KR100884817B1 - Method for producing expandable polystyrene beads - Google Patents

Method for producing expandable polystyrene beads Download PDF

Info

Publication number
KR100884817B1
KR100884817B1 KR1020070124259A KR20070124259A KR100884817B1 KR 100884817 B1 KR100884817 B1 KR 100884817B1 KR 1020070124259 A KR1020070124259 A KR 1020070124259A KR 20070124259 A KR20070124259 A KR 20070124259A KR 100884817 B1 KR100884817 B1 KR 100884817B1
Authority
KR
South Korea
Prior art keywords
graphite
styrene
polystyrene particles
alpha
monomer
Prior art date
Application number
KR1020070124259A
Other languages
Korean (ko)
Inventor
이진희
방한배
이해리
Original Assignee
금호석유화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금호석유화학 주식회사 filed Critical 금호석유화학 주식회사
Priority to KR1020070124259A priority Critical patent/KR100884817B1/en
Application granted granted Critical
Publication of KR100884817B1 publication Critical patent/KR100884817B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

A method for producing expandable polystyrene beads is provided to reduce the thermal conductivity and to proceed nucleus polymerization for the increase of introduction graphite volume and fuse improvement by introducing graphite. A method for producing expandable polystyrene beads comprises (S1) a step for obtaining the polystyrene particles coated with graphite by suspending styrene-based resin particles in water, adding a styrene-based monomer, fat soluble initiator and graphite and performing the first nucleus polymerization; and (S2) a step for forming and dipping a resin protecting film on the graphite-coated layer by adding a styrene-based monomer, fat soluble initiator and water soluble initiator or resin melting liquid to the graphite-coated polystyrene particles, and performing the second nucleus polymerization.

Description

발포성 폴리스티렌 입자의 2단계 제조방법{Method for Producing Expandable Polystyrene Beads}Method for Producing Expandable Polystyrene Beads {Method for Producing Expandable Polystyrene Beads}

본 발명은 흑연이 도입된 발포성 폴리스티렌 입자의 제조방법에 관한 것으로, 보다 상세하게는 흑연 도입량 증대 및 융착 개선을 위해 핵중합을 단계적으로 진행하는 2단계로 구성된 제조방법에 관한 것이다. The present invention relates to a method for producing expandable polystyrene particles in which graphite is introduced, and more particularly, to a manufacturing method consisting of two stages in which nuclear polymerization is carried out stepwise to increase graphite introduction amount and improve fusion.

폴리스티렌의 일반적인 제조방법으로, 유화중합법, 현탁중합법, 분산중합법에 의한 제조방법이 널리 공지되어 있다. 일본특허공고공보 소 46-15112 호, 일본특허공게공보 평 5-317688 호, 미국특허공보 5,559,202 호, 미국특허공보 2,652,392 호, 영국특허 1,188,252 호, 대한민국 공개특허공보 10-1999-0024927 호에는 현탁중합법에 의한 발포성 폴리스티렌 입자의 제조방법이 개시되어 있다. 현탁중합법은 크게 현탁중합과 함께 발포제를 첨가하는 1단법 공정과 중합에서 얻는 폴리스티렌 입자를 선별하여 필요한 입자만 다시 반응기에 투입한 후 현탁시켜 고온에서 발포제를 함침시키는 2단법 공정으로 구분할 수 있다. 또한 소립자를 이용하여 목적으로 하는 입경까지 스티렌 단량체를 연첨하여 성장시키는 핵중합 기술이 알려져 있다. As a general method for producing polystyrene, a production method by emulsion polymerization, suspension polymerization, and dispersion polymerization is widely known. Japanese Patent Publication No. 46-15112, Japanese Patent Publication No. 5-317688, US Patent Publication 5,559,202, US Patent Publication 2,652,392, UK Patent 1,188,252, and Korean Patent Publication No. 10-1999-0024927 are in suspension. A method for producing expandable polystyrene particles by law is disclosed. The suspension polymerization method can be largely classified into a one-stage process of adding a blowing agent together with suspension polymerization and a two-stage process of selecting polystyrene particles obtained in polymerization, injecting only necessary particles into the reactor, and then suspending them to impregnate the foaming agent at high temperature. In addition, nuclear polymerization techniques are known in which small particles are used to grow styrene monomers up to a desired particle size.

흑연이 도입된 발포성 폴리스티렌 입자의 제조방법으로, 대한민국 특허 제 10-0599847 호에는 중합이 완료된 폴리스티렌 입자를 흑연과 함께 물에 현탁하고 고온에서 함침시킴으로써, 흑연이 폴리스티렌 입자의 표면에 균일하게 코팅된 발포성 폴리스티렌 입자를 제조하는 기술이 게시되어 있다. 그러나, 이와 같은 방법으로 제조된, 흑연이 도입된 발포성 폴리스티렌은 일반적인 발포성 폴리스티렌보다 일정부분 열전도율을 낮추는 효과가 있으나, 흑연 도입량 증대에 한계가 있고, 추가 열전도율 개선에 어려움이 있다. As a method for preparing expanded polystyrene particles into which graphite is introduced, Korean Patent No. 10-0599847 discloses foamability in which graphite is uniformly coated on the surface of polystyrene particles by suspending polymerized polystyrene particles in water together with graphite and impregnated at high temperature. Techniques for producing polystyrene particles have been published. However, the expanded polystyrene with graphite introduced in this manner has an effect of lowering the thermal conductivity in part than the general expanded polystyrene, but there is a limit in increasing the amount of graphite introduced, and it is difficult to further improve the thermal conductivity.

따라서, 본 발명의 목적은 열전도율을 감소시키고, 열전도율의 경시성을 보완할 수 있는 흑연이 도입된 발포성 폴리스틸렌 입자의 신규 제조 방법을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a novel method for producing expandable polystyrene particles in which graphite is introduced, which can reduce the thermal conductivity and compensate for the chronology of the thermal conductivity.

본 발명의 다른 목적은 폴리스티렌 입자에 흑연 도입량을 증대하여 더욱 열전도율을 감소시킬 수 있는 흑연이 도입된 발포성 폴리스티렌 입자의 신규 제조 방법을 제공하는 것이다It is another object of the present invention to provide a novel method for producing expandable polystyrene particles having graphite introduced therein which can increase the amount of graphite introduced into the polystyrene particles to further reduce the thermal conductivity.

본 발명의 또 다른 목적은 흑연이 코팅된 폴리스티렌 입자의 흑연 코팅층의 표면 개질을 통하여 융착 특성을 개선한 흑연이 도입된 발포성 폴리스티렌 입자의 신규 제조 방법을 제공하는 것이다.It is still another object of the present invention to provide a novel method for preparing expanded polystyrene particles into which graphite is introduced, which has improved fusion characteristics through surface modification of the graphite coated layer of graphite coated polystyrene particles.

본 발명에서는 상기 선행 기술인 중합이 완료된 폴리스티렌 입자를 흑연과 함께 물에 현탁하고 고온에서 함침하여 제조하는 흑연이 도입된 발포성 폴리스티렌 입자의 흑연 도입량 증대를 위하여, 핵중합 공정을 적용하였다. 이러한 핵중합 공정은 중합이 완료된 폴리스티렌 입자에 스티렌 단량체를 추가투입하여 폴리스티렌 입자의 점도를 낮춤으로써 흑연의 코팅량 증대를 도모할 수 있었다. 그러나, 단순히 흑연 도입량을 증대한 흑연이 코팅된 발포성 폴리스티렌 입자는 단열 성능 개선 효과는 우수하나, 흑연 과다 코팅으로 인한 가공시 흑연 탈착이 발생하고, 성형시 흑연 코팅층으로 인한 융착 저하를 초래할 수 있는데, 이를 개선하기 위해 흑연 코 팅층에 수지 보호막을 형성하는 2차 핵중합을 단계적으로 실시함으로써 단열 성능 및 융착 특성이 우수한 흑연이 도입된 발포성 폴리스티렌 입자를 제조할 수 있었다. In the present invention, in order to increase the amount of graphite introduced into the expanded polystyrene particles, which are prepared by suspending the polymerized polystyrene particles in the prior art, which is prepared by suspending water together with graphite and impregnating at high temperature, a nuclear polymerization process is applied. In this nuclear polymerization process, an additional styrene monomer is added to the polystyrene particles in which polymerization is completed, thereby lowering the viscosity of the polystyrene particles, thereby increasing the coating amount of graphite. However, the expanded polystyrene particles coated with graphite simply by increasing the amount of graphite is excellent in improving thermal insulation performance, but graphite desorption may occur during processing due to the excessive coating of graphite, and may cause a decrease in fusion due to the graphite coating layer during molding. In order to improve this, second polynuclear polymerization, in which a resin protective film is formed on the graphite coating layer, may be performed in steps to prepare expanded polystyrene particles having graphite having excellent thermal insulation performance and fusion characteristics.

