KR100892021B1 - Photorefractive Dendron Chemicals, Photorefractive Dendrimer Chemicals, Producing Method Thereof, Photorefractive Memory Using This Chemicals, and Producing Method of This Memory - Google Patents
Photorefractive Dendron Chemicals, Photorefractive Dendrimer Chemicals, Producing Method Thereof, Photorefractive Memory Using This Chemicals, and Producing Method of This Memory Download PDFInfo
- Publication number
- KR100892021B1 KR100892021B1 KR1020070029260A KR20070029260A KR100892021B1 KR 100892021 B1 KR100892021 B1 KR 100892021B1 KR 1020070029260 A KR1020070029260 A KR 1020070029260A KR 20070029260 A KR20070029260 A KR 20070029260A KR 100892021 B1 KR100892021 B1 KR 100892021B1
- Authority
- KR
- South Korea
- Prior art keywords
- photorefractive
- dendrimer
- compound
- scheme
- dendron
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/06—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/06—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/14—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
본 발명은 광굴절 덴드론 화합물, 이를 이용한 광굴절 덴드리머 화합물 및 이의 응용방법에 관한 것으로서, 보다 상세하게는 트리시아노 피롤린(tricyanopyrroline) 계열의 전자끌게를 함유하는 비선형 발색단 및 전하수송 특성이 우수한 카바졸 유도체를 포함하는 광굴절 덴드론 화합물, 상기 광굴절 덴드론 화합물의 제조방법, 상기 광굴절 덴드론 화합물을 이용하여 제조된 광굴절 덴드리머 화합물 및 그의 제조방법, 상기 광굴절 덴드리머 화합물이 포함된 광굴절 소자 및 상기 광굴절 소자의 제조방법에 관한 것이다. 본 발명의 광굴절 덴드리머 화합물은 덴드론에 비선형 광학 발색단과 카바졸을 도입하여 한분자내에 광전도성과 비선형광학 특성을 동시에 부여함으로써 종래 광굴절 재료에서 광전도성물질과 발색단 사이의 좋지 못한 상용성으로 인해 야기되는 안정성 문제를 해결할 수 있으며, 아울러 근적외선 감응형 비선형광학 발색단을 사용함으로써 생물학적 이미징 기술에 응용할 수 있다.The present invention relates to a photorefractive dendron compound, a photorefractive dendrimer compound using the same, and a method of applying the same. More specifically, a nonlinear chromophore containing tricyano pyrroline-based electron trap and excellent charge transport characteristics. A photorefractive dendron compound comprising a sol derivative, a method for preparing the photorefractive dendron compound, a photorefractive dendrimer compound prepared using the photorefractive dendron compound, a method for preparing the same, and a light including the photorefractive dendrimer compound A refractive element and a method for manufacturing the photorefractive element. The photorefractive dendrimer compound of the present invention introduces a nonlinear optical chromophore and a carbazole to a dendron at the same time to impart both photoconductivity and nonlinear optical properties in a molecule, resulting in poor compatibility between the photoconductive material and the chromophore in conventional photorefractive materials. The stability problem caused by this solution can be solved, and it can be applied to biological imaging technology by using a near-infrared nonlinear optical chromophore.
광굴절 덴드리머, 트리시아노 피롤린, 카바졸 유도체 Photorefractive dendrimer, tricyano pyrroline, carbazole derivatives
Description
도 1은 본 발명의 일 실시예에 따른 광학 덴드리머 화합물의 광학특성 평가를 위한 소자 제조과정을 나타낸 간략도이고, 1 is a simplified view showing a device manufacturing process for evaluating the optical properties of the optical dendrimer compound according to an embodiment of the present invention,
도 2는 본 발명의 일 실시예에 따른 광학 덴드리머 화합물의 유리전이온도를 나타낸 그래프이고, 2 is a graph showing the glass transition temperature of the optical dendrimer compound according to an embodiment of the present invention,
도 3은 본 발명의 일 실시예에 따른 필름상태에서 화합물의 UV-Vis를 측정한 그래프이고, 3 is a graph measuring the UV-Vis of the compound in the film state according to an embodiment of the present invention,
도 4는 본 발명의 일 실시예에 따른 광학 덴드리머 화합물의 소자를 이용하여 복굴절을 측정한 그래프이고, 4 is a graph illustrating birefringence using an element of an optical dendrimer compound according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 광학 덴드리머 화합물의 소자를 이용하여 인가 전압에 따른 획득계수값을 나타낸 그래프이다. 5 is a graph showing an acquisition coefficient value according to an applied voltage using an element of an optical dendrimer compound according to an embodiment of the present invention.
본 발명은 광굴절(photorefractive) 덴드리머 화합물 및 이의 응용방법에 관한 것으로서, 보다 상세하게는 본 발명은 트리시아노 피롤린(tricyanopyrroline) 계열의 전자끌게를 함유하는 비선형 발색단 및 전하수송 특성이 우수한 카바졸 유도체를 포함하는 광굴절 덴드리머 화합물, 상기 광굴절 덴드리머 화합물의 제조방법, 상기 광굴절 덴드리머 화합물이 포함된 광굴절 소자 및 상기 광굴절 소자의 제조방법에 관한 것이다.The present invention relates to a photorefractive dendrimer compound and a method of applying the same. More specifically, the present invention relates to a carbazole derivative having excellent non-linear chromophore and charge transport properties containing an electron drag of tricyano pyrroline series. It relates to a photorefractive dendrimer compound, a method for producing the photorefractive dendrimer compound, a photorefractive element comprising the photorefractive dendrimer compound and a method for manufacturing the photorefractive element.
광굴절 재료(Photorefractive material)라 함은 조사되는 빛의 세기에 따라 자체의 굴절률이 변화하는 물질을 말한다. 빛의 세기에 따라 굴절률을 변화시키는 일반적인 방법은 광화학반응을 이용하는 것이다. 이러한 광화학 반응은 비가역반응이기 때문에 정보의 저장매체로는 적당하지만 정보의 연산처리 매체로는 부적절하다.Photorefractive material is a material whose refractive index changes according to the intensity of light to be irradiated. A common way of changing the refractive index with the intensity of light is by using a photochemical reaction. Since the photochemical reaction is an irreversible reaction, it is suitable as a storage medium for information, but not as an information processing medium.
따라서, 빛의 세기에 따라 가역적으로 굴절률을 제어할 수 있는 재료가 필요하며, 이를 위하여 광화학반응이 아닌 광물리적 현상을 이용해야 한다. 광전류와 전기-광학적 현상을 모두 포함하고 있는 광굴절재료는 가역적으로 굴절률을 제어할 수 있는 대표적인 물질이다. 광굴절 재료에 빛을 조사하면 광전류로 인하여 빛의 세기에 비례하여 물질 내부에 전하가 발생한다. 이렇게 발생한 전하들은 확산이나 표류에 의해 이동하게 되는데 이때, 물질 내부에 전하의 농도차이가 생겨 내부공간전하장(internal space-charge field)이 형성된다. 또한, 이 물질은 전기-광학적 현상도 나타낼 수 있으므로, 형성된 내부공간전하장(internal space-charge field)의 크기에 비례하여 물질의 굴절률이 변화하게 된다. 즉, 물질의 굴절률이 빛의 세기에 비례하여 가역적으로 변하게 되는데, 이것을 바로 광굴절 현상이라고 한다.Therefore, a material capable of controlling the refractive index reversibly according to the light intensity is required, and for this purpose, a photophysical phenomenon, not a photochemical reaction, should be used. Photorefractive materials containing both photocurrent and electro-optic phenomena are representative materials that can control the refractive index reversibly. When light is irradiated to the photorefractive material, electric charges are generated inside the material in proportion to the light intensity due to the photocurrent. The generated charges are moved by diffusion or drift. At this time, a difference in concentration of charges occurs in the material, thereby forming an internal space-charge field. In addition, the material may exhibit electro-optic phenomena, such that the refractive index of the material changes in proportion to the size of the formed internal space-charge field. That is, the refractive index of the material changes reversibly in proportion to the intensity of light, which is called a photorefractive phenomenon.
광굴절 현상은 1966년 LiNbO3에서 처음 발견되었는데, 그것을 발견한 아쉬킨(Ashkin)은 그런 현상을 단순히 레이저에 의한 재료의 손상정도로 생각했었다. 그러나, 1년 후 벨(Bell) 연구소의 첸(Chen)에 의해 그런 현상이 레이저에 의한 손상이 아닌 가역적인 굴절률 변화로 인한 패닝 현상으로 밝혀지면서 광굴절 현상은 새로운 광학현상의 하나로 인식되기 시작하였다. 무기재료를 이용한 광굴절 재료는 다양한 광학재료로의 응용가능성이 증명되었으나, 가공이 어렵고 단가가 비싼 무기물질의 특성상 아직까지 상용화 되지 못하였다. 유기재료에서 광굴절 현상은 1990년 TCNQ(7,7,8,8-tetracyclo-quinodimethane)을 포함한 유기결정인 COANP(2-cyclooctylamino-5-nitropyridine)에서 처음 발견되었고, 그 다음해 DHE(diethylamino-benzaldehyde diphenylhydrazone)이라는 전하수송체분자가 첨가된 가교된 에폭시계 비선형 고분자재료에서도 관찰되었다. 유기재료는 비교적 제조가 용의하고, 가격이 저렴하여 대량생산이 가능하며, 여러 응용분야에 적합하도록 화학적 성분 및 구조를 손쉽게 조용할 수 있어 각광 받고 있다. 하지만, 아직 유기 광굴절 재료는 실시간 정보처리(real-time application) 등에 적용하기에는 느린 응답속도, 높은 인가 전기장 및 내구성 등 해결해야 할 많은 문제점을 가지고 있다.Photorefractive phenomena were first discovered in LiNbO 3 in 1966, and Ashkin, who found them, simply considered damage to the material by a laser. However, a year later, by Chen of Bell Labs, such a phenomenon was found to be a panning phenomenon due to a reversible refractive index change instead of laser damage. . Although photorefractive materials using inorganic materials have been proved to be applicable to various optical materials, they have not been commercialized yet due to the characteristics of inorganic materials that are difficult to process and expensive. Photorefractive phenomena in organic materials were first discovered in 1990 with 2-cyclooctylamino-5-nitropyridine (COANP), an organic crystal containing TCNQ (7,7,8,8-tetracyclo-quinodimethane). It was also observed in crosslinked epoxy-based nonlinear polymer materials containing charge carrier molecules called benzaldehyde diphenylhydrazone. Organic materials are relatively easy to manufacture, inexpensive, and can be mass-produced, and the chemical components and structures can be easily quieted to be suitable for various applications. However, organic photorefractive materials still have many problems to be solved such as slow response speed, high applied electric field and durability to be applied to real-time applications.
최근 광굴절 연구는 생물학적 응용을 위해 근적외선에 반응성을 가지는 유기 광굴절연구에 초점을 두고 있다. 생체 조직은 700~900 ㎚의 파장에 투과성이 우수하므로, 근적외선 광을 조직에 조사하면 표면에서 반사된 광과 함께 투과 깊이에 따라 다양한 산란광들이 동시에 나오게 된다. 이때, 산란광들을 깊이에 따라 선택적으로 분류하여 영상화 시키면 깊이에 따른 2차원 영상들을 측정하여 조직의 단층영상을 재생할 수 있게 된다. 이것이 바로 생체 이미징 기술이다.Recent photorefractive studies have focused on organic photorefractive insulators that are reactive to near infrared light for biological applications. Since the biological tissue has excellent transmittance at a wavelength of 700 to 900 nm, when the near-infrared light is irradiated onto the tissue, various scattered lights are simultaneously emitted depending on the depth of transmission along with the light reflected from the surface. In this case, when the scattered light is selectively classified according to the depth and imaged, the tomographic image of the tissue may be reproduced by measuring two-dimensional images according to the depth. This is biometric imaging technology.
모에르너(W. E. Moerner) 그룹은 두가지 형태의 유기 유리(organic glass)를 섞어 근적외선(830 ㎚)에서 370 ㎝-1라는 경의적인 획득계수 값을 얻었다(Appl. Phys. Lett., Vol 82, page3602(2003)). 하지만 저분자 물질을 섞어 만든 소자는 결정화 현상으로 소자의 내구성이 약한 것으로 알려졌다. 그리고, 응답속도가 너무 느려 실제 근적외선 투과형 홀로그램을 위한 소자로의 응용성이 떨어지는 것으로 나타났다. 따라서, 높은 획득계수 값을 얻는 것도 중요하지만 실제 홀로그램 소자로의 응용을 위해서는 소자의 안정성과 빠른 응답속도를 가지는 물질이 필요로 된다.The WE Moerner group blended two types of organic glass to obtain a remarkable acquisition coefficient of 370 cm -1 in the near infrared (830 nm) (Appl. Phys. Lett., Vol 82, page3602 ( 2003)). However, devices made of low molecular weight materials are known to have poor durability due to crystallization. In addition, the response speed is too slow, the applicability of the device for the actual near infrared transmission hologram was found to be inferior. Therefore, although it is important to obtain a high acquisition coefficient value, a material having stability and fast response speed of the device is required for practical application to a hologram device.
이에, 본 발명자들은 소자의 안정성이 뛰어나고 빠른 응답속도를 가지는 광 굴절 재료를 제조하고자 노력하던 중, 일반적인 유기 유리(organic glasses) 물질과는 달리 발색단의 결정성을 부위-고립(site-isolation) 방법으로 막음으로서 소자의 안정성이 뛰어난 광굴절 소자를 제작함으로써 본 발명을 완성하였다.Accordingly, the present inventors are trying to manufacture an optical refractive material having excellent device stability and fast response speed, and unlike the general organic glass material, the present inventors have proposed a site-isolation method for crystallinity of chromophores. This invention was completed by manufacturing the photorefractive element which was excellent in the stability of an element by blocking it by this.
본 발명이 이루고자 하는 기술적 과제는 광굴절(photorefractive) 덴드론 화합물, 광굴절 덴드리머 화합물 및 이의 제조방법을 제공하는 것이다.It is an object of the present invention to provide a photorefractive dendron compound, a photorefractive dendrimer compound, and a method of manufacturing the same.
본 발명의 또 다른 목적은 상기 광굴절 덴드리머 화합물이 포함된 광굴절 소자 및 상기 광굴절 소자의 제조방법을 제공하는 것이다.Still another object of the present invention is to provide a photorefractive element including the photorefractive dendrimer compound and a method of manufacturing the photorefractive element.
