다.Polyurethane has been used as a very important polymer material in the industrial field in accordance with the excellent physical properties such as chemical resistance, heat insulation, reactivity, and a variety of manufacturing methods, light weight and high quality of products. Polyurethane foams, which are widely used in industrial sites and homes, are often discarded as products when they are used up, and the amount of waste is gradually increasing. These waste polyurethanes are partially recycled, but most of them are incinerated or landfilled by waste disposal companies, despite a fraction of the total. This is a loss of expensive materials that can be recycled, which is a huge loss in terms of national economy.

이에, 본 발명자들은 폐 폴리우레탄폼을 재활용하는 방법을 강구하던 중, 폐 폴리우레탄폼을 아민계 올리고머, 동ㆍ식물성 오일, 다가알콜을 이용하여 고온에서 분해 및 재생폴리올을 합성하게 되었고, 이를 MDI와 반응시켜 폴리우레탄을 재생시킬 수 있음을 확인함으로써 본 발명을 완성하였다.Therefore, the inventors of the present invention, while devising a method for recycling the waste polyurethane foam, the waste polyurethane foam was synthesized at high temperature by using an amine oligomer, animal and vegetable oil, polyhydric alcohol, and synthesized polyol at high temperature. The present invention has been completed by confirming that the polyurethane can be regenerated to react with.

본 발명의 목적은 폐 폴리우레탄폼을 이용한 재생폴리올의 합성방법 및 상기 방법으로 제조된 폴리우레탄 조성물을 제공하는 것이다.An object of the present invention is to provide a method for synthesizing recycled polyol using waste polyurethane foam and a polyurethane composition prepared by the above method.

상기 목적을 달성하기 위하여, 본 발명은 ⅰ) 폐 폴리우레탄폼 100 중량부에 다가알콜인 폴리올 100 내지 300 중량부를 첨가하고, 상기 폐 폴리우레탄폼을 120 내지 300℃의 온도에서 분해시키는 단계; ⅱ) 상기 ⅰ) 단계의 혼합물에 DMDEE(di(2,6-dimethylmorpholinoethyl)ether), Bisoxazolidine, DETDA(diethylated toluene diamine), NMP(N,-methyl-2-pyrrolidone), Morpholine 및 TMPDA(Tetramethyl propylene diamine)로 이루어진 군중에서 선택된 아민계 올리고머, 팜유, 대두유, 올리브유, 피마자유, 채종유, 미강유 및 돈자유로 구성된 군중에서 선택된 동ㆍ식물성 오일 및, 유기금속(Organometal)계 촉매인 금속 촉매 또는 TEDA(triethylenediamine), PMDETA(5-methyl-diethylene triamine), BDMEE(di-(N,N-dimethyl aminoethyl)ether) 및 DMCHA(dimethylcyclohexylamine; 디메틸시클로헥실아민)로 이루어진 군중에서 선택된 3급 아민(Tertiary Amine)계 촉매인 아민 촉매를 첨가하여 일정 시간 동안 170 내지 400℃의 온도에서 반응시키는 단계, 이때 아민계 올리고머와 동식물성 오일의 합이 50~150 중량부, 금속 또는 아민촉매는 5~20 중량부인 것을 특징으로 한다; 및 ⅲ) 상기 ⅱ) 단계의 조성물을 숙 성 및 여과시키는 단계를 포함한 폐 폴리우레탄폼으로부터 재생폴리올의 합성방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of i) adding 100 to 300 parts by weight of polyol which is a polyhydric alcohol to 100 parts by weight of waste polyurethane foam, and decomposing the waste polyurethane foam at a temperature of 120 to 300 ° C .; Ii) di (2,6-dimethylmorpholinoethyl) ether (DMDEE), Bisoxazolidine, diethylated toluene diamine (DETDA), NMP (N, -methyl-2-pyrrolidone), Morpholine and Tetramethyl propylene diamine in the mixture of step iii) Amine oligomers selected from the group consisting of), palm and vegetable oils selected from the group consisting of palm oil, soybean oil, olive oil, castor oil, rapeseed oil, rice bran oil and pig oil, and metal catalysts or organic catalysts based on organic metal (TEDA) or triethylenediamine ), Tertiary amine catalyst selected from the group consisting of 5-methyl-diethylene triamine (PMDETA), di- (N, N-dimethyl aminoethyl) ether (BDMEE) and dimethylcyclohexylamine (DMCHA) Adding a phosphorus amine catalyst and reacting at a temperature of 170 to 400 ° C. for a predetermined time, wherein the sum of the amine oligomer and the animal and vegetable oil is 50 to 150 parts by weight, and the metal or the amine catalyst is 5 to 20 parts by weight.Everything; And iii) a method of synthesizing a recycled polyol from waste polyurethane foam comprising the step of aging and filtering the composition of step ii).