이러한 방법에 의해서 얻어진 흑연이 도입된 발포성 폴리스티렌 입자는 일반적인 발포성 폴리스티렌 제품에 비해 융착 특성을 비롯한 기계적 물성은 동등 수준 이상의 품질을 유지하면서 우수한 단열 성능을 가진다.The expanded polystyrene particles incorporating graphite obtained by this method have excellent thermal insulation performance while maintaining the same or higher quality of mechanical properties, including fusion characteristics, than general expandable polystyrene products.

또한 흑연과 같은 무기물을 폴리스티렌 입자에 도입하고, 무기물 코팅층 위에 수지 보호막을 형성하는 2단계 핵중합 기술은 흑연 뿐만 아니라, 카본블랙, 무기안료, 팽창흑연 등등의 무기물과 금, 은, 구리, 알루미늄 등등의 금속 물질 도입 등 다양하게 활용될 수 있다.In addition, the two-stage nuclear polymerization technology that introduces inorganic materials such as graphite into the polystyrene particles and forms a resin protective film on the inorganic coating layer is not only graphite, but also inorganic materials such as carbon black, inorganic pigments, expanded graphite, and the like, and gold, silver, copper, aluminum, and the like. It can be used for various purposes such as introduction of metal materials.

특히, 수지 보호막을 형성하는 핵중합 기술은 발포성 폴리스티렌 입자의 표면 개질을 통하여 융착 개선 뿐만 아니라 다양한 기계적 물성을 향상시키기 위한 다양한 분야에 응용될 수 있다In particular, the nuclear polymerization technology for forming the resin protective film may be applied to various fields for improving not only fusion but also various mechanical properties through surface modification of the expandable polystyrene particles.

본 발명은 흑연을 도입하고 단열 성능 및 융착 특성이 향상된 발포성 폴리스티렌 입자의 2단계 제조방법에 관한 것이다. 스티렌계 수지 입자를 물에 현탁시켜 스티렌계 단량체, 지용성 개시제 및 흑연을 첨가하고 1차 핵중합을 실시하여 흑연이 코팅된 폴리스티렌 입자를 얻는 단계; 흑연이 코팅된 폴리스티렌 입자에 스티렌 계 단량체, 지용성 개시제 및 수용성 개시제 또는 수지 용해액을 첨가하고 2차 핵중합을 실시하는 동시에 발포제를 투입하여 흑연 코팅층에 수지 보호막을 형성 및 함침하는 단계를 통해서 이루어진다.The present invention relates to a two-step process for producing expandable polystyrene particles, which incorporates graphite and has improved thermal insulation performance and fusion characteristics. Suspending the styrene resin particles in water to add a styrene monomer, a fat soluble initiator and graphite, and performing primary nuclear polymerization to obtain graphite coated polystyrene particles; A styrene-based monomer, a fat-soluble initiator and a water-soluble initiator or a resin solution are added to the graphite-coated polystyrene particles, followed by secondary nuclear polymerization, and a blowing agent is added to form and impregnate a resin protective film in the graphite coating layer.

본 발명의 실시에 있어서, 스티렌계 수지는 스티렌; 알킬 스티렌, 일예로 에틸스티렌, 디메틸스티렌 및 파라-메틸스티렌; 알파-알킬스티렌, 일예로 알파-메틸스티렌, 알파-에틸스티렌, 알파-프로필스티렌 및 알파-부틸스티렌; 할로겐화스티렌, 일예로 클로로스티렌, 및 브로모스티렌; 및 비닐 톨루엔으로 이루어진 스티렌계 단량체의 중합체 및/또는 공중합체이며, 상기 스티렌계 단량체와 공중합 가능한 단량체, 일예로 아크릴로니트릴, 부타디엔, 알킬아크릴레이트, 일예로 메틸아크릴레이트, 알킬메타아크릴레이트, 일예로 메틸메타아크릴레이트, 이소부틸렌, 염화비닐, 이소프렌 및 이들의 혼합물과의 공중합체이다.In the practice of the present invention, the styrene-based resin is styrene; Alkyl styrenes such as ethyl styrene, dimethyl styrene and para-methyl styrene; Alpha-alkylstyrenes such as alpha-methylstyrene, alpha-ethylstyrene, alpha-propylstyrene and alpha-butylstyrene; Styrene halides, such as chlorostyrene, and bromostyrene; And polymers and / or copolymers of styrene monomers composed of vinyl toluene, monomers copolymerizable with the styrene monomers, for example acrylonitrile, butadiene, alkyl acrylates, for example methyl acrylate, alkyl methacrylates, for example Copolymers with methyl methacrylate, isobutylene, vinyl chloride, isoprene and mixtures thereof.

본 발명의 바람직한 실시에 있어서, 상기 스티렌계 수지는 폴리스티렌 수지로 중량 평균 분자량이 100,000~300,000g/mol이다.In a preferred embodiment of the present invention, the styrene resin is a polystyrene resin having a weight average molecular weight of 100,000 to 300,000 g / mol.

본 발명의 실시에 있어서, 상기 스티렌계 수지 입자를 물에 현탁시키기 위해 사용하는 분산제는 통상의 발포성 폴리스티렌 입자의 제조에 사용되는 모든 분산제를 사용하여 제조할 수 있으며, 일예로무기분산제; 트리칼슘 포스페이트, 마그네슘 피로포스페이트, 유기분산제; 폴리비닐 알코올, 메틸 셀룰로오스, 폴리 비닐 피롤리돈 등을 사용할 수 있다. 분산제는 초순수 100중량부에 대하여 0.5~1.0중량부를 사용하며, 바람직하게는 트리칼슘 포스페이트를 사용한다.In the practice of the present invention, the dispersant used to suspend the styrene resin particles in water can be prepared using all dispersants used in the production of ordinary expandable polystyrene particles, for example, an inorganic dispersant; Tricalcium phosphate, magnesium pyrophosphate, organic dispersants; Polyvinyl alcohol, methyl cellulose, polyvinyl pyrrolidone and the like can be used. The dispersant is 0.5 to 1.0 parts by weight based on 100 parts by weight of ultrapure water, preferably tricalcium phosphate.

본 발명의 실시에 있어서, 상기 스티렌계 단량체는 스티렌, 스티렌; 알킬 스 티렌, 일예로 에틸스티렌, 디메틸스티렌 및 파라-메틸스티렌; 알파-알킬스티렌, 일예로 알파-메틸스티렌, 알파-에틸스티렌, 알파-프로필스티렌 및 알파-부틸스티렌을 사용할 수 있다. 2차 핵중합 실시시 흑연이 코팅된 폴리스티렌 입자와 스티렌계 단량체의 중량비 10∼90:90∼10이다. 종류와 함량에 따라 고기능성 및 물리적 특성이 다양한 제품을 제조할 수 있다.In the practice of the present invention, the styrene monomer is styrene, styrene; Alkyl styrenes such as ethyl styrene, dimethyl styrene and para-methyl styrene; Alpha-alkylstyrene, for example alpha-methylstyrene, alpha-ethylstyrene, alpha-propylstyrene and alpha-butylstyrene can be used. In the second nuclear polymerization, the weight ratio of graphite-coated polystyrene particles and styrene monomer is 10 to 90:90 to 10. Depending on the type and content, a variety of high functional and physical properties can be produced.