본 발명은 트리시아노 피롤린(tricyanopyrroline) 계열의 전자끌게를 함유하는 비선형 발색단 및 전하수송 특성이 우수한 카바졸 유도체를 포함하는 광굴절(photorefractive) 덴드론 화합물 및 이를 이용하여 제조된 덴드리머 화합물을 제공한다.The present invention provides a photorefractive dendron compound comprising a nonlinear chromophore containing a tricyano pyrroline-based electron trap and a carbazole derivative having excellent charge transport characteristics, and a dendrimer compound prepared using the same. .
또한, 본 발명은 상기 광굴절 덴드리머 화합물의 제조방법을 제공한다.The present invention also provides a method for producing the photorefractive dendrimer compound.
또한, 본 발명은 상기 광굴절 덴드리머 화합물이 포함된 광굴절 소자를 제공한다.The present invention also provides a photorefractive element comprising the photorefractive dendrimer compound.
또한, 본 발명은 상기 광굴절 소자의 제조방법을 제공한다.The present invention also provides a method of manufacturing the photorefractive element.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 트리시아노 피롤린(tricyanopyrroline) 계열의 전자끌게를 함유하는 비선형 발색단 및 전하수송 특성이 우수한 카바졸 유도체를 포함하는 하기 구조식 1 또는 2, 구조식 5 또는 6으로 표시되는 광굴절(photorefractive) 덴드론 화합물을 제공한다.The present invention relates to photorefractive dens represented by the following
[구조식 1][Formula 1]
상기 식에서,
R1, R2 및 R4는 각각 탄소수 1 내지 20의 직쇄형 또는 분지형 알킬기이며, R3 및 R5는 각각 탄소수 1 내지 20의 직쇄형 알킬렌기이다.
[구조식 2]
[구조식 5]
상기 식에서,
Where
R 1 , R 2 and R 4 are each a straight or branched alkyl group having 1 to 20 carbon atoms, and R 3 and R 5 are each a straight alkylene group having 1 to 20 carbon atoms.
[Formula 2]
[Structure 5]
Where
R7, R8 및 R10은 각각 탄소수 1 내지 20의 직쇄형 또는 분지형 알킬기이며, R9 및 R11은 각각 탄소수 1 내지 20의 직쇄형 알킬렌기이다.
[구조식 6]
상기 덴드론에 포함되는 피롤린계 치환기는 강한 전자끌게 색소로 TCP(3-methyl-4-cyano-5-dicyanomethylene-2-oxo-3-pyrroline)이다. 또 다른 전자끌게 색소로는 TCF(2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran)가 있다.R 7 , R 8 and R 10 are each a straight or branched alkyl group having 1 to 20 carbon atoms, and R 9 and R 11 are each a straight alkylene group having 1 to 20 carbon atoms, respectively.
[Structure 6]
The pyrroline substituent contained in the dendron is TCP (3-methyl-4-cyano-5-dicyanomethylene-2-oxo-3-pyrroline) as a strong electron pigment. Another electron pigment is TCF (2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran).
본 발명의 광굴절 덴드리머 화합물에 있어서, 상기 R1 내지 R5 및 R7 내지 R11은 알킬기 또는 알킬렌기인 것이 바람직하다. 유리전이 온도를 변화시키기 위해 알킬 체인의 길이는 1 내지 20개의 탄소로 이루어질 수 있다.In the photorefractive dendrimer compound of the present invention, R 1 to R 5 and R 7 to R 11 are preferably an alkyl group or an alkylene group. In order to change the glass transition temperature, the length of the alkyl chain may consist of 1 to 20 carbons.
삭제delete
삭제delete
삭제delete
본 발명의 구현예들에 의한 덴드론 화합물로 이루어진 광굴절 덴드리머 화합물은 하기 구조식 3 또는 4, 구조식 7 또는 8로 표시되는 화합물인 것이 바람직하다.It is preferable that the photorefractive dendrimer compound consisting of the dendron compound according to the embodiments of the present invention is a compound represented by the following
[구조식 3][Formula 3]
상기 식에서, R1, R2 및 R4는 각각 탄소수 1 내지 20의 직쇄형 또는 분지형 알킬기이며, R3, R5 및 R6은 각각 탄소수 1 내지 20의 직쇄형 알킬렌기이다.
[구조식 4]
[구조식 7]
상기 식에서, R7, R8 및 R10은 각각 탄소수 1 내지 20의 직쇄형 또는 분지형 알킬기이며, R9, R11 및 R12는 각각 탄소수 1 내지 20의 직쇄형 알킬렌기이다.
[구조식 8]
In the above formula, R 1 , R 2 and R 4 are each a straight or branched alkyl group having 1 to 20 carbon atoms, and R 3 , R 5 and R 6 are each a straight alkylene group having 1 to 20 carbon atoms.
[Formula 4]
[Structure 7]
In the above formula, R 7 , R 8 and R 10 are each a straight or branched alkyl group having 1 to 20 carbon atoms, and R 9 , R 11 and R 12 are each a straight alkylene group having 1 to 20 carbon atoms, respectively.
[Structure 8]
삭제delete
삭제delete
삭제delete
본 발명의 광굴절 덴드리머 화합물의 구조적 특징은 카바졸 유도체를 최외각 에 위치시킴으로써 전하수송의 특성을 개선하고, 아울러 덴드리머의 최외곽에 기능성 발색단들을 도입함으로써 거대 발색단 간의 정전기적 상호작용을 약화시키는 특징을 갖는다. 이는 광전도성과 이차비선형 광학 특성을 동시에 하나의 화합물 구조 내에서 나타낼 수 있도록 설계한 것이다. 이와 같은 구조적 특성으로 인하여, 종전에 많은 문제점으로 대두되던 발색단들의 결정화 현상, 즉 종래의 광굴절 물질의 상분리, 결정화 등 내구성의 문제를 부위-고립(site-isolation) 방법에 의해 상호작용을 효과적으로 제어할 수 있다. 또한, 광굴절률에 직접적인 영향을 주는 유리전이온도(glass transition temperature)를 상기 R은 1 내지 20개의 탄소 크기의 알킬체인의 길이를 변화시켜 효과적으로 조절할 수 있다. 이에 의하여, 광굴절 소자의 안정성이 뛰어난 근적외선 감응형 광굴절 재료의 제공이 가능하다.Structural features of the photorefractive dendrimer compound of the present invention improve the characteristics of charge transport by placing the carbazole derivative at the outermost part, and also weaken the electrostatic interaction between the macrochromic groups by introducing functional chromophores at the outermost part of the dendrimer. Has It is designed to show both photoconductivity and secondary nonlinear optical properties in one compound structure at the same time. Due to these structural characteristics, interactions are effectively controlled by site-isolation methods for crystallization of chromophores, which have been a problem in the past, and durability problems such as phase separation and crystallization of conventional photorefractive materials. can do. In addition, the glass transition temperature (glass transition temperature) that directly affects the refractive index can be effectively controlled by changing the length of the alkyl chain of 1 to 20 carbon size. As a result, it is possible to provide a near-infrared sensitive photorefractive material having excellent stability of the photorefractive element.
특히, 상기 광굴절 덴드리머 화합물은 비성형 발색단을 사용함으로써 830 ㎚와 같은 적외선 파장의 빛에 강한 감응성 및 고성능을 나타낸다. 따라서, 인체와 같은 장파장의 빛에 투과성이 높은 생물학적 시료에 본 발명의 덴드리머 화합물을 이용한 광굴절을 효과적으로 이용가능하다.In particular, the photorefractive dendrimer compound exhibits high sensitivity and high sensitivity to light at infrared wavelengths, such as 830 nm, by using unformed chromophores. Therefore, optical refraction using the dendrimer compound of the present invention can be effectively used for biological samples having high permeability to long wavelengths such as human body.
또한, 본 발명은 상기 광굴절 덴드론 화합물의 제조방법을 제공한다.The present invention also provides a method for producing the photorefractive dendron compound.
상기 광굴절 덴드론 화합물의 제조방법에 있어서, 상기 구조식 2로 기재되는 2-(1-(6-(9H-카바졸-9-일)헥실)-3-시아노-4-(4-((2-에틸헥실)(6-하이드록시헥실아미노)페닐)-5-옥소-1H-피롤-2(5H)-일라이덴)말로노나이트릴은 하기 반응식 4에 의하여 제조되는 것이 바람직하다.In the method for producing the photorefractive dendron compound, 2- (1- (6- (9H-carbazol-9-yl) hexyl) -3-cyano-4- (4- ( (2-ethylhexyl) (6-hydroxyhexylamino) phenyl) -5-oxo-1H-pyrrole-2 (5H) -ylidene) malononitrile is preferably prepared by the following
[반응식 4]
또한, 상기 광굴절 덴드론 화합물의 제조방법에 있어서, 상기 구조식 6으로 기재되는 (9-(6-하이드로헥실)-9H-카바졸-3-일)메틸6-((4-(4-시아노-5-(디시아노메틸렌)-1-헥실-2-옥소-2,5-디하이드로-1H-피롤-3-일)페닐)2-에틸헥실)아미노)헥사노에이트는 하기 반응식 5에 의하여 제조되는 것이 바람직하다.In addition, in the method for producing the photorefractive dendron compound, (9- (6-hydrohexyl) -9H-carbazol-3-yl) methyl6-((4- (4-sia) No-5- (dicyanomethylene) -1-hexyl-2-oxo-2,5-dihydro-1H-pyrrol-3-yl) phenyl) 2-ethylhexyl) amino) hexanoate is shown in Scheme 5 below. It is preferable to manufacture by.
[반응식 5]Scheme 5
또한, 상기 광굴절 덴드리머 화합물의 제조방법에 있어서, 상기 구조식 4 또는 구조식 8로 기재되는 광굴절 덴드리머 1 또는 광굴절 데드리머 2는 상기 반응식 4 또는 반응식 5에 추가적으로 하기 반응식 3에 의하여 제조되는 것이 가장 바람직 하다.In addition, in the method for preparing the photorefractive dendrimer compound, the photorefractive dendrimer 1 or the
[반응식 3]
즉, 상기 구조식 4로 기재되는 광굴절 덴드리머는 상기 반응식 4에 추가적으로 하기 반응식 6에 의하여 제조될 수 있다.
[반응식 6]
또한, 상기 구조식 8로 기재되는 광굴절 덴드리머는 상기 반응식 5에 추가적으로 하기 반응식 7에 의하여 제조될 수 있다.
