KR100875622B1 - Apparatus for manufacturing of polycrystalline silicon for solar cell - Google Patents

Apparatus for manufacturing of polycrystalline silicon for solar cell Download PDF

Info

Publication number
KR100875622B1
KR100875622B1 KR1020070069561A KR20070069561A KR100875622B1 KR 100875622 B1 KR100875622 B1 KR 100875622B1 KR 1020070069561 A KR1020070069561 A KR 1020070069561A KR 20070069561 A KR20070069561 A KR 20070069561A KR 100875622 B1 KR100875622 B1 KR 100875622B1
Authority
KR
South Korea
Prior art keywords
crucible
polycrystalline silicon
vacuum chamber
heat
hot plate
Prior art date
Application number
KR1020070069561A
Other languages
Korean (ko)
Inventor
윤순광
Original Assignee
주식회사수성기술
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사수성기술 filed Critical 주식회사수성기술
Priority to KR1020070069561A priority Critical patent/KR100875622B1/en
Application granted granted Critical
Publication of KR100875622B1 publication Critical patent/KR100875622B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Silicon Compounds (AREA)

Abstract

The poly-crystal silicon manufacturing device for the solar cell is provided to minimize the size of the vacuum chamber by forming integrally the cooling means in the hot plate of the crucible's bottom. The poly-crystal silicon manufacturing device for the solar cell comprises the vacuum chamber(110), the crucible(120), the heat conducting plate, the heating circuit, the power connection terminal, the hot plate(130), the cooling means(140). The vacuum chamber has the accommodation space. The silicon is in the crucible arranged within the vacuum chamber. The power connection terminal is connected to the heating circuit to supply power. The hot plate is arranged in the outer side of crucible to melt the silicon to form the insulating layer for protecting the heating circuit. The cooling means is comprised of the channel(142) and feed port(144). The channel is formed in the heat conducting plate of the hot plate arranged in the base side of crucible among a plurality of hot plates. The channel is to pass the cooling water. The feed port supplies the cooling water to the channel.

Description

솔라셀용 다결정 실리콘 제조장치{Apparatus for manufacturing of polycrystalline silicon for solar cell}Apparatus for manufacturing of polycrystalline silicon for solar cell

본 발명은 도가니를 가열하는 핫플레이트와 도가니를 냉각시키는 냉각수단이 일체로 형성되게 함으로써 간단한 구성을 갖도록 한 솔라셀용 다결정 실리콘 제조장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polycrystalline silicon manufacturing apparatus for a solar cell having a simple configuration by having a hot plate for heating the crucible and a cooling means for cooling the crucible integrally.

일반적으로 다결정 실리콘을 이용한 실리콘 잉곳의 제조방법은 원료인 다결정 실리콘을 석영 또는 흑연으로 이루어진 도가니에 충진시킨 후 진공조건에서 실리콘 원료를 용해하고, 이를 응고하는 공정을 통해 제조된다. In general, a method of manufacturing a silicon ingot using polycrystalline silicon is prepared by filling a polycrystalline silicon as a raw material into a crucible made of quartz or graphite, dissolving the silicon raw material under vacuum conditions, and solidifying it.

상기 실리콘 잉곳의 원료가 되는 다결정 실리콘은 지멘스법(Siemens process)에 의해 제조된 불규칙한 형상의 천크 다결정 실리콘 혹은 유동층 반응법(Fludized-bed reaction process)에 의해 제조된 구형의 입상 다결정 실리콘을 이용한다.Polycrystalline silicon, which is a raw material of the silicon ingot, uses irregularly-shaped chunk polycrystalline silicon produced by the Siemens process or spherical granular polycrystalline silicon produced by a fluidized-bed reaction process.

상기 지멘스법은 고순도 실리콘을 얻을 수 있는 것이 특징이고 가장 일반적인 방법으로서 실시되고 있으나 석출이 배치(batch) 방식이기 때문에 시드(seed)가 되는 실리콘 로드의 설치, 실리콘 로드의 통전 가열, 석출, 냉각, 취출, 벨 자의 세정 등 매우 번잡한 순서를 행해야만 한다는 문제점이 있다.The Siemens method is characterized by obtaining a high purity silicon and is carried out as the most common method, but because the deposition is a batch method, the installation of a silicon rod that is seeded, energizing heating, precipitation, cooling of the silicon rod, There is a problem that a very complicated procedure such as take-out and cleaning of bell jar must be performed.