본 발명의 실시에 있어서, 상기 지용성 개시제는 통상 발포성 폴리스티렌 중합에서 사용되는 모든 개시제를 사용할 수 있으며, 바람직하게는 벤조일 퍼옥사이드(BPO), t-부틸 퍼옥시 벤조에이트(TBPB)와 같은 두 종류의 개시제를 사용한다. 지용성 개시제는 투입된 스티렌계 단량체 100중량부에 대하여, 0.1~5중량부를 사용한다. In the practice of the present invention, the fat-soluble initiator can be used all the initiators usually used in effervescent polystyrene polymerization, preferably two kinds of benzoyl peroxide (BPO), t-butyl peroxy benzoate (TBPB) Initiator is used. A fat-soluble initiator uses 0.1-5 weight part with respect to 100 weight part of styrene type monomers injected | thrown-in.

본 발명의 실시에 있어서, 상기 흑연은 입자의 크기가 0.1~20㎛이며, 폴리스티렌 입자 100중량부에 대하여, 0.1~25 중량부를 사용한다.In the practice of the present invention, the graphite has a particle size of 0.1 to 20 µm and 0.1 to 25 parts by weight based on 100 parts by weight of polystyrene particles.

본 발명의 실시에 있어서, 흑연이 코팅된 폴리스티렌 입자의 흑연 코팅층에 수지 보호막을 형성하기 위해 수용성 개시제나 수지 용해액을 첨가하여 핵중합을 실시할 수 있다. 수용성 개시제는 말단의 친수성기로 인해 폴리스티렌 입자 내부에서 중합이 일어나지 않고, 물과 흑연이 코팅된 폴리스티렌 입자의 계면에서 중합이 일어남으로써 흑연층 위에 수지 보호막 형성이 가능하다. 또한 핵중합시 스티렌과 같은 단량체는 입자 내부로 침입이 용이하지만, 스티렌계 수지를 비롯한 고분자 물질 및 구조가 상이한 왁스류는 입자 내부로 침입이 어려움을 착안하여, 스티렌 단량체에 용해가 가능한 고분자 물질 및 왁스류를 용해하여 수지 용해액을 투입함으 로써 흑연 코팅층 위에 고분자 수지 및 왁스류를 추가 코팅하여 표면 개질을 이루고자 하였다.In the practice of the present invention, in order to form a resin protective film on the graphite coating layer of the graphite coated polystyrene particles, a nuclear polymerization may be performed by adding a water-soluble initiator or a resin solution. The water-soluble initiator does not polymerize inside the polystyrene particles due to the hydrophilic group at the terminal, and polymerization occurs at the interface between the water and the graphite-coated polystyrene particles, thereby forming a resin protective film on the graphite layer. In addition, monomers such as styrene easily penetrate into the particles during the nuclear polymerization, but polymer materials including styrene resins and waxes having different structures are difficult to penetrate into the particles. By dissolving waxes and injecting a resin solution, the polymer resin and waxes were further coated on the graphite coating layer to achieve surface modification.

상기 수용성 개시제는 암모늄 퍼설페이트, 포타슘 퍼설페이트, 소듐 퍼설페이트 등의 통상의 수용성 개시제를 사용할 수 있으며, 바람직하게는 암모늄 퍼설페이트를 사용한다. 수용성 개시제는 투입된 스티렌계 단량체 100중량부에 대하여 0.01~0.5중량부를 사용한다.The water-soluble initiator may be used a conventional water-soluble initiator such as ammonium persulfate, potassium persulfate, sodium persulfate, preferably ammonium persulfate. The water-soluble initiator is used in the amount of 0.01 to 0.5 parts by weight based on 100 parts by weight of the injected styrene monomer.

상기 수지용해액의 스티렌 단량체 대비 고분자 물질 및 왁스류의 농도는 특별한 제한이 없다.The concentration of the polymer material and the waxes relative to the styrene monomer of the resin solution is not particularly limited.

본 발명의 실시에 있어서, 발포제는 일반 발포성 폴리스티렌 제조에 사용되는 발포제 C4~C6 를 사용할 수 있으며, 본 발명의 실시에 있어서 바람직한 발포제는 n-펜탄, i-펜탄, 시클로펜탄이다. 이러한 발포제는 흑연이 도입된 발포성 폴리스티렌 입자 전체 양에 대하여 4~15중량부 사용한다. In the practice of the present invention, the blowing agent may be used blowing agents C4 to C6 used in the production of general expandable polystyrene, and preferred blowing agents in the practice of the present invention are n-pentane, i-pentane and cyclopentane. Such a blowing agent is used in an amount of 4 to 15 parts by weight based on the total amount of the expandable polystyrene particles into which graphite is introduced.

본 발명의 실시에 있어서, 발포성 폴리스티렌 입자의 다양한 특성을 부여하기 위하여 첨가제를 투입할 수 있으며, 구체적으로 C6~C10 방향족 탄화수소, 기포 조절제, 난연제 등을 사용할 수 있다.In the practice of the present invention, additives may be added to impart various properties of the expandable polystyrene particles, and specifically, C6 to C10 aromatic hydrocarbons, bubble control agents, and flame retardants may be used.

상기 C6~C10 방향족 탄화수소는 발포력을 향상시키기 위해 용제 역할을 하고, 벤젠, 톨루엔, p-자일렌, o-자일렌, m-자일렌, 에틸벤젠, 프로필벤젠, i-프로필벤젠 등을 포함하며, 바람직하게는 톨루엔, 에틸 벤젠을 사용하는 것이다. 흑연이 도입된 발포성 폴리스티렌 입자 전체 양에 대하여 0.01~5.0중량부를 사용하는 것이 바람직하며, 더욱 바람직하게는 0.1~1.0중량부이다. 방향족 탄화수소의 양이 적어지면, 발포성 폴리스티렌 입자의 발포성이 저하되고, 방향족 탄화수소의 양이 너무 많을 경우 최종 성형품의 내열성이 저하된다.The C6 to C10 aromatic hydrocarbons serve as a solvent to improve the foaming power, and include benzene, toluene, p-xylene, o-xylene, m-xylene, ethylbenzene, propylbenzene, i-propylbenzene, and the like. Preferably, toluene and ethyl benzene are used. It is preferable to use 0.01-5.0 weight part with respect to the total amount of expandable polystyrene particle which graphite was introduce | transduced, More preferably, it is 0.1-1.0 weight part. When the amount of the aromatic hydrocarbon is small, the foamability of the expandable polystyrene particles is lowered, and when the amount of the aromatic hydrocarbon is too large, the heat resistance of the final molded product is lowered.

상기 기포 조절제는 폴리 에틸렌 왁스 및 에틸렌 비스 스테아르아마이드 (Ethylene Bis Stearamide), 탄산칼슘, 활석, 점토, 실리카, 규조토, 시트르산과 중탄산 나트륨을 사용할 수 있으며, 흑연이 도입된 발포성 폴리스티렌 입자 전체 양에 대하여 0.01~3.0 중량부를 사용하는 것이 바람직하며, 이것은 기포의 크기를 작게하여 단열성 및 성형품 물성을 향상시킬 수 있다.The bubble control agent may be polyethylene wax and ethylene bis stearamide, calcium carbonate, talc, clay, silica, diatomaceous earth, citric acid and sodium bicarbonate, and 0.01 to the total amount of expanded polystyrene particles into which graphite is introduced. It is preferable to use ˜3.0 parts by weight, which can reduce the size of the bubble to improve the thermal insulation and molded article properties.

