KR100875988B1 - 발광 다이오드의 p형 반도체층의 패터닝 방법 - Google Patents

발광 다이오드의 p형 반도체층의 패터닝 방법 Download PDF

Info

Publication number
KR100875988B1
KR100875988B1 KR20070063283A KR20070063283A KR100875988B1 KR 100875988 B1 KR100875988 B1 KR 100875988B1 KR 20070063283 A KR20070063283 A KR 20070063283A KR 20070063283 A KR20070063283 A KR 20070063283A KR 100875988 B1 KR100875988 B1 KR 100875988B1
Authority
KR
South Korea
Prior art keywords
etching
nanospheres
layer
type semiconductor
semiconductor layer
Prior art date
Application number
KR20070063283A
Other languages
English (en)
Inventor
이헌
변경재
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR20070063283A priority Critical patent/KR100875988B1/ko
Application granted granted Critical
Publication of KR100875988B1 publication Critical patent/KR100875988B1/ko

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

질화물계 발광 다이오드의 p형 반도체층을 패터닝 하는 방법이 개시된다. 본 발명에 따른 방법은 기존의 광학 리소그래피 공정을 대체하는 나노스피어 리소그래피 및 나노 임프린트 공정을 사용하는 것을 특징으로 한다. 이로써 본 발명에 따르면 용이하게 저비용으로 발광 다이오드의 p형 반도체층을 패터닝하여 발광 효율을 높일 수 있다.
발광 다이오드, 나노스피어 리소그래피, 나노 임프린트