이를 도면을 통해 살펴보면, 도 1a에서 도시하는 바와 같이 종래의 실리콘 잉곳 제조장치(10)는 진공을 유지하는 진공챔버(1)와, 상기 진공챔버(1) 내에 배치되어 원료물질(M)을 담는 도가니(2)와, 원료물질(M)의 용융을 위해 도가니(2)를 가열하는 핫플레이트(3)와, 원료물질(M)의 응고를 위해 설치되는 냉각수단(4)으로 이루어진다.Referring to the drawings, as shown in FIG. 1A, a conventional silicon ingot manufacturing apparatus 10 includes a vacuum chamber 1 for maintaining a vacuum and a raw material M disposed in the vacuum chamber 1. It consists of a crucible 2, a hot plate 3 for heating the crucible 2 for melting the raw material M, and cooling means 4 provided for solidifying the raw material M. As shown in FIG.

즉, 진공상태의 진공챔버(1) 내에서 도가니(2) 외부에 배치되는 핫플레이트(3)들이 약 1,600 내지 2,000℃로 발열하면, 핫플레이트(3)로부터 제공되는 복사열에 의해 도가니(2)가 가열되고, 상기 도가니(2) 내부에 채워져 있는 원료물질(M)은 도가니(2)로부터 전도되는 전도열에 의해 약 1300~1500℃의 온도로 가열되는데, 도가니(2) 내부온도가 약 1460℃의 온도에 이르게 되면 도가니(2) 내부에 채워진 원료물질(M)이 용융되기 시작한다.That is, when the hot plates 3 disposed outside the crucible 2 in the vacuum chamber 1 in a vacuum state generate heat at about 1,600 to 2,000 ° C., the crucible 2 is formed by radiant heat provided from the hot plate 3. Is heated, and the raw material (M) filled in the crucible (2) is heated to a temperature of about 1300 ~ 1500 ℃ by the conductive heat conducted from the crucible (2), the temperature inside the crucible (2) is about 1460 ℃ When it reaches the temperature of the raw material (M) filled in the crucible (2) begins to melt.

상기와 같이 핫플레이트(3)를 통해 원료물질(M)이 용융점까지 가열되어 용융되면, 약 72시간동안 가열을 유지하면서 도가니 내부의 원료물질이 완전하게 용융되게 하고, 용융이 완료되면 핫플레이트(3)의 온도를 낮추거나 핫플레이트(3)로 공급되는 전원을 차단하여 도가니(2)내의 용융된 용융물질이 소정온도까지 냉각되게 한다.As described above, when the raw material M is heated and melted through the hot plate 3 to the melting point, the raw material inside the crucible is completely melted while maintaining heating for about 72 hours, and when the melting is completed, the hot plate ( The temperature of 3) is lowered or the power supplied to the hot plate 3 is cut off so that the molten molten material in the crucible 2 is cooled to a predetermined temperature.

이어서, 소정온도로 냉각된 뒤에는 도가니(2)의 하부에 배치된 냉각수단(4)을 통해 2차냉각을 실시하여 용융물질이 결정화 되도록 한다.Subsequently, after cooling to a predetermined temperature, secondary cooling is performed through the cooling means 4 disposed below the crucible 2 so that the molten material is crystallized.

즉, 도 1b에 나타나 있는 바와 같이 도가니(2) 내부의 원료물질(M)이 완전히 용융된 뒤에는, 중앙이 분리된 상태로 도가니(2)의 하부에 배치된 핫플레이트(3)가 이송수단(5a)에 의해 도가니(2)의 양측방향(X축)으로 각각 이동하게 되고, 상기 핫플레이트(3)의 하부에 배치되어 있던 쿨플레이트(4)가 또 다른 이동수단(5b)에 의해 수직방향(Y축)으로 상승하여 도가니(2)의 하부에 배치된 뒤, 도가니(2)를 냉각하게 된다. That is, as shown in FIG. 1B, after the raw material M inside the crucible 2 is completely melted, the hot plate 3 disposed below the crucible 2 in a state where the center thereof is separated is transferred to the conveying means ( 5a) moves in both directions (X-axis) of the crucible 2, and the cool plate 4 disposed below the hot plate 3 is vertically moved by another moving means 5b. After raising to the (Y axis) and disposed below the crucible 2, the crucible 2 is cooled.