상기 난연제로는 헥사브로모 시클로도데칸, 테트라브로모 스클로옥탄, 테트라브로모 비닐시클로헥산, 2,2`(4알릴옥시-3,5-디브로모페닐)프로판, 트리브로모페닐 알릴 에테르 등의 브롬계 난연제와 통상적인 염소계, 인계 난연제를 사용할 수 있으며, 바람직하게는 헥사브로모 시클로도데칸이다. 상기 난연제는 흑연이 도입된 발포성 폴리스티렌 입자 전체 양에 대하여 0.1~5.0중량부를 사용하는 것이다.Examples of the flame retardant include hexabromo cyclododecane, tetrabromo sclooctane, tetrabromo vinylcyclohexane, 2,2 ′ (4allyloxy-3,5-dibromophenyl) propane, tribromophenyl allyl Bromine type flame retardants, such as ether, and a conventional chlorine type and phosphorus type flame retardant can be used, Preferably it is hexabromo cyclododecane. The flame retardant is 0.1 to 5.0 parts by weight based on the total amount of expandable polystyrene particles in which graphite is introduced.

본 발명의 실시에 있어서, 상기 흑연을 도입하고 단열 성능 및 융착 특성이 향상된 발포성 폴리스티렌 입자의 2단계 핵중합을 실시하는 과정은 다음과 같다.In the practice of the present invention, the process of introducing the graphite and performing the two-step nuclear polymerization of the expandable polystyrene particles with improved heat insulating performance and fusion characteristics are as follows.

먼저 흑연이 코팅된 폴리스티렌 입자를 얻는 1단계 핵중합 단계는 초순수, 폴리스티렌 입자, 분산제를 반응기에 투입하여 분산을 유지시킨다. 이 과정이 완료되면, 반응기의 온도를 60℃~90℃ 사이로 유지시키고, 흑연을 투입한다. 그리고 스티렌계 단량체, 지용성 개시제를 2~3시간에 걸쳐 서서히 투입한다. 이 후 반응기의 맨홀을 닫고 온도를 60℃~90℃에서 100℃~130℃까지 3~6시간 동안 승온하면서 나머지 스티렌 단량체를 서서히 투입을 하면서 중합을 완료한다.First, the first nuclear polymerization step of obtaining graphite-coated polystyrene particles is maintained by dispersing ultrapure water, polystyrene particles, and a dispersant into a reactor. When this process is completed, the temperature of the reactor is maintained between 60 ° C and 90 ° C and graphite is added. And a styrene monomer and a fat-soluble initiator are gradually added over 2-3 hours. Thereafter, the manhole of the reactor was closed, and the temperature was raised from 60 ° C. to 90 ° C. to 100 ° C. to 130 ° C. for 3 to 6 hours while slowly adding the remaining styrene monomer to complete polymerization.

이렇게 중합이 완료된 흑연이 코팅된 폴리스티렌 입자를 이용하여 흑연 코팅층 위에 수지 보호막을 형성 및 함침하는 단계는 초순수, 흑연이 코팅된 폴리스티렌 입자, 분산제를 반응기에 투입하여 분산을 유지시킨다. 이 과정이 완료되면, 반응기의 온도를 60℃~90℃ 사이로 승온, 유지시키고, 스티렌계 단량체, 지용성 개시제, 기포 조절제, 난연제, C6~C10 방향족 탄화수소를 2~3시간에 걸쳐 서서히 투입한다. 그리고 수용성 개시제를 투입하고, 이후 반응기의 맨홀을 닫고 온도를 60℃~90℃에서 100℃~130℃까지 3~6시간 동안 승온하면서 수지용해액을 서서히 투입하여 중합을 완료한다. 이렇게 중합이 완료되면 100℃~130℃에서 3~6시간 동안 유지하면서 함침을 종결하여 흑연이 도입된 발포성 폴리스티렌 입자를 얻을 수 있다.The step of forming and impregnating a resin protective film on the graphite coating layer by using the graphite-coated polystyrene particles thus completed polymerization is carried out by adding ultrapure water, graphite-coated polystyrene particles, dispersant to the reactor to maintain dispersion. When this process is completed, the temperature of the reactor is raised and maintained between 60 ° C. and 90 ° C., and a styrene monomer, a fat-soluble initiator, a bubble control agent, a flame retardant, and a C 6 -C 10 aromatic hydrocarbon are gradually added over 2 to 3 hours. Then, a water-soluble initiator was added, and then, the manhole of the reactor was closed, and the resin solution was gradually added while gradually raising the temperature from 60 ° C. to 90 ° C. to 100 ° C. to 130 ° C. to complete the polymerization. After the polymerization is completed, the impregnation may be terminated while maintaining at 100 ° C. to 130 ° C. for 3 to 6 hours to obtain expanded polystyrene particles into which graphite is introduced.

본 발명의 발포성 폴리스티렌 입자는, 스티렌계 수지 입자를 물에 현탁시켜 스티렌계 단량체, 지용성 개시제 및 흑연을 첨가하고 1차 핵중합을 실시하여 흑연이 코팅된 폴리스티렌 입자를 얻는 단계; 흑연이 코팅된 폴리스티렌 입자에 스티렌계 단량체, 지용성 개시제, 수용성 개시제 및 수지 용해액을 첨가하고 2차 핵중합을 실시하는 동시에 발포제를 투입하여 흑연 코팅층에 수지 보호막을 형성 및 함침하는 단계를 통해서 이루어진다. 이렇게 얻어진 흑연이 도입된 발포성 폴리스티렌 입자를 발포하는 단계는 통상의 발포 조건을 사용할 수 있으며, 특별한 제한은 없다. 흑연이 도입된 발포성 폴리스티렌은 당업자에 의해서 기포의 직경이 70 - 300 마이크론이 되도록 발포된 수 있으며, 고발포성을 비롯한 단열 성능 및 융착 특성을 비롯한 기계적 물성이 우수하다는 장점을 가진다.Expandable polystyrene particles of the present invention comprises the steps of suspending the styrene resin particles in water to add a styrene monomer, a fat-soluble initiator and graphite, and subjected to the first nuclear polymerization to obtain a graphite coated polystyrene particles; A styrene-based monomer, a fat-soluble initiator, a water-soluble initiator, and a resin dissolving solution are added to the graphite-coated polystyrene particles, followed by secondary nuclear polymerization, and a blowing agent is added to form and impregnate a resin protective film in the graphite coating layer. The step of foaming the expandable polystyrene particles into which the graphite thus obtained is introduced may use ordinary foaming conditions, and there is no particular limitation. Expandable polystyrene incorporating graphite can be foamed by those skilled in the art to have a diameter of 70 to 300 microns, and has the advantage of excellent mechanical properties including thermal insulation and welding properties including high foaming properties.

이하, 본 발명을 실시예에 의거 상세히 설명하면 다음과 같은 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited by the Examples.

<비교예 1> 흑연이 도입된 발포성 폴리스티렌 입자의 제조 실험(고온 함침시 흑연 도입)Comparative Example 1 Experiment of Manufacturing Expandable Polystyrene Particles Incorporating Graphite (Introduction of Graphite at High Temperature Impregnation)

100L 반응기에 초순수 40kg에 분산제(트리칼슘 포스페이트; 듀본유화) 0.2kg을 투입하여 교반하고, 폴리스티렌 입자 40kg과 흑연 (GRAPHITE; 현대코마 산업; HC-905) 1.0kg을 투입하였다. 이후 125℃까지 반응기의 온도를 승온시키고, 발포제(펜탄 ;SK) 3kg을 질소 압력으로 반응기에 투입하고 최종 반응기 압력을 13kgf/㎠ 를 유지하면서 5시간 동안 함침을 실시하였다. 이후 30°C이하로 냉각시키고 제품을 배출 후 수세,건조시키고, 통상적인 발포성 폴리스티렌에서 사용하는 블랜딩제를 도포하여 물성 평가를 하였다. 결과를 하기 표 1에 게시하였다. 단면 사진을 도 1에 게시하였다. 0.2 kg of a dispersant (tricalcium phosphate; Dubon emulsifier) was added to 40 kg of ultrapure water and stirred, and 40 kg of polystyrene particles and 1.0 kg of graphite (GRAPHITE; Hyundai-Coma; HC-905) were added thereto. Then, the temperature of the reactor was raised to 125 ° C, 3 kg of blowing agent (pentane; SK) was introduced into the reactor at nitrogen pressure, and impregnation was performed for 5 hours while maintaining the final reactor pressure of 13 kgf / cm 2. After cooling to 30 ° C. or below, the product was discharged, washed with water, dried, and applied to the blending agent used in conventional expandable polystyrene was evaluated for physical properties. The results are published in Table 1 below. A cross section photograph is posted in FIG. 1.