Description

발광 다이오드의 p형 반도체층의 패터닝 방법{Method for Patterning P Type Semiconductor Layer in Light Emitting Diode}
도 1은 종래의 발광 다이오드의 단면도.
도 2a 내지 도2g는 본 발명의 제1 실시예에 따른 GaN계 LED의 p형 GaN층을 패터닝 하는 방법을 나타내는 도면.
도 3a 내지 도3k는 본 발명의 제2 실시예에 따른 GaN계 LED의 p형 GaN층을 패터닝 하는 방법을 나타내는 도면.
도 4a 내지 도4k는 본 발명의 제3 실시예에 따른 GaN계 LED의 p형 GaN층을 패터닝 하는 방법을 나타내는 도면.
<도면의 주요 부분에 대한 부호의 설명>
210, 310, 410: 기판 220, 320, 420: n형 GaN층
230, 330, 430: 활성층 240, 340, 450: p형 GaN층
250, 360, 460: 나노스피어 260, 380, 480: 금속층
350: 열 경화성 수지 450: UV 경화용 수지
본 발명은 발광 다이오드(Light Emitting Diode: LED)에 관한 것으로, 보다 상세하게는 발광 효율을 증대시키기 위하여 질화물계 LED의 p형 GaN층을 패터닝하는 방법에 관한 것이다.
LED는 저항체의 가열에 의해 빛을 발산하는 형광등이나 백열등과는 달리 전자가 가지고 있던 에너지가 빛으로 변환되는 것이다. 또한, LED는 아주 넓은 파장 대역의 빛이 동시에 방출되는 형광등이나 백열등과는 달리 좁은 파장 영역에서 빛을 방출하게 된다.
LED는 p형 반도체층과 n형 반도체층을 접합한 pn 접합 다이오드로서 전도대와 가전대의 갭만큼의 전기 에너지가 빛의 에너지가 변환되는 원리를 이용한 발광소자이다. 즉, pn 접합 다이오드에 정방향의 전압을 일정 이상 인가하면 p형 반도체의 정공은 n형 반도체 쪽으로, n형 반도체의 전자는 p형 반도체 쪽으로 이동하면서 전자와 정공이 재결합하여 전도대와 가전대의 갭에 해당하는 빛 에너지가 발산하게 되는 것이다.
도 1은 종래의 LED 구성을 나타내는 도면이다.
도시된 바와 같이, 일반적으로 GaN계 LED는 기판(1) 상에 버퍼층(2), n형 GaN층(3), 활성층(4) 및 p형 GaN층(5)이 순차적으로 적층되어 있고, n형 GaN(3)층 및 p형 GaN층(5) 상에는 전극층(6, 7)이 각각 형성되어 있는 구조를 가지고 있다.
LED 중에서 GaN(gallium nitride) 계열의 LED는 녹색광에서 청색광 및 근자외선 영역의 파장대의 발광소자를 제조할 수 있는 장점을 가지고 있다. 또한, 기존에 널리 사용된 GaAs보다 에너지 갭이 크고 포화 전자속도가 높아 소자의 동작 속도나 열적 안전성에서 우수한 특성을 가지며 화학적 안정성도 뛰어나다.
따라서, 질화물계 LED는 디스플레이, 교통 신호등, 휴대폰, 백라이트 등 다양한 분야에 응용되고 있으며, 궁극적으로는 기존의 형광등, 백열전구 등을 대신할 조명용 장치로 이용 가능하므로 그 수요는 크게 늘어날 것으로 기대되고 있다.
그러나, 종래의 GaN계 LED는 발광 효율이 매우 낮아 휘도가 떨어지는 문제점이 있다. 즉, LED의 p형 GaN층 또는 전극과 외부 매질간의 굴절률의 차이로 인하여 이들 계면에서 광의 전반사 현상이 발생하게 되고, 그 결과 발광 효율이 낮아지게 된다. 아울러, 발광 효율의 저하는 LED로부터 열 발생이 커지는 문제점을 야기한다.
이러한 문제점을 해결하기 위하여, GaN계 LED의 투명전극 또는 p형 GaN층을 패터닝하여 광의 입사각을 줄여줌으로써 전반사를 억제하여 발광 효율을 높이는 연구가 진행되어 왔다. 특히, p형 GaN층 상에 일정한 크기의 패턴이 규칙적으로 조밀하게 배열되어 있는 광결정 패턴을 도입할 경우 LED의 발광 효율이 크게 증가하는 것으로 알려져 있다.
지금까지 p형 GaN층에 광결정 패턴을 제작하기 위하여 전자빔 리소그래피(E-beam lithography), 레이저 홀로그래피 리소그래피(laser holography lithography) 등의 리소그래피 방식을 사용하여 왔다.
그러나, 상술한 바와 같은 리소그래피 방식들은 공정이 복잡하고 고가의 광학 장비가 필요하여 비용이 매우 많이 드는 단점을 가지고 있다. 이는 LED의 제조 단가를 높이는 치명적인 문제점이 있다. 궁극적으로 LED가 조명 기구까지 그 응용 분야를 확실하게 넓히기 위해서는 무엇보다도 제조 단가가 저렴해야 한다.
