KR100890918B1 - A manufacturig method of mineral-chelated peptides - Google Patents

A manufacturig method of mineral-chelated peptides Download PDF

Info

Publication number
KR100890918B1
KR100890918B1 KR1020080065691A KR20080065691A KR100890918B1 KR 100890918 B1 KR100890918 B1 KR 100890918B1 KR 1020080065691 A KR1020080065691 A KR 1020080065691A KR 20080065691 A KR20080065691 A KR 20080065691A KR 100890918 B1 KR100890918 B1 KR 100890918B1
Authority
KR
South Korea
Prior art keywords
mineral
plasma protein
blood
iron
livestock
Prior art date
Application number
KR1020080065691A
Other languages
Korean (ko)
Inventor
박영일
송경빈
이승환
이규승
Original Assignee
(주)바이오넬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)바이오넬 filed Critical (주)바이오넬
Priority to KR1020080065691A priority Critical patent/KR100890918B1/en
Application granted granted Critical
Publication of KR100890918B1 publication Critical patent/KR100890918B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/34Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/36Extraction; Separation; Purification by a combination of two or more processes of different types

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Peptides Or Proteins (AREA)

Abstract

A method for preparing mineral-bonded peptides from domestic animals' blood is provided to prevent environmental contamination caused by blood of the slaughtered domestic animals, thereby reducing wastewater treatment cost. A method for preparing mineral-bonded peptides from domestic animals' blood comprises the following steps of: preparing plasma protein hydrolysate of the domestic animals' blood(S100); ultrafiltering the plasma protein hydrolysate to have less than 3,000 dalton of molecular weight(S200); bonding the ultrafiltered plasma protein hydrolysate with mineral(S300); and separating mineral-bonded peptides from the mineral-bonded plasma protein hydrolysate(S400).

Description

가축혈액을 이용한 미네랄 결합 펩타이드 제조방법{A MANUFACTURIG METHOD OF MINERAL-CHELATED PEPTIDES}Production method of mineral binding peptide using livestock blood {A MANUFACTURIG METHOD OF MINERAL-CHELATED PEPTIDES}

본 발명은 가축혈액으로부터 분리된 혈장단백질에서 미네랄결합 가수분해물을 제조하고, 이것을 크로마토그라피법을 이용하여 미네랄과 결합력이 높은 미네랄 결합 펩타이드를 분리, 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing mineral-binding hydrolysates from plasma proteins isolated from livestock blood, and separating and preparing mineral-binding peptides having high binding strength with minerals using chromatographic methods.

도축혈액은 도축 과정에서 발생되는 부산물로써, 예를 들어 돼지의 경우 수분(91%), 단백질(7%), 각종 염 및 미량성분 등으로 구성되어 있고, 이 중 단백질은 알부민 (albumin), 글로불린 (globulin), 피브리노겐 (fibrinogen) 등으로 구성되어 있다. 도축혈액은 한국에선 전통 식품인 선지, 순대와 같은 식품으로 사용되어 왔지만, 도축장에서 매년 방대한 양의 도축혈액이 발생되는데 비하여 단지 적은 양의 도축혈액만이 산업적으로 활용되고 대부분은 적절한 폐수처리 없이 방출되어 수질오염 등의 심각한 문제를 발생시키고 있다.Slaughter blood is a by-product of slaughter, for example, in pigs, it consists of water (91%), protein (7%), various salts and trace components, among which albumin (albumin) and globulin It consists of globulin and fibrinogen. Slaughter blood has been used in Korea as foods such as Seonji and Sundae, which are traditional foods, but only a small amount of slaughtered blood is used industrially and released without proper wastewater treatment. It is causing serious problems such as water pollution.

