KR100890910B1 - A doped hole transporting layer and an organic electroluminescent device employing the same - Google Patents

A doped hole transporting layer and an organic electroluminescent device employing the same Download PDF

Info

Publication number
KR100890910B1
KR100890910B1 KR1020070138861A KR20070138861A KR100890910B1 KR 100890910 B1 KR100890910 B1 KR 100890910B1 KR 1020070138861 A KR1020070138861 A KR 1020070138861A KR 20070138861 A KR20070138861 A KR 20070138861A KR 100890910 B1 KR100890910 B1 KR 100890910B1
Authority
KR
South Korea
Prior art keywords
acid
hole transport
dopant
transport layer
electrode
Prior art date
Application number
KR1020070138861A
Other languages
Korean (ko)
Inventor
우성호
김영규
조귀정
최병대
Original Assignee
재단법인대구경북과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인대구경북과학기술원 filed Critical 재단법인대구경북과학기술원
Priority to KR1020070138861A priority Critical patent/KR100890910B1/en
Application granted granted Critical
Publication of KR100890910B1 publication Critical patent/KR100890910B1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A doped hole transport layer and an organic electroluminescent device using the same are provided to improve a P-type doping property by forming a permanent dipole by an ion bond between matrix material and dopant material. An organic electroluminescent device includes a substrate, a first electrode, a second electrode, and an organic layer. The first electrode is formed on the substrate. The second electrode is faced with the first electrode. The organic layer is positioned between the first electrode and the second electrode, and includes a light emitting layer and a hole transport layer. The hole transport layer is formed by matrix material and a vacuum deposition of dopant. The matrix material is selected in groups composed of a-NPB, m-MTDATA, MeO-TPD, 2-TNATA, and ZnPc. The dopant forms a permanent dipole by performing an ion bond together with the matrix material, and is made of sulfonic acid compound.

Description

도핑된 정공 전달층 및 이를 이용한 유기전계 발광소자{A doped hole transporting layer and an organic electroluminescent device employing the same}Doped hole transporting layer and an organic electroluminescent device employing the same

본 발명은 도펀트가 첨가된 정공 전달층을 갖는 유기전계 발광소자에 관한 것으로, 더욱 상세히는 정공 전달층의 매트릭스와 도펀트 사이의 이온 결합에 의한 영구쌍극자를 형성으로 향상된 p형 도핑 특성을 가지며 장시간 구동시 안정한 특성을 나타내는 유기전계 발광소자에 관한 것이다.The present invention relates to an organic light emitting device having a hole transport layer to which a dopant is added. More particularly, the present invention relates to an organic light emitting device having a p-type doping characteristic by forming a permanent dipole by ionic bonding between a matrix and a dopant of the hole transport layer and driving for a long time. The present invention relates to an organic light emitting display device having stable characteristics.

유기전계 발광소자는 1987년 Tang 등에 의해 구동 전압 및 휘도 등의 특성이 실용화 수준에 이르는 결과가 발표된 이후 대면적 디스플레이로 발전시키기 위한 많은 연구가 이루어지고 있다(C. W. Tang 등, Appl. Phys. Lett., 51(12), 913(1987)).Since the results of the characteristics such as driving voltage and brightness reached practical level by Tang et al. In 1987, many researches have been conducted to develop an organic light emitting device into a large-area display (CW Tang et al., Appl. Phys. Lett. , 51 (12), 913 (1987).

유기전계 발광소자의 기본적인 구조는 기판 위에 양극과 이에 대향된 음극 사이에 유기물질로 이루어진 얇은 층(통상적으로 1㎚ 내지 1㎛)들의 연속으로 구성된 유기층을 포함하고 있으며 이는 정공 주입층, 정공 전달층, 발광층, 전자 전달층, 전자 주입층 등이 적층된 구조이다.The basic structure of the organic light emitting device includes an organic layer composed of a series of thin layers (typically 1 nm to 1 μm) made of organic materials between an anode and an opposite cathode on a substrate, which includes a hole injection layer and a hole transport layer. , A light emitting layer, an electron transporting layer, an electron injection layer and the like are laminated.

유기층 내의 유기물질이 저분자계 물질의 경우 진공 상태에서 진공 증착 등으로 형성되며 고분자계 물질의 경우 스핀코팅이나 잉크젯법으로 형성된다.In the case of the low molecular weight material, the organic material in the organic layer is formed by vacuum deposition in a vacuum state, and the high molecular weight material is formed by spin coating or inkjet method.