[반응식 7]
That is, the photorefractive dendrimer described in
Scheme 6
In addition, the photorefractive dendrimer described in
Scheme 7
본 발명에 따른 상기 구조식 1 내지 구조식 8로 기재되는 유기발광 덴드리머는 하기 반응식 1, 2와 3에 나타낸 제조방법으로 합성할 수 있다.The organic light-emitting dendrimer described in the above formulas 1 to 8 according to the present invention can be synthesized by the production method shown in the following
[반응식 1] Scheme 1
상기 반응식 1에서 전구체 2는 0℃에서 상기 반응물 및 1,2-다이클로로에탄(1,2-dichloroethane)과의 반응으로 제조되고, 전구체 3은 상기 반응물을 10% HCl 농도하에서 반응이 이루어지며, 반응물을 환류(reflux)시키며 반응을 진행시킨다. 전구체 4(9-(6-(터셔리부틸디메틸실릴옥시)헥실)-9H-카바졸-3-카바데히드)는 9-(6-하이드록시헥실)-9H-카바졸-3-카바알데히드, 디클로로메탄, 터셔리부틸디메틸실릴클로라이드와 이미다졸을 넣고 반응시켜 제조한다. 전구체 5((9-(6-(테셔리부틸디메틸실릴옥시)헥실)-9H-카바졸-3-일)메탄올은 상기 전구체 4를 소듐보로하이드라이드 및 메탄올에 녹여 반응시켜 제조한다.In Scheme 1,
[반응식 2]
상기 반응식 2에서 전구체 6(6-((2-에틸헥실)(페닐)아미노)헥실아세테이트)은 6-((2-에틸헥실)(페닐)아미노)헥산-1-올, 아세틱 언하이드라이드 및 피리딘을 반응시켜 제조한다. 전구체 7(6-((4-시아노-5-(디시아노메틸렌)-2-옥소-2,5-디하이드로-1H-피롤-3-일)페닐)(2-에틸헥실)아미노)헥실아세테이트)은 상기 전구체 6, 디메틸포롬아마이드, 아세틱 언하이드라이드, 4-시아노-5-디시아노메틸렌-3-하이드록시-2-옥소-3-피롤린 디소듐 셀트를 반응시켜 제조한다. 화합물 8(2-(1-(6-(9H-카바졸-9-일)헥실)-3-시아노-4-(4-((2-에틸헥실)(6-하이드록시헥실아미노)페닐)-5-옥소-1H-피롤-2(5H)-일라이덴)말로노나이트릴)은 6-((2-에틸헥실)(페닐)아미노)헥실 아세테이트, 소듐 카모네이트, 디메틸포롬아마이드 및 9-(6-브로모헥실)-9H-카바졸을 반응시켜 6-((4-(6-(9H-카바졸-9-일)헥실)-4-시아노-5-(다이시아노메틸)-2-옥소-2,5-디하이드로-1H-피롤-3-일)페닐(2-에틸헥실)아미노)헥실 아세테이트를 제조하고, 여기에 테트라하이드로퓨란 및 염산을 혼합하여 제조한다. 상기 화합물 8은 본 발명의 구조식 2로 기재되는 덴드론 화합물이다.In
전구체 9(메틸 6-((2-에틸헥실)(페닐)아미노)헥사노에이트)는 메틸 6-(페닐아미노)헥사노에이트, 포타슘 카보네이트, 디메틸포롬아마이드 및 3-(브로모메틸)헵탄을 반응시켜 제조한다. 전구체 10(메틸6-((4-(4-시아노-5-(디시아노메틸렌)-2-옥소-2,5-디하이드로-1H-피롤-3-일)페닐)(2-에틸헥실)아미노)헥사노에이트)은 6-((2-에틸헥실)(페닐)아미노)헥실 아세테이트, 디메틸포롬아마이드, 아세틱 언하이드라이드, 4-시아노-5-디시아노메틸렌-3-하이드록시-2-옥소-3-피롤린 디소듐 셀트 및 POCl3를 반응시켜 제조한다. 전구체 11(6-((4-(4-시아노-5-(디시아노메틸렌)-1-헥실-2-옥소-2,5-디하이드로-1H-피롤-3-일)페닐)(2-에틸헥실)아미노)헥사노익엑시드)은 메틸6-((4-(4-시아노-5-(이시아노메틸렌)-2-옥소-2,5-디하이드로-1H-피롤-3-일)페닐)(2-에틸헥실)아미노)헥사노에이트, 포타슘카모네이트, 디메틸포롬아마이드 및 1-브로모헥산을 반응시켜 메틸 6-((4-(4-시아노-5-(디시아노메틸렌)-1-헥실-2-옥소2,5-디하이드로-1H-피롤-3-일)페닐(2-에틸헥실)아미노)헥사노에이트를 제조하고, 이것을 테트라하이드로퓨란 및 염산과 반응시켜 제조한다. 전구체 12((9-(6-(터셔리-뷰틸디메틸실릴옥시)헥실)-9H-카바졸-3-일)메틸 6-((4-(4-시아노-5-(디시아노메틸렌)-1-헥실-2-옥소-2,5-디하이드로-1H-피롤-3-일)페닐)(2-에틸헥실)아미노)헥사노에이트)는 6-((2-에틸헥실)(페닐)아미노)헥실 아세테이트, 6-((4-(4-시아노-5-(디시아노메틸렌)-1-헥실-2-옥소-2,5-디하이드로-1H-피롤-3-일)페닐)(2-에틸헥실)아미노)헥사노익 엑시드, DPTS(4-(디메틸아미노)피리디늄 4-톨루엔술포네이트), 디사이클로헥실카보디이미트 및 디클로로메틸을 반응시켜 제조한다. 화합물 13((9-(6-하이드로헥실)-9H-카바졸-3-일)메틸6-((4-(4-시아노-5-(디시아노메틸렌)-1-헥실-2-옥소-2,5-디하이드로-1H-피롤-3-일)페닐)2-에틸헥실)아미노)헥사노에이트)은 9-(6-(터셔리-뷰틸디메틸실릴옥시)헥실)-9H-카바졸-3-일)메틸 6-((4-(4-시아노-5-(디시아노메틸렌)-1-헥실-2-옥소-2,5-디하이드로-1H-피롤-3-일)페닐)(2-에틸헥실)아미노)헥사노에이트, 테트라하이드로퓨란 및 염산을 반응시켜 제조한다. 상기 화합물 13은 본 발명의 구조식 6으로 기재되는 덴드론 화합물이다.Precursor 9 (methyl 6-((2-ethylhexyl) (phenyl) amino) hexanoate) contains methyl 6- (phenylamino) hexanoate, potassium carbonate, dimethylformromamide and 3- (bromomethyl) heptane It is made by reaction. Precursor 10 (Methyl6-((4- (4-cyano-5- (dicyanomethylene) -2-oxo-2,5-dihydro-1H-pyrrol-3-yl) phenyl) (2-ethylhexyl ) Amino) hexanoate) is 6-((2-ethylhexyl) (phenyl) amino) hexyl acetate, dimethylformromamide, acetic anhydride, 4-cyano-5-dicyanomethylene-3-hydroxy Prepared by reacting 2-oxo-3-pyrroline disodium celt and POCl 3 . Precursor 11 (6-((4- (4-cyano-5- (dicyanomethylene) -1-hexyl-2-oxo-2,5-dihydro-1H-pyrrol-3-yl) phenyl) (2 -Ethylhexyl) amino) hexanoic acid) is methyl6-((4- (4-cyano-5- (cyanomethylene) -2-oxo-2,5-dihydro-1H-pyrrol-3-yl ) Phenyl) (2-ethylhexyl) amino) hexanoate, potassium chamonate, dimethylformromide and 1-bromohexane to react methyl 6-((4- (4-cyano-5- (dicyanomethylene) ) -1-hexyl-2-oxo2,5-dihydro-1H-pyrrol-3-yl) phenyl (2-ethylhexyl) amino) hexanoate, prepared by reacting with tetrahydrofuran and hydrochloric acid Precursor 12 ((9- (6- (tertiary-butyldimethylsilyloxy) hexyl) -9H-carbazol-3-yl) methyl 6-((4- (4-cyano-5- (dicyano) Methylene) -1-hexyl-2-oxo-2,5-dihydro-1H-pyrrol-3-yl) phenyl) (2-ethylhexyl) amino) hexanoate) is 6-((2-ethylhexyl) (Phenyl) amino) hexyl acetate, 6-((4- (4-cyano-5- (dish) Aminomethylene) -1-hexyl-2-oxo-2,5-dihydro-1H-pyrrole-3-yl) phenyl) (2-ethylhexyl) amino) hexanoic acid, DPTS (4- (dimethylamino) pyri Prepared by reacting dinium 4-toluenesulfonate), dicyclohexylcarbodiimite and dichloromethyl Compound 13 ((9- (6-hydrohexyl) -9H-carbazol-3-yl) methyl6-(( 4- (4-cyano-5- (dicyanomethylene) -1-hexyl-2-oxo-2,5-dihydro-1H-pyrrol-3-yl) phenyl) 2-ethylhexyl) amino) hexano Eight) is 9- (6- (tert-butyldimethylsilyloxy) hexyl) -9H-carbazol-3-yl) methyl 6-((4- (4-cyano-5- (dicyanomethylene)- Prepared by reacting 1-hexyl-2-oxo-2,5-dihydro-1 H-pyrrol-3-yl) phenyl) (2-ethylhexyl) amino) hexanoate, tetrahydrofuran and hydrochloric acid. Compound 13 is a dendron compound described by Structural Formula 6 of the present invention.
[반응식 3]
화학물 14 및 화합물 15로 표시되는 덴드리머를 상기 반응식의 제조방법으로 합성할 수 있다. 구체적으로, 광굴절 데드리머 1(화합물 14)은 2-(1-(6-(9H-카바졸-9-일)헥실)-3-시아노-4-(4-((2-에틸헥실)(6-하이드록시헥실아미노)페닐)-5-옥소-1H-피롤-2(5H)-일라이덴)말로노나이트릴, 6,6',6''-(4,4',4''-(에탄-1,1,1-트리닐)트리스(4,1-페닐렌))트리스(옥시)트리헥사노익 엑시드, DPTS 및 디사이클로헥실카보디이미드를 반응시켜 제조한다. 광굴절 데드리머 2(화합물 15)는 (9-(6-하이드로헥실)-9H-카바졸-3-일)메틸6-((4-(4-시아노-5-(디시아노메틸렌)-1-헥실-2-옥소-2,5-디하이드로-1H-피롤-3-일)페닐)2-에틸헥실)아미노)헥사노에이트, 6,6',6''-(4,4',4''-(에탄-1,1,1-트리닐)트리스(4,1-페닐렌))트리스(옥시)트리헥사노익 엑시드, DPTS 및 디사이클로헥실카보디이미드를 반응시켜 제조한다.The dendrimer represented by Chemical Formula 14 and Compound 15 may be synthesized by the method for preparing the above scheme. Specifically, photorefractive deadmer 1 (compound 14) is 2- (1- (6- (9H-carbazol-9-yl) hexyl) -3-cyano-4- (4-((2-ethylhexyl ) (6-hydroxyhexylamino) phenyl) -5-oxo-1H-pyrrole-2 (5H) -ylidene) malononitrile, 6,6 ', 6' '-(4,4', 4 ' Prepared by reacting '-(ethane-1,1,1-triyl) tris (4,1-phenylene)) tris (oxy) trihexanoic acid, DPTS and dicyclohexylcarbodiimide. Dreamer 2 (Compound 15) is (9- (6-hydrohexyl) -9H-carbazol-3-yl) methyl6-((4- (4-cyano-5- (dicyanomethylene) -1-hexyl -2-oxo-2,5-dihydro-1H-pyrrol-3-yl) phenyl) 2-ethylhexyl) amino) hexanoate, 6,6 ', 6' '-(4,4', 4 ' Prepared by reacting '-(ethane-1,1,1-triyl) tris (4,1-phenylene)) tris (oxy) trihexanoic acid, DPTS and dicyclohexylcarbodiimide.
상기 반응식 3에서 화합물 14는 본 발명의 구조식 4로 기재되는 덴드리머 화합물이고, 화합물 15는 본 발명의 구조식 8로 기재되는 덴드리머 화합물이다.Compound 14 in
또한, 본 발명은 상기 광굴절 덴드리머 화합물이 포함된 광굴절 소자를 제공한다.The present invention also provides a photorefractive element comprising the photorefractive dendrimer compound.
본 발명의 광학 덴드리머 화합물의 유리전이온도를 나타내는 소자의 전압-이득계수를 확인한 결과, D1과 D2 두 물질의 유리전이온도가 상온에 가까운 30 및 45℃를 나타낸다. 이것은 덴드리머 화합물내의 구성 요소인 비선형 발색단이 전기장의 방향으로 용이하게 방향성을 갖을수 있음을 나타낸다(도 2 참조).As a result of checking the voltage-gain coefficient of the device showing the glass transition temperature of the optical dendrimer compound of the present invention, the glass transition temperatures of the two materials D1 and D2 are 30 and 45 ° C. close to room temperature. This indicates that nonlinear chromophores, which are components in the dendrimer compound, can easily be oriented in the direction of the electric field (see FIG. 2 ).
또한, 필름상태에서 화합물의 D1과 D2의 UV-Vis를 측정한 결과, D1과 D2 두 물질의 스펙트럼이 거의 동일한 형태를 나타낸다. 이것은 두 물질이 동일한 비선형 발색단과 카바졸을 갖기 때문으로 비선형 발색단에 의해서 625 ㎚에서, 카바졸에 의해서는 350 ㎚에서 최대 흡수 파장이 형성된다(도 3 참조).In addition, when the UV-Vis of the D1 and D2 of the compound in the film state is measured, the spectra of the two materials D1 and D2 are almost identical. This is because the two materials have the same nonlinear chromophore and carbazole, so the maximum absorption wavelength is formed at 625 nm with the nonlinear chromophore and 350 nm with the carbazole (see FIG. 3 ).
광학 덴드리머 화합물의 소자를 이용한 D1과 D2에 대한 복굴절을 측정한 결과, 비선형 발색단이 외곽에 존재하는 D2가 방향성을 갖기 쉬우므로 더 높은 복굴절을 나타낸다(도 4 참조).As a result of measuring the birefringence of D1 and D2 using the device of the optical dendrimer compound, it shows a higher birefringence since D2, which has a nonlinear chromophore, tends to be directional (see FIG. 4 ).
TBC(Two beam coupling; 복굴절) 테스트는 광굴절재료에 가장 중요한 테스트인데 광학 덴드리머 화합물의 소자를 이용하여 인가 전압에 따른 획득계수값을 측정한 결과, D1과 D2의 광전도성은 같은 양의 카바졸이 포함 되어 유사하지만, 복굴절 테스트에서에서 물질의 방향성은 D2가 보다 나으며, 이것은 D2가 보다 많은 에너지 전이를 할 수 있음을 나타낸다(도 5 참조).Two beam coupling (TBC) test is the most important test for photorefractive materials. The photoconductivity of D1 and D2 is measured with the same amount of carbazole by using the device of optical dendrimer compound. Similar to this, but in the birefringence test, the orientation of the material is better with D2, which indicates that D2 is capable of more energy transfer (see FIG. 5 ).
이와 같이, 상기 소자는 일반적인 유기 유리(organic glasses) 물질과는 달리 발색단의 결정성을 부위-고립(site-isolation) 방법으로 차단함으로써 소자의 안정성이 뛰어나다. TBC 테스트에서 상기 소자는 ㎛당 140V에서도 견디는 특성을 나타낸다. 종래의 소자들은 ㎛당 100V 이상을 견딜 수 없었던 것에 비교하면 안정성이 상당히 뛰어나다. 종전 TBC 테스트에서 문제가 되었던 coupling 속도 또한 큰 향상을 나타낸다.As described above, the device is excellent in stability of the device by blocking the crystallinity of the chromophore by a site-isolation method, unlike general organic glass materials. In the TBC test, the device is characterized by withstanding 140V per μm. Conventional devices are significantly more stable than they could not withstand more than 100V per μm. Coupling speeds, which have been a problem in previous TBC tests, also show a big improvement.
또한, 본 발명은 상기 광굴절 소자의 제조방법을 제공한다.The present invention also provides a method of manufacturing the photorefractive element.
상기 소자의 제조방법은 ⅰ) 유리 기판 위에 열쇠구멍 형태의 인듐틴옥사이드 투명전극을 떨어뜨리는 단계; ⅱ) 상기 전극 위에 상기 제조된 광굴절 덴드리머 시료를 떨어뜨린 후, 건조시켜 용매를 제거하고 진공 건조하는 단계; ⅲ) 상기 건조된 인듐틴옥사이드 유리시료 구석에 스페이서를 결합시키고, 상기 시료를 유리전이온도 이상으로 가열하여 두 번째 인듐틴옥사이드 유리를 시료위에 천천히 눌러주고 냉각하는 단계; 및 ⅳ) 상기 기판을 에폭시 또는 폴리이미드 필름을 이용하여 봉지한 후, 전극을 붙이는 단계를 포함하는 것이 바람직하다.The device manufacturing method includes the steps of: i) dropping an indium tin oxide transparent electrode in the form of a keyhole on a glass substrate; Ii) dropping the prepared photorefractive dendrimer sample on the electrode, followed by drying to remove the solvent and vacuum drying; Iii) bonding a spacer to the dried indium tin oxide glass sample corner, and heating the sample above the glass transition temperature to slowly press and cool the second indium tin oxide glass on the sample; And iii) encapsulating the substrate using an epoxy or polyimide film, and then attaching an electrode.
상기 광굴절 소자의 제조방법에 있어서, 상기 스페이서는 60 ㎜ 두께의 이미드필름(imide film)인 것이 바람직하다.In the method of manufacturing the photorefractive element, the spacer is preferably an imide film of 60 mm thickness.
이하, 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited to the following examples.