한편, 미네랄 성분의 하나인 철분은 헤모글로빈, 미오글로빈의 주요 구성 성분이고, 면역기능 및 뇌의 발달에 중요한 영양소로써, 임산부, 성장 어린이 등에게 특히 필요로 하는 무기질이며, 현재 전 세계 많은 인구가 철분 결핍의 문제가 있 다. 철분 결핍은 빈혈 (iron deficiency anemia), 정신적 수행능력 저하, 세포면역력 저하 등의 부작용을 유발한다. 철분의 흡수는 주로 십이지장과 소장에서 이루어지는데 식품 중의 철은 주로 햄철(heme iron)과 비햄철(non-heme iron)의 2가지 형태로 존재한다. 햄철은 동물성 식품 중에 존재하고 섭취 시 15~30%만이 흡수되며, 식물성 식품에 존재하는 비햄철은 10% 이하만 흡수된다. 따라서 식품 중에 존재하는 철분의 낮은 흡수율 때문에 별도로 철분 강화식품이나 철분 영양보충제 등을 통한 섭취가 필요하지만 통상 사용되는 철의 형태는 대부분 염의 형태이어서 식품 성분과의 반응 및 흡수 저해물질의 작용 등으로 체내 잘 흡수되지 않는 문제점이 있다. 또한 생체이용률이 낮은 영양 보충제의 무분별한 섭취에 따른 생체 균형의 파괴 등의 부작용이 나타나기도 한다. 따라서 철의 체내흡수를 촉진시키는 물질에 대한 연구가 진행되고 있고, 특히 식품유래 펩타이드가 철과 결합한 형태로 섭취 시 생체이용률이 증대된다는 보고와 함께 철분 결합성을 갖는 소재 연구가 활발히 진행되고 있다. 우유의 가수분해에 의해 생성되는 카제인 포스포펩타이드 (casein phosphopeptide)는 칼슘과 작용하여 체내 흡수를 촉진시킨다는 사실이 확인된 이후 동일 소재를 이용한 철에 대한 연구가 진행되고 있으며 우유의 유청 단백질 (whey protein), 달걀 난황의 포스비틴 (phosvitin), 콩의 글루텐 (gluten), 젤라틴 (gelatin), 육 단백질(meat protein), 생선 뼈 등의 가수분해물로부터 분리한 철분결합 펩타이드가 게시[지성규. 대한민국특허, 등록번호 10-048533; Lim, S.W., Korean J. Food Sci. Technol., 30: 218, 1998; Bougle et al., J. Nutr. Biochem., 10: 723, 1999; Bougle et al., J. Nutr. Biochem., 10: 215, 1999; Bougle et al., J. Nutr. Biochem., 16: 398, 2005; Mahoney et al., J. Sci. Food Agric., 85: 1537, 2005; Kim, S. K., British J. Nutrition, 95: 124, 2006; Kim, H. S., Int. Dairy Journal, 17: 625, 2007; Freitas et al., J. Agric. Food Chem., 50: 871, 2002; Kim, H. S., J. Diary Sci., 90: 4033, 2007; Hurrell et al., J. Food. Sci., 72: 19, 2007; Mine et al., J. Agric. Food Chem., 48: 990, 2000; Seo, H. J. 대한민국특허, 등록번호 10-768674; 2007]되었는데, 현재까지 도축혈액의 가수분해물로부터 철분 등 미네랄 결합을 갖는 펩타이드 제조에 대한 연구는 보고된 바 없다. 지금까지의 미네랄 결합 펩타이드에 대한 연구는 주로 식품 단백질 가수분해물로부터 제조하였으나 경제성 및 효율성 등의 면에서 문제점을 갖는다. On the other hand, iron, one of the minerals, is a major component of hemoglobin and myoglobin and is an important nutrient for immune function and brain development. It is a mineral that is especially needed for pregnant women and growing children. There is a problem. Iron deficiency causes side effects such as iron deficiency anemia, decreased mental performance and decreased cellular immunity. Absorption of iron occurs mainly in the duodenum and small intestine. Iron in food exists mainly in two forms, heme iron and non-heme iron. Ham iron is present in animal foods and only 15-30% is absorbed when ingested. Non-hammer iron in plant foods is absorbed by less than 10%. Therefore, due to the low absorption rate of iron present in foods, it is necessary to consume it separately through iron-enriched foods or iron supplements, but most commonly used forms of iron are in the form of salts, resulting in reactions with food ingredients and the action of absorption inhibitors. There is a problem that is not absorbed well. In addition, side effects such as disruption of the biobalance caused by the indiscriminate intake of nutritional supplements with low bioavailability. Therefore, studies on substances that promote the absorption of iron in the body, and in particular, food-derived peptides in combination with iron reports that the bioavailability increases when ingested with the study of materials with iron binding is being actively conducted. Casein phosphopeptide, produced by hydrolysis of milk, has been found to work with calcium to promote absorption in the body, and research on iron using the same material has been underway, and milk whey protein (whey protein) ), Iron-binding peptides isolated from hydrolysates such as egg yolk phosvitin, soybean gluten, gelatin, meat protein and fish bones. Korean Patent No. 10-048533; Lim, S.W., Korean J. Food Sci. Technol., 30: 218, 1998; Bougle et al., J. Nutr. Biochem., 10: 723, 1999; Bougle et al., J. Nutr. Biochem., 10: 215, 1999; Bougle et al., J. Nutr. Biochem., 16: 398, 2005; Mahoney et al., J. Sci. Food Agric., 85: 1537, 2005; Kim, S. K., British J. Nutrition, 95: 124, 2006; Kim, H. S., Int. Dairy Journal, 17: 625, 2007; Freitas et al., J. Agric. Food Chem., 50: 871, 2002; Kim, H. S., J. Diary Sci., 90: 4033, 2007; Hurrell et al., J. Food. Sci., 72: 19, 2007; Mine et al., J. Agric. Food Chem., 48: 990, 2000; Seo, H. J. Korean Patent No. 10-768674; 2007], there have been no reports on the preparation of peptides with mineral binding such as iron from the hydrolyzate of slaughter blood. Until now, studies on mineral binding peptides have been mainly made from food protein hydrolyzate, but have problems in terms of economy and efficiency.