따라서, 상술한 리소그래피 방식 대신에 공정 과정이 간단하고 공정 단가가 저렴한 리소그래피 방식을 사용하여 LED의 p형 GaN층을 패터닝할 수 있는 방법의 개발이 시급하게 요구되고 있는 실정이다.
이에 본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로서, 고효율의 질화물계 발광 다이오드 제조에 적용할 수 있는 p형 반도체층의 패터닝 방법을 제공하는 데에 그 목적이 있다.
또한, 본 발명은 공정 과정이 간단하고 공정 단가가 저렴하여 고효율의 질화물계 발광 다이오드의 양산화에 적용 가능한 p형 반도체층의 패터닝 방법을 제공하는 데에 그 목적이 있다.
상술한 목적을 달성하기 위하여 본 발명은 나노스피어 리소그래피를 이용하여 질화물계 발광 다이오드의 p형 반도체층을 패터닝 하는 방법으로서, p형 반도체층 상에 나노스피어(nanosphere)를 배치하는 제1 단계; 상기 나노스피어를 식각하는 제2 단계; 상기 나노스피어를 증착 마스크로 하여 상기 p형 반도체층 상에 금속층을 형성하는 제3 단계; 상기 나노스피어를 제거하는 제4 단계; 및 상기 금속층을 식각 마스크로 하여 상기 p형 반도체층을 식각하는 제5 단계를 포함한다.
그리고, 상술한 목적을 달성하기 위하여 본 발명은 나노스피어 리소그래피를 이용하여 질화물계 발광 다이오드의 p형 반도체층을 패터닝 하는 방법으로서, p형 반도체층 상에 수지층을 형성하는 제1 단계; 상기 수지층 상에 나노스피어(nanosphere)를 배치하는 제2 단계; 상기 나노스피어를 식각하는 제3 단계; 상기 나노스피어에 압력을 인가하여 상기 수지층에 소정의 패턴을 형성하는 제4 단계; 상기 나노스피어를 제거하는 제5 단계; 상기 수지층의 잔여층을 제거하여 상기 p형 반도체층의 일부 영역을 노출시키는 제6 단계; 상기 수지층을 증착 마스크로 하여 상기 p형 반도체층 상에 금속층을 형성하는 제7 단계; 상기 수지층을 제거하는 제8 단계; 및 상기 금속층을 식각 마스크로 하여 상기 p형 반도체층을 식각하는 제9 단계를 포함한다.
이하 첨부된 도면을 참조하여 본 발명의 구성을 상세하게 설명하도록 한다.
도 2a 내지 도 2g는 본 발명의 제1 실시예에 따른 GaN계 LED의 p형 GaN층을 패터닝 하는 방법을 나타내는 도면이다.
본 발명의 제1 실시예는 나노스피어 리소그래피(nanosphere lithography) 공정을 이용하여 p형 GaN층을 패터닝 하는 것을 특징으로 한다.
나노스피어 리소그래피는 원하는 입자 배열이나 층 구조를 제조하는 방법 중 하나로, 자연적으로 생성되는 2차원 박막을 이용하여 마이크로 미터 이하 크기의 구형 입자들의 연속된 배열을 형성한 후, 이 입자들을 마스크로 사용하는 방법을 말한다. 즉, 나노스피어 리소그래피 방식으로 형성된 입자들로 구성된 단층 결정체를 증착 마스크 또는 식각 마스크로 사용하여 나노 스케일을 갖는 금속, 산화물 또는 유기 화합물 패턴을 제조할 수 있다.
이러한 나노스피어 리소그래피는 다른 리소그래피에 비하여 기판 상에 나노 스케일의 패턴을 매우 간단하게 저비용으로 규칙적이고 조밀하게 형성할 수 있다는 장점이 있다. 또한, 패턴을 형성하고자 하는 물질에 거의 제약이 없다는 이점도 있다.
이하 나노스피어 리소그래피 공정을 이용한 p형 GaN층의 패터닝 방법을 구체적으로 설명한다.
먼저, 사파이어 기판(210) 상에 n형 GaN층(220), 활성층(230), p형 GaN층(240)을 순차적으로 적층한 후 p형 GaN층(240) 상에 나노스피어(250)를 배치한다(도 2a).
나노스피어의 배치 방법으로는 나노스피어가 균일하게 분산되어 있는 솔루션을 스핀 코팅하는 방법이 사용된다. 나노스피어(250)로는 예를 들어, 직경이 대략 500nm인 폴리스틸렌 나노비드(polystyrene nanobead), 실리카 볼(silica ball), 글라스 볼(glass ball) 등이 사용될 수 있다.
이후, 나노스피어(250)의 직경을 줄이기 위하여 나노스피어(250)를 식각한다(도 2b). 나노스피어의 크기를 줄이는 이유는 LED의 발광 효율을 높이기 위함이다. 통상적으로, LED의 사파이어 기판 또는 p형 반도체층의 표면에 가시 광선 파장의 절반이 되는 대략 200 내지 400nm 크기의 패턴을 형성할 때 LED의 발광 영역대에 맞춰서 LED 발광 효율이 크게 증대된다. 따라서, 나노스피어의 직경이 200 내지 400nm의 크기가 되도록 식각하는 것이 바람직하다.