<실시예 1> 흑연이 도입된 발포성 폴리스티렌 입자의 제조 실험(흑연 도입량 증대 목적)Example 1 Production Experiment of Expandable Polystyrene Particles Incorporated with Graphite (To Increase Graphite Introduction)

100L 반응기에 초순수 40kg에 분산제(트리칼슘 포스페이트; 듀본유화) 0.2kg을 투입하여 교반하고, 폴리스티렌 입자 20kg을 투입하였다. 이 후 60°C까지 반응기 온도를 승온, 유지시키고, 흑연(GRAPHITE; 현대코마 산업; HC-905)을 1.0kg투입하였다. 그리고 스티렌 단량체(SM ; SK) 6kg에 난연제 (헥사브로모시클로도데칸; GLC; CD75P™) 1kg, 저온 개시제(벤조일 퍼옥사이드; 한솔케미칼) 0.1kg, 고온 개시 제(t-부틸 퍼옥시 벤조에이트; 호성케멕서) 0.03kg을 용해시켜 3시간 동안 투입하였다. 이후 반응기 맨홀을 닫고 60℃에서 125℃까지 4시간 동안 승온시키면서 스티렌 단량체 14kg을 천천히 투입하여 중합을 진행시킨 후, 125℃에서 발포제(펜탄 ;SK) 3kg을 질소 압력으로 반응기에 투입하고 최종 반응기 압력을 13kgf/㎠ 를 유지하면서 5시간 동안 함침을 실시하였다. 이후 30°C이하로 냉각시키고 제품을 배출 후 수세, 건조시키고, 통상적인 발포성 폴리스티렌에서 사용하는 블랜딩제를 도포하여 물성 평가를 하였다. 결과를 하기 표 1에 게시하였다. 단면 사진을 도 2에 게시하였다. 0.2 kg of a dispersant (tricalcium phosphate; Dubon emulsifier) was added to 40 kg of ultrapure water and stirred, and 20 kg of polystyrene particles were added thereto. After that, the reactor temperature was raised to 60 ° C., and 1.0 kg of graphite (GRAPHITE; Hyundai Comma Industry; HC-905) was charged. 6 kg of styrene monomer (SM; SK), 1 kg of flame retardant (hexabromocyclododecane; GLC; CD75P ™), 0.1 kg of low temperature initiator (benzoyl peroxide; Hansol Chemical), high temperature initiator (t-butyl peroxy benzoate) 0.03 kg) was dissolved and added for 3 hours. After the reactor manhole was closed and the polymerization was carried out by slowly adding 14 kg of styrene monomer while raising the temperature from 60 ° C. to 125 ° C. for 4 hours, 3 kg of blowing agent (pentane; SK) was added to the reactor at 125 ° C. under nitrogen pressure, and the final reactor pressure. Was impregnated for 5 hours while maintaining 13 kgf / cm 2. After cooling to 30 ° C. or below, the product was discharged, washed with water, dried, and applied to the blending agent used in conventional expandable polystyrene was evaluated for physical properties. The results are published in Table 1 below. A cross section photograph is posted in FIG. 2.

<실시예 2> 흑연 입자가 도입된 발포성 폴리스티렌 입자의 제조 실험(흑연 코팅 및 수지 보호막 형성을 위한 2단계 핵중합;수지용융액 도입)<Example 2> Experiment for preparing expanded polystyrene particles into which graphite particles are introduced (two-step nuclear polymerization for graphite coating and resin protective film formation; resin melt introduction)

100L 반응기에 초순수 40kg에 분산제(트리칼슘 포스페이트; 듀본유화) 0.2kg을 투입하여 교반하고, 폴리스티렌 입자 20kg을 투입하였다. 이 후 60℃까지 반응기 온도를 승온, 유지시키고, 흑연을 2.0kg(GRAPTIE; 현대코마산업; HC-905)을 투입하였다. 그리고 스티렌 단량체(SM ; SK) 6kg에 난연제 (헥사브로모시클로도데칸; GLC; CD75P™) 1kg, 저온 개시제(벤조일 퍼옥사이드; 한솔케미칼) 0.1kg, 고온 개시제(t-부틸 퍼옥시 벤조에이트; 호성케멕서) 0.03kg을 용해시켜 3시간 동안 투입하였다. 이후 반응기 맨홀을 닫고 60℃에서 125℃까지 4시간 동안 승온시키면서 스티렌 단량체 14kg을 천천히 투입하여 중합을 진행시킨 후, 125℃에서 1시간 유지하면서 반응을 종결하였다. 이후 30°C이하로 냉각시키고 제품을 배출 후 수세, 건조시 켰다. 이렇게 얻어진 흑연이 코팅된 폴리스티렌 입자 20kg을 초순수 40kg에 분산제(트리칼슘 포스페이트; 듀본유화) 0.2kg으로 현탁된 100L 반응기에 넣고 투입하고, 이 후 60℃까지 반응기 온도를 승온, 유지시키고, 스티렌 단량체(SM ; SK) 6kg에 난연제 (헥사브로모시클로도데칸; GLC; CD75P™) 1kg, 저온 개시제(벤조일 퍼옥사이드; 한솔케미칼) 0.05kg, 고온 개시제(t-부틸 퍼옥시 벤조에이트;호성케멕서) 0.02kg을 용해시켜 2시간 동안 투입하였다. 이후 반응기 맨홀을 닫고 60℃에서 125℃까지 3시간 동안 승온시키면서 미리 준비된 수지 용해액(폴리스티렌 6kg+스티렌 단량체 8kg) 14kg을 천천히 투입하여 중합을 진행시킨 후, 125℃에서 발포제(펜탄; SK) 3kg을 질소 압력으로 반응기에 투입하고 최종 반응기 압력을 13kgf/㎠ 를 유지하면서 5시간 동안 함침을 실시하였다. 이후 30℃이하로 냉각시키고 제품을 배출 후 수세, 건조시키고, 통상적인 발포성 폴리스티렌에서 사용하는 블랜딩제를 도포하여 물성 평가를 하였다. 결과를 하기 표 1에 게시하였다. 단면 사진을 도 3에 게시하였다. 0.2 kg of a dispersant (tricalcium phosphate; Dubon emulsifier) was added to 40 kg of ultrapure water and stirred, and 20 kg of polystyrene particles were added thereto. After that, the reactor temperature was raised to 60 ° C and maintained, and 2.0 kg of graphite (GRAPTIE; Hyundai Comma; HC-905) was added thereto. And 6 kg of styrene monomer (SM; SK), 1 kg of flame retardant (hexabromocyclododecane; GLC; CD75P ™), 0.1 kg of low temperature initiator (benzoyl peroxide; Hansol Chemical), high temperature initiator (t-butyl peroxy benzoate; 0.03 kg) was dissolved and added for 3 hours. After the reactor manhole was closed and the polymerization was carried out by slowly adding 14 kg of styrene monomer while raising the temperature from 60 ° C to 125 ° C for 4 hours, the reaction was terminated while maintaining at 125 ° C for 1 hour. After cooling below 30 ° C., the product was discharged and washed with water and dried. 20 kg of the graphite-coated polystyrene particles thus obtained were put in a 100 L reactor suspended in 0.2 kg of a dispersant (tricalcium phosphate; dubon emulsifier) in 40 kg of ultrapure water, and then the reactor temperature was raised to 60 ° C., and the styrene monomer ( SM; SK) 6 kg flame retardant (hexabromocyclododecane; GLC; CD75P ™) 1 kg, low temperature initiator (benzoyl peroxide; Hansol Chemical) 0.05 kg, high temperature initiator (t-butyl peroxy benzoate; Hosung Chemical) 0.02 kg was dissolved and added for 2 hours. Thereafter, the reactor manhole was closed and 14 kg of the resin solution (polystyrene 6 kg + styrene monomer 8 kg) prepared in advance was slowly added while heating the temperature from 60 ° C. to 125 ° C. for 3 hours, and then 3 kg of a blowing agent (pentane; SK) was added at 125 ° C. Into the reactor at nitrogen pressure and impregnation was carried out for 5 hours while maintaining the final reactor pressure 13kgf / ㎠. After cooling to 30 ℃ or less, the product was discharged, washed with water, dried, and applied to the blending agent used in conventional expandable polystyrene was evaluated for physical properties. The results are published in Table 1 below. The cross section picture is posted in FIG. 3.