유기전계 발광소자의 발광원리는 상기 양극과 음극 사이에 전압을 인가하면, 애노드로부터 정공 주입층의 가전자대로 주입된 정공이 정공 전달층을 통과한 후 발광층으로 진행하고, 동시에 전자는 음극에서 전자 주입층으로 주입하여 전자 전달층을 통과한 후에 발광층의 전도대로 이동한다. 따라서 발광층에서 정공과 전자가 재결합하여 여기자(exciton)를 형성하고 이러한 여기자가 여기상태에서 기저상태로 전이하면서 빛을 방출하게 되는 것이다.The emission principle of the organic light emitting device is that when a voltage is applied between the anode and the cathode, holes injected from the anode into the valence of the hole injection layer pass through the hole transport layer and proceed to the emission layer, and at the same time, the electrons After the injection into the injection layer passes through the electron transport layer to move to the conduction band of the light emitting layer. Therefore, holes and electrons recombine in the emission layer to form excitons, and these excitons emit light as they transition from the excited state to the ground state.

이 중 유기전계 발광소자 내의 정공 전달층은 정공을 발광층으로 원활히 이동시키는 역할과 발광층에 들어온 전자가 정공 전달층으로 이동하는 것을 방지하는 역할을 한다.The hole transport layer in the organic light emitting device serves to smoothly move the hole to the light emitting layer and to prevent the electrons entering the light emitting layer from moving to the hole transport layer.

정공 전달층을 위한 물질로는 다음에 열거된 a-NPB, m-MTDATA, MeO-TPD, 2-TNATA, ZnPc 등이 알려져 있으며, 이에 대해서는 리뷰 문헌에 자세히 나타나 있다(Chemical reviews, 2007, vol.107, 953-1010):As a material for the hole transport layer, a-NPB, m-MTDATA, MeO-TPD, 2-TNATA, ZnPc, etc., listed below are known, which are described in detail in the chemical review (2007, vol. 107, 953-1010):

a-NPB (N,N'-di(naphthalen-2-yl)-N,N'-diphenyl-benzidine,

Figure 112007093886836-pat00001
),a-NPB ( N , N ' -di (naphthalen-2-yl) -N , N' -diphenyl-benzidine,
Figure 112007093886836-pat00001
),

m-MTDATA (4,4',4"-tris(3-methylphenylphenylamino) triphenylamine,

Figure 112007093886836-pat00002
),m-MTDATA (4,4 ', 4 "-tris (3-methylphenylphenylamino) triphenylamine,
Figure 112007093886836-pat00002
),

TPD (N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine TPD (N, N'-diphenyl-N, N'-bis (3-methylphenyl) -1,1'-biphenyl-4,4'-diamine

,

Figure 112007093886836-pat00003
),,
Figure 112007093886836-pat00003
),

MeO-TPD (N,N,N',N'-tetrakis(4-methoxyphenyl)-benzidine,

Figure 112007093886836-pat00004
),MeO-TPD ( N , N , N ' , N' -tetrakis (4-methoxyphenyl) -benzidine,
Figure 112007093886836-pat00004
),

2-TNATA (4,4',4"-tris(2-naphthylphenylamino) triphenylamine,

Figure 112007093886836-pat00005
),2-TNATA (4,4 ', 4 "-tris (2-naphthylphenylamino) triphenylamine,
Figure 112007093886836-pat00005
),

ZnPc (zinc phthalocyanine,

Figure 112007093886836-pat00006
).ZnPc (zinc phthalocyanine,
Figure 112007093886836-pat00006
).

또한 정공주입을 더욱 용이하게 하기 위해, Zhou 등에 의하면 p형 도핑된 비결정질 정공 전달층을 이용하는 유기전계 발광소자(OLED)를 개시하고 있다(Zhou 등, Appl. Phys. Lett., 78, 4, 410-412).To further facilitate hole injection, Zhou et al. Disclose an organic light emitting device (OLED) using a p-type doped amorphous hole transport layer (Zhou et al., Appl. Phys. Lett., 78, 4, 410). -412).