< 실시예 1 > 9-(6-(터셔리부틸디메틸실릴옥시)헥실)-9H-카바졸-3-카바데히드(9-(6-(tert-butyldimethylsilyloxy)hexyl)-Example 1 9- (6- (tert-butyldimethylsilyloxy) hexyl) -9H-carbazole-3-carbaldehyde (9- (6- (tert-butyldimethylsilyloxy) hexyl)- 9H9H -carbazole-3-carbaldehyde)(4)의 제조-carbazole-3-carbaldehyde) (4)
본 발명자들은 3구 플라스크에 9-(6-하이드록시헥실)-9H-카바졸-3-카바알데히드(12.0 g, 0.0406 ㏖)와 디클로로메탄(100 ㎖)을 넣고 교반한 다음 터셔리부틸 디메틸실릴클로라이드(7.35 g, 0.0487 ㏖)와 이미다졸(3.04 g, 0.0447 ㏖)을 넣고 상온에서 24시간 동안 교반 반응시켰다. 상기 반응물을 분별 깔때기에 옮긴 후 물과 에틸아세테이트를 첨가하여 유기층만 따로 분리하고 소듐 설페이트로 수분을 제거한 후 감압 증류하였다. 그리고 나서, 얻어진 점성액을 실리카 컬럼크로마토그래피로 분리하여 액체의 표제물질 10.8 g을 얻었다.The present inventors have found that a three-necked flask of 9- (6-hydroxyhexyl) - 9H - carbazole-3-carbazole aldehyde (12.0 g, 0.0406 ㏖) and dichloro methane was placed (100 ㎖) was stirred, and then tert-butyldimethylsilyl Chloride (7.35 g, 0.0487 mol) and imidazole (3.04 g, 0.0447 mol) were added thereto, followed by stirring for 24 hours at room temperature. The reaction was transferred to a separatory funnel, followed by addition of water and ethyl acetate to separate the organic layer separately, removal of water with sodium sulfate, and distillation under reduced pressure. Then, the obtained viscous liquid was separated by silica column chromatography to obtain 10.8 g of the title substance in the liquid.
상기 물질의 NMR 데이터는 다음과 같다.The NMR data of the material is as follows.
1H NMR (400MHz, CDCl3, rt): δ (ppm) 0.01 (s, 6H, CH3Si) 0.87 (s, 9H, CH3), 1.36~1.38(m, 4H, CH2), 1.44~1.50 (m, 2H, CH2), 1.82~1.90 (m, 2H, CH2), 3.55 (t, J=6.0 Hz, 2H, OCH2), 4.28 (t, J=6.8 Hz, 2H, NCH2), 7.30 (t, J=7.6 Hz, 1H, aromatic proton), 7.43 (d, J=8.4 Hz, 2H, aromatic protons), 7.51 (t, J=7.2 Hz, 1H, aromatic proton), 7.98 (d, J=7.8 Hz, 1H, aromatic protons), 8.13 (d, J=7.5 Hz, 1H, aromatic protons), 8.60 (s, 1H, aromatic protons), 10.1 (s, 1H, CHO) 1 H NMR (400 MHz, CDCl 3 , rt): δ (ppm) 0.01 (s, 6H, CH 3 Si) 0.87 (s, 9H, CH 3 ), 1.36 to 1.38 (m, 4H, CH 2 ), 1.44 to 1.50 (m, 2H, CH 2 ), 1.82-1.90 (m, 2H, CH 2 ), 3.55 (t, J = 6.0 Hz, 2H, OCH 2 ), 4.28 (t, J = 6.8 Hz, 2H, NCH 2 ), 7.30 (t, J = 7.6 Hz, 1H, aromatic proton), 7.43 (d, J = 8.4 Hz, 2H, aromatic protons), 7.51 (t, J = 7.2 Hz, 1H, aromatic proton), 7.98 (d , J = 7.8 Hz, 1H, aromatic protons), 8.13 (d, J = 7.5 Hz, 1H, aromatic protons), 8.60 (s, 1H, aromatic protons), 10.1 (s, 1H, CHO)
< 실시예 2 > (9-(6-(테셔리부틸디메틸실릴옥시)헥실)-9H-카바졸-3-일)메탄올((9-(6-(tert-butyldimethylsilyloxy)hexyl)-9H-carbazol-3-yl)methanol)(5)의 제조Example 2 (9- (6- (Tesarybutyldimethylsilyloxy) hexyl) -9H-carbazol-3-yl) methanol ((9- (6- (tert-butyldimethylsilyloxy) hexyl) -9H-carbazol Preparation of -3-yl) methanol) (5)
본 발명자들은 3구 플라스크에 9-(6-하이드록시헥실)-9H-카바졸-3-카바알데히드(12.0 g, 0.0406 ㏖)와 디클로로메탄(100 ㎖)과 소듐보로하이드라이드(0.55 g, 0.0147 ㏖)를 100 ㎖ 메탄올에 녹여 3시간 동안 60℃에서 교반 반응시켰다. 상기 반응물을 분별 깔때기에 옮긴 후 물과 에틸아세테이트를 첨가하여 유기층만 따로 분리하고 소듐 설페이트로 수분을 제거한 후 감압 증류하였다. 그리고 나서, 얻어진 점성액을 실리카 컬럼크로마토그래피로 분리하여 노랑빛 투명한 액체 물질 9.0 g을 얻었다.The present inventors have found that 9- (6-hydroxyhexyl) in a three-neck flask - 9H - carbazole-3-carbazole aldehyde (12.0 g, 0.0406 ㏖) and dichloromethane hydride (0.55 g as a (100 ㎖) and sodium beam, 0.0147 mol) was dissolved in 100 ml of methanol and stirred at 60 ° C for 3 hours. The reaction was transferred to a separatory funnel, followed by addition of water and ethyl acetate to separate the organic layer separately, removal of water with sodium sulfate, and distillation under reduced pressure. The resulting viscous liquid was then separated by silica column chromatography to give 9.0 g of a yellowish transparent liquid substance.
상기 물질의 NMR 데이터는 다음과 같다.The NMR data of the material is as follows.
1H NMR(400MHz, CDCl3, rt): δ (ppm) 0.06 (s, 9H, CH3) 0.92 (s, 9H, CH3Si), 1.36~1.38 (m, 4H, CH2), 1.46~1.52 (m, 2H, CH2), 1.82~1.89 (m, 2H, CH2), 2.14 (s, 1H, OH), 3.55 (t, J=6.0 Hz, 2H, OCH2), 4.28 (t, J=6.8 Hz, 2H, NCH2), 4.83 (s, 2H, CH2OH), 7.24 (t, J=7.6 Hz, 1H, aromatic proton), 7.37(d, J=8.0 Hz, 1H, aromatic protons), 7.41(d, J=8.0 Hz, 1H, aromatic proton), 7.48 (m, 2H, aromatic protons), 8.09 (d, J=6.0 Hz, 2H, aromatic protons). 1 H NMR (400 MHz, CDCl 3 , rt): δ (ppm) 0.06 (s, 9H, CH 3 ) 0.92 (s, 9H, CH 3 Si), 1.36 to 1.38 (m, 4H, CH 2 ), 1.46 to 1.52 (m, 2H, CH 2 ), 1.82-1.89 (m, 2H, CH 2 ), 2.14 (s, 1H, OH), 3.55 (t, J = 6.0 Hz, 2H, OCH 2 ), 4.28 (t, J = 6.8 Hz, 2H, NCH 2 ), 4.83 (s, 2H, CH 2 OH), 7.24 (t, J = 7.6 Hz, 1H, aromatic proton), 7.37 (d, J = 8.0 Hz, 1H, aromatic protons ), 7.41 (d, J = 8.0 Hz, 1H, aromatic protons), 7.48 (m, 2H, aromatic protons), 8.09 (d, J = 6.0 Hz, 2H, aromatic protons).
< 실시예 3 > 6-((2-에틸헥실)(페닐)아미노)헥실아세테이트(6-((2-ethylhexyl)(phenyl)amino)hexyl acetate)(6)의 제조Example 3 Preparation of 6-((2-ethylhexyl) (phenyl) amino) hexyl acetate (6-((2-ethylhexyl) (phenyl) amino) hexyl acetate) (6)
본 발명자들은 3구 플라스크에 6-((2-에틸헥실)(페닐)아미노)헥산-1-올(8.0 g, 0.023 ㏖)과 디클로로메탄(100 ㎖)을 넣고 교반한 다음 아세틱 언하이드라이드(2.8 g, 0.028 ㏖)와 피리딘(3.0 g, 0.038 ㏖)을 넣었다. 상기 혼합물을 40℃에서 12시간 교반 반응시켰다. 상기 반응물을 분별 깔때기에 옮긴 후 물과 디클로로메탄을 첨가하여 유기층만 따로 분리하고 소듐 설페이트로 수분을 제거한 후 감압 증류하였다. 그리고 나서, 얻어진 점성액을 실리카 컬럼크로마토그래피로 분리하여 노랑빛 투명한 액체 7.5 g 을 얻었다.We put 6-((2-ethylhexyl) (phenyl) amino) hexan-1-ol (8.0 g, 0.023 mol) and dichloromethane (100 mL) into a three necked flask, and then stirred for acetic anhydride. (2.8 g, 0.028 mol) and pyridine (3.0 g, 0.038 mol) were added. The mixture was stirred at 40 ° C for 12 hours. The reaction was transferred to a separatory funnel, and water and dichloromethane were added thereto to separate the organic layer separately, and water was removed with sodium sulfate, followed by distillation under reduced pressure. Then, the obtained viscous liquid was separated by silica column chromatography to obtain 7.5 g of a yellowish transparent liquid.
상기 물질의 NMR 데이터는 다음과 같다.The NMR data of the material is as follows.
1H NMR (300MHz, CDCl3, rt): δ (ppm) 0.89 (t, J=7.5 Hz, 6H, CH3), 1.28 (m, J=4.2 Hz, 12H, CH2), 1.56 (m, J=7.5 Hz, 4H, CH2), 1.69 (m, J=4.2 Hz, 1H, CH), 2.04 (s, 3H, CH3C), 3.14 (d, J=6.9 Hz, 2H, NCH2) 3.28 (t, J=6.0 Hz 2H, NCH2), 4.05 (t, J=6.6 Hz, 2H, OCH2), 6.61 (t, J=7.2 Hz, 1H, aromatic protons), 6.66 (d, J=7.8 Hz, 2H, aromatic protons), 7.19 (t, J=7.5 Hz, 2H, aromatic protons. 1 H NMR (300 MHz, CDCl 3 , rt): δ (ppm) 0.89 (t, J = 7.5 Hz, 6H, CH 3 ), 1.28 (m, J = 4.2 Hz, 12H, CH 2 ), 1.56 (m, J = 7.5 Hz, 4H, CH 2 ), 1.69 (m, J = 4.2 Hz, 1H, CH), 2.04 (s, 3H, CH 3 C), 3.14 (d, J = 6.9 Hz, 2H, NCH 2 ) 3.28 (t, J = 6.0 Hz 2H, NCH 2 ), 4.05 (t, J = 6.6 Hz, 2H, OCH 2 ), 6.61 (t, J = 7.2 Hz, 1H, aromatic protons), 6.66 (d, J = 7.8 Hz, 2H, aromatic protons), 7.19 (t, J = 7.5 Hz, 2H, aromatic protons.
< 실시예 4 > 6-((4-시아노-5-(디시아노메틸렌)-2-옥소-2,5-디하이드로-1H-피롤-3-일)페닐)(2-에틸헥실)아미노)헥실아세테이트(6-((4-(4-cyano-5-(dicyanomethylene)-2-oxo-2,5-dihydro-1H-pyrrol-3-yl)phenyl)(2-ethylhexyl)amino)hexyl acetate)(7)의 제조Example 4 6-((4-cyano-5- (dicyanomethylene) -2-oxo-2,5-dihydro-1 H-pyrrol-3-yl) phenyl) (2-ethylhexyl) amino Hexyl acetate (6-((4- (4- (4-cyano-5- (dicyanomethylene) -2-oxo-2,5-dihydro- 1H -pyrrol-3-yl) phenyl) (2-ethylhexyl) amino) hexyl acetate Manufacture of 7
본 발명자들은 3구 플라스크에 6-((2-에틸헥실)(페닐)아미노)헥실아세테이트(7.0 g, 0.020 ㏖)를 디메틸포롬아마이드(100 ㎖)에 녹여 교반한 다음 아세틱 언하이드라이드(2.9 g, 0.028 ㏖)와 4-시아노-5-디시아노메틸렌-3-하이드록시-2-옥소-3-피롤린 디소듐 셀트(5.6 g, 0.024 ㏖)를 넣었다. 0℃까지 온도를 내린 후, POCl3를 30분 동안 천천히 넣고 상온에서 6시간 동안 교반 반응시켰다. 물로 침전을 잡은 후, 고체를 필터 건조한 후 진한푸른색 고체 4.0 g을 얻었다.The inventors dissolved 6-((2-ethylhexyl) (phenyl) amino) hexyl acetate (7.0 g, 0.020 mol) in dimethylformromamide (100 ml) in a three-necked flask, followed by stirring with acetic anhydride (2.9 g, 0.028 mol) and 4-cyano-5-dicyanomethylene-3-hydroxy-2-oxo-3-pyrroline disodium sel (5.6 g, 0.024 mol) were added. After the temperature was lowered to 0 ° C., POCl 3 was slowly added for 30 minutes and stirred at room temperature for 6 hours. After catching the precipitate with water, the solid was filtered and dried to obtain 4.0 g of a dark blue solid.
상기 물질의 NMR 데이터는 다음과 같다.The NMR data of the material is as follows.
1H NMR(400MHz, CDCl3, rt): δ (ppm) 0.91 (t, J=7.5 Hz, 6H, CH3), 1.28 (m, J=4.2 Hz, 12H, CH2), 1.56 (m, J=7.5 Hz, 4H, CH2), 1.69 (m, J=4.2 Hz, 1H, CH), 2.04 (s, 3H, CH3C), 3.12 (d, J=7.6 Hz, 2H, NCH2) 3.23 (t, J=6.0 Hz, 2H, NCH2), 4.05 (t, J=6.6 Hz, 2H, OCH2), 6.77 (d, J=6.0 Hz, 2H, aromatic protons), 8.54 (d, J=6.0 Hz, 2H, aromatic protons), 9.09 (s, 1H, NH). 1 H NMR (400 MHz, CDCl 3 , rt): δ (ppm) 0.91 (t, J = 7.5 Hz, 6H, CH 3 ), 1.28 (m, J = 4.2 Hz, 12H, CH 2 ), 1.56 (m, J = 7.5 Hz, 4H, CH 2 ), 1.69 (m, J = 4.2 Hz, 1H, CH), 2.04 (s, 3H, CH 3 C), 3.12 (d, J = 7.6 Hz, 2H, NCH 2 ) 3.23 (t, J = 6.0 Hz, 2H, NCH 2 ), 4.05 (t, J = 6.6 Hz, 2H, OCH 2 ), 6.77 (d, J = 6.0 Hz, 2H, aromatic protons), 8.54 (d, J = 6.0 Hz, 2H, aromatic protons), 9.09 (s, 1H, NH).