그런데, 진공상태의 진공챔버(1)내에서 상기와 같이 핫플레이트(3)의 및 쿨플레이트(4)의 이동을 위한 이동수단(5a,5b)들이 다수개 배치되면서 진공챔버(1)의 크기가 대형화 되고, 대형의 진공챔버(1) 내부를 진공화 시키는 데에는 또 다른 진공펌프등의 대형장비가 필요로 하게 되므로 제조비용이 상승하게 되는 문제점이 발생된다. However, the size of the vacuum chamber 1 in the vacuum chamber 1 of the vacuum state as a plurality of moving means (5a, 5b) for the movement of the hot plate 3 and the cool plate 4 is arranged as described above As the size is increased, a large equipment such as another vacuum pump is required to vacuum the inside of the large vacuum chamber 1, thus causing a problem that the manufacturing cost increases.

또한, 이동수단(5a,5b)의 연결부위들을 통해 진공챔버(1) 내부의 열이 손실될 우려가 있으며, 핫플레이트(3) 및 쿨플레이트(4)의 이동과정에서 충돌이나 간섭등이 발생되는 경우, 온도제어가 원활하게 이루어지지 않게 되므로 제품불량이 원인이 되는 문제점도 있다.In addition, heat inside the vacuum chamber 1 may be lost through the connecting portions of the moving means 5a and 5b, and collision or interference may occur during the movement of the hot plate 3 and the cool plate 4. In this case, since the temperature control is not made smoothly, there is a problem that causes product defects.

본 발명은 상기의 문제점을 해결하기 위하여 안출된 것으로, 도가니 하부의 핫플레이트에 냉각수단이 일체로 형성되게 하여 간단한 구성을 갖도록 함과 아울러, 진공챔버의 크기를 최소화 시킬 수 있는 솔라셀용 다결정 실리콘 제조장치를 제공하는데 그 목적이 있다.The present invention has been made to solve the above problems, the polycrystalline silicon for the solar cell that can minimize the size of the vacuum chamber while having a simple configuration by allowing the cooling means to be integrally formed on the hot plate below the crucible The purpose is to provide a device.

상기의 목적을 달성하기 위한 본 발명 솔라셀용 다결정 실리콘 제조장치는 솔라셀용 다결정 실리콘 제조장치에 있어서, 내부에 밀폐된 수용공간을 형성하는 진공챔버;와, 상기 진공챔버내에 배치되는 실리콘이 수용되는 도가니;와, 열전도판과, 상기 열전도판의 저면에 배치되어 전원의 공급에 의해 발열하는 발열회로와, 상기 발열회로에 접속되어 전원을 공급하는 전원접속단자 및, 상기 발열회로를 보호하는 절연막이 형성되어 상기 도가니 내에 수용된 실리콘을 용융시키도록 상기 도가니의 외측에 배치되는 다수의 핫플레이트들; 및, 상기 다수의 핫플레이트들 중 도가니의 저면측에 배치되는 핫플레이트의 열전도판내에 형성되어 냉각수가 통과하는 이동통로 및, 상기 이동통로로 냉각수를 공급하는 공급부가 형성된 냉각수단을 포함하는 솔라셀용 다결정 실리콘 제조장치를 제공함으로써 달성된다.The polycrystalline silicon manufacturing apparatus for a solar cell of the present invention for achieving the above object is a solar cell polycrystalline silicon manufacturing apparatus, comprising: a vacuum chamber for forming a receiving space sealed therein; and a crucible in which silicon disposed in the vacuum chamber is accommodated And a heat conduction plate, a heat generation circuit disposed on a bottom surface of the heat conduction plate and generating heat by supplying power, a power connection terminal connected to the heat generating circuit to supply power, and an insulating film protecting the heat generating circuit. A plurality of hot plates disposed outside the crucible to melt silicon contained in the crucible; And a cooling passage formed in a heat conduction plate of a hot plate disposed on a bottom surface side of the crucible among the plurality of hot plates and having a moving passage through which cooling water passes, and a supply unit for supplying cooling water to the moving passage. It is achieved by providing a polycrystalline silicon manufacturing apparatus.