나노스피어(250)의 식각 방법으로는 플라즈마를 이용하는 반응성 이온 식각(Reactive Ion Etching; RIE) 방법이 사용된다. 식각 가스로는 나노스피어의 재 질에 따라 최적의 식각 가스를 선택하는 것이 바람직하다. 예를 들어, 나노스피어의 재질이 폴리머 계열인 경우에는 O2 가스를, 산화물 계열인 경우는 CF4, CHF3, NF3, C3F8, C4F8 등과 같은 실리콘과 반응하여 휘발성 화합물(volatile compound)을 형성할 수 있는 가스를 사용한다.
이후, 식각된 나노스피어(255)를 증착 마스크로 사용하여 p형 GaN층(240) 상에 금속층(260)을 형성한다(도 2c). 금속층을 형성하는 이유는 대부분의 나노스피어(255)가 p형 GaN층(240)과 식각 선택비가 좋지 않기 때문에 최종적으로 p형 GaN(240)층을 식각할 때 금속층(260)을 식각 마스크로 사용하기 위함이다. 따라서, 금속층(260)은 나노스피어(255)의 크기를 고려하여 리프트 오프 공정이 가능한 한도 내에서 최대한의 두께로 형성하는 것이 바람직하다. 통상적으로, 300 내지 400nm 크기의 나노스피어의 경우에는 수십 nm 크기의 금속층을 형성하는 것이 좋다.
금속층(260)은 전자빔 증착법, 스퍼터링법 등을 이용하여 형성된다. 또한, 금속층(260)으로는 Cr을 사용하는 것이 바람직하다.
이후, 나노스피어(255)를 제거시키면 p형 GaN층(240) 상에는 금속층(260)만 소정의 패턴을 이루면서 남게 된다(도 2d). 나노스피어(255)는 화학적 식각을 통한 리프트 오프(lift off) 방법으로 제거된다. 식각 용액으로는 나노스피어의 재질을 고려하여 선택하는 것이 바람직하다. 예를 들어, 실리카나 글라스 등의 나노스피어를 식각하는 경우에는 불산을 사용하고, 폴리스틸렌과 같은 폴리머 재질의 나노스피어를 식각하는 경우에는 아세톤이나 포토 레지스트 식각액(PR remover) 등을 사용한다.
이후, 금속층(260)을 식각 마스크로 하여 p형 GaN층(240)을 식각한다(도 2e). 이때, p형 GaN층(240)층을 너무 깊게 식각하면 활성층(230)에 손상을 둘 수 있으므로 주의해야 한다.
p형 GaN층(240)의 식각 방법으로는 유도 결합형 플라즈마(Inductively Coupled Plasma) 방법을 사용하는 것이 바람직하다. 식각 가스로는 Cl2, SiCl4, BCl3 등과 같은 GaN와 반응하여 휘발성 화합물을 형성할 수 있는 가스를 사용한다.
이후, 금속층(260)을 제거하면 수직 형상의 식각 프로파일을 갖는 p형 GaN층(245)이 완성된다(도 2 f). 이로써 나노스피어 리소그래피를 이용하여 GaN계 LED의 p형 GaN층 상에 일정한 크기와 형상의 이차원 광결정 패턴을 형성할 수 있다.
한편, p형 GaN층 식각시 식각 가스를 조절함으로써 광결정 패턴의 형상을 조절할 수 있다. 다시 말하여, 도 2e에서는 금속층(260), 예를 들어 Cr은 식각되지 않고 GaN층만 식각되는 Cl2 가스를 사용하였지만, Cl2 가스에 Cr을 식각할 수 있는 가스를 첨가한 후에 p형 GaN층(240)을 식각하면 테이퍼 형상의 식각 프로파일을 갖는 p형 GaN층(247)을 얻을 수 있다(도 2g).
이러한 테이퍼형 패턴의 p형 GaN층(247)은 수직형 패턴의 p형 GaN층(245)보다 광의 입사각을 줄여주는 효과가 훨씬 크기 때문에 LED의 광 방출 효율을 더욱 높일 수 있다.
도 3a 내지 도 3k는 본 발명의 제2 실시예에 따른 GaN계 LED의 p형 GaN층을 패터닝 하는 방법을 나타내는 도면이다.
본 발명의 제2 실시예는 나노스피어 리소그래피 및 나노 임프린트 리소그래피(Nanoimprint Lithography; NIL) 중의 하나인 핫 엠보싱(hot embossing) 공정을 이용하여 p형 GaN층을 패터닝 하는 것을 특징으로 한다.
1990년대 중반 미국 프린스턴 대학교의 Stephen Y. Chou 교수에 의해 최초 제안된 나노 임프린트 리소그래피는 컴팩 디스크(CD)와 같은 마이크로 스케일의 패턴을 갖는 고분자 소재 제품의 대량 생산에 사용되는 엠보싱/몰딩 기술을 리소그래피에 적용한 것으로서, 나노 구조물이 형성된 스탬프를 기판 상에 코팅된 레지스트 표면에 눌러 나노 구조물의 패턴을 임프린트(즉, 전사) 하는 기술이다.