< 실시예 5<Example 5 > 2-(1-(6-(9H-카바졸-9-일)헥실)-3-시아노-4-(4-((2-에틸헥실)(6-하이드록시헥실아미노)페닐)-5-옥소-1H-피롤-2(5H)-일라이덴)말로노나이트릴(2-(1-(6-(9H-carbazol-9-yl)hexyl)-3-cyano-4-(4-((2-ethylhexyl)(6-hydroxyhexyl)amino)phenyl)-5-oxo-1H-pyrrol-2(5H)-ylidene)malononitrile)(8)의 제조> 2- (1- (6- (9H-carbazol-9-yl) hexyl) -3-cyano-4- (4-((2-ethylhexyl) (6-hydroxyhexylamino) phenyl)- 5-oxo-1H-pyrrole-2 (5H) -ylidene) malononitrile (2- (1- (6- (9H-carbazol-9-yl) hexyl) -3-cyano-4- (4- Preparation of ((2-ethylhexyl) (6-hydroxyhexyl) amino) phenyl) -5-oxo-1H-pyrrol-2 (5H) -ylidene) malononitrile) (8)
본 발명자들은 3구 플라스크에 6-((2-에틸헥실)(페닐)아미노)헥실 아세테이트(3.0 g, 5.82 m㏖)와 소듐 카모네이트(2.3 g, 2.91 m㏖)를 디메틸포롬아마이드(50 ㎖)에 넣고 교반하였다. 90℃까지 가열한 후 9-(6-브로모헥실)-9H-카바졸(2.30 g, 7.00 m㏖)을 넣은 후 24시간 동안 교반하였다. 얼음물로 침전을 잡아 푸른색 고체를 얻었다. 소듐 설페이트로 수분을 제거한 후 감압 증류하였다. 그리고 나서, 얻어진 점성액을 실리카 컬럼크로마토그래피로 분리하여 짙은 푸른색 고체 (6-((4-(6-(9H-카바졸-9-일)헥실)-4-시아노-5-(다이시아노메틸)-2-옥소-2,5-디하이드로-1H-피롤-3-일)페닐(2-에틸헥실)아미노)헥실 아세테이트 4.00 g을 얻었다.The inventors used 6-((2-ethylhexyl) (phenyl) amino) hexyl acetate (3.0 g, 5.82 mmol) and sodium carmonate (2.3 g, 2.91 mmol) in a three-necked flask with dimethylformromide (50 mL). ) And stirred. After heating to 90 ° C., 9- (6-bromohexyl) -9H-carbazole (2.30 g, 7.00 mmol) was added thereto, followed by stirring for 24 hours. The precipitate was caught with ice water to obtain a blue solid. Water was removed with sodium sulfate and then distilled under reduced pressure. The resulting viscous liquid was then separated by silica column chromatography to give a dark blue solid (6-((4- (6- (6- (9H-carbazol-9-yl) hexyl) -4-cyano-5- (die 4.00 g of cyanomethyl) -2-oxo-2,5-dihydro-1H-pyrrol-3-yl) phenyl (2-ethylhexyl) amino) hexyl acetate was obtained.
3구 플라스크에 상기 제조된 (6-((4-(6-(9H-카바졸-9-일)헥실)-4-시아노-5-(다이시아노메틸)-2-옥소-2,5-디하이드로-1H-피롤-3-일)페닐(2-에틸헥실)아미노)헥실 아세테이트(3.5 g, 4.50 m㏖)를 테트라하이드로퓨란(50 ㎖)에 넣고 교반하였다. 염산(10 ㎖, 3 N)을 넣고 65℃에서 24시간 동안 혼합하였다. 상기 반응물을 분별 깔때기에 옮긴 후 물과 디클로로메탄을 첨가하여 유기층만 따로 분리하고 소듐 설페이트로 수분을 제거한 후 감압 증류하였다. 그리고 나서, 얻어진 물질을 실리카 컬럼크로마토그래피로 분리하여 짙은 푸른빛 고체 3.0 g을 얻었다.(6-((4- (6- (9H-carbazol-9-yl) hexyl) -4-cyano-5- (dicyanomethyl) -2-oxo-2, prepared above in a three neck flask, 5-dihydro-1H-pyrrole-3-yl) phenyl (2-ethylhexyl) amino) hexyl acetate (3.5 g, 4.50 mmol) was added to tetrahydrofuran (50 mL) and stirred, hydrochloric acid (10 mL, 3 N) was added and mixed for 24 hours at 65 ° C. The reaction mixture was transferred to a separatory funnel, and water and dichloromethane were added thereto to separate the organic layer separately, the water was removed with sodium sulfate, and then distilled under reduced pressure. Was separated by silica column chromatography to obtain 3.0 g of a dark blue solid.
상기 물질의 NMR 데이터는 다음과 같다.The NMR data of the material is as follows.
1H NMR(300MHz, CDCl3, rt): δ (ppm) 0.94 (t, J=8.0 Hz, 6H, CH3), 1.32~1.44 (m, 16H, CH2), 1.54~1.66 (m, 6H, CH2), 1.68 (t, J=8.0 Hz, 1H, HOC) 1.78~1.90 (m, 3H, CH2), 3.35 (d, J=7.6 Hz, 2H, NCH2) 3.44 (t, J=7.0 Hz, 2H, NCH2), 3.96 (t, J=6.6 Hz, 2H, NCH2), 4.05 (t, J=6.7 Hz, 2H, OCH2), 4.29 (t, J=7.0 Hz, 2H, NCH2), 6.73 (t, J=8.7 Hz, 2H, aromatic protons), 7.19 (t, J=8.7 Hz, 2H, aromatic protons), 7.19 (t, J=8.7 Hz, 2H, aromatic protons), 7.39 (d, J=8.7 Hz, 2H, aromatic protons), 7.46 (t, J=8.7 Hz, 2H, aromatic protons), 8.07 (d, J=8.7 Hz, 2H, aromatic protons), 8.46 (d, J=8.7 Hz, 2H, aromatic protons). 1 H NMR (300 MHz, CDCl 3 , rt): δ (ppm) 0.94 (t, J = 8.0 Hz, 6H, CH 3 ), 1.32-1.44 (m, 16H, CH 2 ), 1.54-1.66 (m, 6H , CH 2 ), 1.68 (t, J = 8.0 Hz, 1H, HOC) 1.78-1.90 (m, 3H, CH 2 ), 3.35 (d, J = 7.6 Hz, 2H, NCH 2 ) 3.44 (t, J = 7.0 Hz, 2H, NCH 2 ), 3.96 (t, J = 6.6 Hz, 2H, NCH 2 ), 4.05 (t, J = 6.7 Hz, 2H, OCH 2 ), 4.29 (t, J = 7.0 Hz, 2H, NCH 2 ), 6.73 (t, J = 8.7 Hz, 2H, aromatic protons), 7.19 (t, J = 8.7 Hz, 2H, aromatic protons), 7.19 (t, J = 8.7 Hz, 2H, aromatic protons), 7.39 (d, J = 8.7 Hz, 2H, aromatic protons), 7.46 (t, J = 8.7 Hz, 2H, aromatic protons), 8.07 (d, J = 8.7 Hz, 2H, aromatic protons), 8.46 (d, J = 8.7 Hz, 2H, aromatic protons).
< 실시예 6 > 메틸 6-((2-에틸헥실)(페닐)아미노)헥사노에이트(Methyl 6-((2-ethylhexyl)(phenyl)amino)hexanoate)(9)의 제조Example 6 Preparation of Methyl 6-((2-ethylhexyl) (phenyl) amino) hexanoate (Methyl 6-((2-ethylhexyl) (phenyl) amino) hexanoate) (9)
본 발명자들은 3구 플라스크에 메틸 6-(페닐아미노)헥사노에이트(25.0 g, 0.113 ㏖)와 포타슘 카보네이트(25.0 g, 0.169 ㏖)를 디메틸포롬아마이드(100 ㎖)에 넣고 교반하였다. 상기 혼합물을 100℃까지 가열한후 3-(브로모메틸)헵탄(26.2 g, 0.135 ㏖)을 넣고 12시간 교반 반응시켰다. 상기 반응물을 분별 깔때기에 옮긴 후 물과 에틸아세테이트를 첨가하여 유기층만 따로 분리하고 소듐 설페이트로 수분을 제거한 후 감압 증류하였다. 그리고 나서, 얻어진 물질을 실리카 컬럼크로마토 그래피로 분리하여 노랑빛 투명한 액체 20.0 g을 얻었다.The inventors put methyl 6- (phenylamino) hexanoate (25.0 g, 0.113 mol) and potassium carbonate (25.0 g, 0.169 mol) in a three-necked flask in dimethyl formomamide (100 ml) and stirred. The mixture was heated to 100 ° C., and 3- (bromomethyl) heptane (26.2 g, 0.135 mol) was added thereto, followed by stirring for 12 hours. The reaction was transferred to a separatory funnel, followed by addition of water and ethyl acetate to separate the organic layer separately, removal of water with sodium sulfate, and distillation under reduced pressure. The resulting material was then separated by silica column chromatography to give 20.0 g of a yellowish transparent liquid.
상기 물질의 NMR 데이터는 다음과 같다.The NMR data of the material is as follows.
1H NMR(300MHz, CDCl3, rt): δ (ppm) 0.91 (t, J = 7.5 Hz, 6H, CH3), 1.28~1.42 (m, J=4.2 Hz, 10H, CH2), 1.56 (m, J=7.5 Hz, 4H, CH2), 1.69 (m, J=4.2 Hz, 1H, CH), 2.04 (s, 3H, CH3C), 3.14 (d, J=7.6 Hz, 2H, NCH2) 3.28 (t, J=6.0 Hz, 2H, NCH2), 4.05 (t, J=6.6 Hz, 2H, OCH2), 6.61 (t, J=7.2 Hz, 1H, aromatic protons), 6.66 (d, J=7.8 Hz, 2H, aromatic protons), 7.19 (t, J=7.5 Hz, 2H, aromatic protons). 1 H NMR (300 MHz, CDCl 3 , rt): δ (ppm) 0.91 (t, J = 7.5 Hz, 6H, CH 3 ), 1.28-1.42 (m, J = 4.2 Hz, 10H, CH 2 ), 1.56 ( m, J = 7.5 Hz, 4H, CH 2 ), 1.69 (m, J = 4.2 Hz, 1H, CH), 2.04 (s, 3H, CH 3 C), 3.14 (d, J = 7.6 Hz, 2H, NCH 2 ) 3.28 (t, J = 6.0 Hz, 2H, NCH 2 ), 4.05 (t, J = 6.6 Hz, 2H, OCH 2 ), 6.61 (t, J = 7.2 Hz, 1H, aromatic protons), 6.66 (d , J = 7.8 Hz, 2H, aromatic protons), 7.19 (t, J = 7.5 Hz, 2H, aromatic protons).
< 실시예 7 > 메틸6-((4-(4-시아노-5-(디시아노메틸렌)-2-옥소-2,5-디하이드로-1H-피롤-3-일)페닐)(2-에틸헥실)아미노)헥사노에이트(Methyl6-((4-(4-cyano-5-(dicyanomethylene)-2-oxo-2,5-dihydro-1H-pyrrol-3-yl)phenyl)(2-ethylhexyl)amino)hexanoate)(10)의 제조Example 7 Methyl 6-((4- (4-cyano-5- (dicyanomethylene) -2-oxo-2,5-dihydro-1 H-pyrrol-3-yl) phenyl) (2- Ethylhexyl) amino) hexanoate (Methyl6-((4- (4-cyano-5- (dicyanomethylene) -2-oxo-2,5-dihydro-1H-pyrrol-3-yl) phenyl) (2-ethylhexyl ) amino) hexanoate) (10)
본 발명자들은 3구 플라스크에 6-((2-에틸헥실)(페닐)아미노)헥실 아세테이트(7.0 g, 0.020 ㏖)를 디메틸포롬아마이드(100 ㎖)를 넣고 교반한 다음 아세틱 언하이드라이드(2.9 g, 0.028 ㏖)와 4-시아노-5-디시아노메틸렌-3-하이드록시-2-옥소-3-피롤린 디소듐 셀트(5.6 g, 0.024 ㏖)를 넣었다. 0℃까지 온도를 내린 후 POCl3를 30분 동안 천천히 넣고 상온에서 6시간 동안 교반 반응시켰다. 물로 침전을 잡은 후, 고체를 필터 건조한 후 진한 푸른색 고체 4.0 g을 얻었다.We put 6-((2-ethylhexyl) (phenyl) amino) hexyl acetate (7.0 g, 0.020 mol) into dimethylformromamide (100 ml) in a three-necked flask, and then stirred with acetic anhydride (2.9). g, 0.028 mol) and 4-cyano-5-dicyanomethylene-3-hydroxy-2-oxo-3-pyrroline disodium sel (5.6 g, 0.024 mol) were added. After the temperature was lowered to 0 ° C., POCl 3 was slowly added for 30 minutes, and stirred at room temperature for 6 hours. After catching the precipitate with water, the solid was filtered dried and 4.0 g of a dark blue solid was obtained.
상기 물질의 NMR 데이터는 다음과 같다.The NMR data of the material is as follows.
1H NMR(400MHz, CDCl3, rt): δ (ppm) 0.91 (t, J=7.5 Hz, 6H, CH3), 1.28~1.32 (m, J=4.2 Hz, 12H, CH2), 1.56 (m, J=7.5 Hz, 4H, CH2), 1.69 (m, J=4.2 Hz, 1H, CH), 2.04 (s, 3H, CH3C), 3.12 (d, J=7.6 Hz, 2H, NCH2) 3.23 (t, J=6.0 Hz, 2H, NCH2), 4.05 (t, J=6.6 Hz, 2H, OCH2), 6.77 (d, J=6.0 Hz, 2H, aromatic protons), 8.54 (d, J=6.0 Hz, 2H, aromatic protons), 9.09 (s, 1H, NH). 1 H NMR (400 MHz, CDCl 3 , rt): δ (ppm) 0.91 (t, J = 7.5 Hz, 6H, CH 3 ), 1.28 to 1.32 (m, J = 4.2 Hz, 12H, CH 2 ), 1.56 ( m, J = 7.5 Hz, 4H, CH 2 ), 1.69 (m, J = 4.2 Hz, 1H, CH), 2.04 (s, 3H, CH 3 C), 3.12 (d, J = 7.6 Hz, 2H, NCH 2 ) 3.23 (t, J = 6.0 Hz, 2H, NCH 2 ), 4.05 (t, J = 6.6 Hz, 2H, OCH 2 ), 6.77 (d, J = 6.0 Hz, 2H, aromatic protons), 8.54 (d , J = 6.0 Hz, 2H, aromatic protons), 9.09 (s, 1H, NH).