또한, 상기 냉각수단은 상기 핫플레이트의 내부에 형성된 이동통로 및 공급부를 연결하여 냉각수가 순환하게 하는 연결관과, 상기 연결관상에 배치되어 가열된 냉각수를 냉각시키는 열교환부를 포함하는 것이 바람직하다.In addition, the cooling means preferably comprises a connection pipe for connecting the moving passage and the supply formed in the hot plate to circulate the cooling water, and a heat exchanger for cooling the cooling water disposed on the connection pipe.

상기한 바와 같은 본 발명 솔라셀용 다결정 실리콘 제조장치는 도가니 하부의 핫플레이트에 냉각수단이 일체로 형성되게 하여 간단한 구성을 갖는 솔라셀용 다결정 실리콘 제조장치를 제공하는데 그 목적이 있다.The polycrystalline silicon manufacturing apparatus for solar cells of the present invention as described above has an object to provide a solar cell polycrystalline silicon manufacturing apparatus having a simple configuration by allowing the cooling means to be integrally formed on the hot plate under the crucible.

이하, 본 발명 솔라셀용 다결정 실리콘 제조장치의 바람직한 실시예를 첨부도면을 참조하여 상세하게 설명한다.Hereinafter, a preferred embodiment of the polycrystalline silicon manufacturing apparatus for solar cells of the present invention will be described in detail with reference to the accompanying drawings.

첨부도면중 도 2는 본 발명 솔라셀용 다결정 실리콘 제조장치의 단면도이고, 도 3은 본 발명 솔라셀용 다결정 실리콘 제조장치의 핫플레이트 및 냉각수단의 발췌사시도이다.2 is a cross-sectional view of the polycrystalline silicon production apparatus for solar cells of the present invention, Figure 3 is an excerpt perspective view of the hot plate and cooling means of the polycrystalline silicon production apparatus for solar cells of the present invention.

상기 도면에서 도시하는 바와 같이 본 발명 솔라셀용 다결정 실리콘 제조장치는 진공 상태를 유지하는 진공챔버(110)와, 상기 진공챔버(110) 내부에 배치되며 원료 실리콘을 담는 흑연 또는 석영 재질의 도가니(120)와, 상기 도가니(120)에 복사열을 가하여 가열하는 다수의 핫플레이트(130)들과, 상기 진공챔버(110) 내부의 온도를 제어하기 위한 냉각수단(140)을 포함하여 구성된다.As shown in the drawings, the polycrystalline silicon manufacturing apparatus for solar cells of the present invention includes a vacuum chamber 110 maintaining a vacuum state, and a crucible 120 made of graphite or quartz material disposed inside the vacuum chamber 110 and containing raw silicon. ), A plurality of hot plates 130 for heating by applying radiant heat to the crucible 120, and cooling means 140 for controlling the temperature inside the vacuum chamber 110.

상기 핫플레이트(130)는 소정의 두께 및 면적을 갖는 판형으로 이루어지는 열전도판(132)과, 상기 열전도판(132)의 저면에 밀착배치되어 전원의 공급에 의해 발열하는 발열회로(134)와, 상기 발열회로(134)의 일측에 접속되어 전원을 공급하는 전원접속단자(136) 및, 상기 발열회로(134)의 저면에 밀착되어 발열회로를 보호함과 아울러 절연시키는 절연막(138)으로 구성되는 것으로서, 상기 도가니(120)의 각 측면 및 상부와 하부에 각각 배치된다.The hot plate 130 is a heat conduction plate 132 having a plate shape having a predetermined thickness and area, a heat generating circuit 134 closely disposed on the bottom surface of the heat conduction plate 132 to generate heat by supply of power, A power connection terminal 136 connected to one side of the heat generating circuit 134 to supply power, and an insulating film 138 in close contact with the bottom surface of the heat generating circuit 134 to protect and insulate the heat generating circuit. As, it is disposed on each side and the top and bottom of the crucible 120, respectively.

상기 냉각수단(140)은 상기 다수의 핫플레이트(130)들중 도가니(120)의 하부에 배치되는 핫플레이트(130)의 열전도판(132)내부에 사행(蛇行)식으로 형성(도 4참조)되면서 양단에 유입구(142a) 및 유출구(142b)가 형성되어 냉각수가 열전도판(132) 내부를 순환하도록 하는 이동통로(142)와, 상기 이동통로(142)로 냉각수를 공급하는 공급부(144)로 구성된다.The cooling means 140 is formed in a meandering manner in the heat conduction plate 132 of the hot plate 130 disposed below the crucible 120 of the plurality of hot plates 130 (see FIG. 4). At the same time, the inlet 142a and the outlet 142b are formed at both ends thereof, such that the cooling passage 142 allows the cooling water to circulate inside the heat conduction plate 132 and the supply unit 144 for supplying the cooling water to the movement passage 142. It consists of.

