KR100882055B1 - 표면에 화학반응을 유도하는 초점전자빔에 의해 표면에재료를 에칭하기 위한 공정 - Google Patents

표면에 화학반응을 유도하는 초점전자빔에 의해 표면에재료를 에칭하기 위한 공정 Download PDF

Info

Publication number
KR100882055B1
KR100882055B1 KR1020030030936A KR20030030936A KR100882055B1 KR 100882055 B1 KR100882055 B1 KR 100882055B1 KR 1020030030936 A KR1020030030936 A KR 1020030030936A KR 20030030936 A KR20030030936 A KR 20030030936A KR 100882055 B1 KR100882055 B1 KR 100882055B1
Authority
KR
South Korea
Prior art keywords
electron beam
etching
chemical reaction
focal
molecular
Prior art date
Application number
KR1020030030936A
Other languages
English (en)
Other versions
KR20030089479A (ko
Inventor
독토르한스빌프리트피테르 코프스
독토르클라우스 에딘게르
Original Assignee
나우테크 게엠베하
유니버시티 오브 매릴랜드 오피스 오브 테크놀로지 코머셜리제이숀
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 나우테크 게엠베하, 유니버시티 오브 매릴랜드 오피스 오브 테크놀로지 코머셜리제이숀 filed Critical 나우테크 게엠베하
Priority to KR1020030030936A priority Critical patent/KR100882055B1/ko
Publication of KR20030089479A publication Critical patent/KR20030089479A/ko
Application granted granted Critical
Publication of KR100882055B1 publication Critical patent/KR100882055B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • H01L21/31122Etching inorganic layers by chemical means by dry-etching of layers not containing Si, e.g. PZT, Al2O3
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/72Repair or correction of mask defects
    • G03F1/74Repair or correction of mask defects by charged particle beam [CPB], e.g. focused ion beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • H01J37/3056Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching for microworking, e.g. etching of gratings, trimming of electrical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3174Etching microareas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

본 발명은 표면에 화학반응을 유도하는 초점전자빔에 의해 표면에 재료를 에칭하는 공정에 관한 것이다. 본 발명은 진공상태에서 적어도 하나의 분자(Molecules)빔, 적어도 하나의 포톤(Photons)빔과 적어도 하나의 전자빔으로 에칭된 재료를 조사(照射)하되, 상기 조사된 에칭재료와 분자빔의 분자가 상기 재료에 의한 예정된 화학반응으로 여기(勵起)되고, 상기 분자조성물이 생겨나 반응물을 형성하되 상기 반응물은 재료표면의 조사단계와 제거단계에서 제거되는 것을 특징으로 하는 화학반응을 유도하는 초점전자빔에 의해 표면에서 재료를 에칭하는 공정이다.
화학반응, 초점전자빔,분자(Molecules)빔, 포톤(Photons)빔, 에칭