< 실시예 8 > 6-((4-(4-시아노-5-(디시아노메틸렌)-1-헥실-2-옥소-2,5-디하이드로-1H-피롤-3-일)페닐)(2-에틸헥실)아미노)헥사노익엑시드(6-((4-(4-Cyano-5-(dicyanomethylene)-1-hexyl-2-oxo-2,5-dihydro-1H-pyrrol-3-yl)phenyl)(2-ethylhexyl)amino)hexanoic acid)(11)의 제조Example 8 6-((4- (4-cyano-5- (dicyanomethylene) -1-hexyl-2-oxo-2,5-dihydro-1 H-pyrrol-3-yl) phenyl) (2-ethylhexyl) amino) hexanoic acid (6-((4- (4-Cyano-5- (dicyanomethylene) -1-hexyl-2-oxo-2,5-dihydro-1H-pyrrol-3-yl ) phenyl) (2-ethylhexyl) amino) hexanoic acid) (11)
본 발명자들은 3구 플라스크에 메틸6-((4-(4-시아노-5-(이시아노메틸렌)-2-옥소-2,5-디하이드로-1H-피롤-3-일)페닐)(2-에틸헥실)아미노)헥사노에이트(8.0 g, 15.9 m㏖)와 포타슘카모네이트(1.1 g, 7.97 m㏖)를 디메틸포롬아마이드(50 ㎖)에 넣고 교반하였다. 90℃까지 가열한 후 1-브로모헥산(3.16 g, 19.1 m㏖)을 넣은 후 24시간 동안 교반 반응시켰다. 반응 후 얻은 물질을 얼음물로 침전을 잡아 푸른색 고체를 얻었다. 소듐 설페이트로 수분을 제거한 후 감압 증류하였다. 그리고 나서, 얻어진 물질을 실리카 컬럼크로마토그래피로 분리하여 짙은 푸른색 고체(메틸 6-((4-(4-시아노-5-(디시아노메틸렌)-1-헥실-2-옥소2,5-디하이드로-1H-피롤-3-일)페닐(2-에틸헥실)아미노)헥사노에이트 8.00 g을 얻었다.The inventors used a 3-necked flask with methyl6-((4- (4-cyano-5- (cyanomethylene) -2-oxo-2,5-dihydro-1H-pyrrol-3-yl) phenyl) ( 2-ethylhexyl) amino) hexanoate (8.0 g, 15.9 mmol) and potassium chamonate (1.1 g, 7.97 mmol) were added to dimethylformromamide (50 mL) and stirred. After heating to 90 ℃ 1-bromohexane (3.16 g, 19.1 mmol) was added and stirred for 24 hours. The material obtained after the reaction was precipitated with ice water to obtain a blue solid. Water was removed with sodium sulfate and then distilled under reduced pressure. The resulting material was then separated by silica column chromatography to give a dark blue solid (methyl 6-((4- (4-cyano-5- (dicyanomethylene) -1-hexyl-2-oxo2,5- 8.00 g of dihydro-1H-pyrrole-3-yl) phenyl (2-ethylhexyl) amino) hexanoate were obtained.
플라스크에 상기 제조된 (메틸 6-((4-(4-시아노-5-(디시아노메틸렌)-1-헥실-2-옥소2,5-디하이드로-1H-피롤-3-일)페닐(2-에틸헥실)아미노)헥사노에이트(7.5 g, 12.8 m㏖)를 테트라하이드로퓨란(50 ㎖)에 넣고 교반하였다. 염산(20 ㎖, 3 N)을 넣고 65℃에서 24시간 동안 교반 반응시켰다. 상기 반응물을 분별 깔때기에 옮긴 후 물과 디클로로메탄을 첨가하여 유기층만 따로 분리하고 소듐 설페이트로 수분을 제거한 후 감압 증류하였다. 그리고 나서, 얻어진 물질을 실리카 컬럼크로마토그래피로 분리하여 짙은 푸른빛고체 6.4 g을 얻었다.(Methyl 6-((4- (4-cyano-5- (dicyanomethylene) -1-hexyl-2-oxo2,5-dihydro-1H-pyrrol-3-yl) phenyl as prepared above in a flask) (2-ethylhexyl) amino) hexanoate (7.5 g, 12.8 mmol) was added to tetrahydrofuran (50 mL) and stirred, followed by hydrochloric acid (20 mL, 3 N) and stirring at 65 ° C. for 24 hours. The reaction product was transferred to a separatory funnel, and water and dichloromethane were added to separate the organic layer separately, the water was removed with sodium sulfate, and the residue was distilled under reduced pressure, and the obtained material was separated by silica column chromatography to give a dark blue solid. 6.4 g were obtained.
상기 물질의 NMR 데이터는 다음과 같다.The NMR data of the material is as follows.
1H NMR(300MHz, CDCl3, rt): δ (ppm) 0.87 (t, J=8.0 Hz, 9H, CH3), 1.28~1.43 (m, 16H, CH2), 1.60~1.71 (m, 6H, CH2), 1.82 (t, J=4.0 Hz, 1H, HC) 2.37 (t, 2H, J= 7.6 Hz, CH2CO), 3.35 (d, J=7.6 Hz, 2H, NCH2) 3.46 (t, J=7.0 Hz, 2H, NCH2), 4.02 (t, J=6.7 Hz, 2H, NCH2), 6.73 (t, J=8.7 Hz, 2H, aromatic protons), 8.46 (d, J=8.7 Hz, 2H, aromatic protons). 1 H NMR (300 MHz, CDCl 3 , rt): δ (ppm) 0.87 (t, J = 8.0 Hz, 9H, CH 3 ), 1.28 ~ 1.43 (m, 16H, CH 2 ), 1.60 ~ 1.71 (m, 6H , CH 2 ), 1.82 (t, J = 4.0 Hz, 1H, HC) 2.37 (t, 2H, J = 7.6 Hz, CH 2 CO), 3.35 (d, J = 7.6 Hz, 2H, NCH 2 ) 3.46 ( t, J = 7.0 Hz, 2H, NCH 2 ), 4.02 (t, J = 6.7 Hz, 2H, NCH 2 ), 6.73 (t, J = 8.7 Hz, 2H, aromatic protons), 8.46 (d, J = 8.7 Hz, 2H, aromatic protons).
< 실시예 9 > (9-(6-(터셔리-뷰틸디메틸실릴옥시)헥실)-9H-카바졸-3-일)메틸 6-((4-(4-시아노-5-(디시아노메틸렌)-1-헥실-2-옥소-2,5-디하이드로-1H-피롤-3-일)페닐)(2-에틸헥실)아미노)헥사노에이트((9-(6-(tert-Butyldimethylsilyloxy)hexyl)-9H-carbazol-3-yl)methyl 6-((4-(4-cyano-5-(dicyanomethylene)-1-hexyl-2-oxo-2,5-dihydro-1H-pyrrol-3-yl)phenyl)(2-ethylhexyl)amino)hexanoate)(12)의 제조Example 9 (9- (6- (tertiary-butyldimethylsilyloxy) hexyl) -9H-carbazol-3-yl) methyl 6-((4- (4-cyano-5- (dicyano) Methylene) -1-hexyl-2-oxo-2,5-dihydro-1H-pyrrol-3-yl) phenyl) (2-ethylhexyl) amino) hexanoate ((9- (6- (tert-Butyldimethylsilyloxy ) hexyl) -9H-carbazol-3-yl) methyl 6-((4- (4-cyano-5- (dicyanomethylene) -1-hexyl-2-oxo-2,5-dihydro-1H-pyrrol-3- Preparation of yl) phenyl) (2-ethylhexyl) amino) hexanoate) (12)
본 발명자들은 3구 플라스크에 6-((2-에틸헥실)(페닐)아미노)헥실 아세테이트(2.74 g, 6.65 m㏖)와 6-((4-(4-시아노-5-(디시아노메틸렌)-1-헥실-2-옥소-2,5-디하이드로-1H-피롤-3-일)페닐)(2-에틸헥실)아미노)헥사노익 엑시드(3.80 g, 6.65 m㏖), DPTS(1.5 g, 5.32 m㏖) 및 디사이클로헥실카보디이미트(1.56 g, 5.32 m㏖)를 디클로로메틸(50 ㎖)에 녹여 24시간 동안 실온에서 교반 반응시켰다. 침전물을 여과한 후 감압 증류하였다. 그리고 나서, 얻어진 점성액을 실리카 컬럼크로마토그래피로 분리하여 짙은 푸른색 고체의 표제물질 3.1 g을 얻었다.We used 6-((2-ethylhexyl) (phenyl) amino) hexyl acetate (2.74 g, 6.65 mmol) and 6-((4- (4-cyano-5- (dicyanomethylene) in three-necked flasks. ) -1-hexyl-2-oxo-2,5-dihydro-1H-pyrrole-3-yl) phenyl) (2-ethylhexyl) amino) hexanoic acid (3.80 g, 6.65 mmol), DPTS (1.5 g, 5.32 mmol) and dicyclohexylcarbodiimide (1.56 g, 5.32 mmol) were dissolved in dichloromethyl (50 mL) and stirred at room temperature for 24 hours. The precipitate was filtered off and distilled under reduced pressure. The resulting viscous liquid was then separated by silica column chromatography to give 3.1 g of the title substance as a dark blue solid.
상기 물질의 NMR 데이터는 다음과 같다.The NMR data of the material is as follows.
1H NMR (300 MHz, CDCl3, rt): δ (ppm) 0.01 (s, 6H, CH3Si) 0.70~1.02 (m, 18H, CH3), 1.20~1.49 (m, 22H, CH2), 1.60~1.86 (m, 9H, CH2), 2.38 (t, 2H, J= 7.6 Hz, CH2CO), 3.31 (d, J=7.6 Hz, 2H, NCH2), 3.41 (t, J=7.0 Hz, 2H, NCH2), 3.55 (t, J=7.2 Hz, 2H, NCH2), 3.99 (t, J=7.0 Hz, 2H, NCH2), 4.28 (t, J=7.3 Hz, 2H, OCH2), 5.28 (s, 2H, OCH2Ar), 6.70 (d, J=8.7 Hz, 2H, aromatic protons), 7.21 (t, J=8.7 Hz, 2H, aromatic protons), 7.37 (d, J=8.7 Hz, 2H, aromatic protons), 7.45 (t, J=8.7 Hz, 2H, aromatic protons), 8.07 (d, J=8.7 Hz, 2H, aromatic protons), 8.45 (d, J=8.7 Hz, 2H, aromatic protons). 1 H NMR (300 MHz, CDCl 3 , rt): δ (ppm) 0.01 (s, 6H, CH 3 Si) 0.70 to 1.02 (m, 18H, CH 3 ), 1.20 to 1.49 (m, 22H, CH 2 ) , 1.60 to 1.86 (m, 9H, CH 2 ), 2.38 (t, 2H, J = 7.6 Hz, CH 2 CO), 3.31 (d, J = 7.6 Hz, 2H, NCH 2 ), 3.41 (t, J = 7.0 Hz, 2H, NCH 2 ), 3.55 (t, J = 7.2 Hz, 2H, NCH 2 ), 3.99 (t, J = 7.0 Hz, 2H, NCH 2 ), 4.28 (t, J = 7.3 Hz, 2H, OCH 2 ), 5.28 (s, 2H, OCH 2 Ar), 6.70 (d, J = 8.7 Hz, 2H, aromatic protons), 7.21 (t, J = 8.7 Hz, 2H, aromatic protons), 7.37 (d, J = 8.7 Hz, 2H, aromatic protons), 7.45 (t, J = 8.7 Hz, 2H, aromatic protons), 8.07 (d, J = 8.7 Hz, 2H, aromatic protons), 8.45 (d, J = 8.7 Hz, 2H , aromatic protons).
< 실시예 10 > (9-(6-하이드로헥실)-9H-카바졸-3-일)메틸6-((4-(4-시아노-5-(디시아노메틸렌)-1-헥실-2-옥소-2,5-디하이드로-1H-피롤-3-일)페닐)2-에틸헥실)아미노)헥사노에이트((9-(6-Hydroxyhexyl)-9H-carbazol-3-yl)methyl 6-((4-(4-cyano-5-(dicyanomethylene)-1-hexyl-2-oxo-2,5-dihydro-1H-pyrrol-3-yl)phenyl)(2-ethylhexyl)amino)hexanoate)(13)의 제조Example 10 (9- (6-hydrohexyl) -9H-carbazol-3-yl) methyl6-((4- (4-cyano-5- (dicyanomethylene) -1-hexyl-2 -Oxo-2,5-dihydro-1H-pyrrole-3-yl) phenyl) 2-ethylhexyl) amino) hexanoate ((9- (6-Hydroxyhexyl) -9H-carbazol-3-yl) methyl 6 -((4- (4-cyano-5- (dicyanomethylene) -1-hexyl-2-oxo-2,5-dihydro-1H-pyrrol-3-yl) phenyl) (2-ethylhexyl) amino) hexanoate) ( 13) Manufacture
본 발명자들은 플라스크에 (9-(6-(터셔리-뷰틸디메틸실릴옥시)헥실)-9H-카바졸-3-일)메틸 6-((4-(4-시아노-5-(디시아노메틸렌)-1-헥실-2-옥소-2,5-디하이드로-1H-피롤-3-일)페닐)(2-에틸헥실)아미노)헥사노에이트(2.5 g, 2.6 m㏖)를 테트라하이드로퓨란(50 ㎖)에 넣고 교반하였다. 염산(10 ㎖, 3 N)을 넣고 65℃에서 24시간동안 교반 반응시켰다. 상기 반응물을 분별 깔때기에 옮긴 후 물과 디클로로메탄을 첨가하여 유기층만 따로 분리하고 소듐 설페이트로 수분을 제거한 후 감압 증류하였다. 그리고 나서, 얻어진 물질을 실리카 컬럼크로마토그래피로 분리하여 짙은 푸른빛고체 1.6 g을 얻었다.The inventors added (9- (6- (tertary-butyldimethylsilyloxy) hexyl) -9H-carbazol-3-yl) methyl 6-((4- (4-cyano-5- (dicyano) to the flask Methylene) -1-hexyl-2-oxo-2,5-dihydro-1H-pyrrol-3-yl) phenyl) (2-ethylhexyl) amino) hexanoate (2.5 g, 2.6 mmol) It was poured into furan (50 mL) and stirred. Hydrochloric acid (10 mL, 3 N) was added thereto and stirred at 65 ° C for 24 hours. The reaction was transferred to a separatory funnel, and water and dichloromethane were added thereto to separate the organic layer separately, and water was removed with sodium sulfate, followed by distillation under reduced pressure. Then, the obtained material was separated by silica column chromatography to obtain 1.6 g of a dark blue solid.