이하, 상기의 구성을 갖는 본 발명 솔라셀용 다결정 실리콘 제조장치의 작용을 설명한다.Hereinafter, the operation of the polycrystalline silicon production apparatus for solar cells of the present invention having the above configuration will be described.

먼저, 도가니(120)에 원료인 다결정 실리콘(M)을 충진시킨다. 여기서, 원료로 사용되는 다결정 실리콘은 천크 다결정 실리콘이나, 입상 다결정 실리콘 중 어느 것을 사용할 수도 있으나, 입상 다결정 실리콘을 사용하는 경우에는 상대적으로 수율이 낮아지고, 생성물인 실리콘 잉곳에 공극(void)가 발생될 소지가 높아 일반적으로는 천크 다결정 실리콘을 선호하는 편이다.First, the crucible 120 is filled with polycrystalline silicon (M) as a raw material. Here, the polycrystalline silicon used as the raw material may be either of the bulk polycrystalline silicon or granular polycrystalline silicon, but when the granular polycrystalline silicon is used, the yield is relatively low, and voids are generated in the product silicon ingot. In general, the preference for bulk polycrystalline silicon is high.

충진되는 다결정 실리콘의 양은 생성물인 실리콘 잉곳의 수율과 품질을 고려하여 최적화시키는 것이 바람직하다. 도가니(120) 내에 다결정 실리콘을 과다하게 충진시키는 경우에는 충진물이 유동하게 되면서 도가니(120)의 벽면의 입자가 긁혀나와 불순물이 되거나, 브릿지 등의 불량을 형성시킬 가능성을 증가시킨다. 또한, 너무 적게 충진시키는 경우에는 전력소모가 크고 공정 속도가 느려져 비경제적이라는 단점이 있다.The amount of polycrystalline silicon to be filled is preferably optimized in consideration of the yield and quality of the product silicon ingot. In the case where the polycrystalline silicon is excessively filled in the crucible 120, as the filler flows, the particles of the wall surface of the crucible 120 may be scratched and become impurities, or the like may cause defects such as bridges. In addition, too little filling has the disadvantage that the power consumption is large and the process speed is slow and uneconomical.

원료물질의 충진 과정이 마무리되면, 진공챔버(110) 내에 별도로 설치된 기체 도입구를 통해 아르곤(Ar)이나 질소(N2) 가스를 도입시키고, 진공 상태를 유지하며 도가니(120)의 측면과 상,하부의 육면을 둘러싼 외부 핫플레이트(130)를 이용하여 도가니(120) 내에 충진된 원료물질을 용융시킨다. 상기 용융 과정에서 소요되는 핫플레이트(130)의 총 소비전력은 200kW 수준으로 하고, 용융 온도는 1,450℃부근으로 유지시킨다. When the filling process of the raw material is finished, argon (Ar) or nitrogen (N 2 ) gas is introduced through a gas inlet separately installed in the vacuum chamber 110, and the vacuum state is maintained and the side and top of the crucible 120 are maintained. The raw material filled in the crucible 120 is melted by using the outer hot plate 130 surrounding the lower six sides. The total power consumption of the hot plate 130 required in the melting process is 200kW level, the melting temperature is maintained at 1,450 ℃.

상기 용융과정이 마무리되면, 핫플레이트(130)의 발열온도를 서서히 낮추거나, 핫플레이트로 인가되는 전원을 차단하여 도가니가 약 200℃까지 서서히 냉각되게 한 뒤, 도가니(120)의 하부에 배치된 냉각수단(140)을 통해 도가니(120)를 약 20℃까지 냉각시켜 용융상태의 실리콘액이 결정화되도록 한다.When the melting process is finished, the crucible is slowly cooled to about 200 ° C. by slowly lowering the heating temperature of the hot plate 130 or cutting off the power applied to the hot plate, and is disposed below the crucible 120. The crucible 120 is cooled to about 20 ° C. through the cooling means 140 to crystallize the molten silicon liquid.