Description

표면에 화학반응을 유도하는 초점전자빔에 의해 표면에 재료를 에칭하기 위한 공정{PROCEDURE FOR ETCHING OF MATERIALS AT THE SURFACE WITH FOCUSSED ELECTRON BEAM INDUCED CHEMICAL REACTIONS AT SAID SURFACE}
도1은 본 발명에 의한 마스크 수리시스템의 개략도이고,
도2는 본 발명에 의한 공정중에서 주요단계인 조사 및 제거단계의 개략도이고,
도3은 본 발명에 의한 전자, 광자 및 미세 빔의 타이밍도를 개략적으로 도시한 것이다.
「도면부호의 설명」
10 ... 마스크 수리 시스템 12 ... 분자빔시스템 / 가스공급시스템
14 ... 전자빔시스템 16 ... 포톤빔시스템/레이저빔시스템
18 ... 컴퓨터제어시스템 20 ... 액체 또는 고체 프리커서를 위한 저장탱크
22 ... 기체의 프리커서의 피딩 24 ... 압축된 공기의 피딩
26 ... 밸브제어 28 ... 압력게이지
30 ... 온도제어 32 ... 캔오픈버스
34 ... 피딩 36 ... 노즐
38 ... 다기관 노즐 40 ... 종국밸브
42 ... 전자빔유닛 44 ... 레이저전원공급기
46 ... 레이저유닛 48 ... 거울
50 ... 레이저빔 52 ... 수리된 마스크
54 ... 패러데이 케이지 56 ... 제2 전자검출기
58 ... 환경보호용 쳄버 59 ... 모터가 장착된 상자에서 제어되는 광학간섭계
60 ... 멀티젯 윈도우 62 ... 전자빔 윈도우
64 ... 제어윈도우 수리 66 ... 현미경 윈도우
68 ... 빔조절 컴퓨터 70 ... 빔조절
72 ... 트리거 74 ... 상자에서 제어되는 레이저광간섭계
76 ... 전자빔 변류기 코일과 빔 덮개
청구항1에 기재된 부분의 특징에 의하면 본 발명은 표면에 화학반응을 유도하는 초점전자빔을 가지고 표면에 재료를 에칭하는 공정에 관한 것이다. 개괄적으로 본 발명은 화학반응을 유도하는 초점전자빔과 그것을 응용한 재료공정에 관한 것이다. 특히 본 발명은 에칭을 유도하는 전자빔을 이용하여 고율의 공간분해능을 갖는 재료를 제거하는 것에 관한 것이다. 또한 본 발명은 광학마스크의 수리와 집적회로의 변경과 나노미터 크기에 관계하는 장치에 관한 것이다.
기재된 기술의 대부분은 초점입자 또는 포톤(Photon)빔에 기초하는 것으로 나노미터 크기의 재료를 변경함에 따라 발전된 것이다. 상기 기술의 실시 예들은 포토마스크의 수리와 집적회로의 변경을 포함하는 반도체 산업에 응용되고 있다. 대부분의 응용제품들에 있어서의 기술은 정확한 서브마이크로미터로 첨가제를 제거하는 것이다. 상기 첨가제는 특별한 화학적인 성질과 물리적인 성질을 갖는 몇몇 재료를 적층할 때에 필요한 것이다. 상기 첨가제의 제거는 잔존한 재료로 인한 새로운 손상이 없이 재료의 조합에서 선택적으로 하나의 재료를 제거하는 것을 요구하는 것이다.
다른 필요적 사항은 공정에서의 위치정밀도, 초소형 및 분해능 등이다. 상기 몇몇 필요적 사항은 다음 기재되는 본 발명의 실시예인 포토리토그래픽(Photolithographic)의 마스크 수리에서 설명된다.
본 발명의 목적을 위하여 포토빔 애블레이션(ablation), 화학적인 에칭을 유도한 포톤빔, 스퍼터링(sputtering) 이온빔과, 화학적인 에칭을 조력하는 이온빔이 반도체 생산공정에서 포토마스크에 이용되는 에칭재료로 이용되게 하는 것이다.
일반적으로 포토리토그래픽(photolithographic) 마스크는 유리, 석영 등과 같은 빛이 투과하는 기판으로 구성되며, 100nm 두께의 크롬메탈층의 구조를 가지고 있다. 상기 마스크 부분은 크롬과 같은 빛 흡수재료 - 흡수제 -를 이용하여 패턴이 형성된다. 상기 마스크는 웨이퍼 마스크상에 구비된 패턴을 프로젝트하는 반도 체 산업에 이용되며, 상기 웨이퍼는 포토레지스트와 같이 빛에 민감한 재료로 덮혀있다. 상기 마스크는 적어도 두가지 단점이 있어 수리가 요구된다.
1) 흡수가 되어야 할 부분에서 흡수제를 제외시켰을 때 - 클리어(Clear) 단점.
2) 흡수가 안 될 부분에서 흡수제가 사용될 때 - 불투명 단점.
현재, 일반적인 마스크 수리 툴(tools)은 레이저 빔 또는 초점이온 빔(FIB)에 기초한다. 상기 툴에 의한 화학적 및/또는 물리적 공정은 적층과 에칭이거나, 포토빔 애블레이션, 화학적인 에칭을 유도하는 포토빔, 이온빔 스퍼터링, 이온빔의 화학적인 반응조력에 의해 이용될 수 있는 공정이다.
이하, 초점레이저 빔에 의한 크롬과 같은 흡수제 재료를 제거하는 기술을 설명하기로 한다. 일반적으로 높은 에너지, 짧은 펄스 레이져빔이 이용된다. 상기 레이저빔과 재료 사이에서의 상호작용은 광열(Photothermal) 또는 광화학(Photochemical)이 될 수 있다. 마스크 수리동안 레이저 애블레이션이 이용되며, 상기 재료는 레이저 빔으로 부분 가열되어 증발된다. 또한, 화학반응을 유도하는 레이저 빔은 마스크 수리시에 이용되고, 상기 레이저 빔은 상기 재료와 탈착중에 증발하기 쉬운 염소(Chlorine)과 같은 적절한 가스와의 반응을 일으키는 에너지를 공급한다. 이와 관련하여 1999년의 11월/12월 p3137-p3143 17(6)에 기재된 일본진공과학기술(Japanese Vacuum Science Technology)에서 R. Haight, D.Hayden, P.Longo, T. Neary and A. Wagner의 "MARS : Femtosecond laser mask advanced repair system in manufacturing" 의 를 참조할 수 있고, 1983년 10월-12월 B1(4) J.Vac.Sci. Technol에 기재된 D.J.Ehrlich와 Y.Tsao, "A review of laser-microchemical processing"를 참조할 수 있다.
그러나, 공정에 기초한 모든 포톤(Photon)빔은 아베의 회절해상도법에 따라 제한된 해상도에 의한 영향을 받고 있고, 아베는 얻을 수 있는 해상도는 사용된 빛의 파장의 ca. 0.5배라고 말한바 있다.
이온빔스퍼터링은 10nm 해상도를 가는 공정에서 효과적이나, 몇몇 응용분야에서 좋지 않은 기판에서 손상이 발생한다. 화학적인 에칭을 조력하는 이온빔 또한 약 100nm의 낮은 해상도를 갖는 공정에서 효과적이나 몇몇 응용분야에서 좋지 않은 기판에서 손상이 발생한다. 두 공정은 포토마스크 수리시 불투명 단점의 에칭을 위해 적용된다.
차세대에 칩 생산을 위한 포토마스크의 해상도 증가와, 광학근접효과 또는 위상이동마스크와 같이 필요한 해상도를 얻기 위한 마스크 패턴의 부가적인 기술의 변경과 극자외선(EUV)-다층 마스크를 갖는 오늘날의 반도체산업은 레이저 애블레이션 및 적층의 방법이 개선될 뿐만 아니라 이온빔스퍼터링 및 화학적으로 조력되는 이온빔 에칭과 적층은 해상도의 떨어짐과 전송의 떨어짐을 원인으로 하는 단점은 더 이상 없을 것이다. 따라서, 비파괴적인 부드러움과 깨끗함을 갖는 화학적인 에칭방법은 포토마스크와 EUV와 같은 "차세대 마스크"에서 불투명 단점을 해결하고자 할 때 적용될 필요성이 있으며, 상기 EUV 마스크는 기판에 메탈이온을 이식하지 않아도 되고 이온 충격에 의해 구조적인 손상으로 기본 재료의 혼합을 하지 않아도 되는 차세대 마스크이다.