본 발명은 상기와 같은 종래 기술의 문제점을 해소하고자 안출된 것으로, 가축혈액으로부터 분리된 혈장단백질에서 미네랄결합 가수분해물을 제조하고, 이것을 크로마토그라피법을 이용하여 미네랄과 결합력이 높은 미네랄 결합 펩타이드를 분리, 제조함으로써, 가축의 도축혈액으로부터 미네랄 흡수를 향상시키는 미네랄 결합 펩타이드를 분리하여 새로운 기능성 제품소재를 개발하는데 그 목적이 있다.The present invention has been made to solve the problems of the prior art as described above, to prepare a mineral-bound hydrolyzate from the plasma protein separated from livestock blood, using the chromatographic method to separate the mineral-binding peptide with high binding strength of the mineral The aim is to develop new functional product materials by isolating mineral binding peptides that enhance mineral absorption from livestock slaughter blood.

본 발명은 가축혈액을 이용한 미네랄 결합 펩타이드 제조방법에 있어서, 가축혈액의 혈장단백질 가수분해물을 제조하는 단계, 상기 혈장단백질 가수분해물을 분자량 3,000달톤 이하로 한외여과하는 단계, 상기 한외여과된 혈장단백질 가수분해물을 미네랄과 결합시키는 단계, 상기 미네랄과 결합된 혈장단백질 가수분해물을 겔여과 크로마토그라피(Sephadex G15)와 아미노(-NH2)컬럼이 장착된 고속액체 크로마토그라피와 컬럼이 리소스큐(resource Q)인 이온교환 크로마토그라피법을 차례로 이용하여 미네랄 결합 펩타이드를 분리하는 단계를 포함하여 이루어지는 것을 특징으로 한다.The present invention provides a method for producing a mineral-binding peptide using livestock blood, comprising: preparing a plasma protein hydrolyzate of livestock blood, ultrafiltration the plasma protein hydrolyzate to a molecular weight of 3,000 Daltons or less, and the ultrafiltered plasma protein hydrolyzate Combining the digested product with minerals, and the high-performance liquid chromatography and column equipped with the gel filtration chromatography (Sephadex G15) and amino (-NH 2) columns are resource Q (resource Q). It characterized in that it comprises the step of separating the mineral binding peptides by using ion exchange chromatography.

본 발명에 의하면, 가축의 도축혈로부터 야기되는 상수원 오염 등의 환경오염을 방지하고 폐수 처리비용을 절감할 수 있을 뿐만 아니라, 폐기되는 가축의 도축혈로부터 저렴하고도 신속한 방법으로 기능성 소재인 미네랄과 높은 결합성을 갖는 펩타이드를 분리할 수 있다.According to the present invention, it is possible not only to prevent environmental pollution such as water pollution caused by slaughter blood of livestock, and to reduce the cost of wastewater treatment, but also to reduce the cost of wastewater treatment. Peptides with high binding can be isolated.

이하, 첨부된 도면을 참조하여 본 발명에 의한 가축혈액을 이용한 미네랄 결합 펩타이드 제조방법의 바람직한 실시예를 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the mineral binding peptide production method using livestock blood according to the present invention.

도 1은 본 발명의 일실시예에 따른 가축혈액을 이용한 미네랄 결합 펩타이드 제조방법의 순서도이다. 도 1에서 도시한 바와 같이, 본 발명의 일실시예에 따른 가축혈액을 이용한 미네랄 결합 펩타이드 제조방법은, 가축혈액으로부터 분리된 혈장단백질에서 미네랄결합 가수분해물을 제조하고, 이것을 크로마토그라피법을 이용하여 미네랄과 결합력이 높은 미네랄 결합 펩타이드를 분리, 제조하는 방법에 관한 것으로, 미네랄 결합 펩타이드 제조방법에 있어서, 가축혈액의 혈장단백질 가수분해물을 제조하는 단계(S100); 상기 혈장단백질 가수분해물을 한외여과하는 단계(S200); 상기 한외여과된 혈장단백질 가수분해물을 미네랄과 결합시키는 단계(S300); 상기 미네랄과 결합된 혈장단백질 가수분해물을 크로마토그라피법으로 미네랄 결합 펩타이드를 분리하는 단계(S400)를 포함하여 이루어지는 것을 특징으로 한다.1 is a flow chart of a method for producing a mineral binding peptide using livestock blood according to an embodiment of the present invention. As shown in FIG. 1, in the method of preparing mineral-binding peptide using livestock blood according to an embodiment of the present invention, a mineral-binding hydrolyzate is prepared from plasma proteins separated from livestock blood, and the chromatographic method is used. The present invention relates to a method for separating and preparing mineral-binding peptides having high binding strength with minerals, the method for preparing mineral-binding peptides comprising the steps of: preparing plasma protein hydrolysates of livestock blood (S100); Ultrafiltration of the plasma protein hydrolyzate (S200); Combining the ultrafiltered plasma protein hydrolyzate with a mineral (S300); It characterized in that it comprises a step (S400) for separating the mineral binding peptides by plasma chromatography of the plasma protein hydrolyzate combined with the mineral.