즉, 상기 도가니(120)의 주변에 배치된 다수의 핫플레이트(130)들 중 도가니(120) 하부에 배치된 핫플레이트(130)의 열전도판(132) 내부에 사행식으로 형성된 구불구불한 이동통로(142)의 유입구(142a)측으로 냉각수를 공급하면, 냉각수가 이동통로(142)를 지나 대향측의 배출구(142b)를 통해 배출되는 과정(도 4참조)에서 열전도판(132)의 온도가 낮아지면서 도가니(120) 내부의 용융상태의 실리콘을 응고시켜 실리콘 잉곳을 제조한다. That is, a meandering movement formed in a meandering manner in the heat conduction plate 132 of the hot plate 130 disposed below the crucible 120 among the plurality of hot plates 130 arranged around the crucible 120. When the coolant is supplied to the inlet 142a side of the passage 142, the temperature of the heat conducting plate 132 is increased in the process of cooling water passing through the moving passage 142 through the outlet 142b on the opposite side (see FIG. 4). The silicon ingot is manufactured by solidifying the silicon in the molten state in the crucible 120 while being lowered.

상기와 같은 냉각수는 공급부(144)를 통해 공급되며, 상기 냉각수의 공급에 따른 냉각수단(140)의 냉각온도는 이동통로(142)로 냉각수를 공급하는 공급부(144)의 공급압력에 의해 제어될 수 있다. The cooling water as described above is supplied through the supply unit 144, the cooling temperature of the cooling means 140 according to the supply of the cooling water is to be controlled by the supply pressure of the supply unit 144 for supplying the cooling water to the moving passage 142. Can be.

첨부도면중 도 5는 본 발명 솔라셀용 다결정 실리콘 제조장치의 다른 실시예의 단면도이다.5 is a cross-sectional view of another embodiment of the polycrystalline silicon manufacturing apparatus for solar cells of the present invention.

상기 도면에서 도시하는 바와 같은 본 발명 솔라셀용 다결정 실리콘 제조장치의 다른실시예는 냉각수단(140)의 냉매가 순환하면서 냉각작용이 이루어지는 것으로서, 냉각수단(140) 이외의 구성요소는 상술한 실시예와 동일한 구성을 이루고 있는 것이므로 다른 구성들에 대한 상세한 설명은 생략한다.Another embodiment of the polycrystalline silicon manufacturing apparatus for solar cells of the present invention as shown in the drawings is a cooling action is performed while the refrigerant of the cooling means 140 is circulated, components other than the cooling means 140 is the embodiment described above. Since the configuration is the same as the detailed description of the other components will be omitted.

본 발명의 다른 실시예의 냉각수단(140)은 핫플레이트(130)의 열전도판(132)내에 사행식으로 형성되고 양단에 유입구(142a)와 유출구(142b)가 형성된 이동통로(142)와, 상기 이동통로(142)의 유입구(142a)와 유출구(142b)를 연결하여 냉매가 순환하도록 하는 연결관(146)과, 상기 연결관(146)상에 형성되어 이동통로(142)의 유입구측으로 냉매를 공급하는 공급부(144) 및, 상기 공급부(144)와 함께 연결관(146)상에 형성되어 냉매를 냉각시키는 열교환부(148)로 구성된다.Cooling means 140 of another embodiment of the present invention is a meandering manner formed in the heat conducting plate 132 of the hot plate 130 and the inlet 142a and the outlet 142b formed at both ends and the moving passage 142, A connecting pipe 146 connecting the inlet 142a and the outlet 142b of the moving passage 142 to circulate the refrigerant, and formed on the connecting tube 146 to cool the refrigerant toward the inlet side of the moving passage 142. It is composed of a supply unit 144 for supplying, and a heat exchange unit 148 formed on the connection pipe 146 together with the supply unit 144 to cool the refrigerant.

따라서, 공급부(144)를 통해 핫플레이트(130)의 열전도판(132)내에 형성된 이동통로(142)의 유입구(142a)로 공급되는 냉매는 이동통로(142)를 순환하면서 진공챔버(110)내의 온도를 낮춰 도가니(120)내의 용융상태의 실리콘용액이 결정화 되는 온도조건을 제어하게 되며, 이동통로(142)의 유출구(142b)를 통해 배출된 냉매는 연결관(146)을 통해 연결된 열교환부(148)에서 다시 냉각되어 공급부(144)를 향해 이동하게 된다. Therefore, the coolant supplied to the inlet 142a of the moving passage 142 formed in the heat conducting plate 132 of the hot plate 130 through the supply unit 144 circulates through the moving passage 142 and is in the vacuum chamber 110. The temperature is lowered to control the temperature condition in which the molten silicon solution in the crucible 120 is crystallized, and the refrigerant discharged through the outlet 142b of the movement passage 142 is connected to the heat exchanger through the connection pipe 146 ( Cooled again at 148 and moved towards supply 144.