현재 초점전자빔은 부분적으로 부가된 흡수제에 의한 클리어(Clear) 단점을 수리하는데만 이용된다. 상기 초점전자빔의 실행은 전자빔을 갖는 선택된 부분적인 위치를 노출함으로 행해지는데, 상기 위치로 프리커서(Precursor) 가스의 흐름을 동시에 배출하게 된다. 이 때 상기 전자빔은 하이드로카본(Hydrocarbon), 무기물 또는 유기금속분자와 같은 프리커서 가스를 분해하고 상기 전자빔에 의해 스캔된 위치에서 적층 후, 끝마치게 된다. 재료의 제거는, 전자가 스퍼터, 기판의 전자, 기판의 원자, 초점이온빔 캔으로 충분한 힘에 의해 방사되지 않기 때문에 매우 어려운 작업이다. 현재 전자빔 에칭은 초점전자빔에 의한 활성화로 화학반응이 유도되는 몇몇 재료 시스템에서만 보여지고, 그 결과로 휘발성 제품이 생겨나고 재료의 제거가 이루어진다. 에칭을 유도하는 전자빔의 아주 적은 연구만을 보더라도 반응은 확실히 복잡한 과정의 단일 기초반응이 되고, 프리커서 가스 분자의 몇몇 흡수단계로 물리흡착 및/또는 화학흡착이 포함되는데, 상기 흡수단계는 프리커서 분자의 물리확산 또는 기판으로 분자의 조각확산, 상기 프리커서 분자와 기판의 원자 사이에 하나 또는 그이상의 반응, 반응물의 흡수로 이루어진다. 초점전자빔으로 노출된 위치에서의 에칭공정을 제한하고 상기 공정의 높은 공간해상도를 제공하기 위해 에칭공정이 자발적으로 발생하지 않아야 하고 반응과정에서 적어도 하나의 단계는 전자빔 노출에 의해 유도되어야 한다. 예컨대 에칭을 유도하는 전자빔이 플루오르크세논(XeF2)를 가지고 산화규소(SiO2)를 제거하는 것은 전자빔과 플루오르크세논(XeF2)분자에 동시에 노출된 부분에서 일어나는 에칭이다. 참고자료로서는 : Ted Liang, A. Stivers, G. Liu, G. Dao, V. Liberman, M. Rothschild, S.T. Palmacci and L. Scipioni, "Damage-free Mask Repair Using Electron Beam Induced Chemical Recations", 2nd Int'l. Symp. on 157nm Lithography, Dana Point, CA(MAY 2001)가 있다.
포토마스크 수리에서의 매우 높은 해상도 및 재료에칭의 정확도와 새로운 회로를 갖는 반도체산업에서의 회로 에디팅(Editing)공정과, 자외선 파장 하에서의 구조적인 마스크는 각 구조의 수리를 위해 이용되는 새로운 기술이다.
따라서 본 발명의 목적은 상술한 종래 기술을 극복하기 위하여 표면에 화학반응을 유도하는 초점전자빔을 이용하여 표면 재료 에칭의 개선된 공정을 제공하는 것으로서 보다 상세하게는 높은 공간해상도를 가지며 재료를 부분적으로 제거하는 것이다.
특히 본 발명의 목적은 메탈(Metal)과 절연층의 약 10nm 두께층을 때에 따라 믹싱없이 다층구조를 에칭하는 것이다.
본 발명의 목적은 상술한 특징과 접목한 청구항 1항으로 정의된 특징들에 의해 이루어진다.
본 발명은 근본적으로 전자의 초점빔, 분자빔 및 포톤빔의 조합이 높은 공간 해상도와 화학반응을 위해 요구되는 활성에너지를 제공하는 것이고, 제거된 반응물 형성하는 것으로 이해될 수 있다. 상기 반응은 노출된 위치 및 화학적으로 또는 물리적으로 상기 전자빔에 의해 변경된 부분에서만 일어난다.
본 발명의 공정은 아래와 같은 단계로 구성된다.
진공상태에서 적어도 하나의 분자(Molecules)빔, 적어도 하나의 포톤(Photons)빔과 적어도 하나의 전자빔으로 에칭된 재료를 조사(照射)하되, 상기 조사된 에칭재료와 분자빔의 분자가 상기 재료에 의한 예정된 화학반응으로 여기(勵起)되고, 상기 분자조성물이 생겨나 반응물을 형성하되 상기 반응물은 재료표면의 조사단계와 제거단계에서 제거된다.
특히, 상기 화학반응의 순서에는 에칭된 재료와 분자빔의 가스사이에서 적어도 하나의 원소 또는 전자빔에 의해 노출되어 선택적으로 유도된 물리적 반응을 포함한다. 부가하여 반응순서에서 적어도 하나의 원소로 반응하는 화학적반응 또는 물리적 반응은 상기 조사단계 및 제거단계에서 상기 반응물을 가져오는 화학반응을 유도하기 위한 에너지와 지속기간을 갖는 상기 포톤빔에 의해 유도되고 높혀진다.
한편, 상기 포톤빔에 의해 방사되는 에너지는 광열이며, 특히 레이져강도와 파장에 의해 조절되는 정량으로 부분적이고 임시로 에칭된 재료의 표면온도를 상승시킨다.
다른 한편으로, 상기 포톤빔에 의해 방사되는 에너지는 광화학반응을 일으키며, 특히 레이져빛의 파장은 재료 내에서 또는 이전의 전자빔의 노출에 의해 발생된 중간의 화학종류 내에서 동조하는 전자의 여기를 일으키는 파장으로 변환된다.
특히, 포토빔에 의해 유도된 기초적인 반응은 상기 포톤빔의 펄스 및 초점에 의해 표면으로부터 증발되며, 상기 포톤빔은 반응물의 기화온도 이상의 온도로 부분적으로 상기 재료를 가열한다.
상기 포톤빔은 적외선(IR)에서 가현 2000nm-250nm까지의 파장 또는 엑시머(eximer) 레이저와 같은 펄스레이저 시스템 또는 2000nm에서 157nm의 파장을 갖는 이온레이져를 가지는 반도체 다이오드 레이저와 같은 연속적인 레이저원(source)에 의해 방사된다.
상기 전자빔 조사단계 및 제거단계는 분자빔으로부터 반응분자를 흡수한 사이트(site)에서 밀집한 배치를 생성하기 위한 0.1-1000nm의 스폿(spot) 크기를 가지는 초점전자빔 시스템을 스캐닝하여 방사된다.
하나 또는 그이상의 가스로 구성된 상기 분자빔은, 화학량적인 조성물이 있는 가스피딩(feeding)시스템으로부터 조사단계 및 제거단계동안의 재료표면에까지 유출될 수 있다.
본 발명의 실시예에 따르면 상기 에칭된 재료의 초기 표면은 클린-클리닝(Cleaned-Cleaning)단계이다.
바람직하게는 상기 클리닝 단계는 표면층을 덮고있는 오염물질, 산화물, 기타물질을 제거하는 화화반응에 의해 구체화된다. 한편, 카본 오염물질에 의해 형성된 표면층을 덮고 있는 재료의 경우에, 부가 반응물을 형성하는 화학반응은, 상기 표면층의 카본과 반응하여 여기된 산소 및/또는 수소원자를 방출하는 물, 수소산화물(Hydrogenoxide), 염소(Chlorine), 기타 수소복합물을 포함하는 부가적인 분 자빔에 의해 일어난다.
부가하여 상기 클리닝단계는 가열에 의해 실현된 다음, 부가 반응물의 기화온도 이상의 온도로 표면을 가열하여 충분한 에너지 밀도의 초점포톤빔으로 클리닝되는 표면적을 증발시킨다.
본 발명의 구체적인 실시예에 따르면, 분자빔은 서로 다른 프리커서 가스를 포함한다.
바람직하게 상기 가스피딩시스템은 0,1에서 10000 monolayers/sec의 흐름비를 갖는 멀티젯 시스템에 의해 형성된다.
예컨대, 멀티젯 가스방출 시스템에 의해 방사된 상기 프리커서 가스들중에 적어도 하나는 분자들로 구성되며, 자연적으로 반응하지 않거나 포톤빔으로 노출되어야 하는 것이 아니라 상기 전자빔 노출에 의해 활성화된다.
상기 프리커서 가스는 할로겐을 포함하며, 상기 프리커서 가스는 해리적인 전자결합(Attachment)으로 알려진 공정에서 상기 전자빔에 노출될 때 상기 할로겐을 방출한다.
본 발명의 구체적인 실시예에 따르면, 상기 분자빔, 상기 포톤빔, 및 상기 전자빔은 동시에 또는 연이어서 방사되고, 다양한 노출범위에서 정의된 방사시간 및 지연지간을 갖으며 동기화되고 조절된다. 상기 연이어서 방사되는 빔의 경우에 상기 노출주기는, 목표 에칭깊이가 도달될 때까지 반복된다. 상기 반복루프 시간은 다음 노출시작 전 또는 주기동안에 정의된 전자빔 오프의 변화에 의해 정의된 시간지연을 생성하기 위해 필요한 것으로, 적정한 순서 내에 있는 근접노출 또는 다른 픽셀에 의해 조절된다.