이에 따르면 억셉터인 F4-TCNQ(테트라플루오로-테트라시아노-퀴노디메탄)과의 동시 증착에 의해 p형 도핑된, 다결정질 프탈로시아닌 및 비결정질 4,4',4'-트리스-(N,N-디페닐아민)트리페닐아민(TDATA)의 정공 전달층이 비도핑 매트릭스 물질의 전도도보다 큰 전도도를 산출한다는 것이 확인되었다.According to this, polycrystalline phthalocyanine and amorphous 4,4 ', 4'-tris- (N, It has been found that the hole transport layer of N-diphenylamine) triphenylamine (TDATA) yields a conductivity greater than that of the undoped matrix material.

상기 문헌에서 Zhou 등은 매트릭스 물질의 p형 도핑이 더 낮은 전압을 인가하여도 더 큰 전류 밀도를 유도할 뿐만 아니라 더 낮은 구동전압에서도 최대 전계 발광 효율을 유도한다는 것을 제시한다. 결과적으로, p형 도핑된 정공 전달층을 포 함하는 유기전계 발광소자는 제어된 도핑으로 인해 매우 낮은 작동 전압과 향상된 발광 효율을 나타낸다.Zhou et al. Suggest that p-type doping of matrix materials not only leads to higher current densities even at lower voltages, but also to maximum electroluminescence efficiency at lower drive voltages. As a result, the organic light emitting device including the p-type doped hole transport layer exhibits very low operating voltage and improved luminous efficiency due to controlled doping.

이하에 종래 제안된 정공 전달층에 도핑되는 p형 도펀트 물질(억셉터)들을 열거하였다:Listed below are p-type dopant materials (acceptors) that are doped into the proposed hole transport layer:

F4-TCNQ (2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane,

Figure 112007093886836-pat00007
),F4-TCNQ (2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane,
Figure 112007093886836-pat00007
),

CN4-TTAQ (1,4,5,8-tetrahydro-1,4,5,8-tetrathia-2,3,6,7-tetracyanoanthraquinone,

Figure 112007093886836-pat00008
),CN4-TTAQ (1,4,5,8-tetrahydro-1,4,5,8-tetrathia-2,3,6,7-tetracyanoanthraquinone,
Figure 112007093886836-pat00008
),

F4-DCNQI (N,N'-dicyano-2,3,5,6-tetrafluoro-1,4-quinonediimine,

Figure 112007093886836-pat00009
).F4-DCNQI (N, N'-dicyano-2,3,5,6-tetrafluoro-1,4-quinonediimine,
Figure 112007093886836-pat00009
).

상기 열거된 도펀트 물질에서 알 수 있듯이 거의 대부분 전자친화도가 큰 원자(F4-TCNQ의 경우 불소)를 자체에 포함한 물질로서, 정공 전달 매트릭스 물질과 동시 증착하여 박막을 형성할 경우, 박막 내에서 매트릭스 물질로부터 전자를 끌어당기는 유도쌍극자를 형성하여 p형 도펀트로 작용하고 전도도를 향상시키게 된다.As can be seen from the dopant materials listed above, most of them contain atoms with high electron affinity (fluorine in the case of F4-TCNQ), and when they are co-deposited with a hole transport matrix material to form a thin film, the matrix within the thin film It forms an induction dipole that attracts electrons from the material, acting as a p-type dopant and improving conductivity.

하지만, 매트릭스 분자와의 결합력이 약한 반데르발스(van der Waals)힘 또 는 수소결합으로부터 유래한 것이므로 장시간 소자 구동시 도핑된 박막 내에서의 도펀트 농도구배 변화 등에 의해 특성이 변화하는 문제점이 발생할 수 있다.However, due to the weak van der Waals force or the hydrogen bond, the characteristics of the dopant concentration gradient in the doped thin film may change due to the weak bond force with the matrix molecule. have.

이에 대한 보완으로서 대한민국특허 제622179호는 퀴논다이이민 유도체등과 같은 휘발성이 낮은 물질을 도핑하는 방법을 제안하고 있다.In addition, Korean Patent No. 622179 proposes a method of doping a low volatility material such as a quinone diimine derivative.