상기와 같이 본 발명의 다른 실시예에 따른 냉각수단은 열전도판의 이동통로 와 열교환부 및 공급부가 연결관으로 연결되어 폐쇄형태의 순환라인을 형성하게 되는 것이다.As described above, the cooling means according to another embodiment of the present invention is to form a closed circulation line by connecting the moving passage of the heat conduction plate, the heat exchanger, and the supply unit to the connection pipe.

도 1a는 종래 다결정 실리콘 제조장치의 단면도,Figure 1a is a cross-sectional view of a conventional polycrystalline silicon manufacturing apparatus,

도 1b 는 종래 다결정 실리콘 제조장치의 작용도,Figure 1b is a functional diagram of a conventional polycrystalline silicon manufacturing apparatus,

도 2는 본 발명 솔라셀용 다결정 실리콘 제조장치의 단면도,Figure 2 is a cross-sectional view of the polycrystalline silicon manufacturing apparatus for solar cells of the present invention,

도 3은 본 발명 솔라셀용 다결정 실리콘 제조장치의 핫플레이트 및 냉각수단의 발췌사시도,Figure 3 is an exploded perspective view of the hot plate and cooling means of the polycrystalline silicon manufacturing apparatus for solar cells of the present invention,

도 4는 본 발명 솔라셀용 다결정 실리콘 제조장치의 열전도판의 평단면도,4 is a plan sectional view of a heat conduction plate of the polycrystalline silicon manufacturing apparatus for solar cells of the present invention;

도 5는 본 발명 솔라셀용 다결정 실리콘 제조장치의 다른 실시예의 단면도이다.5 is a cross-sectional view of another embodiment of the polycrystalline silicon manufacturing apparatus for solar cells of the present invention.

※ 도면의 주요 부분에 대한 부호의 설명※ Explanation of codes for main parts of drawing

110:진공챔버, 120:도가니, 130:핫플레이트,110: vacuum chamber, 120: crucible, 130: hot plate,

132:열전도판, 134:발열회로, 136:전원접속단자,132: heat conduction plate, 134: heat generating circuit, 136: power connection terminal,

138:절연막, 140:냉각수단, 142:이동통로,138: insulating film, 140: cooling means, 142: moving passage,

142a:유입구, 142b:유출구, 144:공급부,142a: inlet, 142b: outlet, 144: supply,

146:연결관, 148:열교환부146: connector, 148: heat exchanger

Claims (2)