상술한 것과 연계하여 다음의 가능성이 있다.
한편, 상기 분자빔 "A" 로 정의된 도우즈(dose)는, 전자빔의 노출에 의해 따라, 포톤빔 "B"의 정의된 도우즈(dose)에 따라 첫 번째로 방사된다.
다른 한편으로 상기 분자빔 "A" 로 정의된 도우즈(dose)는, 정의된 주기에서의 포톤빔의 펄스에 의해 따라 첫 번째로 방사되고, 포톤빔 "B"의 정의된 도우즈(dose)에 따라 강도와 파장이 방사된다.
본 발명의 실시예에 따르면 상기 에칭된 재료는 크롬(Chromium)이고, 이 때 상기 분자빔은 XeF2, C2l, Br2, 또는 I2 할로겐 빔과 같은 할로겐을 포함하고, 부가하여 상기 분자빔은 O2, H2O, H2O2 산소빔과 같은 산소를 포함하며, 상기 산소빔은 상기 할로겐빔에 부가되어 사용되며 상기 할로겐과 산소를 포함하는 빔은 동시에 방사된다. 또는 할로겐과 산소를 포함하는 빔이 연속적으로 방사된다면, 상기 분자빔 "A" 는 할로겐빔이고, 상기 분자빔 "B"는 산소빔이거나, 상기 분자빔 "A" 는 산소빔이고, 상기 분자빔 "B"는 할로겐빔이 된다.
요약하면, 본 발명은 초점전자빔을 이용하여 제거되기로 정의된 부분이고, 높은 공간의 해상도를 가지며 재료를 제거하는 방법을 기재한 것이다. 상기 재료는 기판 재료와 할로겐과 같은 적합한 프리커서 가스 사이의 반응에 의해 제거된다. 상기 반응은 표면으로부터 흡수하는 휘발성 복합물을 가져온다. 상기 초점전자빔과 레이저빔의 조합은 프리커서 분자의 흡수와 함께 시작되고 반응물의 탈리와 함께 종료되는 반응순서를 초기화하는데 이용된다.
상기 순차반응 내에서의 전자빔은 하나 또는 그 이상의 반응스텝을 유도하고 공정의 공간 해상도를 공급한다. 상기 레이저빔은 전자빔만으로 활성되지 않은 하나 또는 그 이상의 반응 스텝을 위해 필요한 활성 에너지를 방사한다. 그러나, 상기 레이저빔 유도반응은 전자빔에 의해 노출되고 활성되거나 고쳐지는 부분에서 면적을 발생한다.
본 발명의 부가적인 장점과 특징은 첨부되는 도면에서 보다 명백해 질 것이다. 도1은 알려진 분자빔의 방사시스템을 갖는 마스크 수리시스템(10)을 개략적으로 도시한 것으로, 본 발명의 공정을 위하여 가스공급시스템(12), 알려진 전자빔시스템(14), 알려진 포토빔시스템, 레이저빔시스템(16), 적합한 트리거 및 상기 빔(분자빔, 포톤빔 및 전자빔)들을 위한 컴퓨터제어시스템(18)이 도시된다.
상기 가스공급시스템(12)은 액체 또는 기체의 프리커서(-펠티어 냉각-), 가스의 피딩(22), 압축된 공기(24)의 피딩, 밸브컨트롤(26), 압력게이지(28) 및 저장탱그(20)을 위한 온도제어(30)를 위해 저장탱크(20)을 포함한다. 상기 밸브컨트롤(26), 가스게이지(28) 및 온도게이지는 캔오픈버스(32)를 통해 제어하기 위해 컴퓨터콘트롤시스템(18)에 연결되어 있다.
상기 저장탱크(20)는 노즐(36) 내지 노즐분기(38)을 갖는 피딩(34)를 통해 연결된다. 또한 상기 노즐(36)을 갖는 상기 피딩(34)은 노즐분기(38)에 연결된다. 상기 노즐분기(38)은 각 노즐의 종국밸브(40)을 가지고 있다. 상기 노즐(36)은 압축된 공기를 가지고 피딩(22,34) 내에서 밸브를 작동하기 위해 밸브컨트롤(26)과 연결된다.
전자빔시스템(14)는 전자빔유닛(42)를 포함한다.
상기 레이저빔시스템(16)은 레이저파우공급기(44)와 레이저유닛(46)과 트리거유닛(72)을 포함한다. 상기 레이저유닛은 수리된 마스크(52)상에서 레이저를 편향시키는 미러(48)와 함께 작동한다. 선택적으로 레이저빔은 도시되지는 않았지만 진공쳄버 내의 초점을 맞추는 렌즈시스템과 연결된 광학파이버시스템을 이용하여 마스크 상에 초점이 맞추어지고 직접 조사된다.
상기 전자빔제어유닛(42)은 전류측정, 2차 전자검출기(56)와 제어유닛(68,70)을 위해 페러데이케이지(Faradays Cage) 및 빔편향코일(76)과 빔덮개를 포함한다.
이하, 기술하는 상기 주위의 쳄버(58)는 본 발명에 따라 상기 공정이내에서 제공된다. 이 또한 전자빔시스템을 이용하여 달성될 수 있으며, 계측기 제조업자에 의해 제공되는 것과 같이 변화 가능한 압력 또는 주위의 진공압력제어시스템을 이용하여 높은 압력에서 샘플쳄버를 작동하는 것이 가능하다. 상기 시스템들은 전자빔의 작동으로 15 토르(torr) 이상 샘플쳄버의 압력을 올릴 수 있다. 상기 가스공급시스템(12), 상기 전자빔시스템(14) 및 레이저빔시스템(16)은 주위의 쳄버(58) 내에서 활성화된다. 모터가 장착된 상자에서 제어되는 광학간섭계는 마스크(52)의 위치에 제공된다.
상기 컴퓨터제어시스템(18)은 마스크 수리시스템(10)의 제어를 위해 4개의 윈도우즉 멀티젯 윈도우(60), 전자빔윈도우(62), 수리제어윈도우(64) 및 현미경윈도우(66)을 포함한다. 부가하여 빔제어컴퓨터(68)은 전자빔유닛(42)을 제어하기 위해 제공된다. 그러므로 전자빔컴퓨터 유닛(60)은 전류측정을 위해 페러데이케이지와 연결되고, 빔제어(70)는 알려진 기술에 있는 전자빔유닛(42)과 연결된다.
한편 종속기술로 트리거(72)가 제공되고 상기 트리거는 빔제어(70) 레이저 전원공급기(44)와 연결된다.
부가하여 레이저 광학간섭계의 상자 제어유닛(74)은 상자(59) 및 컴퓨터제어시스템(18)과 연결된다.
이하, 마스크 수리시스템의 공정을 기술하기로 한다.
높은 해상도 스캐닝 빔 시스템의 전자빔이 사용되고, 장기간 안정한 전자원에서 가장 밝은 것과 열필드(thermal field)의 복사 캐소드를 사용한다. 발전된 전자광학시스템은 100전자볼트(eV)에서 40전자볼트(eV) 또는 200전자볼트(eV) 에너지를 갖는 2나노미터 (nm) 지름의 스폿 전자빔의 초점 맞추는 것을 허용한다. 상기 빔의 교차 내에서 전자의 분배는 낮은 렌즈의 수차와 전자원의 낮은 전자폭과 특별한 빔 경로로 인해 매우 명확하게 정의되고, 몇몇 경우에 있어서는 교차(쿨롱의 전자상호작용에 의해 빔의 에너지폭)가 있지 않다.
전자빔시스템 법칙에서는 각 차수 크기에 의한 이온빔 또는 포토빔시스템 보다 해상도와 전원밀도에 의해 낳은 성능을 얻는다.
전자빔은 차수 크기에 의해 전원밀도에서 이온빔보다 우월하지만, 원자소재 에 낮은 모멘텀(momentum)으로 전자를 이동하여야 하므로 많은 수의 전자가 같은 활성영역에서의 이온보다 많이 필요하다. 일반적으로 비교하면 전자가 50내지 200배 더 필요하다. 이러한 결과는 느린 이온의 단면에 보다 많은 스캐터링을 하여야 하며, 전자보다 느린 이온의 질량수의 제곱근의 48배가 되므로 원자를 가지고 상호작용을 하는데 더 낫다. 또한 공정에서 충돌을 위한 쿨롱의 상호작용은 이온의 핵전하 요소에 의해 강해진다. 그러나, 상기 이온의 충돌은 공정에서 충돌에 대한 일련의 반응을 발생하고 상기 공정에서는 샘플의 깊이로 이온의 모멘텀을 전하는데, 이것은 재료를 손상시킨다. 상기 이온은 샘플 표면의 근접한 낮은 지역에 이식되어 불순물과 같이 움직이고 157나노미터(nm) 깊이에서 자외선 포톤을 흡수한다. 클리어와 비파괴적인 방법은 고체, 액체 또는 가스의 복합물로 형성된 기판금속을 가지고 반응하여 흡수된 화학물을 활성화하는 화학물의 흡수를 이용한다. 그리고 액체 또는 고체의 반응의 경우에는 양질의 초점과 높은 파워를 갖는 레이저 펄스를 가지고 표면의 분자들을 없애는 동작을 발생하게 하게 하며, 상기 레이져 펄스는 승화점보다 높게 표면을 가열하거나 화학복합물의 증발점보다 높게 가열한다.