한편, 임프린트 과정에서는 소정의 온도가 필요한데, 임프린트 온도는 사용되는 수지층에 따라 달라진다. 예를 들어, PMMA(polymethylmethacrylate)로 대표되는 열가소성 수지로 수지층을 형성하는 경우에는 180℃ 이상의 고온이 필요하다. 이와 같이 열가소성 수지를 사용하여 고온 고압 하에서 임프린트 과정을 수행하는 방법을 핫 엠보싱법이라고 한다.
나노 임프린트 리소그래피 기술은 낮은 생산성을 갖는 전자빔 리소그래피나 고가의 광학 및 X-선 리소그래피를 보완할 기술로 주목 받고 있다.
이하 나노스피어 리소그래피 및 나노 임프린트 공정을 이용한 p형 GaN층의 패터닝 방법을 구체적으로 설명한다.
먼저, 사파이어 기판(310) 상에 n형 GaN층(320), 활성층(330), p형 GaN층(340), 수지층(350)을 순차적으로 적층한다(도 3a). 수지층(350)은 PMMA(polymethylmethacrylate), PS(polystyrene)와 같은 폴리머 수지를 용매에 용해시켜 수지액을 만든 후 이를 스핀 코팅하여 형성한다. 여기서, PMMA, PS는 본 실시예에서 적용되는 핫 엠보싱법을 위한 열가소성 수지에 해당된다.
이후, 수지층(350) 상에 나노스피어(360)를 배치한다(도 3b). 나노스피어의 배치 방법, 크기 등은 제1 실시예와 동일하므로 상세한 설명은 생략한다. 다만, 나노스피어(360)의 재질은 수지층(260)의 재질을 고려하여 선택하는 것이 바람직하다. 즉, 나노스피어(360)를 수지층(260)과 같이 폴리머 재질을 사용하게 되면 나중에 선택적인 식각이 불가능하므로, 본 실시예에서는 이미 수지층(260)의 재질이 PMMA, PS와 같은 폴리머인 것을 고려하여 나노스피어(360)의 재질은 실리카나 글라스 재질을 사용하여야 한다.
이후, 나노스피어(360)의 직경을 줄이기 위하여 나노스피어(360)를 식각한다(도 3c). 나노스피어의 식각 방법, 식각 가스, 크기 조절 등은 제1 실시예와 동일하므로 상세한 설명은 생략한다.
이후, 나노 임프린트 단계로서 식각된 나노스피어(365) 상에 나노 임프린트용 지지체(370)을 정렬하여 올려 놓은 후 수지층(350)을 가열한 상태에서 지지체(370)를 매개로 하여 나노스피어(365) 압력을 인가한다(도 3d). 이때, 수지층(350)의 온도는 대략 180℃ 이상, 인가되는 압력은 수지층의 분자량, 점도 및 화학적 구조를 고려하여 20 내지 50atm으로 하는 것이 바람직하다.
이후, 나노스피어(365)를 제거하면 나노스피어(365)의 형상이 임프린트된 수지층(353)을 얻는다(도 3e). 나노스피어(365)는 불산(HF) 등을 이용하는 화학 식각법으로 제거된다.
이후, p형 반도체층의 일부 영역을 노출 시키기 위하여 나노스피어(365)가 눌려진 부분, 즉 잔여층(351)을 제거한다(도 3f). 잔여층(351)은 O2 가스를 이용하는 반응성 식각 방법으로 제거된다.
이후, 수지층(353)을 증착 마스크로 사용하여 p형 GaN층(340) 상에 금속층(380)을 형성한다(도 3g). 금속층(380)의 형성 방법, 두께, 재질 등은 제1 실시예와 동일하므로 상세한 설명은 생략한다.
이후, 수지층(353)를 제거시키면 p형 GaN층(340) 상에는 금속층(380)만 소정의 패턴을 이루면서 남게 된다(도 3h). 수지층(353)은 아세톤 등을 이용하는 화학적 식각을 통한 리프트 오프(lift off) 방법으로 제거된다.
이후, 금속층(380)을 식각 마스크로 하여 p형 GaN층(340)을 식각하여 수직 형상(343) 또는 테이퍼 형상의 식각 프로파일을 갖는 p형 GaN층(345)을 얻을 수 있다(도 3i 내지 도 3k). p형 GaN층(340)의 식각 방법, 식각 가스 등은 제1 실시예와 동일하므로 상세한 설명은 생략한다. 이로써 나노스피어 리소그래피 및 핫 엠보싱 공정을 이용하여 GaN계 LED의 p형 GaN층 상에 일정한 크기와 형상의 이차원 광결정 패턴을 형성할 수 있다.
도 4a 내지 도 4k는 본 발명의 제3 실시예에 따른 GaN계 LED의 p형 GaN층을 패터닝 하는 방법을 나타내는 도면이다.
본 발명의 제3 실시예는 나노스피어 리소그래피 및 나노 임프린트 리소그래피 중의 하나인 자외선 나노 임프린트(UV Nanoimprint)법을 이용하여 p형 GaN층을 패터닝 하는 것을 특징으로 한다.