상기에서 가축으로는 돼지, 소, 염소, 양 등 뿐만 아니라 닭, 오리, 거위 등도 포함될 수 있을 것이고, 미네랄로는 철분, 칼슘, 규산(실리카), 마그네슘, 게르마늄, 셀레늄 등이 포함될 수 있을 것이며, 크로마토그라피법으로는 겔여과 크로마토그라피(gel permeation chromatography), 고속액체 크로마토그라피(high performance chromatography), 이온교환 크로마토그라피(ion exchange chromatography) 등이 포함될 수 있을 것이다. 또한, 상기 혈장단백질 가수분해물을 한외여과하는 단계(S200)에서 한외여과는 분자량 한계 3,000 달톤인 것이 바람직하다.The livestock may include not only pigs, cattle, goats, sheep, etc., but also chickens, ducks, geese, and the like, and minerals may include iron, calcium, silicic acid (silica), magnesium, germanium, selenium, and the like. Chromatography may include gel permeation chromatography, high performance chromatography, ion exchange chromatography, and the like. In addition, the ultrafiltration in the ultrafiltration of the plasma protein hydrolyzate (S200) is preferably a molecular weight limit of 3,000 Daltons.

따라서, 본 발명은 가축의 도축혈장단백질의 가수분해물을 한외여과 후 미네랄을 결합시키고, 크로마토그라피법을 통하여 가축혈액을 이용한 미네랄 결합 펩타이드를 제조할 수 있는데, 상기 가축혈액을 이용한 미네랄 결합 펩타이드를 함유하는 제품으로는 식품첨가물, 농업용자재, 축산용 자재 등이 포함될 수 있을 것이다.Therefore, the present invention can be combined with the mineral after the ultrafiltration of the hydrolyzate of slaughtered plasma protein of domestic animals, and through the chromatography method to prepare a mineral binding peptide using livestock blood, containing the mineral binding peptide using the livestock blood Products to be added may include food additives, agricultural and livestock materials.

이하, 돼지 혈액을 이용한 철분 결합 펩타이드 제조방법의 경우를 예로하여 가축혈액을 이용한 미네랄 결합 펩타이드 제조방법의 실시예를 상세하게 설명하고자 한다.Hereinafter, an example of a method of preparing a mineral-binding peptide using livestock blood will be described in detail by taking the case of a method of producing iron-binding peptide using pig blood.

1단계 : 돼지의 도축 시 발생하는 도축혈액은 도축 즉시 위생적으로 수거된 후 연속식 원심분리기로 혈장만을 분리한 후 2%~10%, 0.6N-3N 염산, 50%~70% 황산암모늄 등으로 혈장단백질을 침전시킨다. 원심분리 후 침전된 혈장단백질은 95℃에서 20분간 열처리한 후 상업용 단백분해효소인 플라보자임 (flavourzyme) 2%를 첨가하여 50℃, pH 7.0 조건에서 8시간 가수분해한다.Step 1: Slaughter blood generated during the slaughter of pigs is collected hygienically at the time of slaughter and separated only by plasma using a continuous centrifuge, followed by 2% ~ 10%, 0.6N-3N hydrochloric acid, 50% ~ 70% ammonium sulfate, etc. Precipitate plasma proteins. After centrifugation, the precipitated plasma protein is heat-treated at 95 ° C. for 20 minutes, and then hydrolyzed at 50 ° C. and pH 7.0 at 8 ° C. by adding 2% of a commercial proteinase, flavozyme.

2단계 : 원심분리 후 얻어진 상등액은 분자량 한계 3,000달톤의 한외여과 과정을 거치고 동결건조하여 도축혈액 혈장단백질 가수분해물을 제조하였다.Step 2: The supernatant obtained after centrifugation was subjected to ultrafiltration with a molecular weight limit of 3,000 Daltons and lyophilized to prepare slaughtered plasma protein hydrolysates.

3단계 : 혈장단백질 가수분해물을 인산완충용액 (sodium phosphate buffer, 20mM, pH 7.0)에 1g/L 농도로 첨가하여 제조된 가수분해물 용액에 5mM에 해당하는 FeCl2·4H2O를 첨가하여 실온에서 1시간 동안 교반하고, 원심분리한 후 상등액을 동결건조하여 철분결합 가수분해물을 제조하였다. Step 3: To the hydrolyzate prepared by adding the plasma protein hydrolyzate at a concentration of 1 g / L to sodium phosphate buffer (20 mM, pH 7.0), FeCl 2 · 4H 2 O corresponding to 5 mM was added thereto at room temperature. After stirring for 1 hour, the supernatant was lyophilized after centrifugation to prepare iron-bonded hydrolyzate.