또한, 본 발명은 상기 방법으로 합성된 재생폴리올을 포함한 폴리우레탄 발포폼 조성물을 제공한다.The present invention also provides a polyurethane foam composition comprising a recycled polyol synthesized by the above method.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 ⅰ) 폐 폴리우레탄폼 100 중량부에 다가알콜인 폴리올 100 내지 300 중량부를 첨가하고, 상기 폐 폴리우레탄폼을 120 내지 300℃의 온도에서 분해시키는 단계; ⅱ) 상기 ⅰ) 단계의 혼합물에 DMDEE(di(2,6-dimethylmorpholinoethyl)ether), Bisoxazolidine, DETDA(diethylated toluene diamine), NMP(N,-methyl-2-pyrrolidone), Morpholine 및 TMPDA(Tetramethyl propylene diamine)로 이루어진 군중에서 선택된 아민계 올리고머, 팜유, 대두유, 올리브유, 피마자유, 채종유, 미강유 및 돈자유로 구성된 군중에서 선택된 동ㆍ식물성 오일 및, 유기금속계 촉매인 금속 촉매 또는 TEDA(triethylenediamine), PMDETA(5-methyl-diethylene triamine), BDMEE(di-(N,N-dimethyl aminoethyl)ether) 및 DMCHA(dimethylcyclohexylamine; 디메틸시클로헥실아민)로 이루어진 군중에서 선택된 3급 아민(Tertiary Amine)계 촉매인 아민 촉매를 첨가하여 일정 시간 동안 170 내지 400℃의 온도에서 반응시키는 단계, 이때 아민계 올리고머와 동식물성 오일의 합이 50~150 중량부, 금속 또는 아민촉매는 5~20 중량부인 것을 특징으로 한다; 및 ⅲ) 상기 ⅱ) 단계의 조성물을 숙성 및 여과시키는 단계를 포함한 폐 폴리우레탄폼으로부터 재생폴리올의 합성방법을 제공한다.The present invention comprises the steps of: i) adding 100 to 300 parts by weight of polyol which is a polyalcohol to 100 parts by weight of waste polyurethane foam, and decomposing the waste polyurethane foam at a temperature of 120 to 300 ° C; Ii) di (2,6-dimethylmorpholinoethyl) ether (DMDEE), Bisoxazolidine, diethylated toluene diamine (DETDA), NMP (N, -methyl-2-pyrrolidone), Morpholine and Tetramethyl propylene diamine in the mixture of step iii) ) Amine-based oligomers selected from the group consisting of amine oligomers, palm oil, soybean oil, olive oil, castor oil, rapeseed oil, rice bran oil, and pig oil selected from the group consisting of animal and vegetable oils, metal catalysts or organic catalysts such as TEDA (triethylenediamine) and PMDETA ( An amine catalyst is a tertiary amine catalyst selected from the group consisting of 5-methyl-diethylene triamine, BDMEE (di- (N, N-dimethyl aminoethyl) ether) and DMCHA (dimethylcyclohexylamine). Reacting at a temperature of 170 to 400 ° C. for a predetermined time, wherein the sum of the amine oligomer and the animal and vegetable oil is 50 to 150 parts by weight, and the metal or amine catalyst is 5 to 20 parts by weight; And iii) a method of synthesizing recycled polyol from waste polyurethane foam, which comprises the step of aging and filtering the composition of step ii).

본 발명의 폐 폴리우레탄폼으로부터 재생폴리올의 합성방법에 있어서, 상기 다가알콜은 폴리에테르폴리올(Polyether Polyol) 또는 폴리에스테르폴리올(Polyester Polyol)인 것이 바람직하고, 상기 유기금속계 촉매는 DBTDL(dibutyltindilaurate)인 것이 바람직하다.In the method for synthesizing recycled polyol from the waste polyurethane foam of the present invention, the polyhydric alcohol is preferably polyether polyol or polyester polyol, and the organometallic catalyst is DBTDL (dibutyltindilaurate). It is preferable.

또한, 본 발명의 폐 폴리우레탄폼으로부터 재생폴리올의 합성방법에 있어서, 상기 ⅰ) 단계의 분해온도 및 ⅱ) 단계의 반응온도는 180 내지 190℃인 것이 바람직하고, 상기 ⅱ) 단계의 반응은 4~8시간 동안 이루어지는 것이 바람직하다.In addition, in the method for synthesizing recycled polyol from the waste polyurethane foam of the present invention, the decomposition temperature of step iii) and the reaction temperature of step ii) are preferably 180 to 190 ° C, and the reaction of step ii) is 4 It is preferably done for ˜8 hours.

또한, 본 발명의 폐 폴리우레탄폼으로부터 재생폴리올의 합성방법에 있어서, 상기 ⅲ) 숙성 및 여과단계는 1~3시간 동안 숙성시킨 후, 180 ㎛ 이하의 구멍 크기를 갖는 필터를 통하여 여과하는 것이 바람직하다.In addition, in the method for synthesizing the recycled polyol from the waste polyurethane foam of the present invention, the iii) aging and filtration step is aged for 1 to 3 hours, and then filtered through a filter having a pore size of 180 μm or less. Do.

본 발명의 상기 방법으로 합성된 재생폴리올의 합성과정을 단계별로 설명하면 다음과 같다.Referring to the synthesis process of the regenerated polyol synthesized by the above method of the present invention step by step.

1) 원료 투입 및 원료의 분해 단계1) Raw material input and decomposition step

폐 폴리우레탄폼과 다가알콜(폴리올)을 함께 넣은 뒤, 120℃ 이상으로 상승시켜 폐 폴리우레탄폼을 분해시킨다.The waste polyurethane foam and polyhydric alcohol (polyol) are put together, and then raised to 120 ° C. or higher to decompose the waste polyurethane foam.

이때, 폴리올(Polyol)은 분자말단에 2개이상의 수산기(-OH)를 갖고 있는 유기화합물로 PU 제조시 이소시아네이트와 함께 주성분을 이룬다. PUF 제조용으로는 폴리에테르폴리올(Polyether Polyol), 폴리에스테르폴리올(Polyester Polyol) 등이 주로 사용된다. 폴리에테르폴리올은 분자구조에 에테르기(Ether, -O-)가 반복적으로 결합되어 있는 폴리올의 종류이고, 폴리에스테르폴리올은 분자구조에 에스테르기(Ester, -COO-)가 반복적으로 결합되어 있는 폴리올의 한 종류로 주로 CASE 분야에 사용되고, 폴리머폴리올(POP)은 Polymer Polyol의 약칭으로 코폴리머폴리올(Copolymer Polyol CPP)라고도 하며, 폴리에테르폴리올 중에 아크릴 단량체(Acryl Monomer)를 분산, 중합하여 제조된 폴리올의 일종으로 주로 경도 및 통기성의 증가 목적으로 사용한다(연질, 반경질폼에 적용).In this case, polyol is an organic compound having two or more hydroxyl groups (-OH) at the terminal of the molecule and forms a main component together with isocyanate during PU production. For the production of PUF, polyether polyol, polyester polyol, and the like are mainly used. Polyether polyol is a kind of polyol in which ether group (Ether, -O-) is repeatedly bonded to molecular structure, and polyester polyol is polyol in which ester group (Ester, -COO-) is repeatedly bonded to molecular structure Polymer polyol (POP) is an abbreviation of Polymer Polyol, also called copolymer polyol (PPP), and is a polyol prepared by dispersing and polymerizing an acrylic monomer in a polyether polyol. It is mainly used for the purpose of increasing hardness and breathability (applied to soft and semi-rigid foam).