상기 제2 실시예에서 설명한 바 있는 핫 엠보싱법은 고온 고압의 조건에서 임프린트를 수행함으로써 몰드 및 기판의 손상 위험이 높고 냉각 과정이 필요하기 때문에 공정 시간이 통상의 임프란트 공정보다 길다는 문제점이 있다. 이와 같은 핫 엠보싱법의 문제점을 해결하기 위하여 개발된 것이 자외선 나노 임프린트법이다. 자외선 나노 임프린트법은 열가소성 수지 대신에 자외선으로 경화되는 자외선 경화 수지를 시용함으로써 상온 또는 극히 낮은 온도에서 임프린트가 가능한 방법이다.
이하 나노스피어 리소그래피 및 자외선 나노 임프린트 공정을 이용한 p형 GaN층의 패터닝 방법을 구체적으로 설명한다.
먼저, 사파이어 기판(410) 상에 n형 GaN층(420), 활성층(430), p형 GaN층(440), 수지층(450)을 순차적으로 적층한다(도 4a). 수지층(450)은 자외선 경화성 폴리머 수지를 용매에 용해시켜 수지액을 만든 후 이를 스핀 코팅하여 형성한다. 여기서, 자와선 경화성 수지를 사용하는 이유는 본 실시예에서 적용되는 자외선 나노 임프린트법을 위한 것이다.
이후, 수지층(450) 상에 나노스피어(460)를 배치한다(도 4b). 나노스피어의 배치 방법, 재질, 크기 등은 제2 실시예와 동일하므로 상세한 설명은 생략한다.
이후, 나노스피어(460)의 직경을 줄이기 위하여 나노스피어(460)를 식각한다(도 4c). 나노스피어의 식각 방법, 식각 가스, 크기 조절 등은 제1 실시예와 동일하므로 상세한 설명은 생략한다.
이후, 나노 임프린트 단계로서 나노스피어(465) 상에 나노 임프린트용 지지체(470)을 정렬하여 올려 놓은 후 지지체(470)를 매개로 하여 나노스피어(460) 압력을 인가한다(도 4d). 이때, 수지층(350)은 특별히 가열할 필요는 없으며, 인가되는 압력은 1,000psi 이상인 것이 바람직하다. 또한, 본 실시예에서는 임프린트 단계에서 자외선을 사용하기 때문에 지지체(470)는 유리와 같은 투명 지지체를 사용하는 것이 바람직하다.
이후, 자외선을 조사하여 수지층(350)을 경화시킨다(도 4e).
이후, 나노스피어(465)를 제거하면 나노스피어(465)의 형상이 임프린트된 수지층(451)을 얻는다(도 4f). 나노스피어(460)의 제거 방법은 제2 실시예와 동일하므로 상세한 설명은 생략한다.
이후, p형 반도체층의 일부 영역을 노출 시키기 위하여 나노스피어(465)가 눌려진 부분, 즉 잔여층(453)을 제거한다(도 4g). 잔여층(453)의 제거 방법은 제2 실시예와 동일하므로 상세한 설명은 생략한다.
이후, 수지층(451)을 증착 마스크로 사용하여 p형 GaN층(440) 상에 금속층(480)을 형성한다(도 4h). 금속층(480)의 형성 방법, 두께, 재질 등은 제2 실시예와 동일하므로 상세한 설명은 생략한다.
이후, 수지층(451)을 제거하면 p형 GaN층(440) 상에는 금속층(480)만 소정의 패턴을 이루면서 남게 된다(도 4i). 수지층(451)의 제거 방법은 제2 실시예와 동일하므로 상세한 설명은 생략한다.
이후, 금속층(480)을 식각 마스크로 하여 p형 GaN층(440)을 식각하여 수직 형상(443) 또는 테이퍼 형상의 식각 프로파일을 갖는 p형 GaN층(445)을 얻을 수 있다(도 4j 내지 도 4l). p형 GaN층(440)의 식각 방법, 식각 가스 등은 제2 실시예와 동일하므로 상세한 설명은 생략한다. 이로써 나노스피어 리소그래피 및 자외선 나노 임프린트 공정을 이용하여 GaN계 LED의 p형 GaN층 상에 일정한 크기와 형상의 이차원 광결정 패턴을 형성할 수 있다.
본 발명은 상술한 바와 같이 바람직한 실시예를 들어 도시하고 설명하였으나, 상기 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형과 변경이 가능하다. 그러한 변형예 및 변경예는 본 발명과 첨부된 특허청구범위의 범위 내에 속하는 것으로 보아야 한다.
본 발명에 따르면, p형 GaN층 상에 최적의 크기와 형상을 갖는 고품위의 이차원 광결정 패턴을 형성할 수 있어서 질화물계 발광 다이오드의 광 방출 효율을 획기적으로 높이는 효과가 있다.
본 발명에 따르면, p형 GaN층 상에 보다 간단한 공정으로 용이하게 고품위의 이차원 광결정 패턴을 형성할 수 있어서 고효율 발광 다이오드의 경제적인 생산이 가능한 효과가 있다.