<실시예 3> 흑연 입자가 도입된 발포성 폴리스티렌 입자의 제조 실험(흑연 코팅 및 수지 보호막 형성을 위한 2단계 핵중합;수용성 개시제 도입)Example 3 Production Experiment of Expandable Polystyrene Particles Incorporating Graphite Particles (2-Step Nuclear Polymerization for Graphite Coating and Resin Protective Film Formation; Water-Solution Initiator Introduction)

100L 반응기에 초순수 40kg에 분산제(트리칼슘 포스페이트; 듀본유화) 0.2kg을 투입하여 교반하고, 폴리스티렌 입자 20kg을 투입하였다. 이 후 60℃까지 반응기 온도를 승온, 유지시키고, 흑연을 2.0kg(GRAPTIE; 현대코마산업; HC-905)을 투입하였다. 그리고 스티렌 단량체(SM ; SK) 6kg에 난연제 (헥사브로모시클로도데칸; GLC; CD75P™) 1kg, 저온 개시제(벤조일 퍼옥사이드; 한솔케미칼) 0.1kg, 고온 개시 제(t-부틸 퍼옥시 벤조에이트; 호성케멕서) 0.03kg을 용해시켜 3시간 동안 투입하였다. 이후 반응기 맨홀을 닫고 60℃에서 125℃까지 4시간 동안 승온시키면서 스티렌 단량체 14kg을 천천히 투입하여 중합을 진행시킨 후, 125℃에서 1시간 유지하면서 반응을 종결하였다. 이후 30°C이하로 냉각시키고 제품을 배출 후 수세, 건조시켰다. 이렇게 얻어진 흑연이 코팅된 폴리스티렌 입자 20kg을 초순수 40kg에 분산제(트리칼슘 포스페이트; 듀본유화) 0.2kg으로 현탁된 100L 반응기에 넣고 투입하고, 이 후 60℃까지 반응기 온도를 승온, 유지시키고, 스티렌 단량체(SM ; SK) 6kg에 난연제 (헥사브로모시클로도데칸; GLC; CD75P™) 1kg, 저온 개시제(벤조일 퍼옥사이드; 한솔케미칼) 0.05kg, 고온 개시제(t-부틸 퍼옥시 벤조에이트; 호성케멕서) 0.02kg을 용해시켜 2시간 동안 투입하였다. 마지막으로 수용성 개시제(암모늄 퍼설페이트: SK) 0.01kg을 투입하고, 이후 반응기 맨홀을 닫고 60℃에서 125℃까지 3시간 동안 승온시키면서 스티렌 단량체 14kg을 천천히 투입하여 중합을 진행시킨 후, 125℃에서 발포제(펜탄; SK) 3kg을 질소 압력으로 반응기에 투입하고 최종 반응기 압력을 13kgf/㎠ 를 유지하면서 5시간 동안 함침을 실시하였다. 이후 30℃이하로 냉각시키고 제품을 배출 후 수세, 건조시키고, 통상적인 발포성 폴리스티렌에서 사용하는 블랜딩제를 도포하여 물성 평가를 하였다. 결과를 하기 표 1에 게시하였다. 단면 사진을 도 4에 게시하였다. 0.2 kg of a dispersant (tricalcium phosphate; Dubon emulsifier) was added to 40 kg of ultrapure water and stirred, and 20 kg of polystyrene particles were added thereto. After that, the reactor temperature was raised to 60 ° C and maintained, and 2.0 kg of graphite (GRAPTIE; Hyundai Comma; HC-905) was added thereto. 6 kg of styrene monomer (SM; SK), 1 kg of flame retardant (hexabromocyclododecane; GLC; CD75P ™), 0.1 kg of low temperature initiator (benzoyl peroxide; Hansol Chemical), high temperature initiator (t-butyl peroxy benzoate) 0.03 kg) was dissolved and added for 3 hours. After the reactor manhole was closed and the polymerization was carried out by slowly adding 14 kg of styrene monomer while raising the temperature from 60 ° C to 125 ° C for 4 hours, the reaction was terminated while maintaining at 125 ° C for 1 hour. After cooling below 30 ° C., the product was discharged and washed with water, dried. 20 kg of the graphite-coated polystyrene particles thus obtained were put in a 100 L reactor suspended in 0.2 kg of a dispersant (tricalcium phosphate; dubon emulsifier) in 40 kg of ultrapure water, and then the reactor temperature was raised to 60 ° C., and the styrene monomer ( SM; SK) 6 kg flame retardant (hexabromocyclododecane; GLC; CD75P ™) 1 kg, low temperature initiator (benzoyl peroxide; Hansol Chemical) 0.05 kg, high temperature initiator (t-butyl peroxy benzoate; Hosung Chemical) 0.02 kg was dissolved and added for 2 hours. Finally, 0.01 kg of a water-soluble initiator (ammonium persulfate: SK) was added, and then 14 kg of styrene monomer was slowly added while proceeding polymerization by closing the reactor manhole and raising the temperature from 60 ° C to 125 ° C for 3 hours, and then blowing agent at 125 ° C. 3 kg (pentane; SK) was introduced into the reactor at a nitrogen pressure, and impregnation was performed for 5 hours while maintaining a final reactor pressure of 13 kgf / cm 2. After cooling to 30 ℃ or less, the product was discharged, washed with water, dried, and applied to the blending agent used in conventional expandable polystyrene was evaluated for physical properties. The results are published in Table 1 below. The cross section picture is posted in FIG. 4.

물성평가를 위한 폴리스티렌 발포체 시편의 밀도는 공히 30kg/㎥이고, 물성평가는 구체적으로 다음과 같이 수행하였다. The density of the polystyrene foam specimens for the physical property evaluation was 30 kg / m 3, and the physical property evaluation was specifically performed as follows.

1) 5분 발포성 : 0.3kgf/cm2의 스팀압으로 5분간 발포했을 때 발포배수(배)1) 5-minute effervescent: foamed drainage (doubled) when foamed for 5 minutes at 0.3kgf / cm 2 steam pressure

2) 기포크기 : 기포 벽과 기포 사이의 평균 직경(㎛:현미경으로 측정)2) Bubble size: Average diameter between bubble wall and bubble (㎛: measured by microscope)

3) 흡수량 : 한국공업규격 KS M 3808에 규정된 발포 폴리스티렌 보온재의 흡수량 측정방법에 준하여 흡수된 물의 양을 표면적으로 나눈 수치임(g/100㎠)3) Absorption amount: It is the numerical value divided by the surface area of water absorbed according to the absorption method of expanded polystyrene insulation according to Korea Industrial Standard KS M 3808 (g / 100㎠)

4) 융착 : 성형품의 발포립간 서로 밀착된 상태를 나타내고, 성형품 파단면 중 발포립자 내부가 파단된 비율(%)4) Fusion: It shows the state in which the foamed granules of the molded products are in close contact with each other, and the ratio of the breakage of the foamed granules among the fractured surfaces (%)

5) 압축강도 : 한국공업규격 KS M 3808에 규정된 발포 폴리스티렌 보온재의 압축강도 측정방법에 준함(kgf/㎠) 5) Compressive strength: According to the method of measuring compressive strength of expanded polystyrene insulation specified in Korean Industrial Standard KS M 3808 (kgf / ㎠)