본 발명에 의한 공정은 DE100 42 098 A1 및 WO 02/19575 A1에 기재된 바와 같은 높은 가스 플럭스(FLUX) 스위칭 능력을 갖는 가스 공급시스템(12)를 이용한다. 상기 특허들은 본 발명과 연관된 응용분야의 일부분을 포함하고 있다. 상기 가스 공급시스템(12)은 재료표면에 프리커서의 한 개층의 적층을 가능하게 한다. 스캐닝 전자 현미경 또는 리토그래피 시스템과 같이 스캐닝 전자빔 시스템은 정의 된 운휴시간과 전류밀도를 가지고 재료표면에 패턴을 하게된다.
부연적으로 나노리토그래피(Nanolithography) 공정은 H.W.P Koops, J. Kretz, M. Rodolph, M. Weber, G. Dahm, 그리고, K. Lee의 논문 "Characterization and application of materials grown by electron beam induced deposition" Jpn. J. Appl. Phys Vol. 33(1994) 7099-7107 에 상세하게 기재되어 있다. 상기 논문은 본 발명과 연관된 응용분야의 일부분을 포함하고 있다.
상기 전자빔은 분자의 반응, 예를 들면 대상 재료에 할로겐의 흡수를 효율적으로 하게 한다. 그리고 상기 전자빔은, 화학적인 흡수 또는 변화가 전자빔이 노출되지 않는 영역에서 일어나지 않게 하는 반면에, 전자빔 유도 활성하에서 몇몇 방법으로 화학복합물의 변화를 일으킨다.
부분적인 전자빔 노출의 효과의 몇몇 경우에 노출된 부분이 레이저빔에 의해 선택적으로 유도되었을 때, 화학적으로 활성된 영역에 있게 된다. 예를 들면 포토열 또는 포토화학적인 활성에 의한 것으로, 도2에 도시된 바와 같이, 상기 면적이 대상재료 에칭공정의 원인이 되는 부가적인 반응이 될 것이다.
활성화 에너지를 제공하고 전자빔에 의해 노출되지 않는 면적에서 기대하지 않은 반응을 방지하기 위해 레이저파장과 빛 밀도는 전자빔 변경 면적에서 선택적으로 일으켜지는 반응이 조절되는 것이 필요하다. 상기 레이저 빛은 전체 공정동안 또는 전자빔 노출 주기 끝부분의 후에 적용된다.
본 발명에 의한 공정의 새로운 특징은 레이저 포토 빔의 펄스에 적합한 커플링(coupling)으로 먼저 기판 표면과 흡수된 화학물의 화학적인 반응을 촉진시키는 것을 스위칭하거나 이후 전자빔 반응 유도반응을 일으키는 것이다. 상기 연동은 특별한 트리거 및 샘플 빛의 레이저 펄스 방출을 필요로 한다.
여기에서 "레이어 에칭에 의한 레이어" 구조는 전자빔이 스캔되거나 표면에 있는 하나 또는 여러 개의 모노레이어(Monolayer)의 화학적인 변화를 일으키는 것이 충분할 만큼의 긴 면적을 교차하여 래스터(Rastered)되는 구조이다. 짧은 레이저 펄스는 선택적으로 변경된 레이어를 열 또는 광화학적으로 탈리하는데, 이것은 분자의 전자적 여기를 원인으로 레이저 유도의 열 탈리로서 본 분야에서 알려져 있으며, 상기 분자는 변경된 레이어 내에만 있다. 도3에 도시된 바와 같이 전자빔 노출의 주기 및 레이저 펄스는 상기 재료가 목표하는 깊이까지 제거될 때까지 반복된다.
표1에는 본 발명에서 이용된 가능한 경우와 동작이 목록으로 되어 있다. 본 발명이 추구하고자 하는 방향대로 크롬의 에칭을 이용하는 것이 기재되고 포토리토그래픽 마스상에서 일반적으로 흡수제를 이용하는 것이 기재되었다. 그러나 본 발명의 본질과 기재된 각 단계의 순서 및 이용된 화학물을 포함하여 기재된 공정은 본 발명의 목적일 뿐, 본 발명의 기술적 사상을 제한하지는 않는다.
에칭공정 시작 이전에 상기 크롬의 표면에 짧은 레이저 펄스로 표면을 가열하는 것을 적용하여 클리어(Clear) 되게 한다. 선택적으로 또는 적합한 가스와 레이저 펄스를 조합하여, 예를 들면 수증기와 전자빔을 조합하여 구조적으로 오염시키는 것으로부터 표면을 깨끗하게 한다.
에칭주기의 첫 번째 단계는 상기 표면이 할로겐 또는 산소 또는 수증기의 조 합물과 같은 적합한 프리커서 가스에 노출되는 단계이다. 예를 들어 염소(Cl2)와 산소(O2)와 같이 하나 이상의 가스가 필요하다면 상기 가스는 동시에 방사되거나 정확하게 제어된 순서와 시간 동안에 분리되서 방사된다.
두 번째 단계는 제거된 면적이 전자빔에 노출되며 상기 전자빔은 흡수된 프리커서가스와 크롬기판사이에 반응을 일으킨다.
선택적으로 제1단계에서 할로겐 방사대신에 플로오르(fluoro) 또는 클로로카본(chlorocarbon)과 같이 반응하지 않는 가스가 이용될 수 있다. 상기 복합물은 할로겐에 의해 방출되는 해리적인 전자첨가제로써 공정에서 전자빔 노출하에 분해되는 것으로 알려져 있다.
상기 공정은 전자에 의해 선택적으로 유도되기 때문에 전자빔에 의해 노출된 면적에 있는 대상 재료에 있는 방출된 할로겐의 흡수를 달성할 수 있다.
세 번째 단계는 비휘발성 크롬옥시클로라이드(chromiumoxychloride)와 같이 반응물이 레이저 빔에 의해 표면이 가열되어 흡수되는 것이다. 몇몇 에칭 화학분야에서 레이저빔은, 부분적으로 전체 공정이 반응물의 흡수온도이상으로 온도가 올라가는 동안 적용되는 것이다. 그러나, 전자빔의 노출 주기 끝부분에 짧은 레이저 펄스를 적용하는 것이 선행된다.
여기에서 "레이어 에칭에 의한 레이어" 구조는 전자빔이 스캔되거나 표면에 있는 하나 또는 여러개의 모노레이어(Monolayer)의 화학적인 변화를 일으키는 것이 충분할 만큼의 긴 면적을 교차하여 래스터(Rastered)되는 구조이다. 짧은 레이저 펄스는 선택적으로 변경된 레이어를 열 또는 광화학적으로 탈리하는데, 이것은 분자의 전자적 여기를 원인으로 레이저 유도의 열 탈리로서 본 분야에서 알려져 있으며, 상기 분자는 변경된 레이어 내에만 있다. 상기 전자빔 노출의 주기 및 레이저 펄스는 상기 재료가 목표하는 깊이까지 제거될 때까지 반복된다. 상기 프리커서 가스흡수의 주기, 전자빔노출과 레이저 펄스는 상기 재료가 목표하는 깊이까지 제거될 때까지 반복된다.
에칭의 끝점이 화학적으로 결정되는데, 석영기판이 아닌 메탈(metal)을 에칭하는데 화학적인 선택이 있다. 이 경우 석영표면에 이르기 전에 재료의 제거가 정지된다. 상기 끝점은 제2 전자를 변화하는 것에서 검출되고 에칭 부분에 스캐터(scattered)된 전자가 후퇴된다. 선택적으로 에칭 공정동안에 탈리된 모노 레이어재료가 질량분광계로 모니터되는 것은 탈리와 증발이 지정된 시간동안 일어나기 때문이다.
에칭공정의 끝점의 검출은 기판과 화학반응물로부터 분광학적으로 평가될 수 있으며 상기 기판과 화학반응물은 전자 및/또는 유도된 레이저빔의 발광에 의해 발생된다.
에칭공정의 구조적인 단계
작용 결과
샘플을 가열하기 위한 포톤빔 적외선-가시선 샘플 클리닝 흡수의 탈리
전자빔 100eV에서 200eV 흡수사이트를 여기하기 위한 국소스캔 화학적인 흡수사이트의 발생
1에서 1000 monolayer/sec의 멀티젯 가스 혼합 에칭가스의 화학조성물을 위한 가스 또는 프리커서 혼합 재작용 파트너와 일시적인 반응의 흡수
전자빔 100eV-200eV 프리커서의 작용과 화학적인 에칭반응 고체, 액체, 기체 복합물의 화화적 에칭
포톤빔 자외선-적외선 전자빔을 갖는 트리거된 펄스의 높은 파워 레이저 화학적 에칭물의 증발
다른 전자빔의 트리거 작용의 반복 표면의 멀티레이어 제거에 의한 멀티레이어