2) 재료의 반응 단계2) the reaction step of the material

상기 분해된 폐 폴리우레탄 및 다가알콜에 아민계 올리고머, 동ㆍ식물성 오일, 및 금속 또는 아민계 촉매를 첨가하여 170℃의 이상의 온도에서 4시간 이상 반응시킨다.An amine oligomer, animal and vegetable oils, and a metal or amine catalyst are added to the decomposed waste polyurethane and polyhydric alcohol and reacted for 4 hours or more at a temperature of 170 ° C or higher.

아민계 올리고머로는 DMDEE(di(2,6-dimethylmorpholinoethyl)ether), Bisoxazolidine, DETDA(diethylated toluene diamine), NMP(N,-methyl-2-pyrrolidone), Morpholine, TMPDA 등이 사용가능하고, 동ㆍ식물성 오일은 팜유, 대두유, 올리브유, 피마자유, 채종유, 미강유와 같은 식물류 및 돈자유와 같은 동물류 등이 사용가능하다. 상기 아민계 올리고머 및 동ㆍ식물성 오일은 폐 폴리우레탄 100 중량부를 기준으로 50~150 중량부, 바람직하게는 90 중량부를 포함시킬 수 있다.As the amine oligomer, DMDEE (di (2,6-dimethylmorpholinoethyl) ether), Bisoxazolidine, DETDA (diethylated toluene diamine), NMP (N, -methyl-2-pyrrolidone), Morpholine, TMPDA, etc. can be used. Vegetable oils may be used, such as palm oil, soybean oil, olive oil, castor oil, rapeseed oil, vegetable such as rice bran oil and animal such as pig oil. The amine oligomer and animal and vegetable oils may contain 50 to 150 parts by weight, preferably 90 parts by weight, based on 100 parts by weight of the waste polyurethane.

금속촉매로 유기금속(Organometal)계 촉매를 사용하는 것이 바람직한데, 예 를 들면 DBTDL(dibutyltindilaurate), 기타 유기물을 함유한 주석화합물, 납화합물 등을 사용할 수 있다. 아민계 촉매로는 3급 아민(Tertiary Amine)계 촉매를 사용하는 것이 바람직한데, TEDA(triethylenediamine), PMDETA(5-methyl-diethylene triamine), BDMEE(di-(N,N-dimethyl aminoethyl)ether), DMCHA(dimethylcyclohexylamine; 디메틸시클로헥실아민) 등을 사용할 수 있다. 상기 촉매는 폐 폴리우레탄 100 중량부를 기준으로 5~15 중량부, 바람직하게는 10 중량부를 포함시킬 수 있다.It is preferable to use an organometallic catalyst as the metal catalyst, for example DBTDL (dibutyltindilaurate), tin compounds containing other organic substances, lead compounds and the like can be used. Tertiary amine (Tertiary Amine) catalyst is preferably used as the amine catalyst, such as TEDA (triethylenediamine), PMDETA (5-methyl-diethylene triamine) and BDMEE (di- (N, N-dimethyl aminoethyl) ether) , DMCHA (dimethylcyclohexylamine; dimethylcyclohexylamine) may be used. The catalyst may contain 5 to 15 parts by weight, preferably 10 parts by weight based on 100 parts by weight of waste polyurethane.

3) 숙성 및 여과 단계3) Ripening and Filtration Steps

상기 반응이 완료되면 이것을 천천히 온도를 낮추면서 1~3시간 정도 숙성시킨다. 숙성이 완료되면 180 ㎛ 이하의 구멍 크기를 갖는 필터를 통해 여과시킨다. 이것을 최종적으로 포장한다.When the reaction is completed, it is aged slowly for 1 to 3 hours while slowly lowering the temperature. After aging is completed, the filter is filtered through a filter having a pore size of 180 μm or less. Finally wrap this.

본 발명의 실시예에선 재생폴리올의 제조는 폴리우레탄 폼을 분쇄하고 이를 DEG에 넣고 고온으로 상승시킨 후, 아민촉매(DMCHA) 또는 유기금속계 촉매(DBTDL), 팜유 또는 대두유, DMDEE 또는 DETDA를 첨가하고 반응시켜 폴리올을 합성하였다. 본 발명의 재생폴리올은 평균 관능기가 2 ~ 5이고, 수산기가 440 ~ 500 ㎎ KOH/g인 특성이 있으며, 점도(cps/25℃)는 2,200~2,500, 수분함량(%)은 0.3% 이하였다.In the embodiment of the present invention, the preparation of the recycled polyol is performed by pulverizing the polyurethane foam, putting it in DEG and raising it to high temperature, and then adding an amine catalyst (DMCHA) or an organometallic catalyst (DBTDL), palm oil or soybean oil, DMDEE or DETDA. The reaction was carried out to synthesize a polyol. The recycled polyol of the present invention has a characteristic of having an average functional group of 2 to 5, a hydroxyl group of 440 to 500 mg KOH / g, a viscosity (cps / 25 ° C) of 2,200 to 2,500, and a water content (%) of 0.3% or less. .

또한, 본 발명은 재생폴리올을 포함한 폴리우레탄 발포폼 조성물을 제공한 다.In addition, the present invention provides a polyurethane foam composition comprising a recycled polyol.

본 발명의 폴리우레탄 발포폼 조성물에 있어서, 상기 폴리우레탄 발포폼 조성물은 ⅰ) 재생폴리올 100 중량부, 물 0.5 내지 5 중량부, 실리콘 정포제 0.5 내지 5 중량부, DMCHA(dimethylcyclohexylamine; 디메틸시클로헥실아민) 0.1 내지 2 중량부 및 141B(1,1-디클로로-1-플루오로에탄) 10 내지 100 중량부를 포함하는 시스템 폴리올; 및 ⅱ) MDI(Methylene diphenyl diisocyanate)로 구성되는 것이 바람직하고, 이때 상기 시스템 폴리올은 재생폴리올 100 중량부, 물 1.5 중량부, 실리콘 정포제 1.5 중량부, DMCHA 0.5 중량부 및 141B 33 중량부인 것이 보다 바람직하다.In the polyurethane foam foam composition of the present invention, the polyurethane foam foam composition is i) 100 parts by weight of regenerated polyol, 0.5 to 5 parts by weight of water, 0.5 to 5 parts by weight of silicone foam stabilizer, DMCHA (dimethylcyclohexylamine; dimethylcyclohexylamine A system polyol comprising from 0.1 to 2 parts by weight and from 10 to 100 parts by weight of 141B (1,1-dichloro-1-fluoroethane); And ii) MDI (Methylene diphenyl diisocyanate), wherein the system polyol is 100 parts by weight of recycled polyol, 1.5 parts by weight of water, 1.5 parts by weight of silicone foam stabilizer, 0.5 parts by weight of DMCHA and 33 parts by weight of 141B. desirable.