가수분해물과 결합한 철분의 농도는 오소-페난스롤린(ortho-phenanthroline)의 발색반응을 통하여 비색정량을 실시하였다. 시료 용액의 pH를 2N acetate buffer를 이용하여 3.5로 조정한 후에 0.1% 하이드로퀴논(hydroquinone)용액을 첨가한 후 0.25% 오소-페나스롤린 첨가하여 1시간 발색시켰다. 발색된 용액은 분광광도계(spectrophotometer)를 이용하여 510nm에서 흡광도를 측정하였다. 철분의 농도는 황산 제1철 암모늄(Fe(NH4)2(SO4)2·6H2O)표준용액을 이용하여 작성한 표준곡선을 통하여 계산하였다.The concentration of iron bound to hydrolyzate was measured by colorimetric reaction of ortho-phenanthroline. The pH of the sample solution was adjusted to 3.5 using 2N acetate buffer, and then 0.1% hydroquinone solution was added and 0.25% ortho-phenasroline was added for 1 hour. The developed solution was measured for absorbance at 510 nm using a spectrophotometer. The iron concentration was calculated using a standard curve prepared using ferrous ammonium sulfate (Fe (NH 4 ) 2 (SO 4 ) 2 · 6H 2 O) standard solution.

4단계 : 혈장단백질 가수분해물을 겔여과크로마토그라피(Sephadex G15)에 로딩(loading)하였다. 도 2는 본 발명의 일실시예에 따른 돼지혈액 혈장단백질의 가수분해물의 겔여과크로마토그램을 나타낸 것이다. 인산완충용액을 0.3ml/min의 유 속으로 흘려 분획한 결과 도 2에서 보여지는 것처럼 7개의 주요 피크로 분획되었는데 각 분획에 5mM FeCl2·4H2O를 반응시켜 원심분리 후 상등액 중 철분 함량을 측정하였다. 그 결과 가장 높은 철분 결합력을 보인 분획물은 분획 F2 이었다.Step 4: Plasma protein hydrolysates were loaded onto gel filtration chromatography (Sephadex G15). Figure 2 shows the gel filtration chromatogram of the hydrolyzate of porcine blood plasma protein according to an embodiment of the present invention. Was the result of a phosphate buffer solution flowing into the oil of 0.3ml / min fractions were also fractionated into seven major peaks, as shown in the 2 by reacting FeCl 2 · 4H 2 O in 5mM each fraction the iron content of the supernatant after centrifugation Measured. As a result, the fraction showing the highest iron binding strength was fraction F2.

상기 F2를 모아 동결건조 시킨 다음 고속액체크로마토그라피를 이용하여 정제하였다. 고속액체크로마토그라피에서의 컬럼은 아미노(-NH2) 컬럼을, 용매 A (물:아세토나이트릴(acetonitrile), 3:97, 0.1% 트리플로로아세트산(trifluoroacetic aicd, TFA))와 용매 B (물:아세토나이트릴, 70:30, 0.1% 트리플로로아세트산)를 0.5ml/min의 유속으로 10~100%까지 30분간에 걸쳐 선형구배(linear gradient)를 걸어 철분결합 펩타이드 분획을 분리하였다. 도 3은 도 2에 있어서 철분과 결합성이 높은 분획 F2를 고속액체 크로마토그라피에 다시 로딩한 크로마토그램을 나타낸 것이다. 도 3에서 보여지는 것처럼 2개의 주요 피크로 분획되었는데 각 분획에 5mM FeCl2·4H2O를 반응시켜 원심분리 후 상등액 중의 철분 함량을 측정하였다. 그 결과 가장 높은 철분 결합력을 보인 분획물은 F1 이었다.The F2 was collected, lyophilized and purified using high performance liquid chromatography. Columns in high performance liquid chromatography consisted of an amino (-NH 2) column, solvent A (water: acetonitrile, 3:97, 0.1% trifluoroacetic aicd (TFA)) and solvent B (water : Acetonitrile, 70:30, 0.1% trifluoroacetic acid) was subjected to a linear gradient over 30 minutes to 10-100% at a flow rate of 0.5 ml / min to separate the iron-binding peptide fraction. FIG. 3 shows a chromatogram in which fraction F2 having high binding properties with iron in FIG. 2 is reloaded into high-performance liquid chromatography. As shown in FIG. 3, two main peaks were fractionated, and each fraction was reacted with 5 mM FeCl 2 · 4H 2 O to measure iron content in the supernatant after centrifugation. As a result, the fraction showing the highest iron binding strength was F1.