솔라셀용 다결정 실리콘 제조장치에 있어서,In the polycrystalline silicon manufacturing apparatus for solar cells, 내부에 밀폐된 수용공간을 형성하는 진공챔버;A vacuum chamber which forms a sealed accommodation space therein; 상기 진공챔버내에 배치되는 실리콘이 수용되는 도가니;A crucible in which silicon disposed in the vacuum chamber is accommodated; 열전도판과, 상기 열전도판의 저면측에 배치되어 전원의 공급에 의해 발열하는 발열회로와, 상기 발열회로에 접속되어 전원을 공급하는 전원접속단자 및, 상기 발열회로를 보호하는 절연막이 형성되어 상기 도가니 내에 수용된 실리콘을 용융시키도록 상기 도가니의 외측에 배치되는 다수의 핫플레이트들; 및,A heat conduction plate, a heat generation circuit disposed on the bottom side of the heat conduction plate and generating heat by supplying power, a power connection terminal connected to the heat generating circuit to supply power, and an insulating film protecting the heat generating circuit is formed; A plurality of hot plates disposed outside the crucible to melt silicon contained in the crucible; And, 상기 다수의 핫플레이트들 중 도가니의 저면측에 배치되는 핫플레이트의 열전도판내에 형성되어 냉각수가 통과하는 이동통로 및 상기 이동통로로 냉각수를 공급하는 공급부가 형성된 냉각수단을 포함하는 솔라셀용 다결정 실리콘 제조장치.Manufacture of polycrystalline silicon for solar cell including a plurality of hot plates formed in the heat conduction plate of the hot plate disposed on the bottom surface side of the crucible, the movement passage through which the coolant passes and the cooling means for supplying the cooling water to the movement passage. Device. 제 1항에 있어서,The method of claim 1, 상기 냉각수단은 상기 핫플레이트의 내부에 형성된 이동통로 및 공급부를 연결하여 냉각수가 순환하게 하는 연결관과, 상기 연결관상에 배치되어 가열된 냉각수를 냉각시키는 열교환부를 포함하는 것을 특징으로 하는 솔라셀용 다결정 실리콘 제조장치.The cooling means is a polycrystalline crystal for a solar cell, characterized in that it comprises a connection pipe for connecting the moving passage and the supply formed in the hot plate to allow the cooling water to circulate, and a heat exchanger for cooling the heated cooling water disposed on the connection pipe. Silicon manufacturing equipment.
KR1020070069561A 2007-07-11 2007-07-11 Apparatus for manufacturing of polycrystalline silicon for solar cell KR100875622B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070069561A KR100875622B1 (en) 2007-07-11 2007-07-11 Apparatus for manufacturing of polycrystalline silicon for solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070069561A KR100875622B1 (en) 2007-07-11 2007-07-11 Apparatus for manufacturing of polycrystalline silicon for solar cell

Publications (1)

Publication Number Publication Date
KR100875622B1 true KR100875622B1 (en) 2008-12-26

Family

ID=40373083

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070069561A KR100875622B1 (en) 2007-07-11 2007-07-11 Apparatus for manufacturing of polycrystalline silicon for solar cell

Country Status (1)

Country Link
KR (1) KR100875622B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162507A (en) 2003-11-28 2005-06-23 Sharp Corp Polycrystal semiconductor ingot and its manufacturing device and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162507A (en) 2003-11-28 2005-06-23 Sharp Corp Polycrystal semiconductor ingot and its manufacturing device and method

Similar Documents

Publication Publication Date Title
KR100861412B1 (en) Manufacturing equipment for poly silicon ingot
KR101139845B1 (en) A high-throughput apparatus for manufacturing silicon ingots for the polycrystalline silicon solar cell
EP0939146B1 (en) Method for producing silicon ingot having directional solidification structure and apparatus for producing the same
CN102131963B (en) Apparatus and method for manufacturing ingot
US20070283882A1 (en) Manufacturing equipment for polysilicon ingot
KR100916843B1 (en) Manufacturing high efficiency equipment for polysilicon ingot
CN103890242B (en) Liquid cooled heat exchangers
JP2013503810A (en) Sapphire single crystal growth method and apparatus
JP2008534414A (en) Apparatus and method for crystallization of non-ferrous metal materials
JP3964070B2 (en) Crystalline silicon production equipment
WO1993017158A1 (en) Method and apparatus for growing shaped crystals
JP2008508187A (en) Method for growing a single crystal from a melt
KR101339377B1 (en) Manufacturing equipment for silicon ingot and its using the same ingot construction methode
CN101477949A (en) Silicon chip, manufacturing method and apparatus thereof
KR20110056635A (en) Multi-crystal silicon ingot manufacture apparatus for production of solar cell
KR100875622B1 (en) Apparatus for manufacturing of polycrystalline silicon for solar cell
KR100902859B1 (en) A casting device for silicon manufacture for a solar cell
KR101199562B1 (en) Manufacturing equipment for polysilicon ingot
JP2001048696A (en) Crystalline silicon production device
KR200446667Y1 (en) Apparatus of fabricating silicon ingot for solar cell
KR100428699B1 (en) Large Crystal Growing Apparatus Having Vertical and Horizontal Temperature Gradients and Growing Method thereof
KR101411275B1 (en) The appratus of silicon for solar cell and the method thereof
KR101139846B1 (en) The apparatus equipped with effective insulating/protection plates for manufacturing of the polycrystalline silicon ingot for solar cell
CN103352248B (en) Crystallization process of polycrystalline silicon and ingot casting process of polycrystalline silicon
JP4273664B2 (en) Crystalline silicon production equipment

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130204

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20131217

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20141217

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20151217

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20161216

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20171211

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190103

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20191217

Year of fee payment: 12