본 발명이 해결하고자 하는 과제는 기존의 유도쌍극자가 p형 도펀트로 작용할 경우의 상기의 문제점을 개선하기 위한 것으로서 장시간 구동시에도 소자 특성이 안정하고, 이온성 영구쌍극자를 형성함으로서 향상된 p형 도핑 특성을 제공하는 것을 목적으로 한다.The problem to be solved by the present invention is to improve the above problems when the conventional induction dipole acts as a p-type dopant, and the device characteristics are stable even when driving for a long time, and the p-type doping characteristic is improved by forming an ionic permanent dipole. The purpose is to provide.

상기 과제를 해결하기 위한 수단으로 본 발명은,The present invention as a means for solving the above problems,

기판; 상기 기판 위에 형성된 제1전극; 상기 제1전극과 대향되어 배치된 제2전극; 및 상기 제1전극과 제2전극 사이에 개재되며, 적어도 발광층 및 정공 전달층을 포함하는 유기층;을 포함하는 유기전계 발광소자로서, 상기 정공 전달층이 그 매트릭스와 이온결합에 의한 영구쌍극자 형성이 가능한 도펀트를 포함하는 유기전계 발광소자를 제공한다.Board; A first electrode formed on the substrate; A second electrode disposed to face the first electrode; And an organic layer interposed between the first electrode and the second electrode, the organic layer including at least a light emitting layer and a hole transporting layer, wherein the hole transporting layer is formed of a permanent dipole by ion bonding with the matrix. Provided are an organic light emitting device including a dopant.

본 발명에 따른 정공 전달층을 포함하는 유기전계 발광소자는 매트릭스 물질과 도펀트 물질 사이에 이온결합을 가져 영구쌍극자를 형성하므로 향상된 p형 도핑 특성을 나타내며, 장시간 구동시 안정한 특성을 나타낸다. 또한 정공 전달층 형성시 기존의 방법에 의하면 용액 상태화한 고분자나 유기염(salt)을 만들어 스핀코팅 등의 방법으로 형성하므로 재료 준비의 어려움 및 공정상에서 용액공정과 진공공정을 반복하는 어려움이 있었으나, 본 발명에서는 동일한 진공증착에 의해 형성할 수 있으므로 제조공정상의 큰 제약을 받지 않고 대량 생산 적용이 가능하다. The organic light emitting device including the hole transport layer according to the present invention has an ionic bond between the matrix material and the dopant material to form a permanent dipole, thus exhibiting improved p-type doping characteristics and stable properties for a long time driving. In addition, according to the conventional method for forming the hole transport layer, it is difficult to prepare the material and to repeat the solution process and the vacuum process in the process because it is formed by spin coating or the like by forming a solution-state polymer or organic salt. In the present invention, since it can be formed by the same vacuum deposition, it is possible to apply to mass production without being subject to great restrictions on the manufacturing process.

이하, 본 발명에 따른 유기전계 발광소자를 상세하게 설명하고자 한다.Hereinafter, the organic light emitting device according to the present invention will be described in detail.

본 발명의 유기전계 발광소자는 낮은 구동 전압으로 작동될 수 있고 높은 발광 효율 및 장시간 안정한 소자특성을 갖도록 도핑된 정공 전달층을 기초로 하는 유기전계 발광소자를 제공하는 것이다. 상기 물질은 유기반도체 매트릭스(matrix)의 전기적 특성을 변화시키기 위해 유기 도펀트로서 매트릭스 내에서 양이온 형태로 존재하여, 양전하 또는 정공의 수송에 적합한 전기 전도성 유기층을 형성하거나 또는 그 일부가 될 수 있다.The organic EL device of the present invention is to provide an organic EL device based on a hole transport layer which can be operated at a low driving voltage and has a high luminous efficiency and a long time stable device characteristics. The material may be present in the form of a cation in the matrix as an organic dopant to change the electrical properties of the organic semiconductor matrix to form or be part of an electrically conductive organic layer suitable for the transport of positive charges or holes.

본 발명에 따른 유기전계 발광소자의 매트릭스 물질로는 a-NPB, m-MTDATA, TPD, MeO-TPD, 2-TNATA, ZnPc 등과 같은 일반적으로 알려진 정공 전달 물질을 사용하며, 또한 반도체특성을 갖는 홀 전도성 물질과 같은 적합한 다른 유기 물질도 사용될 수 있다.As the matrix material of the organic light emitting device according to the present invention, a hole transporting material such as a-NPB, m-MTDATA, TPD, MeO-TPD, 2-TNATA, ZnPc, or the like is used. Other suitable organic materials, such as conductive materials, may also be used.