상기 F1을 모아 동결건조 시킨 다음 이온교환크로마토그라피를 이용하여 정제하였다. 컬럼은 리소스큐(resource Q)를, 용매는 트리스 완충용액(Tris, 20 mM, pH8.0)을 사용하였으며, 1m/min의 유속으로 0.5M 소듐클로라이드(NaCl) 함유 완충용액으로 15분간에 걸쳐 선형구배를 걸어 철분결합 단일 peptide를 분리하였다. 도 4는 도 3에 있어서 철분과 결합성이 높은 분획 F1을 이온교환 크로마토그라피에 다시 로딩한 크로마토그램을 나타낸 것이다. 도 4에서 보여지는 것처럼 2개의 주요 피크로 분획되었는데 각 분획에 5mM FeCl2·4H2O를 반응시켜 원심분리 후 상등액 중의 철분 함량을 측정하였다. 그 결과 가장 높은 철분 결합력을 보인 분획물 F2를 분리하였다.The F1 was collected, lyophilized, and purified using ion exchange chromatography. The column used resource Q and the solvent Tris buffer (Tris, 20 mM, pH 8.0), and the buffer solution containing 0.5 M sodium chloride (NaCl) at a flow rate of 1 m / min over 15 minutes. A linear gradient was used to isolate iron-binding single peptides. FIG. 4 shows a chromatogram in which fraction F1 having high binding properties with iron in FIG. 3 is reloaded into ion exchange chromatography. As shown in FIG. 4, two main peaks were fractionated, and each fraction was reacted with 5 mM FeCl 2 · 4H 2 O to measure iron content in the supernatant after centrifugation. As a result, fraction F2 showing the highest iron binding strength was isolated.

결국, 돼지 도축혈액의 혈장단백질 가수분해물로부터 철분 흡수를 향상시키는 철분결합 펩타이드(peptide)의 제조의 경우, 폐기로 인하여 수질오염 등을 발생시키는 도축혈액으로부터 기능성 소재인 철분결합 펩타이드를 분리하는데, 도축혈액은 도축 즉시 혈액 응고방지 처리 후 원심분리를 거쳐 혈장과 혈구로 분리하고, 2%에서 10% 트리클로로아세트산(trichloroacetic acid)을 처리하여 침전 및 원심분리를 통하여 혈장단백질을 얻은 후 상업용 단백분해효소를 첨가하여 가수분해시킨다. 혈장단백질의 가수분해물은 분자량 한계 3,000달톤의 한외여과(ultrafiltration) 과정을 거쳐 철분과 반응시켜 철분결합 펩타이드 혼합물을 제조하고, 이것을 겔여과 크로마토그라피(gel permeation chromatography), 고속액체 크로마토그라피(high performance chromatography), 이온교환 크로마토그라피(ion exchange chromatography)를 이용하여 철분과 결합력이 높은 펩타이드를 분리한다.As a result, in the production of iron-binding peptides that enhance iron absorption from plasma protein hydrolysates of porcine slaughtered blood, the iron-binding peptide, which is a functional material, is separated from the slaughtered blood that causes water pollution due to disposal. Immediately after slaughter, the blood is treated with anticoagulant, separated into plasma and blood cells by centrifugation, and treated with 2% to 10% trichloroacetic acid to obtain plasma protein by precipitation and centrifugation. Hydrolysis is by addition. The hydrolyzate of the plasma protein is reacted with iron through an ultrafiltration process with a molecular weight limit of 3,000 Daltons to prepare an iron-binding peptide mixture, which is gel permeation chromatography and high performance chromatography. ), Peptides having high binding strength with iron are separated by ion exchange chromatography.

상기한 바와 같은 구성 및 작용은 하나의 실시예로서 본 발명의 청구범위를 제한하는 것은 아니며, 본 발명의 기술적 사상을 변경하지 아니하는 범위 내에서 다양한 변경과 수정이 가능함은 본 발명이 속하는 분야에 종사하는 자에게는 자명 한 것이다.The configuration and operation as described above are not limited to the claims of the present invention as an embodiment, and various changes and modifications are possible within the scope of not changing the technical spirit of the present invention. It is obvious to those who are engaged.

본 발명에 의하여, 가축의 도축혈장단백질의 가수분해물을 한외여과 후 미네랄 결합 가수분해물을 제조하고, 겔여과크로마토그라피, 고속액체크로마토그라피, 이온교환크로마토그라피를 이용하여 미네랄 결합 펩타이드를 제조함으로써 미네랄 흡수가 뛰어나면서도 저렴한 비용으로 제조될 수 있는 미네랄 결합 펩타이드 제조방법을 제공할 수 있다.According to the present invention, mineral-bound hydrolyzate is prepared after ultrafiltration of the hydrolyzate of slaughtered plasma protein in livestock, and mineral absorption peptide is prepared by using gel filtration chromatography, high-performance liquid chromatography, and ion-exchange chromatography. It is possible to provide a method for producing a mineral binding peptide that can be prepared at an excellent cost.

도 1은 본 발명의 일실시예에 따른 가축혈액을 이용한 미네랄 결합 펩타이드 제조방법의 순서도1 is a flow chart of the method for producing mineral-binding peptide using livestock blood according to an embodiment of the present invention

도 2는 본 발명의 일실시예에 따른 돼지혈액 혈장단백질의 가수분해물의 겔여과크로마토그램Figure 2 is a gel filtration chromatogram of the hydrolyzate of porcine blood plasma protein according to an embodiment of the present invention

도 3은 도 2에 있어서 철분과 결합성이 높은 분획 F2를 고속액체 크로마토그라피에 다시 로딩한 크로마토그램FIG. 3 is a chromatogram of reloading fraction F2 having high binding properties with iron in high-performance liquid chromatography in FIG.