요약하면, 본 발명은 전자빔 노출이 모든 반응순서를 유도하는데 충분하지 않은 경우에 재료의 에칭을 하고자 하는데 목적이 있다. 부가하여 상기 경우에서는 하나 또는 그 이상의 기초적인 반응 단계를 가정하여야 하고 상기 반응은 전자빔 노출에 의해 작용되어야 하고 하나 또는 그 이상의 반응은 반응실 온도에서 충분한 비율로 진행되지 않는다. 상기 경우에서 포톤빔은 바람직하게 레이저 원으로부터 부가적인 작용 에너지를 제공하는데 이용된다. 상기 광자와 재료사이에서 상호작용은 광열될 수 있는데, 예를 들면 기판의 지역적 가열 또는 광화학이 있고, 다른 예로 포톤빔이 상호반응물을 작용하는 공명하는 전자전이를 유도하는 것을 들 수 있다.
초점 전자빔 쓰기에 의해 제공되는 필요한 공간상의 해상도를 유지하기 위해 반응순서에 적어도 한 단계는 전자빔에 의해 작용되어야 한다. 전자빔 노출의 효과는 노출된 부분이 화학적으로 활성된 상태가 될 것이고, 선택적으로 레이저빔에 의해 유도된 면적은 대상재료의 에칭공정을 일으켜 부가적으로 변화된다. 활성화 에너지를 제공하고 전자빔에 의해 노출되지 않는 부분에서 기대하지 않은 반응을 방지하기 위해 레이저파장과 빛 밀도는 전자빔 변경 면적에서만 선택적으로 일으켜지는 반응으로 제어되는 것이 필요하다.
상기 에칭공정이 포함된 여러 단계들은 상술한 표1에 기술된다.
이와 같이 본 발명에 의한 표면에 화학반응을 유도하는 초점전자빔에 의해 표면에 재료를 에칭하기 위한 공정에 의하면 도3에 도시된 바와 같이 전자빔과 포톤빔의 노출 및 하나 또는 그 이상의 분자빔의 노출은 동시 또는 서로 다른 노출에서의 정의된 노출시간 및 지연시간를 갖는 제어된 순서로 될 수 있다. 이러한 본 발명의 유연함은 에칭된 재료의 정밀한 요구 및 프리커서의 화학제로 공정을 용이하게 만들 수 있는 것을 허용한다.