정공 전달층에 도핑되는 도펀트 물질들은 아래에 열거된 것과 같은 술폰산 화합물을 포함한다:Dopant materials doped in the hole transport layer include sulfonic acid compounds such as those listed below:

CSA (10-camphorsulfonic acid,

Figure 112007093886836-pat00010
), CSA (10-camphorsulfonic acid,
Figure 112007093886836-pat00010
),

AMPSA (2-acrylamido-2-methyl-1-propanesulfonic acid,

Figure 112007093886836-pat00011
), AMPSA (2-acrylamido-2-methyl-1-propanesulfonic acid,
Figure 112007093886836-pat00011
),

BSA (benzenesulfonic acid,

Figure 112007093886836-pat00012
)BSA (benzenesulfonic acid,
Figure 112007093886836-pat00012
)

PTSA (p-toluenesulfonic acid,

Figure 112007093886836-pat00013
)PTSA (p-toluenesulfonic acid,
Figure 112007093886836-pat00013
)

SSA (5-sulfosalicylic acid,

Figure 112007093886836-pat00014
)SSA (5-sulfosalicylic acid,
Figure 112007093886836-pat00014
)

NSA (naphthalenesulfonic acid,

Figure 112007093886836-pat00015
), NSA (naphthalenesulfonic acid,
Figure 112007093886836-pat00015
),

DBSA (dodecylbenzenesulfonic acid,

Figure 112007093886836-pat00016
).DBSA (dodecylbenzenesulfonic acid,
Figure 112007093886836-pat00016
).

상기 도펀트 물질들은 매트릭스 물질과의 동시 증착시 산화환원 반응에 의해 증착 박막 내에서 이온성 결합을 띤 형태로 존재할 수 있다.The dopant materials may be present in ionic bonds in the deposited thin film by a redox reaction upon co-deposition with a matrix material.

예를 들어 CSA (10-camphorsulphonic acid)를 도펀트로 사용한 경우의 반응은 다음과 같다.For example, the reaction using 10-camphorsulphonic acid (CSA) as a dopant is as follows.

Figure 112007093886836-pat00017
Figure 112007093886836-pat00017

따라서, 기존의 유도쌍극자에 의해 p형 도펀트로 작용하는 F4-TCNQ 등과 달리 본 발명에 따라 생성된 정공 전달층의 경우 매트릭스 물질과 도펀트 물질 사이 의 이온결합 형태로 영구쌍극자 형태로 존재함으로써 향상된 p형 도펀트 특성을 나타내며 안정한 소자특성을 나타낸다.Therefore, unlike the conventional F4-TCNQ which acts as a p-type dopant by an induction dipole, in the case of the hole transport layer produced according to the present invention, the p-type is improved by being present in the form of a permanent dipole in the form of an ionic bond between the matrix material and the dopant material. It shows dopant properties and stable device properties.

상기와 같은 방식으로 정공 전달층을 형성할 경우, 도펀트 함량이 증가함에 따라 흡광도 및 전도도가 변화하므로, 도핑은 도펀트 대 매트릭스의 몰 비 또는 부피 비로 1:1 내지 1:100000, 바람직하게는 1:5 내지 1:1000 이내에서 형성하는 것이 바람직하며, 상기 비율보다 도펀트 함량이 낮으면 정공전달층의 도핑효과가 나타나지 않고, 상기비율보다 높으면 흡광도 증가에 의한 발광 효율 감소가 나타날 수 있다.When the hole transport layer is formed in the above manner, since the absorbance and conductivity change as the dopant content is increased, the doping is 1: 1 to 1: 100000, preferably 1: in the molar ratio or volume ratio of the dopant to the matrix. It is preferable to form within 5 to 1: 1000, and when the dopant content is lower than the ratio, the doping effect of the hole transport layer does not appear, and when the ratio is higher than the ratio, the emission efficiency may be decreased by the increase in absorbance.

또한 상기 정공 전달층의 두께는 특별히 제한되는 것은 아니고, 형성 방법에 따라서도 다르지만 통상적인 유기전계발광소자에서 사용하는 20 내지 100 nm인 것이 바람직하다.In addition, the thickness of the hole transport layer is not particularly limited, and depending on the formation method, it is preferably 20 to 100 nm used in a conventional organic electroluminescent device.