도 4는 도 3에 있어서 철분과 결합성이 높은 분획 F1을 이온교환 크로마토그라피에 다시 로딩한 크로마토그램FIG. 4 is a chromatogram reloaded with ion exchange chromatography fraction F1 having high binding properties with iron in FIG.

Claims (6)

미네랄 결합 펩타이드 제조방법에 있어서,In the method for producing a mineral binding peptide, 가축혈액의 혈장단백질 가수분해물을 제조하는 단계(S100);Preparing a plasma protein hydrolyzate of livestock blood (S100); 상기 혈장단백질 가수분해물을 분자량 3,000달톤 이하로 한외여과하는 단계(S200);Ultrafiltration of the plasma protein hydrolyzate with a molecular weight of 3,000 Daltons or less (S200); 상기 한외여과된 혈장단백질 가수분해물을 미네랄과 결합시키는 단계(S300);Combining the ultrafiltered plasma protein hydrolyzate with a mineral (S300); 상기 미네랄과 결합된 혈장단백질 가수분해물을 겔여과 크로마토그라피(Sephadex G15)와 아미노(-NH2)컬럼이 장착된 고속액체 크로마토그라피와 컬럼이 리소스큐(resource Q)인 이온교환 크로마토그라피법을 차례로 이용하여 미네랄 결합 펩타이드를 분리하는 단계(S400)를 포함하여 이루어지는 것을 특징으로 하는 가축혈액을 이용한 미네랄 결합 펩타이드 제조방법Plasma protein hydrolysates combined with the minerals were subjected to high-performance liquid chromatography equipped with gel filtration chromatography (Sephadex G15) and amino (-NH2) columns and ion exchange chromatography with resource Q. Method for producing a mineral binding peptide using livestock blood, characterized in that it comprises a step of separating the mineral binding peptide (S400) by 제 1항에 있어서, The method of claim 1, 상기 가축으로는 돼지, 소, 염소, 양, 닭, 오리, 거위 중 적어도 어느 하나인 것을 특징으로 하는 가축혈액을 이용한 미네랄 결합 펩타이드 제조방법The livestock is a pig, cow, goat, sheep, chicken, duck, goose mineral binding peptides using livestock blood, characterized in that at least one of 제 1항에 있어서, The method of claim 1, 상기 미네랄로는 철분, 칼슘, 규산(실리카), 마그네슘, 게르마늄, 셀레늄 중 적어도 어느 하나인 것을 특징으로 하는 가축혈액을 이용한 미네랄 결합 펩타이드 제조방법The mineral is iron, calcium, silicic acid (silica), magnesium, germanium, selenium mineral binding peptide production method using livestock blood, characterized in that any one of 삭제delete 삭제delete 삭제delete
KR1020080065691A 2008-07-07 2008-07-07 A manufacturig method of mineral-chelated peptides KR100890918B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080065691A KR100890918B1 (en) 2008-07-07 2008-07-07 A manufacturig method of mineral-chelated peptides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080065691A KR100890918B1 (en) 2008-07-07 2008-07-07 A manufacturig method of mineral-chelated peptides

Publications (1)

Publication Number Publication Date
KR100890918B1 true KR100890918B1 (en) 2009-03-31

Family

ID=40698811

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080065691A KR100890918B1 (en) 2008-07-07 2008-07-07 A manufacturig method of mineral-chelated peptides

Country Status (1)

Country Link
KR (1) KR100890918B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101261355B1 (en) * 2010-12-21 2013-05-06 (주)바이오넬 A Method of Producing Germanium Strawberries
KR101315262B1 (en) * 2011-09-05 2013-10-07 (주)바이오넬 A Method of Producing Germanium Bean-Sprouts
KR101334586B1 (en) 2011-09-26 2013-11-28 주식회사 그린드림 Method for Growing Sweet Potato Comprising Organic Germanium
CN104231038A (en) * 2014-08-25 2014-12-24 华中农业大学 Extraction and purification method of decolorized cardamine hupingshanesis selenium-containing proteins
KR20210145915A (en) * 2020-05-26 2021-12-03 유석원 Cultivating method for crops with high mineral contents
KR20220158142A (en) * 2021-05-20 2022-11-30 정승진 System for producing amino acids using plasma and blood cells separated from whole blood
KR102666472B1 (en) 2023-07-21 2024-05-20 주식회사 동아특수건설 Device for protecting rock bolts and ring nuts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100340095B1 (en) * 1999-03-20 2002-06-10 김길환 Process for Preparing Iron-Transferrin Extract
US20050089608A1 (en) * 2003-06-04 2005-04-28 Fouzia Nedjaoum Biological method of obtaining a food preparation with a base of haem iron, as well as the food preparation obtained by implementing the method
KR100699047B1 (en) 2005-03-23 2007-03-23 부경대학교 산학협력단 Manufacturing method of calcium binding peptide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100340095B1 (en) * 1999-03-20 2002-06-10 김길환 Process for Preparing Iron-Transferrin Extract
US20050089608A1 (en) * 2003-06-04 2005-04-28 Fouzia Nedjaoum Biological method of obtaining a food preparation with a base of haem iron, as well as the food preparation obtained by implementing the method
KR100699047B1 (en) 2005-03-23 2007-03-23 부경대학교 산학협력단 Manufacturing method of calcium binding peptide