또한, 본 발명의 폴리우레탄 발포폼 조성물에 있어서, 상기 시스템 폴리올 : MDI = 1 : 0.5~2인 것이 바람직하고, 상기 시스템 폴리올 : MDI = 1 : 1인 것이 보다 바람직하다.Moreover, in the polyurethane foam foam composition of this invention, it is preferable that the said system polyol: MDI = 1: 0.5-2, and it is more preferable that the said system polyol: MDI = 1: 1.

또한, 본 발명의 폴리우레탄 발포폼 조성물에 있어서, 상기 조성물은 냉장고, 자동차, LNG 선박, 냉동창고, 샌드위치 판넬용 등의 보온제 및 스프레이폼 원료로 구성된 군중에서 선택된 용도로 사용되는 것이 바람직하다.In addition, in the polyurethane foam foam composition of the present invention, the composition is preferably used for the use selected from the crowd consisting of a thermal insulation agent and spray foam raw materials, such as for refrigerators, automobiles, LNG vessels, freezers, sandwich panels.

이러한 본 발명의 폴리우레탄 발포폼 조성물의 각 구성 성분에 대하여 보다 구체적으로 설명하면 다음과 같다.Referring to each component of the polyurethane foam composition of the present invention in more detail as follows.

본 발명에서 사용하는 아민계 촉매는 발포촉매적 역할을 하는 것으로, DMCHA는 밸런스 촉매(Balance Catalyst)의 일종으로 수지화 반응과 포화반응 모두를 적 절하게 촉진시켜 주는 촉매이다. 상기 DMCHA는 아민 베이스 폴리에테르 폴리올을 사용하기 때문에, 아민 촉매 사용량을 감소시킬 수 있다. 상기 촉매의 사용량은 상기 폴리올 100 중량부에 대하여, 0.1 ~ 2 중량부 범위로 사용하며, 0.1 중량부 미만시 반응이 지연되어 경화불량이 발생하고, 2 중량부를 초과하게 되면 반응이 빨라 미충진 및 발포체의 크랙이 발생하는 문제점이 발생하며, 또한 셀내 잔존 아민 촉매량이 증가한다. 촉매의 함량은 증가시킬수록 냄새 발생 정도는 증가하는 경향을 가진다.The amine catalyst used in the present invention plays a role as a foaming catalyst, and DMCHA is a type of balance catalyst, which is a catalyst that properly promotes both resination and saturation reactions. Since the DMCHA uses an amine base polyether polyol, it is possible to reduce the amount of amine catalyst used. The amount of the catalyst is used in the range of 0.1 to 2 parts by weight based on 100 parts by weight of the polyol, and when the content is less than 0.1 parts by weight, the reaction is delayed. The problem that cracking of the foam occurs occurs, and also the amount of residual amine catalyst in the cell increases. As the content of the catalyst increases, the degree of odor generation tends to increase.

정포제(Surfactant)는 첨가제의 일종으로 계면활성 효과작용으로 폼내의 셀(cell) 구조에 영향을 미치며 원료의 혼합성, 안정성, 기포 발생, 기포의 안정성 등의 기능을 하는데, 본 발명에서 사용하는 정포제는 발포체에 셀이 형성될 때 생성된 셀이 합일, 파괴되는 것을 방지하고 균일한 셀이 형성되도록 조정하는 역할을 하며, 그 종류는 당 분야에서 사용하는 것으로 특별히 한정하지 않으나 폴리올과 이소시아네이트 반응시 반응물 분산성 측면에서 우수한 실리콘 정포제를 사용하며, 그 사용범위는 상기 폴리올 100 중량부에 대하여 0.5 ~ 5 중량부 범위로 사용하는데, 0.5 중량부 미만시 폼 성형이 불균일해지는 문제가 발생하며, 5 중량부 초과시 폼 성형성 속도가 늦어지는 문제점이 발생한다.Surfactant (Surfactant) is a kind of additive that affects the cell structure in the foam by the effect of the surface active effect and functions as the mixing of the raw materials, stability, bubble generation, bubble stability, etc. The foam stabilizer serves to prevent the resulting cells from coalescing and breaking when the cells are formed in the foam and to control the formation of a uniform cell. The type of foam stabilizer is not particularly limited to those used in the art. In terms of dispersibility of the reactants, a silicone foam stabilizer is used, and the use range is 0.5 to 5 parts by weight based on 100 parts by weight of the polyol. If more than 5 parts by weight, the problem that the foam formability is slow.

본 발명에서 사용하는 발포제는 폴리올과 이소시아네이트가 반응할 때 이소시아네이트와 반응하여 기체를 발생시켜 폼 구조를 가지게 하는 작용을 하며, 그 종류는 당 분야에서 사용하는 것으로 특별히 한정하지 않으나, 특히 141B는 물리적 발포제로 반응열에 의해 기화되어 기포를 형성하는 물질로 고분자반응에는 참여하지 않는다. 그 사용량은 상기 폴리올 100 중량부에 대하여, 10 ~ 100 중량부 범위로 사용하며, 10 중량부 미만시 폼 셀형성이 미비하고, 100 중량부 초과시 폼 셀 과다 생성으로 폼이 부스러지는 문제점이 발생한다.When the blowing agent used in the present invention reacts with the isocyanate when the polyol and the isocyanate react to generate a gas to have a foam structure, the kind is not particularly limited to those used in the art, but in particular, 141B is a physical blowing agent It is a substance that is vaporized by heat of reaction to form bubbles, and does not participate in polymer reaction. The amount of the polyol is used in the range of 10 to 100 parts by weight based on 100 parts by weight of the polyol, and when the content is less than 10 parts by weight, foam cell formation is insufficient. .