Claims (26)

  1. 진공상태에서 적어도 하나의 분자(Molecules)빔, 적어도 하나의 포톤(Photons)빔과 적어도 하나의 전자빔으로 에칭된 재료를 조사(irradiated)하되, 상기 조사된 에칭재료와 분자빔의 분자가 상기 재료에 의한 예정된 화학반응으로 여기(excited)되고, 상기 분자조성물이 생겨나 반응물을 형성하되 상기 반응물은 재료표면의 조사단계와 제거단계에서 제거되는 것을 특징으로 하는 화학반응을 유도하는 초점전자빔에 의해 표면에서 재료를 에칭하기 위한 공정.
  2. 제1항에 있어서,
    상기 화학반응은 에칭된 재료와 분자빔의 가스사이에서 적어도 하나의 화학요소 또는 전자빔 노출에 의해 선택적으로 유도된 물리적 반응으로 구성되는 것을 특징으로 하는 화학반응을 유도하는 초점전자빔에 의해 표면에서 재료를 에칭하기 위한 공정.
  3. 제1항 또는 제2항에 있어서,
    상기 반응물은 상기 포톤빔의 펄스 및 초점에 의해 표면으로부터 증발되며, 상기 포톤빔의 펄스 및 초점은 반응물의 기화온도 이상의 온도로 부분적으로 상기 재료를 가열하고 상기 포톤빔은 광화학반응을 생성하는 것을 특징으로 하는 화학반응을 유도하는 초점전자빔에 의해 표면에서 재료를 에칭하기 위한 공정.
  4. 제3항에 있어서,
    상기 에칭된 재료의 초기 표면은 클린-클리닝(Cleaned-Cleaning)단계인 것을 특징으로 하는 화학반응을 유도하는 초점전자빔에 의해 표면에서 재료를 에칭하기 위한 공정.
  5. 제4항에 있어서,
    상기 클리닝 단계는 표면층을 덮고있는 오염물질, 산화물, 기타물질을 제거하는 화화반응에 의해 실현되는 것을 특징으로 하는 화학반응을 유도하는 초점전자빔에 의해 표면에서 재료를 에칭하기 위한 공정.
  6. 제5항에 있어서,
    카본 오염물질에 의해 형성된 표면층을 덮고 있는 재료의 경우에, 부가 반응물을 형성하는 화학반응은, 상기 표면층의 카본과 반응하여 여기된 수소원자를 방출하는 물, 수소산화물(Hydrogenoxide), 염소(Chlorine), 기타 할로겐복합물을 포함하는 부가적인 분자빔에 의해 일어나는 것을 특징으로 하는 화학반응을 유도하는 초점전자빔에 의해 표면에서 재료를 에칭하기 위한 공정.
  7. 제4항에 있어서,
    상기 클리닝단계는 가열에 의해 실현된 다음, 부가 반응물의 기화온도 이상의 온도로 표면을 가열하여 충분한 에너지 밀도의 부가적인 초점포톤빔으로 클리닝되는 표면적을 증발시키는 것을 특징으로 하는 화학반응을 유도하는 초점전자빔에 의해 표면에서 재료를 에칭하기 위한 공정.
  8. 제1항에 있어서,
    상기 전자빔 조사단계 및 제거단계는 분자빔으로부터 반응분자를 흡수한 사이트(site)에서 밀집한 배치를 생성하기 위한 0.1-100nm의 스폿(spot) 크기를 가지는 초점전자빔 시스템을 스캐닝하여 방사되는 것을 특징으로 하는 화학반응을 유도하는 초점전자빔에 의해 표면에서 재료를 에칭하기 위한 공정.
  9. 제8항에 있어서,
    상기 분자빔은, 가스피딩(feeding)시스템에서 조사단계 및 제거단계동안의 재료표면에까지 유출된 화학량적인 조성물에서 선택된 화학복합물로 구성되는 것을 특징으로 하는 화학반응을 유도하는 초점전자빔에 의해 표면에서 재료를 에칭하기 위한 공정.
  10. 제8항에 있어서,
    상기 분자빔의 가스는, 상기 조사단계 및 제거단계에서 상기 반응물을 가져오는 화학반응을 유도하기 위한 명세화된 에너지와 지속기간을 갖는 상기 포톤빔에 의해 여기되는 것을 특징으로 하는 화학반응을 유도하는 초점전자빔에 의해 표면에서 재료를 에칭하기 위한 공정.
  11. 제1항에 있어서,
    상기 포톤빔은 적외선(IR)에서 가현 2000nm-250nm까지의 파장 또는 엑시머(eximer) 레이저와 같은 펄스레이저 시스템 또는 2000nm에서 157nm의 파장을 갖는 이온레이져를 가지는 반도체 다이오드 레이저와 같은 연속적인 레이저원(source)에 의해 방사되는 것을 특징으로 하는 화학반응을 유도하는 초점전자빔에 의해 표면에서 재료를 에칭하기 위한 공정.
  12. 제11항에 있어서,
    상기 포톤빔에 의해 방사되는 에너지는 광열(Photo thermal)이며, 레이져강도와 파장에 의해 조절되는 정량에 의해 부분적이고 임시로 에칭된 재료의 표면온도를 상승시키는 광열인 것을 특징으로 하는 화학반응을 유도하는 초점전자빔에 의해 표면에서 재료를 에칭하기 위한 공정.
  13. 제11항 또는 제12항에 있어서,
    상기 포톤빔에 의해 방사되는 에너지는 광화학반응을 일으키며, 레이져빛의 파장이 재료 내에서 또는 이전의 전자빔의 노출에 의해 발생된 중간의 화학종류 내에서 동조하여 전자의 여기를 일으키는 파장으로 변환됨에 의해 광화학반응을 일으키는 것을 특징으로 하는 화학반응을 유도하는 초점전자빔에 의해 표면에서 재료를 에칭하기 위한 공정.
  14. 제9항에 있어서,
    상기 분자빔은 다른 프리커서 가스를 포함하는 것을 특징으로 하는 화학반응을 유도하는 초점전자빔에 의해 표면에서 재료를 에칭하기 위한 공정.
  15. 제9항에 있어서,
    상기 가스피딩시스템은 0,1에서 10000 monolayers/sec 의 흐름비를 갖는 멀티젯시스템에 의해 형성되는 것을 특징으로 하는 화학반응을 유도하는 초점전자빔에 의해 표면에서 재료를 에칭하기 위한 공정.
  16. 제14항 또는 제15항에 있어서,
    멀티젯 가스방출 시스템에 의해 방사된 상기 프리커서 가스들중에 적어도 하나는 분자들로 구성되며, 자연적으로 반응하지 않거나 포톤빔으로 노출되어야 하는 것이 아니라 상기 전자빔 노출에 의해 활성화되는 것을 특징으로 하는 화학반응을 유도하는 초점전자빔에 의해 표면에서 재료를 에칭하기 위한 공정.
  17. 제16항에 있어서,
    상기 프리커서 가스는 할로겐을 포함하며, 상기 프리커서 가스는 해리적인 전자결합(Attachment)으로 알려진 공정에서 상기 전자빔에 노출될 때 상기 할로겐 을 방출하는 것을 특징으로 하는 화학반응을 유도하는 초점전자빔에 의해 표면에서 재료를 에칭하기 위한 공정.
  18. 제1항에 있어서,
    상기 분자빔, 상기 포톤빔, 및 상기 전자빔은 동시에 방사되는 것을 특징으로 하는 화학반응을 유도하는 초점전자빔에 의해 표면에서 재료를 에칭하기 위한 공정.
  19. 제18항에 있어서,
    상기 분자빔, 상기 포톤빔, 및 상기 전자빔은, 다양한 노출범위에서 정의된 방사시간 및 지연지간을 갖으며 동기화되고 조절되는 형태 내에서 연이어서 방사되는 것을 특징으로 하는 화학반응을 유도하는 초점전자빔에 의해 표면에서 재료를 에칭하기 위한 공정.
  20. 제19항에 있어서,
    노출주기가, 목표 에칭깊이가 도달될 때까지 반복되는 것을 특징으로 하는 화학반응을 유도하는 초점전자빔에 의해 표면에서 재료를 에칭하기 위한 공정.
  21. 제19항 또는 제20항에 있어서,
    상기 분자빔 "A" 로 정의된 도우즈(dose)는, 정의된 주기에서의 전자빔의 노출에 의해 따라, 포톤빔 "B"의 정의된 도우즈(dose)에 따라 첫 번째로 방사되는 것을 특징으로 하는 화학반응을 유도하는 초점전자빔에 의해 표면에서 재료를 에칭하기 위한 공정.
  22. 제19항 또는 제20항에 있어서,
    상기 분자빔 "A" 로 정의된 도우즈(dose)는, 정의된 주기에서의 포톤빔의 펄스에 의해 따라 첫 번째로 방사되고, 포톤빔 "B"의 정의된 도우즈(dose)에 따라 강도와 파장이 방사되는 것을 특징으로 하는 화학반응을 유도하는 초점전자빔에 의해 표면에서 재료를 에칭하기 위한 공정.
  23. 제1항에 있어서,
    상기 에칭된 재료는 크롬이고, 상기 분자빔은 XeF2, C2l, Br2, 또는 I2 과 같은 할로겐 빔을 포함하는 것을 특징으로 하는 화학반응을 유도하는 초점전자빔에 의해 표면에서 재료를 에칭하기 위한 공정.
  24. 제23항에 있어서,
    상기 분자빔은 O2, H2O, H2O2 산소빔과 같은 산소를 포함하며, 상기 산소빔은 상기 할로겐빔에 부가되어 사용되어 사용되는 것을 특징으로 하는 화학반응을 유도 하는 초점전자빔에 의해 표면에서 재료를 에칭하기 위한 공정.
  25. 제24항에 있어서,
    상기 할로겐과 산소를 포함하는 빔은 동시에 방사되는 것을 특징으로 하는 화학반응을 유도하는 초점전자빔에 의해 표면에서 재료를 에칭하기 위한 공정.
  26. 제19항에 있어서,
    상기 분자빔 "A" 는 할로겐빔이고, 상기 분자빔 "B"는 산소빔이거나, 상기 분자빔 "A" 는 산소빔이고, 상기 분자빔 "B"는 할로겐빔인 것을 특징으로 하는 화학반응을 유도하는 초점전자빔에 의해 표면에서 재료를 에칭하기 위한 공정.
KR1020030030936A 2002-05-16 2003-05-15 표면에 화학반응을 유도하는 초점전자빔에 의해 표면에재료를 에칭하기 위한 공정 KR100882055B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030030936A KR100882055B1 (ko) 2002-05-16 2003-05-15 표면에 화학반응을 유도하는 초점전자빔에 의해 표면에재료를 에칭하기 위한 공정