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101261355B1 (en) * 2010-12-21 2013-05-06 (주)바이오넬 A Method of Producing Germanium Strawberries
KR101315262B1 (en) * 2011-09-05 2013-10-07 (주)바이오넬 A Method of Producing Germanium Bean-Sprouts
KR101334586B1 (en) 2011-09-26 2013-11-28 주식회사 그린드림 Method for Growing Sweet Potato Comprising Organic Germanium
CN104231038A (en) * 2014-08-25 2014-12-24 华中农业大学 Extraction and purification method of decolorized cardamine hupingshanesis selenium-containing proteins
CN104231038B (en) * 2014-08-25 2018-02-27 华中农业大学 A kind of extraction of decolouring tall bottle with spout Hairy Bittercress Selenonic protein, purification process
KR20210145915A (en) * 2020-05-26 2021-12-03 유석원 Cultivating method for crops with high mineral contents
KR102549211B1 (en) * 2020-05-26 2023-06-28 유석원 Cultivating method for crops with high mineral contents
KR20220158142A (en) * 2021-05-20 2022-11-30 정승진 System for producing amino acids using plasma and blood cells separated from whole blood
KR102479382B1 (en) * 2021-05-20 2022-12-20 정승진 System for producing amino acids using plasma and blood cells separated from whole blood
KR102666472B1 (en) 2023-07-21 2024-05-20 주식회사 동아특수건설 Device for protecting rock bolts and ring nuts

Similar Documents

Publication Publication Date Title
Lee et al. Purification of an iron-binding nona-peptide from hydrolysates of porcine blood plasma protein
KR100890918B1 (en) A manufacturig method of mineral-chelated peptides
Bah et al. Slaughterhouse blood: an emerging source of bioactive compounds
Cunsolo et al. Proteins and bioactive peptides from donkey milk: The molecular basis for its reduced allergenic properties
Wu et al. Enzymatic preparation and characterization of iron-chelating peptides from anchovy (Engraulis japonicus) muscle protein
Kamau et al. Alpha‐lactalbumin: Its production technologies and bioactive peptides
Zambrowicz et al. Manufacturing of peptides exhibiting biological activity
Chen et al. Isolation of a calcium-binding peptide from tilapia scale protein hydrolysate and its calcium bioavailability in rats
FI67656B (en) FOERFARANDE FOER BEHANDLING AV MONOVALENTA KATJONER AV FOSFOKASEINATER OCH DERAS DERIVAT
Huang et al. Evaluation of iron-binding activity of collagen peptides prepared from the scales of four cultivated fishes in Taiwan
Nichols et al. Human lactoferrin stimulates thymidine incorporation into DNA of rat crypt cells
Jiang et al. Preparation of novel functional oligophosphopeptides from hen egg yolk phosvitin
Su et al. Comparative analysis of human milk and infant formula derived peptides following in vitro digestion
JP2004521650A (en) Method for extracting casein fraction from milk and caseinate, and method for producing novel product
Zhao et al. Isolation and identification of a whey protein-sourced calcium-binding tripeptide Tyr-Asp-Thr
Lafarga et al. Bioactive hydrolysates from bovine blood globulins: Generation, characterisation, and in silico prediction of toxicity and allergenicity
KR100509681B1 (en) Food composition for stimulating growth comprising fraction isolated from mammalian colostrum or milk whey
Mora et al. Possible uses of processed slaughter byproducts
Zhang et al. Iron binding capacity of dephytinised soy protein isolate hydrolysate as influenced by the degree of hydrolysis and enzyme type
Jiang et al. Purification of an iron‐binding peptide from scad (Decapterus maruadsi) processing by‐products and its effects on iron absorption by Caco‐2 cells
Jaiswal et al. Iron (II)-chelating activity of buffalo α S-casein hydrolysed by corolase PP, alcalase and flavourzyme
Alais et al. Milk proteins: biochemical and biological aspects
JP6140162B2 (en) Powdered milk composition for bone strengthening and process
Lu et al. Research progress of metal chelating peptides
Permadi et al. The potential of hydrolysate from rabbit meat protein as an angiotensin converting enzyme inhibitor

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130322

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140422

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170317

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180323

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190429

Year of fee payment: 11