본 발명에서 사용되는 MDI는 상업화되어 가장 많이 사용되는 대표적인 이소시아네이트의 종류들을 일컫는 말로, 분자에 이소시아네이트기(-NCO)를 함유하고 있는 유기화합물로 PU 제조시 폴리올과 함께 주성분을 이룬다. 상기 시스템 폴리올과 MDI는 100 : 100 중량비로 혼합하는데, 100 : 50 중량비 미만시 이소시아네이트의 함량이 낮아 발포체의 셀 안정성이 저하되고, 100 : 200 중량비 초과시에는 이소시아네이트의 함량이 높아 발포체 폼 성형이 정상적이지 않는 문제점이 발생한다. MDI used in the present invention refers to the most commonly used types of isocyanate which is commercialized, and is an organic compound containing an isocyanate group (-NCO) in a molecule and forms a main component together with a polyol during PU production. The system polyol and MDI are mixed in a 100: 100 weight ratio, the content of isocyanate is lower when the content is less than 100: 50 weight ratio, the cell stability of the foam is lowered, and when the 100: 200 weight ratio is higher than the content of isocyanate, foam foam molding is not normal Problem occurs.

본 발명에서는 재생폴리의 합성에 스크랩의 구조가 미치는 영향을 살펴본 결과, 재생폴리의 합성에 사용한 스크랩의 가교도가 증가함에 따라 재생폴리올의 수산가와 점도가 증가하였으며, 전아민기가 크게 향상되었다.In the present invention, as a result of examining the effect of the structure of the scrap on the synthesis of the recycled poly, as the crosslinking degree of the scrap used for the synthesis of the recycled poly increased the hydroxyl value and viscosity of the recycled polyol, the total amine group was greatly improved.

재생폴리올을 이용하여 폴리우레탄 폼을 합성하여 반응속도, 압축강도, 유리전이온도, 열전도도 등을 측정한 결과, 신제 폴리올만을 사용한 폴리우레탄 폼에 비하여 재생폴리올에 함유되어 있는 아민의 영향으로 반응속도가 빨라지고 가교도 가 증가하고 이로 인하여 유리전이온도가 향상되는 결과를 가져오고 반응초기에 미세한 셀을 형성하여 열전도도 또한 향상되었다.The reaction rate, compressive strength, glass transition temperature, thermal conductivity, etc. were measured by synthesizing the polyurethane foam using the recycled polyol. As a result, the reaction rate was influenced by the amine contained in the recycled polyol compared to the polyurethane foam using only the new polyol. Faster and increased crosslinking resulted in improved glass transition temperature and improved thermal conductivity by forming fine cells at the beginning of the reaction.

본 발명의 시스템 폴리올은 재생폴리올 사용하여 아민 촉매의 사용량을 감소시킬 수 있으면서도 기존 폴리우레탄 발포폼에 비해 성형성 및 단열효과가 뛰어나므로, 상기 조성물은 샌드위치 판넬용, 냉장고용, 스프레이폼 원료 및 냉동창고용으로 널리 사용될 수 있다.Since the system polyol of the present invention can reduce the amount of the amine catalyst using recycled polyol and has excellent moldability and heat insulation effect compared to the existing polyurethane foam, the composition is for sandwich panels, refrigerators, spray foam raw materials and refrigeration. It can be widely used for warehouse.

이하, 본 발명을 하기 실시예에 의거하여 보다 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명은 하기 실시예에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 치환 및 균등한 타 실시예로 변경할 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are only for illustrating the present invention, and the present invention is not limited to the following examples and may be changed to other embodiments equivalent to substitutions and equivalents without departing from the technical spirit of the present invention. Will be apparent to those of ordinary skill in the art.

<실시예 1> 재생폴리올의 합성 1Example 1 Synthesis of Regenerated Polyol 1

시중의 폴리우레탄 폼 50 g을 분쇄기를 이용하여 일정한 크기를 갖는 폐 경질 폴리우레탄 폼 스크랩으로 제조하였다. 가열맨틀에 콘덴서, 기계적인 교반장치, 온도조절기가 부착된 4구 플라스크를 장치하고, 상기 플라스크에 용매인 다가 알콜 DEG(diethylene glycol)을 100 g을 넣고 폐 경질 폴리우레탄 스크랩 일부를 반응기에 천천히 투입한 후 온도를 200℃까지 상승시켰다. 반응온도가 200℃에 도달하면 촉매인 아민촉매(TEDA) 5 g, 팜유 20 g 및 아민계 올리고머인 DMDEE 25 g을 넣고, 폐 경질 폴리우테탄 스크랩이 해중합되어 용액상태가 되면 남은 스크랩을 넣어주며, 스크랩을 다 넣을때까지 반복하였다. 스크랩을 넣은 후에는 약수저 등을 이용하여 반응액에 미반응 스크랩이 있는지 확인하고, 230℃에서 6시간 동안 반응시킨 후, 미반응 스크랩이 보이지 않으면 반응을 종결하였다. 그리고 나서, 2시간 천천히 온도를 낮추고 숙성시킨 뒤, 150 ㎛ 구멍 크기를 갖는 필터를 통해 여과하였다.50 g of commercial polyurethane foam were prepared from waste rigid polyurethane foam scrap having a constant size using a grinder. A four-necked flask equipped with a condenser, a mechanical stirrer, and a thermostat was attached to the heating mantle, and 100 g of a polyhydric alcohol DEG (diethylene glycol) was added to the flask, and a portion of the waste hard polyurethane scrap was slowly added to the reactor. After that, the temperature was raised to 200 ° C. When the reaction temperature reaches 200 ° C., 5 g of an amine catalyst (TEDA), 20 g of palm oil, and 25 g of DMDEE, an amine oligomer, are added, and when the waste hard polyutethane scrap is depolymerized, the remaining scrap is added. Repeat until all the scraps. After adding the scrap, check whether there is any unreacted scrap in the reaction solution by using a water dispenser, etc., and after 6 hours of reaction at 230 ° C., if the unreacted scrap is not seen, the reaction was terminated. Then, the temperature was slowly lowered and aged for 2 hours, and then filtered through a filter having a 150 μm pore size.