상기 물질의 NMR 데이터는 다음과 같다.The NMR data of the material is as follows.
1H NMR (300 MHz, CDCl3, rt): δ (ppm) 0.89~0.94 (m, 9H, CH3), 1.30~1.49 (m, 22H, CH2), 1.60~1.86 (m, 9H, CH2), 2.38 (t, 2H, J=7.6 Hz, CH2CO), 3.34 (d, J=7.6 Hz, 2H, NCH2), 3.41 (t, J=7.0 Hz, 2H, NCH2), 3.55 (t, J=7.2 Hz, 2H, NCH2), 3.99 (t, J=7.0 Hz, 2H, NCH2), 4.28 (t, J=7.3 Hz, 2H, OCH2), 5.28 (s, 2H, OCH2Ar), 6.70 (d, J=8.7 Hz, 2H, aromatic protons), 7.21 (t, J=8.7 Hz, 2H, aromatic protons), 7.37 (d, J=8.7 Hz, 2H, aromatic protons), 7.45 (t, J=8.7 Hz, 2H, aromatic protons), 8.07 (d, J=8.7 Hz, 2H, aromatic protons), 8.45 (d, J=8.7 Hz, 2H, aromatic protons). 1 H NMR (300 MHz, CDCl 3 , rt): δ (ppm) 0.89 to 0.94 (m, 9H, CH 3 ), 1.30 to 1.49 (m, 22H, CH 2 ), 1.60 to 1.86 (m, 9H, CH 2 ), 2.38 (t, 2H, J = 7.6 Hz, CH 2 CO), 3.34 (d, J = 7.6 Hz, 2H, NCH 2 ), 3.41 (t, J = 7.0 Hz, 2H, NCH 2 ), 3.55 (t, J = 7.2 Hz, 2H, NCH 2 ), 3.99 (t, J = 7.0 Hz, 2H, NCH 2 ), 4.28 (t, J = 7.3 Hz, 2H, OCH 2 ), 5.28 (s, 2H, OCH 2 Ar), 6.70 (d, J = 8.7 Hz, 2H, aromatic protons), 7.21 (t, J = 8.7 Hz, 2H, aromatic protons), 7.37 (d, J = 8.7 Hz, 2H, aromatic protons), 7.45 (t, J = 8.7 Hz, 2H, aromatic protons), 8.07 (d, J = 8.7 Hz, 2H, aromatic protons), 8.45 (d, J = 8.7 Hz, 2H, aromatic protons).
< 실시예 11 > 광굴절 데드리머 1(14)의 제조Example 11 Preparation of Photorefractive Dead Dreamer 1 (14)
본 발명자들은 3구 플라스크에 2-(1-(6-(9H-카바졸-9-일)헥실)-3-시아노-4-(4-((2-에틸헥실)(6-하이드록시헥실아미노)페닐)-5-옥소-1H-피롤-2(5H)-일라이덴)말로노나이트릴(1.5 g, 2.07 m㏖)과 6,6',6''-(4,4',4''-(에탄-1,1,1-트리닐)트리스(4,1-페닐렌))트리스(옥시)트리헥사노익 엑시드(0.41 g, 0.622 m㏖)를 클로로메틸(50 ㎖)에 녹여 교반하였다. 상기 혼합물에 DPTS(0.49 g, 1.66 m㏖)와 디사이클로헥실카보디이미드(0.85 g, 4.14 m㏖)를 첨가하여 실온에서 24시간 동안 교반하였다. 침전물을 여과한 후 감압 증류하였다. 그리고 나서, 얻어진 고체를 실리카 컬럼크로마토그래피로 분리하여 짙은 푸른색 고체의 물질 1.25 g을 얻었다.We used a 3-necked flask in 2- (1- (6- (9H-carbazol-9-yl) hexyl) -3-cyano-4- (4-((2-ethylhexyl) (6-hydroxy Hexylamino) phenyl) -5-oxo-1H-pyrrole-2 (5H) -ylidene) malononitrile (1.5 g, 2.07 mmol) and 6,6 ', 6' '-(4,4', 4 ''-(ethane-1,1,1-triyl) tris (4,1-phenylene)) tris (oxy) trihexanoic acid (0.41 g, 0.622 mmol) in chloromethyl (50 mL) DPTS (0.49 g, 1.66 mmol) and dicyclohexylcarbodiimide (0.85 g, 4.14 mmol) were added to the mixture, which was stirred for 24 hours at room temperature. The resulting solid was then separated by silica column chromatography to yield 1.25 g of a dark blue solid.
상기 물질의 NMR 데이터는 다음과 같다.The NMR data of the material is as follows.
1H NMR(300MHz, CDCl3, rt): δ (ppm) 0.90 (t, 18H, CH3) 1.28~1.46 (m, 56H, CH2), 1.59~1.69 (m, 26H, CH2), 1.72~1.79 (m, 10H, CH2), 1.83~1.90 (m, 7H, CH2), 2.06 (s, 3H, CH3CPh3), 2.31 (t, 6H, J=7.6 Hz CH2CO), 3.34 (d, J=7.6 Hz, 6H, NCH2), 3.43 (t, J=7.0 Hz, 6H, NCH2), 3.88 (t, J=7.2 Hz, 6H, NCH2), 3.95 (t, J=7.0 Hz, 6H, NCH2), 4.05 (t, J=7.3 Hz, 6H, OCH2), 4.28 (t, J=7.2 Hz, 6H, NCH2), 6.72 (q, 12H, aromatic protons), 6.95 (d, J=8.7 Hz, 6H, aromatic protons), 7.19 (t, J=8.7 Hz, 6H, aromatic protons), 7.36 (d, J=8.7 Hz, 6H, aromatic protons), 7.43 (t, J=8.7 Hz, 6H, aromatic protons), 8.06 (d, J=8.7 Hz, 6H, aromatic protons), 8.45 (d, J=8.7 Hz, 6H, aromatic protons). 1 H NMR (300 MHz, CDCl 3 , rt): δ (ppm) 0.90 (t, 18H, CH 3 ) 1.28 to 1.46 (m, 56H, CH 2 ), 1.59 to 1.69 (m, 26H, CH 2 ), 1.72 ~ 1.79 (m, 10H, CH 2 ), 1.83-1.90 (m, 7H, CH 2 ), 2.06 (s, 3H, CH 3 CPh 3 ), 2.31 (t, 6H, J = 7.6 Hz CH 2 CO), 3.34 (d, J = 7.6 Hz, 6H, NCH 2 ), 3.43 (t, J = 7.0 Hz, 6H, NCH 2 ), 3.88 (t, J = 7.2 Hz, 6H, NCH 2 ), 3.95 (t, J = 7.0 Hz, 6H, NCH 2 ), 4.05 (t, J = 7.3 Hz, 6H, OCH 2 ), 4.28 (t, J = 7.2 Hz, 6H, NCH 2 ), 6.72 (q, 12H, aromatic protons), 6.95 (d, J = 8.7 Hz, 6H, aromatic protons), 7.19 (t, J = 8.7 Hz, 6H, aromatic protons), 7.36 (d, J = 8.7 Hz, 6H, aromatic protons), 7.43 (t, J = 8.7 Hz, 6H, aromatic protons), 8.06 (d, J = 8.7 Hz, 6H, aromatic protons), 8.45 (d, J = 8.7 Hz, 6H, aromatic protons).
< 실시예 12 > 광굴절 데드리머 2(15)의 제조Example 12 Preparation of Photorefractive Dead Dreamer 2 (15)
본 발명자들은 3구 플라스크에 (9-(6-하이드로헥실)-9H-카바졸-3-일)메틸6-((4-(4-시아노-5-(디시아노메틸렌)-1-헥실-2-옥소-2,5-디하이드로-1H-피롤-3-일)페닐)2-에틸헥실)아미노)헥사노에이트(1.5 g, 1.76 m㏖)와 6,6',6''-(4,4',4''-(에탄-1,1,1-트리닐)트리스(4,1-페닐렌))트리스(옥시)트리헥사노익 엑시드(0.35 g, 0.53 m㏖)를 클로로메틸(50 ㎖)에 녹여 교반하였다. 상기 혼합물에 DPTS(0.414 g, 1.41 m㏖)와 디사이클로헥실카보디이미드(1.03 g, 3.5 m㏖)를 첨가하여 실온에서 24시간 동안 교반하였다. 침전물을 여과한 후 감압 증류하였다. 그리고 나서, 얻어진 고체를 실리카 컬럼크로마토그래피로 분리하여 짙은 푸른색 고체의 물질 1.26g을 얻었다.The inventors used a (9- (6-hydrohexyl) -9H-carbazol-3-yl) methyl6-((4- (4-cyano-5- (dicyanomethylene) -1-hexyl) in a three-necked flask. 2-oxo-2,5-dihydro-1H-pyrrole-3-yl) phenyl) 2-ethylhexyl) amino) hexanoate (1.5 g, 1.76 mmol) and 6,6 ', 6' '- (4,4 ', 4' '-(ethane-1,1,1-triyl) tris (4,1-phenylene)) tris (oxy) trihexanoic acid (0.35 g, 0.53 mmol) It was dissolved in methyl (50 mL) and stirred. To the mixture was added DPTS (0.414 g, 1.41 mmol) and dicyclohexylcarbodiimide (1.03 g, 3.5 mmol) and stirred at room temperature for 24 hours. The precipitate was filtered off and distilled under reduced pressure. The solid obtained was then separated by silica column chromatography to yield 1.26 g of a dark blue solid.
상기 물질의 NMR 데이터는 다음과 같다.The NMR data of the material is as follows.
1H NMR(300MHz, CDCl3, rt): δ (ppm) 0.88 (t, 27H, CH3) 1.22~1.40 (m, 54H, CH2), 1.45~1.61 (m, 18H, CH2), 1.62~1.79 (m, 32H, CH2), 1.78~1.88 (m, 7H, CH2), 2.05 (s, 3H, CH3CPh3), 2.27 (t, 6H, J=7.6 Hz, CH2CO), 2.37 (t, 6H, J= 7.6 Hz, CH2CO), 3.31 (d, J=7.6 Hz, 6H, NCH2), 3.40 (t, J=7.0 Hz, 6H, NCH2), 3.88 (t, J=7.2 Hz, 6H, NCH2), 4.00 (t, J=7.0 Hz, 6H, NCH2), 4.27 (t, J=7.3 Hz, 6H, OCH2), 5.27 (s, CH2OH), 6.71 (q, 12H, aromatic protons), 6.95 (d, J=8.7 Hz, 6H, aromatic protons), 7.23 (t, J=8.7 Hz, 3H, aromatic protons), 7.36 (t, J=8.7 Hz, 6H, aromatic protons), 7.44 (t, J=8.7 Hz, 6H, aromatic protons), 8.06 (d, J=8.7 Hz, 6H, aromatic protons), 8.44 (d, J=8.7 Hz, 6H,). 1 H NMR (300 MHz, CDCl 3 , rt): δ (ppm) 0.88 (t, 27H, CH 3 ) 1.22 to 1.40 (m, 54H, CH 2 ), 1.45 to 1.61 (m, 18H, CH 2 ), 1.62 ~ 1.79 (m, 32H, CH 2 ), 1.78-1.88 (m, 7H, CH 2 ), 2.05 (s, 3H, CH 3 CPh 3 ), 2.27 (t, 6H, J = 7.6 Hz, CH 2 CO) , 2.37 (t, 6H, J = 7.6 Hz, CH 2 CO), 3.31 (d, J = 7.6 Hz, 6H, NCH 2 ), 3.40 (t, J = 7.0 Hz, 6H, NCH 2 ), 3.88 (t , J = 7.2 Hz, 6H, NCH 2 ), 4.00 (t, J = 7.0 Hz, 6H, NCH 2 ), 4.27 (t, J = 7.3 Hz, 6H, OCH 2 ), 5.27 (s, CH 2 OH) , 6.71 (q, 12H, aromatic protons), 6.95 (d, J = 8.7 Hz, 6H, aromatic protons), 7.23 (t, J = 8.7 Hz, 3H, aromatic protons), 7.36 (t, J = 8.7 Hz, 6H, aromatic protons), 7.44 (t, J = 8.7 Hz, 6H, aromatic protons), 8.06 (d, J = 8.7 Hz, 6H, aromatic protons), 8.44 (d, J = 8.7 Hz, 6H,).