6) 굴곡강도: 한국공업규격 KS M 3808에 규정된 발포 폴리스티렌 보온재의 굴곡강도 측정방법에 준함(kgf/㎠) 6) Flexural strength: According to the method of measuring flexural strength of foamed polystyrene insulation specified in Korean Industrial Standard KS M 3808 (kgf / ㎠)

7) 압축강도 : 한국공업규격 KS M 3808에 규정된 발포 폴리스티렌 보온재의 연소성 측정방법에 준함(sec) 7) Compressive strength: According to the method of measuring flammability of expanded polystyrene insulation specified in Korean Industrial Standard KS M 3808 (sec)

8) 열전도율 : Netzsch사의 열전도율 기기(HFM 436/3/1)를 이용한 측정치(W/mK)8) Thermal conductivity: measured value (W / mK) using Netzsch's thermal conductivity device (HFM 436/3/1)

9) 흑연함량 : 흑연이 도입된 발포성 폴리스티렌 입자 100 중량부에 대하여 흑연 함침 측정치(%)9) Graphite content: Graphite impregnation measured value (%) based on 100 parts by weight of expandable polystyrene particles into which graphite was introduced

10) 흑연 탈착량 : 흑연이 도입된 발포성 폴리스티렌 입자를 50배 발포 후 30분동안 발포립을 압축 공기로 분사시 초기 흑연 함량 대비 떨어지는 흑연량(%)10) Graphite desorption amount: Graphite falling compared to the initial graphite content (%) when spraying the foam granules with compressed air for 30 minutes after foaming the expanded polystyrene particles into which graphite was introduced 50 times

비교예 1Comparative Example 1 실시예 1Example 1 실시예 2Example 2 실시예 3 Example 3 5분 발포성(배)5 minutes effervescent 7575 7070 7070 7171 기포크기(㎛)Bubble size (㎛) 80∼12080-120 80∼12080-120 80∼11080-110 80∼11080-110 흡수량(g/100㎠)Absorption amount (g / 100㎠) 0.450.45 0.450.45 0.400.40 0.430.43 융착(%)Fusion (%) 3030 3030 5050 7070 압축강도(kgf/㎠) Compressive strength (kgf / ㎠) 1.871.87 1.861.86 1.851.85 1.851.85 굴곡강도(kgf/㎠)Flexural Strength (kgf / ㎠) 3.843.84 3.753.75 3.913.91 3.943.94 자소성(sec)Self-firing (sec) 1.21.2 1.11.1 1.01.0 0.90.9 흑연함량(%)Graphite content (%) 1.01.0 1.81.8 1.91.9 1.91.9 흑연탈착량(%)Graphite Desorption Amount (%) 2323 4848 2525 1010 열전도율(W/mK)Thermal Conductivity (W / mK) 0.03250.0325 0.03050.0305 0.03030.0303 0.03040.0304

상기 표 1의 결과로부터, 핵중합 기술로부터 얻어진 흑연이 도입된 발포성 폴리스티렌 입자는 일반 발포성 폴리스티렌에 비해 융착을 비롯한 기계적 물성이 동등 이상의 수준을 나타내고 단열 성능이 우수함을 확인하였다. 실시예 1 내지 실시예 3과 같이 핵중합을 실시하는 경우 흑연 도입 단계에 있어, 스티렌 단량체가 폴리스티렌 입자의 점도를 낮추어 비교예 보다 흑연 도입량을 증대시킬 수 있다. 또, 상기 표 1의 흑연 탈착량 결과로부터 실시예 2와 실시예 3은 수지 보호막을 형성하여 발포 후 건조, 이송 등의 가공 조건에서 흑연 탈착량이 감소함을 확인하였고, 도 3 내지 도4 에서 발포성 폴리스티렌 입자의 최외곽에 수지 보호막이 형성됨을 확인하였다. From the results of Table 1, it was confirmed that the expanded polystyrene particles into which graphite obtained from the nuclear polymerization technology were introduced exhibited a level of equivalent or more mechanical properties including fusion and excellent thermal insulation performance, compared to general expandable polystyrene. In the case of carrying out the nuclear polymerization as in Examples 1 to 3, in the graphite introduction step, the styrene monomer may lower the viscosity of the polystyrene particles, thereby increasing the amount of graphite introduced than the comparative example. In addition, Example 2 and Example 3 from the results of the graphite desorption amount of Table 1 confirmed that the graphite desorption amount was reduced under the processing conditions such as drying, conveying after foaming to form a resin protective film, foaming in Figures 3 to 4 It was confirmed that a resin protective film was formed on the outermost side of the polystyrene particles.

본 발명의 방법에 의해 제조된 흑연이 도입된 발포성 폴리스티렌은 강도 및 단열특성이 우수하여 건축용 단열재 등 각종 단열재로 유용하게 사용될 수 있다. Expanded polystyrene with graphite prepared by the method of the present invention is excellent in strength and heat insulating properties can be usefully used as a variety of heat insulating materials such as building heat insulating material.

도 1은 종래의 고온 함침시 흑연을 도입하는 공정에 의해 흑연이 도입된 발포성 폴리스티렌 입자의 단념(비교예 1)1 is a disregard of expandable polystyrene particles in which graphite is introduced by a process of introducing graphite during conventional high temperature impregnation (Comparative Example 1)

도 2는 핵중합에 의해 흑연이 도입된 발포성 폴리스티렌 입자의 단념(실시예1)2 is a disintegration of expandable polystyrene particles in which graphite is introduced by nuclear polymerization (Example 1)

도 3은 수지 용융액을 사용하는 2단계 핵중합에 의해 흑연이 도입된 발포성 폴리스티렌 입자의 단념(실시예 2)3 is a disintegration of expandable polystyrene particles in which graphite is introduced by two-step nuclear polymerization using a resin melt (Example 2)

도 4는 수용성 개시제를 사용하는 2단계 핵중합에 의해 흑연이 도입된 발포성 폴리스티렌 입자의 단념(실시예 3)4 is a disintegration of expandable polystyrene particles in which graphite is introduced by two-step nuclear polymerization using a water-soluble initiator (Example 3).

Claims (8)