<실시예 2> 재생폴리올의 합성 2Example 2 Synthesis of Regenerated Polyol 2

아민 촉매 대신에 DBTDL 유기금속계 촉매 5 g, 팜유 대신에 대두유 20 g, DMDEE 대신에 DETDA 25 g을 넣은 것을 제외하고는 상기 실시예 1과 동일한 과정으로 재생폴리올을 합성하였다. Regenerated polyol was synthesized in the same manner as in Example 1, except that 5 g of DBTDL organometallic catalyst, 20 g of soybean oil instead of palm oil, and 25 g of DETDA instead of DMDEE were added instead of the amine catalyst.

<실시예 3> 재생폴리올의 물성Example 3 Physical Properties of Recycled Polyol

상기 실시예 1 및 실시예 2에서 폐 폴리우레탄 스크랩의 해중합에 의한 균일한 품질의 재생폴리올을 합성하였으며, 상기 합성된 폴리올의 물성은 하기 표 1과 같다.In Example 1 and Example 2, a recycled polyol of uniform quality was synthesized by depolymerization of waste polyurethane scrap, and the physical properties of the synthesized polyol are shown in Table 1 below.

실시예 1Example 1 실시예 2Example 2 OH value(㎎ KOH/g)OH value (mg KOH / g) 450~500450-500 440~480440-480 점도(cps/25℃)Viscosity (cps / 25 ℃) 2.300~2,5002.300 ~ 2,500 2.200~2,4002.200 ~ 2,400 수분함량(%)Moisture content (%) 0.3% 이하0.3% or less 0.3% 이하0.3% or less

<실시예 4> 폴리우레탄 발포폼 조성물의 제조Example 4 Preparation of Polyurethane Foam Foam Composition

상기 실시예 1에서 제조한 재생폴리올 100 중량부에 물 1.5 중량부, 실리콘 정포제 1.5 중량부, DMCHA(dimethylcyclohexylamine) 0.5 중량부, 141B(1,1-디클로로-1-플루오로에탄) 33 중량부를 첨가하여 시스템 폴리올을 제조하였다. 상기 시스템 폴리올 100 중량부를 기준으로 동일한 중량부의 MDI를 첨가하여 50 ~ 100 초간 격렬하게 교반한 후 200 × 200 × 100 ㎣ 금형에 주입하여 반응성과 발포체의 외관을 확인하였다.1.5 parts by weight of water, 1.5 parts by weight of silicone foam stabilizer, 0.5 parts by weight of dimethylcyclohexylamine (DMCHA), and 33 parts by weight of 141B (1,1-dichloro-1-fluoroethane) in 100 parts by weight of the recycled polyol prepared in Example 1 Addition made system polyols. Based on 100 parts by weight of the system polyol, the same parts by weight of MDI were added and stirred vigorously for 50 to 100 seconds, and then injected into a 200 × 200 × 100 mm 3 mold to confirm reactivity and appearance of the foam.

<실시예 5> 폼 외관 평가Example 5 Foam Appearance Evaluation

폼 외관 평가는 성형폼을 육안평가에 의해 측정하였다. 육안평가 결과, 재생폴리올이 아닌 통상적 폴리올로부터 합성된 성형폼의 폴리우레탄과 거의 차이점을 발견할 수 없었다.Foam appearance evaluation was performed by visual evaluation of the molded foam. As a result of visual evaluation, little difference was found between the polyurethane of the molding foam synthesized from the conventional polyol and not the recycled polyol.

<실시예 6> 폼 성형성 평가Example 6 Foam Formability Evaluation

폼 성형성 평가는 발포체 제조시 C/T(cream time; 발포물이 부풀어 오르기 시작하는 순간의 시간)와 G/T(발포물이 팽창, 부풀어 오르는 시간) 및 D를 측정하여 평가하였다. 그 결과, 발포체의 C/T는 12초, G/T는 60초이고 D는 28이었다. 상기 발포체는 성형성이 양호한 것으로 평가되었다. 그 결과, 본 발명의 수지 조성물은 접착 강도를 유지하면서 기존 폴리우레탄 폼이 갖추어야 하는 폼 외관과 폼 성형성에 만족된다는 것을 확인하였다.Foam formability evaluation was evaluated by measuring C / T (cream time; the time when the foam began to swell) and G / T (time when the foam expanded and swelled) and D during foam manufacture. As a result, the foam had a C / T of 12 seconds, a G / T of 60 seconds, and a D of 28. The foam was evaluated to have good moldability. As a result, it was confirmed that the resin composition of the present invention satisfies the foam appearance and foam formability that the existing polyurethane foam should have while maintaining the adhesive strength.

도 1은 본 발명의 폐 폴리우레탄폼으로부터 재생폴리올의 합성을 간단히 나타낸 모식도이다. 1 is a schematic diagram showing the synthesis of recycled polyol from the waste polyurethane foam of the present invention.

Claims (12)