발광층에는 통상적인 형광 및 인광 유기발광물질이 사용될 수 있으며, 정공 전달층의 성능 향상에 의해 정공의 이동속도가 증가하여 발광층 영역을 넘어갈 수 있으므로 이를 막기 위해 발광층과 전자 전달층 사이에 정공 차단층을 더 형성할 수도 있다.Conventional fluorescent and phosphorescent organic light emitting materials may be used for the light emitting layer, and the hole blocking layer may be interposed between the light emitting layer and the electron transporting layer in order to prevent this since the movement speed of the holes may increase due to the performance improvement of the hole transporting layer. It may form further.

본 발명에 따른 유기전계 발광소자는 핀(pin) 구조 또는 인버트(invert) 구조, 톱(top) 방출, 바텀(bottom) 방출 구조에 적용될 수 있으나 이에 한정되는 것을 아니며, 또한 적용할 수 있는 기판도 유리 기판뿐만 아니라 플렉시블 기판에도 그대로 적용될 수 있다.The organic light emitting device according to the present invention may be applied to a pin structure or an invert structure, a top emission, a bottom emission structure, but is not limited thereto. It can be applied to a flexible substrate as it is as well as a glass substrate.

이상과 같이 본 발명은 비록 한정된 실시예 및 물질의 종류에 의해 설명되었 으나, 본 발명은 이에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.As described above, although the present invention has been described by limited examples and kinds of materials, the present invention is not limited thereto, and various modifications and variations may be made by those skilled in the art to which the present invention pertains. It is possible. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be determined not only by the claims below but also by the equivalents of the claims.

Claims (7)

기판을 제공하는 단계; 및Providing a substrate; And 상기 기판 상에 정공 전달층을 형성하는 단계를 포함하는 유기전계 발광소자의 제조방법으로서,A method of manufacturing an organic light emitting device comprising the step of forming a hole transport layer on the substrate, 상기 정공 전달층이 a-NPB, m-MTDATA, MeO-TPD, 2-TNATA 및 ZnPc로 이루어진 군 중에서 선택되는 하나 이상의 매트릭스 물질과, 상기 매트릭스 물질과 이온결합에 의한 영구쌍극자 형성이 가능한 도펀트를 동시 진공증착하여 형성되는 유기전계 발광소자의 제조방법.The hole transport layer simultaneously comprises at least one matrix material selected from the group consisting of a-NPB, m-MTDATA, MeO-TPD, 2-TNATA, and ZnPc, and a dopant capable of forming permanent dipoles by ion bonding with the matrix material. A method of manufacturing an organic electroluminescent device formed by vacuum deposition. 제1항에 있어서, 상기 도펀트는 술폰산 화합물인 것을 특징으로 하는 유기전계 발광소자의 제조방법.The method of claim 1, wherein the dopant is a sulfonic acid compound. 제2항에 있어서, 상기 술폰산 화합물은 10-캠퍼술폰산(CSA, 10-camphorsulfonic acid), 2-아크릴아미도-2메틸-1-프로판술폰산(AMPSA, 2-acrylamido-2-methyl-1-propanesulfonic acid), 벤젠술폰산(BSA, benzenesulfonic acid), p-톨루엔술폰산(PTSA, p-toluenesulfonic acid), 5-술포살리실산(SSA, 5-sulfosalicylic acid), 나프탈렌술폰산(NSA, naphthalenesulfonic acid), 도데실벤젠술폰산(DBSA, dodecylbenzenesulfonic acid) 및 이들의 유도체로 이루어진 군 중에서 선택되는 하나 이상인 것을 특징으로 하는 유기전계 발광소자의 제조방법.The method of claim 2, wherein the sulfonic acid compound is 10-camphorsulfonic acid (CSA), 2-acrylamido-2methyl-1-propanesulfonic acid (AMPSA, 2-acrylamido-2-methyl-1-propanesulfonic acid), benzenesulfonic acid (BSA), p-toluenesulfonic acid (PTSA, p-toluenesulfonic acid), 5-sulfosalicylic acid (SSA), naphthalenesulfonic acid (NSA, naphthalenesulfonic acid), dodecylbenzene Method for producing an organic electroluminescent device, characterized in that at least one selected from the group consisting of sulfonic acid (DBSA, dodecylbenzenesulfonic acid) and derivatives thereof. 제1항에 있어서, 상기 정공 전달층의 두께는 20 내지 100 nm인 것을 특징으로 하는 유기전계 발광소자의 제조방법.The method of claim 1, wherein the hole transport layer has a thickness of 20 to 100 nm. 제1항에 있어서, 상기 도펀트 대 상기 매트릭스 물질의 몰 비가 1:1 내지 1:100000인 것을 특징으로 하는 유기전계 발광소자의 제조방법.The method of claim 1, wherein the molar ratio of the dopant to the matrix material is 1: 1 to 1: 100000. 삭제delete 삭제delete
KR1020070138861A 2007-12-27 2007-12-27 A doped hole transporting layer and an organic electroluminescent device employing the same KR100890910B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070138861A KR100890910B1 (en) 2007-12-27 2007-12-27 A doped hole transporting layer and an organic electroluminescent device employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070138861A KR100890910B1 (en) 2007-12-27 2007-12-27 A doped hole transporting layer and an organic electroluminescent device employing the same