Claims (28)

  1. 나노스피어 리소그래피를 이용하여 질화물계 발광다이오드의 p형 반도체층을 패터닝 하는 방법으로서,
    p형 반도체층 상에 나노스피어(nanosphere)를 배치하는 제1 단계;
    상기 나노스피어를 식각하는 제2 단계;
    상기 나노스피어를 증착 마스크로 하여 상기 p형 반도체층 상에 금속층을 형성하는 제3 단계;
    상기 나노스피어를 제거하는 제4 단계; 및
    상기 금속층을 식각 마스크로 하여 상기 p형 반도체층을 식각하는 제5 단계;
    를 포함하는 방법.
  2. 제1항에 있어서,
    상기 제1 단계에서 상기 나노스피어가 분산된 용액을 스핀 코팅하여 상기 나노스피어를 상기 p형 반도체층 상에 배치하는 것을 특징으로 하는 방법.
  3. 제1항에 있어서,
    상기 제2 단계에서 상기 나노스피어를 식각하는 방법은 식각 가스로 O2, CF4, CHF3, NF3, C3F8, C4F8 가스 중 적어도 하나를 이용하는 반응성 이온 식각법을 포함하는 것을 특징으로 하는 방법.
  4. 제3항에 있어서,
    상기 제2 단계에서 상기 나노스피어의 직경은 200 내지 400nm로 조절되는 것을 특징으로 하는 방법.
  5. 제1항에 있어서,
    상기 제3 단계에서 상기 금속층은 Cr을 포함하는 것을 특징으로 하는 방법.
  6. 제1항에 있어서,
    상기 제4 단계에서 상기 나노스피어를 제거하는 방법은 화학 식각법을 포함하는 것을 특징으로 하는 방법.
  7. 제1항에 있어서,
    상기 제5 단계에서 상기 p형 반도체층을 식각하는 방법은 식각 가스로 Cl2, SiCl4, BCl3 가스 중 적어도 하나를 이용하는 ICP(Inductive Coupled Plasma) 식각법을 포함하는 것을 특징으로 하는 방법.
  8. 제7항에 있어서,
    상기 제5 단계에서 상기 식각 가스에 식각 마스크의 역할을 하는 상기 금속층을 식각할 수 있는 가스를 첨가하여 상기 p형 반도체층을 식각하는 것을 특징으로 하는 방법.
  9. 제8항에 있어서,
    상기 p형 반도체층의 식각 패턴은 테이퍼형인 것을 특징으로 하는 방법.
  10. 삭제
  11. 삭제
  12. 나노스피어 리소그래피를 이용하여 질화물계 발광다이오드의 p형 반도체층을 패터닝 하는 방법으로서,
    p형 반도체층 상에 수지층을 형성하는 제1 단계;
    상기 수지층 상에 나노스피어(nanosphere)를 배치하는 제2 단계;
    상기 나노스피어를 식각하는 제3 단계;
    상기 나노스피어에 압력을 인가하여 상기 수지층에 소정의 패턴을 형성하는 제4 단계;
    상기 나노스피어를 제거하는 제5 단계;
    상기 수지층의 잔여층을 제거하여 상기 p형 반도체층의 일부 영역을 노출시키는 제6 단계;
    상기 수지층을 증착 마스크로 하여 상기 p형 반도체층 상에 금속층을 형성하는 제7 단계;
    상기 수지층을 제거하는 제8 단계; 및
    상기 금속층을 식각 마스크로 하여 상기 p형 반도체층을 식각하는 제9 단계;
    를 포함하는 방법.
  13. 제12항에 있어서,
    상기 수지층은 열가소성 수지 또는 자외선 경화 수지를 포함하고, 상기 수지층은 상기 수지를 용해시킨 용액을 스핀 코팅하여 형성되는 것을 특징으로 하는 방법.
  14. 제12항에 있어서,
    상기 제2 단계에서 상기 나노스피어가 분산된 용액을 스핀 코팅하여 상기 나노스피어를 상기 수지층 상에 배치하는 것을 특징으로 하는 방법.
  15. 제12항에 있어서,
    상기 제3 단계에서 상기 나노스피어를 식각하는 방법은 식각 가스로 O2, CF4, CHF3, NF3, C3F8, C4F8 가스 중 적어도 하나를 이용하는 반응성 이온 식각법을 포함하는 것을 특징으로 하는 방법.
  16. 제15항에 있어서,
    상기 제3 단계에서 상기 나노스피어의 직경은 200 내지 400nm로 조절되는 것을 특징으로 하는 방법.
  17. 제13항에 있어서,
    상기 제4 단계에서 지지체를 매개로 하여 상기 나노스피어에 압력을 인가하되, 상기 수지층이 상기 자외선 경화 수지인 경우 상기 지지체는 유리와 같은 투명 지지체인 것을 특징으로 하는 방법.
  18. 제13항에 있어서,
    상기 제4 단계에서 상기 수지층이 상기 열가소성 수지인 경우 상기 수지층을 가열한 상태에서 상기 나노스피어에 압력을 인가하는 것을 특징으로 하는 방법.
  19. 제13항에 있어서,
    상기 제4 단계에서 상기 수지층이 상기 자외선 경화 수지인 경우 상기 나노 스피어에 압력을 인가한 후 자외선을 조사하여 상기 수지층을 경화시키는 것을 특징으로 하는 방법.
  20. 제12항에 있어서,
    상기 제5 단계에서 상기 나노스피어를 제거하는 방법은 화학 식각법을 포함하는 것을 특징으로 하는 방법.
  21. 제12항에 있어서,
    상기 제6 단계에서 상기 수지층의 잔여층을 제거하는 방법은 O2 가스를 이용하는 반응성 이온 식각법을 포함하는 것을 특징으로 하는 방법.
  22. 제12항에 있어서,
    상기 금속층은 Cr을 포함하는 것을 특징으로 하는 방법.
  23. 제12항에 있어서,
    상기 제8 단계에서 상기 수지층을 제거하는 방법은 화학 식각법을 포함하는 것을 특징으로 하는 방법.
  24. 제12항에 있어서,
    상기 제9 단계에서 상기 p형 반도체층을 식각하는 방법은 식각 가스로 Cl2, SiCl4, BCl3 가스 중 적어도 하나를 이용하는 ICP(Inductive Coupled Plasma) 식각법을 포함하는 것을 특징으로 하는 방법.
  25. 제24항에 있어서,
    상기 제9 단계에서 상기 식각 가스에 식각 마스크의 역할을 하는 상기 금속층을 식각할 수 있는 가스를 첨가하여 상기 p형 반도체층을 식각하는 것을 특징으로 하는 방법.
  26. 제25항에 있어서,
    상기 p형 반도체층의 식각 패턴은 테이퍼형인 것을 특징으로 하는 방법.
  27. 삭제
  28. 삭제
KR20070063283A 2007-06-26 2007-06-26 발광 다이오드의 p형 반도체층의 패터닝 방법 KR100875988B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20070063283A KR100875988B1 (ko) 2007-06-26 2007-06-26 발광 다이오드의 p형 반도체층의 패터닝 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20070063283A KR100875988B1 (ko) 2007-06-26 2007-06-26 발광 다이오드의 p형 반도체층의 패터닝 방법