ⅰ) 폐 폴리우레탄폼 100 중량부에 폴리에테르폴리올(Polyether Polyol) 또는 폴리에스테르폴리올(Polyester Polyol) 100 내지 300 중량부를 첨가하고, 상기 폐 폴리우레탄폼을 120 내지 300℃의 온도에서 분해시키는 단계;Iii) adding 100 to 300 parts by weight of polyether polyol or polyester polyol to 100 parts by weight of waste polyurethane foam and decomposing the waste polyurethane foam at a temperature of 120 to 300 ° C; ⅱ) 상기 ⅰ) 단계의 혼합물에 DMDEE(di(2,6-dimethylmorpholinoethyl)ether), Bisoxazolidine, DETDA(diethylated toluene diamine), NMP(N,-methyl-2-pyrrolidone), Morpholine 및 TMPDA(Tetramethyl propylene diamine)로 이루어진 군중에서 선택된 아민계 올리고머, 팜유, 대두유, 올리브유, 피마자유, 채종유, 미강유 및 돈자유로 구성된 군중에서 선택된 동ㆍ식물성 오일 및, DBTDL(dibutyltindilaurate)인 유기금속(Organometal)계 촉매 또는 TEDA(triethylenediamine), PMDETA(5-methyl-diethylene triamine), BDMEE(di-(N,N-dimethyl aminoethyl)ether) 및 DMCHA(dimethylcyclohexylamine; 디메틸시클로헥실아민)로 이루어진 군중에서 선택된 3급 아민(Tertiary Amine)계 촉매인 아민 촉매를 첨가하여 일정 시간 동안 170 내지 400℃의 온도에서 반응시키는 단계, 이때 아민계 올리고머와 동식물성 오일의 합이 50~150 중량부, 금속 또는 아민촉매는 5~20 중량부인 것을 특징으로 한다; 및Ii) di (2,6-dimethylmorpholinoethyl) ether (DMDEE), Bisoxazolidine, diethylated toluene diamine (DETDA), NMP (N, -methyl-2-pyrrolidone), Morpholine and Tetramethyl propylene diamine in the mixture of step iii) Amine oligomers selected from the group consisting of), palm and soybean oil, olive oil, castor oil, rapeseed oil, rice bran oil and pig oil selected from the group consisting of animal and vegetable oils, and DBTDL (dibutyltindilaurate) organometallic catalyst or TEDA tertiary amine selected from the group consisting of (triethylenediamine), 5-methyl-diethylene triamine (PMDETA), di- (N, N-dimethyl aminoethyl) ether (BDMEE) and dimethylcyclohexylamine (DMCHA) Adding an amine catalyst as a catalyst and reacting at a temperature of 170 to 400 ° C. for a predetermined time, wherein the sum of the amine oligomer and the animal and vegetable oil is 50 to 150 parts by weight, and the metal or the amine catalyst is 5 to 20 parts by weight.And a gong; And ⅲ) 상기 ⅱ) 단계의 조성물을 숙성 및 여과시키는 단계를 포함한 폐 폴리우레탄폼으로부터 재생폴리올의 합성방법.Iii) a method of synthesizing recycled polyol from waste polyurethane foam comprising the step of aging and filtering the composition of step ii). 삭제delete 삭제delete 제 1항에 있어서, 상기 ⅰ) 단계의 분해온도 및 ⅱ) 단계의 반응온도는 180 내지 190℃인 것을 특징으로 하는 폐 폴리우레탄폼으로부터 재생폴리올의 합성방법.The method of claim 1, wherein the decomposition temperature of step iii) and the reaction temperature of step ii) are 180 to 190 ° C. 제 1항에 있어서, 상기 ⅱ) 단계의 반응은 4~8시간 동안 이루어지는 것을 특징으로 하는 폐 폴리우레탄폼으로부터 재생폴리올의 합성방법.The method of claim 1, wherein the reaction of step ii) is carried out for 4 to 8 hours. 제 1항에 있어서, 상기 ⅲ) 숙성 및 여과단계는 1~3시간 동안 숙성시킨 후, 180 ㎛ 이하의 구멍 크기를 갖는 필터를 통하여 여과하는 것을 특징으로 하는 폐 폴리우레탄폼으로부터 재생폴리올의 합성방법.The method of claim 1, wherein the iii) aging and filtration step is aged for 1 to 3 hours, and then filtered through a filter having a pore size of 180 μm or less. . 제 1항 내지 제 6항 중 어느 한 항의 방법으로 합성된 재생폴리올을 포함한 폴리우레탄 발포폼 조성물.Polyurethane foam composition comprising a recycled polyol synthesized by the method of any one of claims 1 to 6. 제 7항에 있어서, 상기 폴리우레탄 발포폼 조성물은The method of claim 7, wherein the polyurethane foam composition ⅰ) 재생폴리올 100 중량부, 물 0.5 내지 5 중량부, 실리콘 정포제 0.5 내지 5 중량부, DMCHA(dimethylcyclohexylamine; 디메틸시클로헥실아민) 0.1 내지 2 중량부 및 141B(1,1-디클로로-1-플루오로에탄) 10 내지 100 중량부를 포함하는 시스템 폴리올; 및Iii) 100 parts by weight of regenerated polyol, 0.5 to 5 parts by weight of water, 0.5 to 5 parts by weight of silicone foam stabilizer, 0.1 to 2 parts by weight of dimethylcyclohexylamine (DMCHA) and 141B (1,1-dichloro-1-fluoro) Roethane) system polyol comprising 10 to 100 parts by weight; And ⅱ) MDI(Methylene diphenyl diisocyanate)로 구성되는 것을 특징으로 하는 폴리우레탄 발포폼 조성물.Ii) Polyurethane foam composition comprising MDI (Methylene diphenyl diisocyanate). 제 8항에 있어서, 상기 시스템 폴리올은 재생폴리올 100 중량부, 물 1.5 중량부, 실리콘 정포제 1.5 중량부, DMCHA 0.5 중량부 및 141B 33 중량부인 것을 특징으로 하는 폴리우레탄 발포폼 조성물.9. The polyurethane foam composition according to claim 8, wherein the system polyol is 100 parts by weight of regenerated polyol, 1.5 parts by weight of water, 1.5 parts by weight of a silicon foam stabilizer, 0.5 parts by weight of DMCHA and 33 parts by weight of 141B. 제 8항에 있어서, 상기 시스템 폴리올 : MDI = 1 : 0.5~2인 것을 특징으로 하는 폴리우레탄 발포폼 조성물.9. The polyurethane foam composition according to claim 8, wherein the system polyol: MDI = 1: 0.5 to 2. 제 8항 또는 제 10항에 있어서, 상기 시스템 폴리올 : MDI = 1 : 1인 것을 특징으로 하는 폴리우레탄 발포폼 조성물.11. The polyurethane foam composition according to claim 8 or 10, wherein the system polyol: MDI = 1: 1. 제 8항에 있어서, 상기 조성물은 냉장고, 자동차, LNG 선박, 냉동창고 및 샌드위치 판넬용으로 이루어진 군중에서 선택된 보온제, 및 스프레이폼 원료로 구성된 군중에서 선택된 용도로 사용되는 것을 특징으로 하는 폴리우레탄 발포폼 조성물.10. The polyurethane foam according to claim 8, wherein the composition is used for a purpose selected from a crowd consisting of a warming agent selected from the crowd consisting of refrigerators, automobiles, LNG vessels, freezers and sandwich panels, and spray foam raw materials. Foam composition.
KR20080102932A 2008-06-23 2008-10-21 Synthetic method of recycling polyol from wasted polyurethane foam and composition of polyurethane foam using this KR100893355B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080058839 2008-06-23
KR20080058839 2008-06-23

Publications (1)

Publication Number Publication Date
KR100893355B1 true KR100893355B1 (en) 2009-04-17