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EM02010233.1 2002-05-16
EU02010233.1 2002-05-16
KR1020030030936A KR100882055B1 (ko) 2002-05-16 2003-05-15 표면에 화학반응을 유도하는 초점전자빔에 의해 표면에재료를 에칭하기 위한 공정

Publications (2)

Publication Number Publication Date
KR20030089479A KR20030089479A (ko) 2003-11-21
KR100882055B1 true KR100882055B1 (ko) 2009-02-09

Family

ID=41346342

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030030936A KR100882055B1 (ko) 2002-05-16 2003-05-15 표면에 화학반응을 유도하는 초점전자빔에 의해 표면에재료를 에칭하기 위한 공정

Country Status (1)

Country Link
KR (1) KR100882055B1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276521A (ja) * 1985-09-27 1987-04-08 Nec Corp 電子ビ−ムエツチング方法
JPH02205682A (ja) * 1989-02-02 1990-08-15 Mitsubishi Electric Corp 荷電ビーム式加工装置
JPH0817704A (ja) * 1994-06-27 1996-01-19 Ryoden Semiconductor Syst Eng Kk パターン描画方法およびパターン描画装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276521A (ja) * 1985-09-27 1987-04-08 Nec Corp 電子ビ−ムエツチング方法
JPH02205682A (ja) * 1989-02-02 1990-08-15 Mitsubishi Electric Corp 荷電ビーム式加工装置
JPH0817704A (ja) * 1994-06-27 1996-01-19 Ryoden Semiconductor Syst Eng Kk パターン描画方法およびパターン描画装置

Also Published As

Publication number Publication date
KR20030089479A (ko) 2003-11-21

Similar Documents

Publication Publication Date Title
US7537708B2 (en) Procedure for etching of materials at the surface with focussed electron beam induced chemical reactions at said surface
US7452477B2 (en) Procedure for etching of materials at the surface with focussed electron beam induced chemical reaction at said surface
EP1710327B1 (en) Method of beam-induced selective etching of a material from a quartz substrate
US6753538B2 (en) Electron beam processing
EP1829088B1 (en) Lift-off patterning processes employing energetically-stimulated local removal of solid-condensed-gas layers
KR20140110747A (ko) 입자 빔에 의한 처리 동안 기판을 보호하는 방법 및 장치
EP1664924B1 (en) Method for high-resolution etching of thin layers with electron beams
KR100882055B1 (ko) 표면에 화학반응을 유도하는 초점전자빔에 의해 표면에재료를 에칭하기 위한 공정
US20230350301A1 (en) Method and apparatus for forming a patterned layer of material
Kohlmann‐von Platen et al. Electron‐beam induced etching of resist with water vapor as the etching medium
JP2666734B2 (ja) 無機レジスト描画装置及び描画方法
CN116057468A (zh) 用于蚀刻光刻掩模的方法与设备

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130118

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140116

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150115

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160121

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170120

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180118

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190118

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20200116

Year of fee payment: 12