Publications (1)

Publication Number Publication Date
KR100875988B1 true KR100875988B1 (ko) 2008-12-26

Family

ID=40373203

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20070063283A KR100875988B1 (ko) 2007-06-26 2007-06-26 발광 다이오드의 p형 반도체층의 패터닝 방법

Country Status (1)

Country Link
KR (1) KR100875988B1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101950785A (zh) * 2010-07-28 2011-01-19 山东大学 一种GaN基LED管芯P型GaN层的结构
KR101101852B1 (ko) 2010-05-25 2012-01-05 고려대학교 산학협력단 반도체 발광소자 제조 방법
WO2013174300A1 (en) * 2012-05-24 2013-11-28 The University Of Hong Kong White nanoled without requiring color conversion
KR101896839B1 (ko) 2017-05-12 2018-09-07 한양대학교 산학협력단 발광소자 및 그 제조방법

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101101852B1 (ko) 2010-05-25 2012-01-05 고려대학교 산학협력단 반도체 발광소자 제조 방법
CN101950785A (zh) * 2010-07-28 2011-01-19 山东大学 一种GaN基LED管芯P型GaN层的结构
CN101950785B (zh) * 2010-07-28 2013-01-23 山东大学 一种GaN基LED管芯P型GaN层的结构
WO2013174300A1 (en) * 2012-05-24 2013-11-28 The University Of Hong Kong White nanoled without requiring color conversion
EP2856521A4 (en) * 2012-05-24 2015-12-23 Univ Hong Kong NANO-DIODE WHITE ELECTROLUMINESCENT DOES NOT REQUIRE COLOR CONVERSION
KR101896839B1 (ko) 2017-05-12 2018-09-07 한양대학교 산학협력단 발광소자 및 그 제조방법

Similar Documents

Publication Publication Date Title
JP6084282B2 (ja) シームレス樹脂モールドシート
US7709282B2 (en) Method for producing a light emitting device
Peng et al. Fabrication of microlens arrays with controlled curvature by micromolding water condensing based porous films for deep ultraviolet LEDs
JP5935031B2 (ja) 半導体発光装置
US20110068351A1 (en) Method of Forming Three Dimensional Features on Light Emitting Diodes for Improved Light Extraction
KR101233063B1 (ko) 나노 급 패턴이 형성된 고효율 질화물계 발광다이오드용 기판의 제조방법
KR101409248B1 (ko) 임프린트 방법
KR101233062B1 (ko) 나노 급 패턴이 형성된 고효율 질화물계 발광다이오드용 기판의 제조방법
WO2014101798A1 (zh) 一种倒装光子晶体led芯片及其制造方法
US9556018B2 (en) Three-dimensional nano-structure array
JP6548024B2 (ja) 凹凸構造を含む基板の製造方法及び半導体発光素子の製造方法
KR100875988B1 (ko) 발광 다이오드의 p형 반도체층의 패터닝 방법
US8865007B2 (en) Method for making three-dimensional nano-structure array
Khokhar et al. Nanofabrication of gallium nitride photonic crystal light-emitting diodes
KR100994034B1 (ko) 고효율 발광 다이오드용 사파이어 기판의 제조방법
Bao et al. Improvement of light extraction from patterned polymer encapsulated GaN-based flip-chip light-emitting diodes by imprinting
KR100957570B1 (ko) 고효율 발광 다이오드용 기판의 제조방법
KR20160092635A (ko) 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드
Lee et al. Improving the light-emitting efficiency of GaN LEDs using nanoimprint lithography
KR101364722B1 (ko) 나노 임프린트 몰드 제조 방법, 그것에 의해 제조된 나노 임프린트 몰드 및 그것을 이용한 발광 다이오드 제조 방법
CN102983235B (zh) 一种纳米级图形化衬底的制造方法
KR101471089B1 (ko) 다층의 광결정층을 갖는 발광소자 및 그 제조방법
Reboud et al. Nanoimprinted photonic crystals for the modification of the (CdSe) ZnS nanocrystals light emission
KR101130363B1 (ko) 발광 다이오드 소자 및 그 제조방법
Kumar et al. Composite Nitrogen-Vacancy Centers Nanodiamonds Grating using Soft Lithography

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121004

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20131128

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20141010

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160126

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20161114

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20171129

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20181127

Year of fee payment: 11