Family

ID=40757748

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20080102932A KR100893355B1 (en) 2008-06-23 2008-10-21 Synthetic method of recycling polyol from wasted polyurethane foam and composition of polyurethane foam using this

Country Status (1)

Country Link
KR (1) KR100893355B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101205858B1 (en) 2012-04-20 2012-11-28 (주)엔나노텍 Method of preparing polyol from waste polyurethane using glycolysis
KR101298525B1 (en) * 2011-06-28 2013-08-22 정우화인 주식회사 Hybrid Binder Composition Based on Depolymerizate of Polyurethane and Method of Using the Same
KR101476223B1 (en) * 2013-12-27 2014-12-24 (주)엔나노텍 Recovering method highly efficiently from waste polyurethane using recycled polyol
KR101737394B1 (en) 2014-09-25 2017-05-18 (주)엔나노텍 Preparation method of recycled polyol from waste polyurethane for preventing dust explosive and fire
KR101999298B1 (en) * 2018-10-17 2019-07-11 정우화인 주식회사 Method of Producing Rigid Polyurethane Foams using Recycled Polyurethane Foam Scraps
KR20190129567A (en) 2018-05-11 2019-11-20 (주)엔나노텍 Process for producing recycled polyol using soft waste polyurethane
KR102192958B1 (en) * 2020-03-11 2020-12-18 주식회사 천강 The regenerating method of used spandex using depolymerization
KR20210059344A (en) * 2019-11-15 2021-05-25 에스케이씨솔믹스 주식회사 Polyol composition recycled from polishing pad and preparation method thereof
KR20220004470A (en) 2020-07-03 2022-01-11 (주)세창이노베이션 Recycled foam composition comprising high content of waste foam scrap, recycled foam produced using same, and method for manufacturing recycled foam

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980032323A (en) 1996-10-08 1998-07-25 전종한 Recycling method of waste rigid polyurethane foam and producing polyurethane foam with improved thermal insulation from recycled polyol obtained by this method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980032323A (en) 1996-10-08 1998-07-25 전종한 Recycling method of waste rigid polyurethane foam and producing polyurethane foam with improved thermal insulation from recycled polyol obtained by this method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101298525B1 (en) * 2011-06-28 2013-08-22 정우화인 주식회사 Hybrid Binder Composition Based on Depolymerizate of Polyurethane and Method of Using the Same
KR101205858B1 (en) 2012-04-20 2012-11-28 (주)엔나노텍 Method of preparing polyol from waste polyurethane using glycolysis
KR101476223B1 (en) * 2013-12-27 2014-12-24 (주)엔나노텍 Recovering method highly efficiently from waste polyurethane using recycled polyol
KR101737394B1 (en) 2014-09-25 2017-05-18 (주)엔나노텍 Preparation method of recycled polyol from waste polyurethane for preventing dust explosive and fire
KR20190129567A (en) 2018-05-11 2019-11-20 (주)엔나노텍 Process for producing recycled polyol using soft waste polyurethane
KR101999298B1 (en) * 2018-10-17 2019-07-11 정우화인 주식회사 Method of Producing Rigid Polyurethane Foams using Recycled Polyurethane Foam Scraps
WO2020080619A1 (en) * 2018-10-17 2020-04-23 정우화인 주식회사 Method for manufacturing hard polyurethane by recycling polyurethane foam scraps
KR20210059344A (en) * 2019-11-15 2021-05-25 에스케이씨솔믹스 주식회사 Polyol composition recycled from polishing pad and preparation method thereof
KR102300038B1 (en) * 2019-11-15 2021-09-08 에스케이씨솔믹스 주식회사 Polyol composition recycled from polishing pad and preparation method thereof
KR102192958B1 (en) * 2020-03-11 2020-12-18 주식회사 천강 The regenerating method of used spandex using depolymerization
KR20220004470A (en) 2020-07-03 2022-01-11 (주)세창이노베이션 Recycled foam composition comprising high content of waste foam scrap, recycled foam produced using same, and method for manufacturing recycled foam

Similar Documents

Publication Publication Date Title
KR100893355B1 (en) Synthetic method of recycling polyol from wasted polyurethane foam and composition of polyurethane foam using this
CN104704015B (en) Combination foam
JP5390497B2 (en) Method for producing polyurethane foam and polyurethane foam
EP2922921B1 (en) Isocyanate-based polymer foam having improved flame retardant properties
EP3713980B1 (en) Flexible polyurethane foams
CN1130414C (en) Weak Bronsted acid derivative for improving size stability of soft polyurethane foam body
Efstathiou Synthesis and characterization of a Polyurethane Prepolymer for the development of a novel Acrylate-based polymer foam
JPH0616859A (en) Open-cell rigid isocyanurate foam and its production
CN101541866B (en) Polyurethane foam article
MXPA04002807A (en) Rigid, dimensionally stable polyurethane foams and a process for the production of such foams in which the foam pressure is reduced.
EP2519558B1 (en) Method for making low density polyurethane foam for sound and vibration absorption
JP2006342305A (en) Method for producing rigid polyurethane foam
AU2002234544B2 (en) Process for making polyurethane integral skin foams
TW202128805A (en) In-situ formation of low density thermoplastic polyurethane flexible foams
KR100850995B1 (en) A composition for preparing rigid polyurethane foam and rigid polyurethane foam made therefrom
WO2003027161A1 (en) Composition for preparing rigid polyurethane foam having good demolding property
JP5201523B2 (en) Polyisocyanate composition for flexible polyurethane foam and method for producing flexible polyurethane foam using the composition
KR100796478B1 (en) Silanol-functionalized compounds for the preparation of polyurethane foams
KR20070049890A (en) Polyurethane foam, which has been used in automotive interior parts, improved in mechanical properties and its synthesis method
KR20120135971A (en) Recycling method of polyol for producting polyurethane with superior mechanical properties
JP3221712B2 (en) Method for producing polyurethane and method for producing polyurethane foam
CN111630080B (en) Polyisocyanurate comprising foam with long cream time and fast curing behaviour
EP4223816A1 (en) Polyol composition
JPH06322099A (en) Low-viscosity polyether
Isa Synthesis and Characterization of Flexible Polyurethane Foam from Liquid Natural Rubber-Based Polyol

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130131

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140203

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170406

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190408

Year of fee payment: 11