< 실시예 13 > 광굴절 소자의 제작 Example 13 Fabrication of Photorefractive Element
상기 실시예 11 및 실시예 12에서 제조된 광굴절 덴드리머 (14), (15)의 소자특성을 비교하기 위하여 도 1과 같은 형태의 소자를 제작하였다. 상기 도 1은 본 발명의 광학 덴드리머 화합물의 광학특성 평가를 위한 소자 제조과정을 나타낸 간략도로 보다 구체적으로, 소자특성 분석을 위해 인듐틴옥사이드 투명전극이 열쇠구멍 형태로 패턴된 유리 기판을 깨끗이 세정한 후, 디메틸클로로메탄에 40 wt%로 녹인 광굴절 덴드리머를 30℃에서 3~4 방울 떨어뜨렸다. 온도를 올려 80℃에서 충분히 건조시켜 용매를 제거한 후, 100℃에서 24시간 진공 건조하였다. 건조된 인듐틴옥사이드 유리시료 구석에 60 ㎛의 스페이서(spacer)를 결합시켰다. 상기 시료를 유리전이온도 이상으로 가열하여 두번째 인듐틴옥사이드 유리를 시료위에 천천히 눌러주었다. 상온으로 냉각 후 에폭시를 이용하여 충분히 봉지한 후 전극을 붙여주어 광굴절 소자를 제조하였다.In order to compare device characteristics of the photorefractive dendrimers 14 and 15 manufactured in Examples 11 and 12, a device having a shape as shown in FIG. 1 was manufactured. 1 is a simplified view showing a device manufacturing process for evaluating the optical properties of the optical dendrimer compound of the present invention more specifically, the indium tin oxide transparent electrode cleans the glass substrate patterned in the form of a keyhole for device characteristics analysis Thereafter, 3 to 4 drops of the photorefractive dendrimer dissolved in 40 wt% in dimethylchloromethane were dropped. The temperature was raised and dried sufficiently at 80 degreeC, the solvent was removed, and it vacuum-dried at 100 degreeC for 24 hours. A 60 μm spacer was bonded to the dried indium tin oxide glass sample corner. The sample was heated above the glass transition temperature and the second indium tin oxide glass was slowly pressed onto the sample. After cooling to room temperature, the resin was sufficiently encapsulated using an epoxy, and then an electrode was attached to prepare a photorefractive element.
< 실시예 14 > 광굴절 소자의 특성 분석Example 14 Characterization of a Photorefractive Element
상기와 같이 제작된 광굴절 소자로부터 이득계수와 복굴절 특성을 평가하였다.Gain coefficients and birefringence characteristics were evaluated from the photorefractive elements fabricated as described above.
구체적으로, 도 2는 본 발명의 광학 덴드리머 화합물의 유리전이온도를 나타내는 소자의 전압-이득계수를 나타낸 그래프이다. 구체적으로, 상기 도 2의 D1과 D2는 DSC 데이터로서 각물질의 유리전이온도를 나타낸 것으로, 상기 D1과 D2는 두 물질의 유리전이온도가 상온에 가까운 30 및 45℃를 나타냄을 확인하였다. 덴드리머 화합물내의 구성 요소인 비선형 발색단이 쉽게 전기장의 방향으로 방향성을 갖기 위해서는 매질이 상온에서 부드러운 것이 바람직하므로, 상기 그래프는 상기 광굴절 소자가 적절한 매질로 작용함을 나타낸다.Specifically, Figure 2 is a graph showing the voltage-gain coefficient of the device showing the glass transition temperature of the optical dendrimer compound of the present invention. Specifically, D1 and D2 of FIG. 2 indicate the glass transition temperature of each material as DSC data, and D1 and D2 showed that the glass transition temperatures of the two materials showed 30 and 45 ° C. close to room temperature. In order for the nonlinear chromophore, which is a component in the dendrimer compound, to be easily oriented in the direction of the electric field, the medium is preferably soft at room temperature, so the graph indicates that the photorefractive element acts as an appropriate medium.
도 3은 본 발명의 소자의 필름상태에서 화합물의 D1과 D2의 UV-Vis를 측정한 UV 스펙트럼으로 시간-복굴절 관계를 나타내는 그래프이다. D1과 D2 두 물질의 스펙트럼이 거의 동일한 형태를 나타내는 것은 동일한 비선형 발색단과 카바졸을 갖기 때문이다. 따라서, 비선형 발색단에 의해서 625 ㎚에서 최대 흡수파장이 형성되며, 카바졸에 의해 350 ㎚에서 최대 흡수 파장이 형성됨을 확인하였다. 3 is a graph showing the time-birefringence relationship in the UV spectrum of the UV-Vis of the compounds D1 and D2 in the film state of the device of the present invention. The spectra of the two D1 and D2 materials show almost identical morphology because they have the same nonlinear chromophores and carbazoles. Therefore, it was confirmed that the maximum absorption wavelength was formed at 625 nm by the nonlinear chromophore, and the maximum absorption wavelength was formed at 350 nm by the carbazole.
도 4는 본 발명의 광학 덴드리머 화합물의 소자를 이용한 D1과 D2에 대한 복굴절을 측정한 그래프이다. 구체적으로, 복굴절 테스트는 +45o 편광판과 -45o 편광판 사이에 소자를 놓고 전기장을 가하여 시간에 따라 빛이 투과되는 정도를 확인하는 것인데, 상기 도면에서는 비선형 발색단이 외곽에 존재하는 D2가 방향성을 갖기 쉬우므로 더 높은 복굴절을 나타냄을 확인하였다. 4 is a graph measuring birefringence of D1 and D2 using the device of the optical dendrimer compound of the present invention. Specifically, the birefringence test is to place the device between the +45 o polarizing plate and -45 o polarizing plate to check the degree of light transmission over time by applying an electric field, in which the non-linear chromophore D2 is directional It was confirmed that it showed higher birefringence because it was easy to have.
도 5는 본 발명의 광학 덴드리머 화합물의 소자를 이용하여 인가 전압에 따른 획득계수값을 나타낸 그래프이다. TBC(Two beam coupling; 복굴절) 테스트는 광굴절 재료에 가장 중요한 테스트이다. 구체적으로, 광굴절 소자에 두 빛을 입사 시키면 투과되어 나오는 빛은 에너지 전이로 인하여 하나의 빛은 밝아지고 또 하나의 빛은 약해지는 현상을 나타낸다. 따라서, 에너지 전이로 인해 밝아지는 정도와 여러 실험조건을 이용하여 획득계수를 구할 수 있다. 상기에서 D1과 D2의 광전도성은 같은 양의 카바졸이 포함되어 있어서 유사함을 확인하였다. 그러나, 상기 도 5에서 복굴절 테스트에서에서는 물질의 방향성은 D2가 보다 좋음을 확인하였다. TBC 테스트에서도 이러한 결과와 상응하게 D2가 보다 많은 에너지 전이를 하는 것을 확인하였다. 5 is a graph showing the acquisition coefficient value according to the applied voltage using the device of the optical dendrimer compound of the present invention. Two beam coupling (TBC) testing is the most important test for photorefractive materials. Specifically, when two lights are incident on the photorefractive element, the light transmitted is a phenomenon in which one light is brightened and another light is weakened due to energy transfer. Therefore, the acquisition coefficient can be obtained using the degree of lightening due to energy transfer and various experimental conditions. In the above, it was confirmed that the photoconductivity of D1 and D2 was similar because it contained the same amount of carbazole. However, in the birefringence test in FIG. 5 , it was confirmed that D2 was better in the orientation of the material. TBC tests also corresponded to these findings and found that D2 had more energy transfer.
이와 같이, TBC 테스트에서 상기 소자는 ㎛당 140V에서도 견디는 특성을 나타냄을 확인하였다. 종래의 소자들은 ㎛당 100V 이상을 견딜 수 없었던 것에 비교하면 안정성이 상당히 뛰어나며, 종전 TBC 테스트에서 문제가 되었던 coupling 속도 또한 큰 향상을 나타냄을 확인하였다.Thus, it was confirmed that the TBC test showed that the device withstands 140 V / μm. Conventional devices were found to be significantly more stable than they could not withstand more than 100V per μm, and also showed a significant improvement in the coupling speed, which was a problem in previous TBC tests.
상기에서 살펴본 바와 같이, 본 발명의 광굴절 덴드리머 화합물은 광전도성(photoconductivity)과 전기광학(electro-optic)특성을 동시에 하나의 화합물 구조 내에서 나타낼 수 있도록 설계한 것으로서, 덴드론에 비선형 광학 발색단과 카바졸을 도입하여 한분자내에 광전도성과 비선형광학 특성을 동시에 부여함으로써 종래 광굴절 재료의 안정성 문제를 해결할 수 있으며, 아울러 근적외선 감응형 비선형광학 발색단을 사용함으로써 생물학적으로 응용할 수 있다.As described above, the photorefractive dendrimer compound of the present invention is designed to exhibit photoconductivity and electro-optic properties in one compound structure at the same time. Carbazole is introduced to provide both photoconductivity and nonlinear optical properties in a single molecule to solve the stability problem of conventional photorefractive materials, and also can be applied biologically by using a near-infrared sensitive nonlinear optical chromophore.
Claims (17)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070029260A KR100892021B1 (en) | 2007-03-26 | 2007-03-26 | Photorefractive Dendron Chemicals, Photorefractive Dendrimer Chemicals, Producing Method Thereof, Photorefractive Memory Using This Chemicals, and Producing Method of This Memory |
US11/868,587 US7915428B2 (en) | 2007-03-26 | 2007-10-08 | Photorefractive dendron compound, photorefractive dendrimer compound, method of preparing the same, photorefractive device using the same, and method of manufacturing the device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070029260A KR100892021B1 (en) | 2007-03-26 | 2007-03-26 | Photorefractive Dendron Chemicals, Photorefractive Dendrimer Chemicals, Producing Method Thereof, Photorefractive Memory Using This Chemicals, and Producing Method of This Memory |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20080087275A KR20080087275A (en) | 2008-10-01 |
KR100892021B1 true KR100892021B1 (en) | 2009-04-07 |
Family
ID=40149951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070029260A KR100892021B1 (en) | 2007-03-26 | 2007-03-26 | Photorefractive Dendron Chemicals, Photorefractive Dendrimer Chemicals, Producing Method Thereof, Photorefractive Memory Using This Chemicals, and Producing Method of This Memory |
Country Status (2)
Country | Link |
---|---|
US (1) | US7915428B2 (en) |
KR (1) | KR100892021B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5826206B2 (en) * | 2012-03-29 | 2015-12-02 | 富士フイルム株式会社 | Nonlinear optical material and nonlinear optical element using the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003267976A (en) | 2002-03-11 | 2003-09-25 | Kanagawa Acad Of Sci & Technol | Phenylazomethine-based carbazole dendrimer and organic el element |
KR100506482B1 (en) | 2003-05-12 | 2005-08-22 | 한국전자통신연구원 | Nonlinear optical material with dendritic skeleton |
KR20050085239A (en) * | 2002-12-23 | 2005-08-29 | 코비온 올가닉 세미콘덕터스 게엠베하 | Organic electroluminescent element |
KR20060121869A (en) * | 2003-09-12 | 2006-11-29 | 스미또모 가가꾸 가부시키가이샤 | Dendrimer compound and organic luminescent element employing the same |
-
2007
- 2007-03-26 KR KR1020070029260A patent/KR100892021B1/en active IP Right Grant
- 2007-10-08 US US11/868,587 patent/US7915428B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003267976A (en) | 2002-03-11 | 2003-09-25 | Kanagawa Acad Of Sci & Technol | Phenylazomethine-based carbazole dendrimer and organic el element |
KR20050085239A (en) * | 2002-12-23 | 2005-08-29 | 코비온 올가닉 세미콘덕터스 게엠베하 | Organic electroluminescent element |
KR100506482B1 (en) | 2003-05-12 | 2005-08-22 | 한국전자통신연구원 | Nonlinear optical material with dendritic skeleton |
KR20060121869A (en) * | 2003-09-12 | 2006-11-29 | 스미또모 가가꾸 가부시키가이샤 | Dendrimer compound and organic luminescent element employing the same |
Also Published As
Publication number | Publication date |
---|---|
US7915428B2 (en) | 2011-03-29 |
US20090223627A1 (en) | 2009-09-10 |
KR20080087275A (en) | 2008-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Piao et al. | Nonlinear optical side‐chain polymers post‐functionalized with high‐β chromophores exhibiting large electro‐optic property | |
CN102482504B (en) | Second nonlinear optic compound and containing its nonlinear optical element | |
KR101450989B1 (en) | Photo-responsive liquid crystalline compound and its applications | |
WO2001079750A1 (en) | Sterically stabilized polyene-bridged second-order nonlinear optical chromophores and devices incorporating the same | |
JP5774104B2 (en) | Photorefractive composition responsive to multiple laser wavelengths in the visible light spectrum | |
Hohle et al. | Photorefractive triphenylamine-based glass: a multifunctional low molecular weight compound with fast holographic response | |
CN113498411A (en) | Fluorescent compounds with broad color tunability and aggregation-induced emission characteristics | |
CN109415468A (en) | Electrooptics polymer | |
US20220380500A1 (en) | Crosslinkable nonlinear-optical chromophore system | |
US9023248B2 (en) | Diels-Alder crosslinkable dendritic nonlinear optic chromophores and polymer composites | |
KR100892021B1 (en) | Photorefractive Dendron Chemicals, Photorefractive Dendrimer Chemicals, Producing Method Thereof, Photorefractive Memory Using This Chemicals, and Producing Method of This Memory | |
US7276188B2 (en) | Organic dye molecules and nonlinear optical polymeric compounds containing chromophores | |
US11674082B2 (en) | Polymerizable liquid crystal compound, liquid crystal composition for optical element, polymer, optically anisotropic body, and optical element for display device | |
Sakthivel et al. | Investigation on thermotropic liquid crystalline and photocrosslinkable polyarylidene arylphosphate esters containing cyclohexanone units | |
US8648332B2 (en) | Phenyltetraene-based nonlinear optical chromophores | |
US6566529B1 (en) | Two-photon absorption materials based on DTT | |
CN108752327B (en) | 3- (2-benzoxazole) coumarin amide compound and preparation method and application thereof | |
JP4105446B2 (en) | Optical element using polymerizable compound and matrix thereof | |
Vakhonina et al. | Methacrylic copolymers with quinoxaline chromophores in the side chain exhibiting quadratic nonlinear optical response | |
Persico et al. | Synthesis and nonlinear optical properties of methacrylate polymers based on 2‐[4‐(N‐methyl, N‐hydroxyethylamino) phenylazo]‐phenyl‐6‐nitrobenzoxazole chromophore | |
KR100285610B1 (en) | Photochromic liquid crystal spirobenzopyran compounds, composition comprising the same, photochromic thin films prepared therefrom and method for preparing said compound | |
Chandra et al. | Synthesis, growth and structural characterization of 1-(furan-2-yl)-3-(2, 4, 6-trimethoxyphenyl) prop-2-en-1-one crystal | |
US11034709B2 (en) | Organic long persistence luminescence compositions | |
CN109721593A (en) | The preparation method for the hexafluoro cycolpenfene photochrmism compounds that two heteroaromatics replace | |
KR100453464B1 (en) | Multifunctional plasticizer and photorefractive polymer composite containing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130221 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20140221 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20150212 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20160219 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20170221 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20180220 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20190221 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20200225 Year of fee payment: 12 |