스티렌, 에틸스티렌, 디메틸스티렌 , 파라-메틸스티렌, 알파-메틸스티렌, 알파-에틸스티렌, 알파-프로필스티렌, 알파-부틸스티렌, 클로로스티렌, 브로모스티렌; 및 비닐 톨루엔으로 구성된 그룹으로부터 선택된 단량체의 중합체 또는 이 단량체와 아크릴로니트릴, 부타디엔, 메틸아크릴레이트, 메틸메타아크릴레이트, 이소부틸렌, 염화비닐 및 이소프렌으로 구성된 그룹으로부터 선택된 하나 이상의 단량체와의 공중합체인 스티렌계 수지 입자를 물에 현탁시켜 스티렌계 단량체, 개시제 및 흑연을 첨가하고 1차 핵중합을 실시하여 흑연이 코팅된 폴리스티렌 입자를 얻는 단계; Styrene, ethyl styrene, dimethyl styrene, para-methylstyrene, alpha-methylstyrene, alpha-ethylstyrene, alpha-propylstyrene, alpha-butylstyrene, chlorostyrene, bromostyrene; And a copolymer of a monomer selected from the group consisting of vinyl toluene or a copolymer of this monomer with at least one monomer selected from the group consisting of acrylonitrile, butadiene, methylacrylate, methylmethacrylate, isobutylene, vinyl chloride and isoprene. Suspending the styrenic resin particles in water to add the styrene monomer, the initiator, and the graphite, followed by primary nuclear polymerization to obtain the graphite coated polystyrene particles; 흑연이 코팅된 폴리스티렌 입자에 스티렌계 단량체, 개시제 및 상기 스티렌계 수지 또는 왁스를 스티렌계 단량체에 용해시킨 용해액 또는 암모늄 퍼설페이트, 포타슘 퍼설페이트 및 소듐 퍼설페이트로 구성된 그룹으로부터 선택되는 화합물을 첨가하고 2차 핵중합을 실시하는 동시에 발포제를 투입하여 흑연 코팅층에 수지 보호막을 형성 및 함침하는 단계를 포함하는 흑연이 도입된 발포성 폴리스티렌 입자의 제조방법.To the graphite-coated polystyrene particles, a styrene-based monomer, an initiator and a compound selected from the group consisting of ammonium persulfate, potassium persulfate and sodium persulfate dissolved in a styrene-based monomer or a solution of the styrene-based resin or wax are added. A method for producing expanded polystyrene particles into which graphite is introduced, comprising performing secondary nuclear polymerization and simultaneously adding a blowing agent to form and impregnate a resin protective film on the graphite coating layer. 제 1 항에 있어서, 상기 스티렌계 수지는 중량 평균 분자량이 100,000~300,000g/mol인 것을 특징으로 하는 방법.The method of claim 1, wherein the styrenic resin has a weight average molecular weight of 100,000 to 300,000 g / mol. 제 1 항에 있어서, 상기 흑연은 입자 크기가 0.1~20㎛이며, 폴리스티렌 입자 100중량부에 대하여, 0.1~25 중량부로 사용되는 것을 특징으로 하는 방법. The method according to claim 1, wherein the graphite has a particle size of 0.1 to 20 µm and is used at 0.1 to 25 parts by weight based on 100 parts by weight of polystyrene particles. 제 1 항에 있어서, 2차 핵중합 실시시 흑연이 코팅된 폴리스티렌 입자와 스티렌 단량체의 중량비가 10∼90: 90∼10인 것을 특징으로 하는 방법. The method of claim 1, wherein the weight ratio of the graphite-coated polystyrene particles to the styrene monomers during the second nuclear polymerization is 10 to 90: 90 to 10. 제 1 항에 있어서, 상기 스티렌계 단량체는 스티렌, 에틸스티렌, 디메틸스티렌 , 파라-메틸스티렌, 알파-메틸스티렌, 알파-에틸스티렌, 알파-프로필스티렌 및 알파-부틸스티렌으로 구성된 그룹으로부터 선택되는 것을 특징으로 하는 방법. The method of claim 1, wherein the styrene monomer is selected from the group consisting of styrene, ethyl styrene, dimethyl styrene, para-methyl styrene, alpha-methyl styrene, alpha-ethyl styrene, alpha-propyl styrene and alpha-butyl styrene. How to feature. 제 1 항에 있어서,상기 암모늄 퍼설페이트, 포타슘 퍼설페이트 및 소듐 퍼설페이트로 구성된 그룹으로부터 선택되는 화합물은 스티렌계 단량체 100중량부에 대하여 0.01~0.5중량부로 사용되는 것을 특징으로 하는 방법.The method of claim 1, wherein the compound selected from the group consisting of ammonium persulfate, potassium persulfate and sodium persulfate is used in an amount of 0.01 to 0.5 parts by weight based on 100 parts by weight of a styrene monomer. 삭제delete 제 1 항에 있어서, 상기 발포제의 양은 흑연이 도입된 발포성 폴리스티렌 입자 전체 양에 대해 4~15중량부로 사용되는 것을 특징으로 하는 방법. The method of claim 1, wherein the amount of blowing agent is used in an amount of 4 to 15 parts by weight based on the total amount of expandable polystyrene particles into which graphite is introduced.
KR1020070124259A 2007-12-03 2007-12-03 Method for producing expandable polystyrene beads KR100884817B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070124259A KR100884817B1 (en) 2007-12-03 2007-12-03 Method for producing expandable polystyrene beads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070124259A KR100884817B1 (en) 2007-12-03 2007-12-03 Method for producing expandable polystyrene beads

Publications (1)

Publication Number Publication Date
KR100884817B1 true KR100884817B1 (en) 2009-02-20

Family

ID=40681921

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070124259A KR100884817B1 (en) 2007-12-03 2007-12-03 Method for producing expandable polystyrene beads

Country Status (1)

Country Link
KR (1) KR100884817B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101113948B1 (en) * 2009-11-20 2012-03-05 금호석유화학 주식회사 Method for increasing coating efficiency of functional additives with insolubility when producing expandable polystyrene beads
KR101459380B1 (en) * 2014-02-20 2014-11-07 주식회사 진광화학 Binder composition of flame retardant for expanded polystyrene and eps board using thereof
KR20160058423A (en) * 2014-11-17 2016-05-25 현대이피 주식회사 manufacturing method of expandable polystyrene having improved insulation property
KR20180019361A (en) * 2016-08-16 2018-02-26 금호석유화학 주식회사 Expandable polystyrene beads having excellent flame retardancy and preparing method therof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100801275B1 (en) 2006-03-31 2008-02-04 금호석유화학 주식회사 Method for producing expandable polystyrene beads which have excellent heat insulation properties

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100801275B1 (en) 2006-03-31 2008-02-04 금호석유화학 주식회사 Method for producing expandable polystyrene beads which have excellent heat insulation properties

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101113948B1 (en) * 2009-11-20 2012-03-05 금호석유화학 주식회사 Method for increasing coating efficiency of functional additives with insolubility when producing expandable polystyrene beads
KR101459380B1 (en) * 2014-02-20 2014-11-07 주식회사 진광화학 Binder composition of flame retardant for expanded polystyrene and eps board using thereof
KR20160058423A (en) * 2014-11-17 2016-05-25 현대이피 주식회사 manufacturing method of expandable polystyrene having improved insulation property
KR101662546B1 (en) * 2014-11-17 2016-10-05 현대이피 주식회사 manufacturing method of expandable polystyrene having improved insulation property
KR20180019361A (en) * 2016-08-16 2018-02-26 금호석유화학 주식회사 Expandable polystyrene beads having excellent flame retardancy and preparing method therof

Similar Documents

Publication Publication Date Title
KR100801275B1 (en) Method for producing expandable polystyrene beads which have excellent heat insulation properties
JP5208501B2 (en) Styrene polymer-particle foam with low thermal conductivity
KR101299384B1 (en) Flame-retardant expandable styrene resin particles and method for producing same
JP5080226B2 (en) Expandable resin particles, method for producing the same, and foam molded article
JP2013514397A (en) Flame retardant polymer foam
CZ20011691A3 (en) Expandable styrene polymers containing graphite particles; process of their preparation and foam materials produced therefrom
KR100884817B1 (en) Method for producing expandable polystyrene beads
KR100599847B1 (en) Method for manufacturing expandable polystyrene particles with excellent thermal insulation capability
KR101113948B1 (en) Method for increasing coating efficiency of functional additives with insolubility when producing expandable polystyrene beads
JP2004211042A (en) Self fire-extinguishing type foaming styrenic resin particle, reserve foaming particle and foamed molded material
KR101099027B1 (en) Method for producing expandable polystyrene beads which have excellent flammable capability
JP2002194130A (en) Expandable polystyrene resin particle and method of manufacturing the same
KR101099028B1 (en) Method for producing expandable polystyrene small beads with large seed particles
JP2004224977A (en) Self-extinguishable foaming styrene base resin particle, prefoamed particle and self-extinguishing foamed product
KR101242744B1 (en) Method for producing expandable polystyrene beads with expandable seed particles
KR20180019361A (en) Expandable polystyrene beads having excellent flame retardancy and preparing method therof
KR102119032B1 (en) Expandable resin composition, foam using the same and method of the foam
KR101772544B1 (en) Surface modified expandable polystyrene beads having excellent bonding and a method of manufacturing the same
KR20170069386A (en) Preparing Method of Expandable Polystyrene Beads Having Thermal Insulation Property, Using Recycled Styrene Resin
EP1448612B1 (en) Vinylaromatic polymers with improved flame resistance
KR20160072411A (en) Expandable polystyrene beads having excellent thermal insulation, flame retardancy and good moldability and a method of manufacturing the same
JPS6338063B2 (en)
KR20130071864A (en) Manufacturing method of expandable polystyrene particles
KR101685933B1 (en) Expandable polymer particle to form different cell pattern manufacturing method of the same
KR100716224B1 (en) Two steps method for producing expandable polystyrene particles with high functional properties

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130110

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140109

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150123

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160122

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170109

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180122

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190129

Year of fee payment: 11