Publications (1)

Publication Number Publication Date
KR100890910B1 true KR100890910B1 (en) 2009-04-02

Family

ID=40757082

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070138861A KR100890910B1 (en) 2007-12-27 2007-12-27 A doped hole transporting layer and an organic electroluminescent device employing the same

Country Status (1)

Country Link
KR (1) KR100890910B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243570A (en) * 1999-02-23 2000-09-08 Junji Kido Electroluminescent element
KR20050022332A (en) * 2003-08-29 2005-03-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Electroluminescent device and light-emitting device including the same
JP2007207591A (en) * 2006-02-02 2007-08-16 Seiko Epson Corp Method of manufacturing light-emitting device
KR20070117200A (en) * 2006-06-07 2007-12-12 삼성에스디아이 주식회사 Organic light emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243570A (en) * 1999-02-23 2000-09-08 Junji Kido Electroluminescent element
KR20050022332A (en) * 2003-08-29 2005-03-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Electroluminescent device and light-emitting device including the same
JP2007207591A (en) * 2006-02-02 2007-08-16 Seiko Epson Corp Method of manufacturing light-emitting device
KR20070117200A (en) * 2006-06-07 2007-12-12 삼성에스디아이 주식회사 Organic light emitting device

Similar Documents

Publication Publication Date Title
US8686403B2 (en) Organic luminescent device including a first electrode, two or more organic layers and a second electrode and a production method for the same
US8586968B2 (en) Organic light emitting diode having high efficiency and process for fabricating the same
KR101030158B1 (en) Organic electroluminescent element
US8120242B2 (en) Transistor and process of producing the same, light-emitting device, and display
KR101362273B1 (en) Organic component
TWI485899B (en) Organic electroluminescence element
US8040044B2 (en) Organic light emitting device and method for manufacturing the same
US8178870B2 (en) Organic electroluminescence element
CN110492007B (en) Acridine compound and application thereof in organic electroluminescent device
KR101394868B1 (en) Current-amplifying transistor device and current-amplifying, light-emitting transistor device
US20090015150A1 (en) Organic light emitting device and method for manufacturing the same
JP2011146598A (en) Organic electroluminescent light-emitting device
US20130168645A1 (en) Green organic light-emitting diode, and flat panel display device including the same
TWI667242B (en) Organic electroluminescent transistor
KR100864140B1 (en) Organic light emitting diode using halogenated fullerene derivatives
KR101999709B1 (en) Organic light emitting device
KR100890910B1 (en) A doped hole transporting layer and an organic electroluminescent device employing the same
KR20210016971A (en) Organic electroluminescent device
KR102277670B1 (en) Gas Blocking Layer, Organic-Inorganic Semiconductor Device Including Gas Blocking Layer As Functional Layer, Making Method and Modulating Method For The Same
KR102206852B1 (en) Organic light emitting device
US8735879B2 (en) Organic light-emitting diode comprising at least two electroluminescent layers
KR20220169476A (en) Active OLED display
KR101626149B1 (en) Method for producting organic light emitting diode and apparatus thereof
KR20240022467A (en) sheet resistance parts
KR20230171509A (en) Compound for optoelectronic device, optoelectronic device having the same and method of synthesis thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130321

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140312

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150309

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160311

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee