KR100875271B1 - 렌즈 구조체, 그 제조방법, 그것을 구비한 광학 시스템, 및광학 시스템을 이용한 리소그래피 방법 - Google Patents

렌즈 구조체, 그 제조방법, 그것을 구비한 광학 시스템, 및광학 시스템을 이용한 리소그래피 방법 Download PDF

Info

Publication number
KR100875271B1
KR100875271B1 KR1020070042270A KR20070042270A KR100875271B1 KR 100875271 B1 KR100875271 B1 KR 100875271B1 KR 1020070042270 A KR1020070042270 A KR 1020070042270A KR 20070042270 A KR20070042270 A KR 20070042270A KR 100875271 B1 KR100875271 B1 KR 100875271B1
Authority
KR
South Korea
Prior art keywords
lens
lens structure
protrusion
optical system
thin film
Prior art date
Application number
KR1020070042270A
Other languages
English (en)
Other versions
KR20080097266A (ko
Inventor
한재원
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to KR1020070042270A priority Critical patent/KR100875271B1/ko
Priority to US12/010,708 priority patent/US7969555B2/en
Publication of KR20080097266A publication Critical patent/KR20080097266A/ko
Application granted granted Critical
Publication of KR100875271B1 publication Critical patent/KR100875271B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)

Abstract

렌즈 구조체, 그 제조방법, 그것을 구비한 광학 시스템, 및 광학 시스템을 이용한 리소그래피 방법을 개시한다. 개시된 렌즈 구조체는, 실질적인 반구 형태를 가지며, 그것의 비구면에 원뿔대 형태의 돌출부가 구비된 렌즈, 상기 돌출부 표면에 설치되며 상기 돌출부 상부 중앙에 형성되는 개구를 포함하는 금속 박막, 및 상기 돌출부 상면에 일정 두께를 가지면서 피복된 간격 유지재를 포함한다.
렌즈, 돌출부, 이머젼층, SIL

Description

렌즈 구조체, 그 제조방법, 그것을 구비한 광학 시스템, 및 광학 시스템을 이용한 리소그래피 방법{Lens Structure, Method Of Manufacturing The Same, Optical System Having The Same, And Lithography Method Using the Optical System}
도 1은 본 발명의 일 실시예에 따른 렌즈 구조체의 단면도,
도 2는 도 1의 렌즈 구조체의 돌출부 부분을 확대하여 도시한 단면도,
도 3은 본 발명의 다른 실시예에 따른 이머젼층이 구비된 렌즈 구조체의 단면도,
도 4는 본 발명의 다른 실시예에 따른 보호층이 구비된 렌즈 구조체를 보여주는 단면도,
도 5 내지 도 9는 본 발명의 일 실시예에 따른 렌즈 구조체의 제조방법을 설명하기 위한 각 공정별 단면도,
도 10은 본 발명의 일 실시예에 따른 렌즈 구조체를 구비한 광학 시스템을 보여주는 단면도,
도 11은 도 10의 광학 시스템의 렌즈부를 확대하여 보여준 단면도,
도 12는 본 발명의 실시예에 따른 광학 시스템에 의해 리소그라피 과정을 설명하기 위한 플로우 챠트, 및
도 13은 본 발명의 다른 실시예에 따른 렌즈 구조체를 보여주는 단면도이다.
<도면의 주요 부분에 대한 부호의 설명>
100 : 렌즈 구조체 105 : 렌즈
110 : 돌출부 120 : 금속 박막
125 : 개구 130 : 간격 유지재
135 : 보호층 200 : 광학 시스템
본 발명은 리소그래피 기술에 관한 것으로, 보다 구체적으로는 렌즈 구조체, 그 제조방법, 그것을 구비한 광학 시스템, 및 광학 시스템을 이용한 리소그래피 방법에 관한 것이다.
반도체 집적 회로 소자 및 디스플레이 소자등의 전자 디바이스를 제조하는 데에는 패턴을 형성하기 위한 리소그래피 공정이 필수적이다. 이러한 리소그래피는 일반적으로 레티클(reticle)이라 불리우는 포토마스크가 이용될 수 있으며, 이 포토 마스크에 그려진 이미지는 투영 광학계를 통해 레지스트 물질이 피복된 반도체 기판(이른 바, 웨이퍼 또는 유리 기판)상에 전사된다. 최근에는 레티클과 웨이퍼를 동기주사 및 노광하는 스텝 앤 리피트(step and repeat) 방식이 주로 사용되고 있다.
상기 투영 광학계는 투영 노광 장치내에 설치되며, 투영 광학계의 해상도는 사용되는 노광광의 파장이 짧을수록, 투영 광학계의 개구수(NA)가 커질수록 높아진다. 이에 따라, 집적 회로의 미세화에 따라 투영 광학계에 사용되는 노광 파장은 해마다 단파장화되어 있고 있으며, 투영 광학계의 개구수도 증대되고 있다. 현재에는 노광원으로서, 248nm 파장을 갖는 KrF 엑시머 레이저 또는 193 nm 파장을 갖는 ArF 엑시머 레이저가 주로 이용되고 있다.
이러한 리소그래피 공정에 있어서, 가장 중요한 팩터는 해상도(resolution) 및 초점 심도(DOF)이다. 해상도(R) 및 초점 심도(δ)는 하기의 식으로 구현된다.
<식 1>
R = k1·λ/NA
<식 2>
δ = k2·λ/NA2
여기서에 λ는 노광 파장을 나타내고, NA는 투영광학계의 개구수, k1,k2는 프로세스 계수를 나타낸다. 상기 식 1 및 식 2에 의하면, 해상도(R )과 초점 심도(δ )는 트레이드 오프(trade off) 관계에 있다. 즉, 해상도를 높이기 위해 노광 파장(λ)이 짧은 광원을 사용하고 개구수를 큰 투영 광학계를 사용한다면, 초점 심도(δ)가 좁아지게 된다. 일정한 초점 심도(δ )를 확보하기 위하여, 오토 포커스(auto focus) 방식으로 웨이퍼의 표면에 투영 광학계의 이미지면에 맞추어 노광하고 있지만, 원하는 초점 심도(δ)를 얻기는 부족하다. 그리하여, 종래에는 위상 쉬프트 레티클법, 변형 조명법, 다층 레지스트법 등 실질적으로 초점 심도를 넓히 는 방법이 제안되었다.
상술한 바와 같이 종래의 투영 광학계에서는 노광광의 단파장화 및 투영 광학계의 대구경화에 의해 초점 심도가 좁아지고 있다. 또한, 집적 회로의 보다 나은 고집적화에 대응하기 위하여 노광 파장은 장래에 더욱 단파장화가 될 것이 확실시 되고 있으며, 이대로라면 초점 심도는 과도하게 좁아져 노광 동작시 마진이 부족할 우려가 있다.
이에, 실질적으로 해상도 및 리소그라피 특성을 개선하는 방법으로서 출원인에 의해 근접장을 이용한 "2차원 광변조 미세 개구 어레이 및 이를 이용한 고속 미세 패턴 기록 시스템"을 대한민국 특허 공개번호 10-2005-0001086로 제안된 바 있다. 이와 같은 2차원 광변조 미세개구 어레이는 어퍼처 자체가 포토 마스크로 동작하고, 어퍼처의 미세 개구를 통해 집속된 광은 일정 간격 이격되어진 기록 매체에 전달되어, 이미지가 전사된다.
이러한 2차원 광변조 미세 개구 어레이는 근접장을 이용하여 해상도를 높이면서도 초점 심도가 개선된 상태로 노광을 진행하므로써 신뢰성을 개선시킬 수 있다는 장점은 있다. 그러나, 전체 미세 개구 어레이 장치와 기록 매체(기판) 사이의 거리(즉, 초점 거리)를 전체적으로 균일하게 유지하기 어렵다는 문제점이 있다. 이렇게 미세 개구 어레이 장치와 기록 매체간의 거리가 일정하게 유지되지 않으면 동일한 세기의 입사광의 제공되더라도, 서로 다른 형태의 노광이 일어나게 된다.
따라서, 본 발명의 목적은 기록 매체와 균일한 초점 거리를 확보할 수 있는 렌즈 구조체를 제공하는 것이다.
본 발명의 다른 목적은 상기한 렌즈 구조체의 제조방법을 제공하는 것이다.
또한, 본 발명의 또 다른 목적은 상기한 렌즈 구조체가 장착되는 광학 시스템을 제공하는 것이다.
또한, 본 발명의 또 다른 목적은 상기 광학 시스템을 이용한 리소그래피 방법을 제공하는 것이다.
상기한 본 발명의 목적을 달성하기 위한, 본 발명의 렌즈 구조체는, 실질적인 반구 형태를 가지며, 그것의 비구면에 원뿔대 형태의 돌출부가 구비된 렌즈, 상기 돌출부 표면에 설치되며 상기 돌출부 상부 중앙에 형성된 개구를 포함하는 금속 박막, 및 상기 돌출부 상면에 일정 두께를 가지면서 피복된 이머젼층을 포함한다.
또한, 본 발명의 다른 실시예에 따른 렌즈 구조체의 제조방법은, 먼저, 반구 형태의 렌즈를 준비한다음, 상기 렌즈 저부의 평탄에 원뿔대 형태의 돌출부가 형성되도록 상기 렌즈 가장자리 부분을 절삭 가공한다. 그 후에, 상기 돌출부 상면에 중심에 개구를 갖는 금속 박막을 형성하고, 상기 돌출부 상면에 이머젼층을 형성한다.
본 발명의 또 다른 실시예에 따른 광학 시스템은, 광원부, 광원부로부터 광을 제공받아 기록 매체로 나노미터 사이즈의 광을 집속시키기 위한 렌즈부, 및 상기 기록 매체가 장착되는 스테이지를 포함한다. 여기서, 상기 렌즈부는 상기 광원부로부터 제공되는 광을 1차적으로 집속하는 대물 렌즈, 상기 대물렌즈에서 집속된 광을 나노 사이즈 직경을 갖도록 집속시키는 렌즈 구조체, 및 상기 대물 렌즈 및 렌즈 구조체를 지지하는 홀더를 포함한다. 상기 홀더는 상기 대물 렌즈가 삽입,고정되는 제 1 하우징, 상기 제 1 하우징을 시스템 내벽에 부착시키는 지지부재, 상기 렌즈 구조체가 삽입,고정되는 제 2 하우징, 및 상기 제 2 하우징을 상기 제 1 하우징에 연결시키며, 상기 렌즈 구조체를 미세 조정하는 탄성 부재를 포함한다.
또한, 본 발명의 또 다른 실시예에 따른 리소그라피 방법은, 광학계의 스테이지에 레지스트 물질이 도포된 기록 매체를 로딩한다음, 실질적인 반구 형태를 가지며, 평탄면 중앙에 원뿔대 형태의 돌출부가 형성되어 있고 원뿔대 상면에 해당하는 돌출부에 개구를 갖는 금속 박막 및 이머젼층이가 형성되어 있는 렌즈 구조체를 준비한다. 그후에, 상기 렌즈 구조체를 광학계에 세팅하고, 상기 렌즈 구조체를 상기 기록 매체에 접촉시킨다. 다음, 상기 광학계로부터 광을 조사하여 노광을 진행한다.
이하 첨부한 도면에 의거하여 본 발명의 바람직한 실시예를 설명한다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일한 참조 부호는 동일한 구성 요소를 지칭한다.
본 발명은 나노 개구가 형성되었고, 이머젼층에 의해 기록 매체와 렌즈 사이의 거리가 균일해진 단일의 렌즈 구조체를 제공할 것이다. 단일의 렌즈 구조체는 어레이 형태의 렌즈 구조체에 비해 보다 균일한 초점 거리를 확보할 수 있을 것이며, 일반적인 렌즈의 가공에 의해 쉽게 제조 가능하므로, 제조 비용 역시 절감할 수 있을 것이다.
이러한 단일 렌즈 구조체에 대해 이하에서 보다 자세히 설명한다.
도 1을 참조하면, 본 실시예의 렌즈 구조체(100)는 실질적인 반구 형태의 메인 렌즈(105)와, 메인 렌즈(105)의 저면에 원뿔대 형태로 돌출된 돌출부(110)로 구성된다. 원뿔대 형태 돌출부(110)는 메인 렌즈(105)의 저면 중심에 위치되고, 상기 돌출부(110)과 메인 렌즈(105)는 동일한 물질로 형성됨에 따라 그 사이에 경계가 존재하지 않게 된다. 이때, 메인 렌즈(105)는 약 1500 내지 3000㎛ 구경을 가질 수 있고, 돌출부(110) 밑면의 직경(L, 상대적으로 큰 직경)은 약 1000 내지 1500㎛ 정도, 돌출부(110)의 상면(110a) 직경(l : 상대적으로 작은 직경)은 약 30 내지 60㎛ 정도를 가질 수 있다. 이에 따라, 돌출부(110) 양측의 메인 렌즈(105)의 저면 길이(w)는 약 500 내지 2000㎛ 정도가 된다.
렌즈 구조체(100)의 돌출부(110) 표면은 도 2에 도시된 바와 같이 금속 박막(120)으로 피복되어 있으며, 상기 금속 박막(120)은 돌출부(110)의 상면(110a)에 나노미터(nm) 구경의 개구(125)를 갖는다. 상기 개구(125)는 광이 전달되는 부분으로서, 광원부(도시되지 않음)로부터 전달된 빔은 상기 렌즈 구조체(100)에서 집속되고, 집속된 광은 상기 개구(125)를 통해 기록 매체(도시되지 않음)에 전달된다. 여기서, 상기 금속 박막(120)은 400nm 파장을 갖는 광원 사용시, 알루미늄막이 이용될 수 있다. 금속 박막(120)내에 나노미터(nm)급 개구를 형성하게 되면, 그 보다 큰 사이즈의 개구보다 훨씬 투과율면에서 우수하다고 알려졌다("A nano aperture with 1000X power throughput enhancement for VSAL system", 2002, SPIE Vol. 4342). 이 원리에 의해 본 발명의 금속 박막(120)에 나노미터급의 개구를 형성하면, 나노 사이즈 이상으로 개구를 형성하는 것보다 더 큰 투과율을 얻을 수 있다. 즉, 논문에 의하면, 상기 금속 박막은 광의 파장 영역에서 흡수가 적고, 표면 플라즈몬(surface plasmon)을 잘 발생시킬 수 있는 물질이 이용될 수 있으며, 경우에 따라 입사광에 대해 투명할 수도 있다. 이러한 원리에 따라, 금속 박막(120)내에 나노미터(nm)급 개구 구조를 설치하여, 투과도를 높이고 작고 강한 광점을 얻을 수 있다.
이때, 일반적으로 나노미터급 개구로 광이 입사되면 개구 근처에 전파되지 않는 소멸 전계(evanescent field)가 형성되고, 개구를 통과한 광은 회절 현상에 의하여 큰 각도로 발산될 수 있다. 그러므로, 나노급 개구 근처에 형성되는 소멸 전계를 이용할 수 있도록 렌즈 구조체(100)를 기록 매체(도시되지 않음)에 약 100nm 이하로 근접시킴이 바람직하다. 그런데, 광학 시스템에 의해 100nm 이하의 간격을 두고 렌즈 구조체(100)를 기록 매체(도시되지 않음)에 근접시키고 이를 유지하면서 빠른 공정을 수행하는 것은 실질적으로 어려우며, 이를 수행하기 위한 장치 구현시 많은 비용과 어려움을 수반한다.이에 본 실시예에서는, 돌출부(110)의 상면(110a)에 간격 유지재(130)로서 이머젼층(immersion layer : 130)를 형성한다. 상기 간격 유지재 즉, 이머젼층(130)은 광학적으로 투명하고 굴절율이 공기보다 높은 물질일 수 있다. 그러면, 상기 이머젼층(130)을 기록 매체(도시되지 않음)에 접촉시킴에 의해 별도의 거리 조정 없이 이머젼층(130)의 두께만큼 렌즈 구조체(100)와 기록 매체(도시되지 않음)를 이격시킬 수 있다.
여기서, 이머젼층(130)은 도 1 및 도 2에 도시된 바와 같이 돌출부(110)의 상면(110a)에 형성될 수도 있다. 이러한 이머젼층(130)으로는 광학적으로 투명한 포토레지스트, 자외선 응고 수지, 중합체 또는 액상 물질이 이용될 수 있다. 이때, 액상 타입의 이머젼층이 간격 유지재(130)로 이용되는 경우, 상기 액상 물질이 흘러내릴 수 있으므로, 액상 물질을 구속할 수 있도록 성형 프레임(135)을 더 설치할 수 있다. 성형 프레임(135)은 도 3에 도시된 바와 같이 돌출부(110) 상면(110a) 양측 가장자리에 설치되어 액상의 이머젼층(130a)을 구속할 수 있다.
이머젼층(130) 상부에는 도 4에 도시된 바와 같이 보호층(140)이 더 형성될 수 있다. 보호층(140)으로는 마찰 특성이 우수한 다이아몬드 유사 탄소(DLC, diamond like carbon)층이 이용될 수 있다.
이와 같은 렌즈 구조체의 제조방법에 대해 도 5 내지 도 9를 참조하여 설명한다.
먼저, 도 5에 도시된 바와 같이, 가공되지 않은 광학 렌즈(101)가 준비된다. 광학 렌즈(101)는 반구 형태를 가질 수 있으며, 구면(101a) 및 비구면(101b)을 갖는다. 광학 렌즈(101)의 비구면(101b) 양측을 약 310 내지 350㎛ 정도의 두께 만큼을 절삭 가공한다. 이에 따라, 광학 렌즈(101)의 비구면에 원뿔대 형태의 돌출부(110)가 구비된 렌즈 구조체(100)이 형성된다.
도 6을 참조하면, 돌출부(110)가 형성된 렌즈 구조체(100) 표면에 금속 박막(120)을 형성한다. 금속 박막(120)으로는 예를 들어 알루미늄 박막이 이용될 수 있고, 스퍼터링 방식(sputtering) 또는 화학 기상 증착 방식으로 형성될 수 있다.
도 7을 참조하면, 돌출부 상면(110a) 중심에 해당하는 돌출부(110) 부분이 노출되도록 상기 금속 박막(120)을 패터닝하여, 개구부(125)를 형성한다. 이때, 개구부(125)의 폭은 100nm 이하를 갖도록 형성하는 것이 바람직하며, 상기 금속 박막(120)은 일반적인 포토리소그라피 및 식각 공정을 이용하거나 광 리소그라피 법을 이용하여 패터닝할 수 있다.
도 8에 도시된 바와 같이, 개구부(125)가 형성된 금속 박막(120) 상면에 간격 유지재(130)로서 이머젼층을 형성한다. 이머젼층(130)으로 상술한 바와 같이 투명 포토레지스트, 자외선 응고 수지 및 중합체와 같은 고체 이머젼층이 이용될 수 있다. 그후, 상기 돌출부 상면(110a)에만 이머젼층(130)이 형성되도록 상기 이머젼층(130)을 패터닝한다.
도 9를 참조하면, 이머젼층(130) 상부에 보호층(140)을 더 형성할 수 있다. 보호층(140)은 상술한 바와 같이 이머젼층(130)과 기록 매체(도시되지 않음)과의 접촉시 간격 유지재(130)의 손상을 방지하기 위하여 제공되며, 예를 들어 다이아몬드 유사 탄소층이 이용될 수 있다. 이로써, 마스크 기능을 하는 렌즈 구조체(110)가 완성된다. 여기서, 보호층(140)은 선택적으로 형성될 수 있는 것으로, 이머젼층(130) 및 보호층(140)이 순차적으로 형성되는 경우, 한 번의 패터닝 공정으로 상기 이머젼층(130)과 보호층(140)을 돌출부 상면(110a)에만 위치시킬 수 있다.
도 10은 본 발명의 실시예에 따른 렌즈 구조체가 구비된 광학 시스템의 단면도이다.
도면을 참조하면, 광학 시스템(200)은 광원부(210), 렌즈부(250) 및 스테이지(270)를 포함한다.
광원부(210)는 광원(211), 편광 화이버(213), 콜리메이터(215), 제 1 및 제 2 빔 스플리터(beam splitter:217,219)를 포함한다.
상기 광원(211)으로는 예컨대 레이저 다이오드를 사용할 수 있으며, 편광 화이버(213)는 광원(211)에서 제공된 광을 편광 상태를 유지하면서 상기 콜리메이터(215)에 전달한다.
콜리메이터(215)는 편광 화이버(213)에 의해 전달된 빔을 평행빔으로 변환하여 투과시킨다.
제 1 빔 스플리터(217)는 상기 콜리메이터(215)에서 전달되는 빔 및 추가 조명계(220)로부터 제공되는 빔을 소정 비율로 반사 및 투과시켜, 상기 제 2 빔 스플리터(219)에 제공한다.
제 2 빔 스플리터(219)는 제 1 빔 스플리터(217)에 의해 제공되는 빔을 소정 비율로 반사 및 투과시켜 렌즈부(250)로 전달시킨다.
여기서, 상기 추가의 조명계(220)는 추가 광원(221)과, 추가 광원(221)으로부터 제공되는 빔을 전달하는 광화이버(223), 및 광 화이버(223)로부터 제공되는 빔을 집속하는 렌즈(225)로 구성될 수 있다.
상기 렌즈부(250)는 도 11에 도시된 바와 같이, 대물 렌즈(252), 나노 개구를 갖는 본 실시예의 렌즈 구조체(100) 및 렌즈 구조체(100)의 홀더(260)로 구성될 수 있으며 상하 이동이 가능하다.
상기 대물 렌즈(252)는 광원부(210)의 제 2 빔 스플리터(219)로부터 전달된 빔을 1차적으로 집속한다.
상기 렌즈 구조체(100)는 상술한 바와 같이 반구 형태의 렌즈(105) 및 상기 렌즈의 평탄부 중앙에 형성되는 원뿔대 형태의 돌출부(110)로 구성될 수 있다. 이러한 렌즈 구조체(100)는 대물 렌즈(252)에 1차적으로 집속된 빔을 나노 직경으로 집속시킨다.
홀더(260)는 제 1 하우징(262), 제 2 하우징(264), 지지부재(266) 및 연결부재(268)로 구성된다. 제 1 하우징(262)은 실질적인 직육면체 형상을 가지며, 상부에 상기 대물 렌즈(252)가 삽입 고정될 수 있는 크기의 제 1 홀(h1)을 포함한다. 제 1 하우징(262)은 지지부재(266)에 의해 광학 시스템에 고정된다. 상기 지지부재(266)는 광학 시스템에 고정되어 있되, 대물렌즈(252)의 위치를 조절할 수 있다. 즉, 지지부재(266)는 대물 렌즈(252)가 최적의 집속 효율을 가지게끔 대물 렌즈(252)를 지지함과 동시에 위치를 조절하게 한다. 제 2 하우징(264)은 실질적인 플레이트(plate) 형상을 가지며, 렌즈 구조체(100), 바람직하게는 렌즈 구조체(100)의 돌출부(110)가 삽입 고정될 수 있는 크기의 제 2 홀(h2)을 갖는다. 제 2 하우징(264)은 상기 제 1 하우징(262) 단부에 연결 부재(268)에 의해 고정된다. 연 결 부재(268)는 예컨대, 스프링과 같은 탄성 부재를 이용함이 바람직하다. 제 2 하우징(264)이 제 1 하우징(264)에 스프링과 같은 탄성 부재로 연결되는 경우, 렌즈 구조체(100)의 돌출부(110)의 상면(110a)이 기록 매체에 정확히 맞닿도록 렌즈 구조체(100)의 미세 위치 조절이 가능하다.
스테이지(270)는 기록 매체(280), 즉 레지스트(285)가 피복된 웨이퍼(280)가 안착된다. 이러한 스테이지(270)는 다양한 형태의 패턴을 기록할 수 있도록 X-Y축 방향으로 다양하게 이동가능하다.
이와 같은 광학 시스템(200)을 이용한 리소그라피 방법에 대해 도 12를 참조하여 설명하도록 한다. 본 실시예에서는 기록 매체(280)로서, 예컨대 실리콘 웨이퍼를 사용하였으며, 그 밖에도 화합물 반도체 기판은 물론 세라믹 기판에 이르기 까지 다양한 재질의 기판이 이용될 수 있다.
도 12를 참조하면, 기록 매체(280), 즉, 회로 소자가 구비된 실리콘 웨이퍼 상부에 포토레지스트막(285)을 도포한다(S1). 다음, 상기 실시예에 따라 제조된 단일 렌즈 구조체(100)를 광학 시스템(200)의 렌즈부(250) 홀더(260)에 세팅시킨다(S2). 즉, 홀더(260)의 제 2 홀(h2)에 렌즈 구조체(100)의 돌출부(110)를 삽입 고정시킨다. 그리고 나서, 상기 렌즈 구조체(100)와 상기 기록 매체(280)의 결과물 표면과 접촉되도록, 즉 렌즈 구조체(100)의 이머젼층(130, 혹은 보호층)과 기록 매체(280) 상부의 포토레지스트막이 콘택되도록 상기 렌즈부(250)의 위치를 조절한다(S3). 상술한 바와 같이 렌즈부(250)는 상하 위치 조절이 가능할 수 있으며, 렌즈 구조체(100)의 돌출부(110) 상면에 형성된 개구(125)와 상기 포토레지스트 막(285)이 정확히 대응될 수 있도록 상기 탄성 부재(268)에 의해 미세 조절이 가능하다. 그후, 광학 시스템(200)의 광원부(210)를 통해 레이저 빔을 조사하여 노광을 실시한다(S4). 이때, 다양한 형태의 패턴을 포토레지스트 막에 기록하기 위하여 상기 스테이지(270)를 패턴의 형태대로 움직여 가면서, 노광을 실시할 수 있다.
이와 같은 본 발명에 의하면, 단일의 렌즈 구조체를 사용하므로써, 렌즈와 기록 매체간의 거리를 일정하게 확보할 수 있다. 또한, 마이크로 렌즈보다 저렴한 일반적인 렌즈 구조체를 사용함에 의해 제조 원가를 절감할 수 있다. 또한, 웨이퍼 스테이지의 이송에 의해, 단일의 렌즈 구조체 만으로도 100nm 이하의 다양한 형태의 패턴을 제작할 수 있다.
본 실시예는 상기한 실시예에 국한되는 것만은 아니다.
본 실시예에서는 렌즈의 비구면 가장자리를 절삭가공하여 돌출부를 형성하였지만, 돌출부를 형성하지 않고도, 도 13에 도시된 바와 같이 렌즈(300)의 비구면 전체에, 중앙에 개구(315)를 갖는 금속 박막(310), 이머젼층(320), 및 보호층(330)을 순차적으로 적층하여 렌즈 구조체를 형성할 수 있다. 도면에서 "X"는 렌즈(300)의 구경으로서, 약 1500 내지 3000㎛ 일 수 있다.
이상 본 발명을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 사상의 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다.
이상에서 자세히 설명한 바와 같이, 본 발명에 의하면, 단일의 렌즈 구조체 를 사용하므로써, 렌즈 구조체와 기록 매체간에 일정한 거리를 유지할 수 있다. 그러므로 균일한 노광 결과를 얻을 수 있다.
또한, 일반적인 렌즈의 가공을 통해, 포토 마스크의 역할을 수행할 수 있으므로, 제조 비용을 크게 절감할 수 있다.

Claims (14)

  1. 실질적인 반구 형태를 가지며, 그것의 비구면에 원뿔대 형태의 돌출부가 구비된 렌즈;
    상기 돌출부 표면에 설치되며, 상기 돌출부 상부 중앙에 형성된 개구를 포함하는 금속 박막; 및
    상기 돌출부 상면에 일정 두께를 가지면서 피복된 이머젼층을 포함하는 렌즈 구조체.
  2. 제 1 항에 있어서,
    상기 금속 박막은 알루미늄막인 렌즈 구조체.
  3. 제 1 항에 있어서,
    상기 이머젼층은 공기보다 큰 굴절율을 갖고 광학적으로 투명한 물질인 렌즈 구조체.
  4. 제 3 항에 있어서,
    상기 이머젼층은 자외선 응고 수지 또는 중합체인 렌즈 구조체.
  5. 제 3 항 또는 제 4 항에 있어서,
    상기 이머젼층은 50 내지 100nm 의 두께를 갖는 렌즈 구조체.
  6. 제 1 항에 있어서,
    상기 이머젼층 표면을 덮는 보호층을 추가로 포함하는 렌즈 구조체.
  7. 제 6 항에 있어서,
    상기 보호층은 다이아몬드 유사 탄소층인 렌즈 구조체.
  8. 반구 형태의 렌즈를 제공하는 단계;
    상기 렌즈 저부의 평탄에 원뿔대 형태의 돌출부가 형성되도록 상기 렌즈 가장자리 부분을 절삭 가공하는 단계;
    상기 돌출부 상면에 중심에 개구를 갖는 금속 박막을 형성하는 단계; 및
    상기 돌출부 상면에 이머젼층을 형성하는 단계를 포함하는 렌즈 구조체 제조방법.
  9. 제 8 항에 있어서,
    상기 이머젼층을 형성하는 단계는,
    상기 이머젼층으로 액상 물질을 도포하는 단계; 및
    상기 액상 물질을 구속하기 위한 성형 프레임을 형성하는 단계를 포함하는 렌즈 구조체의 제조방법.
  10. 제 8 항에 있어서,
    상기 이머젼층 상부에 보호층을 추가로 형성하는 단계를 포함하는 렌즈 구조체의 제조방법.
  11. 광원부;
    상기 광원부로부터 광을 제공받아 상기 광의 직경이 나노미터 사이즈를 갖도록 하여, 상기 나노미터 직경의 광을 기록매체에 집속시키는 렌즈부; 및
    상기 기록 매체가 장착되는 스테이지를 포함하는 광학 시스템.
  12. 제 11 항에 있어서,
    상기 렌즈부는 상기 광원부로부터 제공되는 광을 1차적으로 집속하는 대물 렌즈,
    상기 대물렌즈에서 집속된 광을 상기 나노미터 사이즈 직경을 갖도록 집속시키는 렌즈 구조체, 및
    상기 대물 렌즈 및 렌즈 구조체를 지지하는 홀더를 포함하며,
    상기 렌즈 구조체는 돌출부가 구비된 렌즈, 상기 렌즈 돌출부 표면에 설치되며 상기 돌출부 상부 중앙에 형성된 상기 나노 미터 직경의 개구를 포함하는 금속 박막, 및 상기 금속 박막 상부에 피복된 이머젼층을 포함하는 나노 미터 광학 시스템.
  13. 제 12 항에 있어서,
    상기 홀더는
    상기 대물 렌즈가 삽입,고정되는 제 1 하우징,
    상기 제 1 하우징을 시스템 내벽에 부착시키는 지지부재,
    상기 렌즈 구조체가 삽입,고정되는 제 2 하우징, 및
    상기 제 2 하우징을 상기 제 1 하우징에 연결시키며, 상기 렌즈 구조체의 위치를 미세 조정하는 탄성 부재를 포함하는 광학 시스템.
  14. 광학계의 스테이지에 레지스트 물질이 도포된 기록 매체를 로딩하는 단계;
    실질적인 반구 형태를 가지며, 평탄면 중앙에 원뿔대 형태의 돌출부가 형성되어 있고, 원뿔대 상면에 해당하는 돌출부에 개구를 갖는 금속 박막 및 이머젼층이 형성되어 있는 렌즈 구조체를 제공하는 단계;
    상기 렌즈 구조체를 광학계에 세팅하는 단계;
    상기 렌즈 구조체를 상기 기록 매체에 접촉시키는 단계; 및
    상기 광학계로부터 광을 조사하여 노광을 진행하는 단계를 포함하는 리소그래피 방법.
KR1020070042270A 2007-03-16 2007-05-01 렌즈 구조체, 그 제조방법, 그것을 구비한 광학 시스템, 및광학 시스템을 이용한 리소그래피 방법 KR100875271B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020070042270A KR100875271B1 (ko) 2007-05-01 2007-05-01 렌즈 구조체, 그 제조방법, 그것을 구비한 광학 시스템, 및광학 시스템을 이용한 리소그래피 방법
US12/010,708 US7969555B2 (en) 2007-03-16 2008-01-29 Lens structure, optical system having the same, and lithography method using the optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070042270A KR100875271B1 (ko) 2007-05-01 2007-05-01 렌즈 구조체, 그 제조방법, 그것을 구비한 광학 시스템, 및광학 시스템을 이용한 리소그래피 방법

Publications (2)

Publication Number Publication Date
KR20080097266A KR20080097266A (ko) 2008-11-05
KR100875271B1 true KR100875271B1 (ko) 2008-12-23

Family

ID=40285204

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070042270A KR100875271B1 (ko) 2007-03-16 2007-05-01 렌즈 구조체, 그 제조방법, 그것을 구비한 광학 시스템, 및광학 시스템을 이용한 리소그래피 방법

Country Status (1)

Country Link
KR (1) KR100875271B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101136258B1 (ko) * 2011-01-28 2012-04-20 연세대학교 산학협력단 내부에 나노 개구 구비 금속막이 형성된 소자의 제조방법, 그 방법으로 제조된 나노 소자, 광학렌즈 및 플라즈모닉 광학헤드
KR101192466B1 (ko) 2011-02-11 2012-10-17 연세대학교 산학협력단 능동 근접장 간극제어가 가능한 고속 마스크리스 나노리소그래피 방법, 이에 사용되는 나노 개구 기반 광학렌즈 및 광학헤드

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101136258B1 (ko) * 2011-01-28 2012-04-20 연세대학교 산학협력단 내부에 나노 개구 구비 금속막이 형성된 소자의 제조방법, 그 방법으로 제조된 나노 소자, 광학렌즈 및 플라즈모닉 광학헤드
KR101192466B1 (ko) 2011-02-11 2012-10-17 연세대학교 산학협력단 능동 근접장 간극제어가 가능한 고속 마스크리스 나노리소그래피 방법, 이에 사용되는 나노 개구 기반 광학렌즈 및 광학헤드

Also Published As

Publication number Publication date
KR20080097266A (ko) 2008-11-05

Similar Documents

Publication Publication Date Title
US20060086898A1 (en) Method and apparatus of making highly repetitive micro-pattern using laser writer
US7629087B2 (en) Photomask, method of making a photomask and photolithography method and system using the same
JP4261849B2 (ja) 近接場光を用いた露光方法及び、近接場光を用いる露光装置
US10353285B2 (en) Pellicle structures and methods of fabricating thereof
JP2006514784A (ja) 2次元の光変調ナノ/マイクロ開口アレイ、及び該アレイを用いた高速ナノ・パターン記録システム
TWI460765B (zh) 固態浸沒透鏡微影術
US7414240B2 (en) Particle remover, exposure apparatus having the same, and device manufacturing method
US6721040B2 (en) Exposure method and apparatus using near field light
KR100875271B1 (ko) 렌즈 구조체, 그 제조방법, 그것을 구비한 광학 시스템, 및광학 시스템을 이용한 리소그래피 방법
JP4347009B2 (ja) 近接場光の発生方法、近接場露光用マスク、近接場露光方法、近接場露光装置、近接場光ヘッド
JP2009054784A (ja) 補助板およびそれを有する露光装置
KR100638107B1 (ko) 이머젼 박막층을 구비하는 광변조 미세개구 어레이 장치 및이를 이용한 고속 미세패턴 기록시스템
TW201106106A (en) Optical etching device for laser machining
JP2006339359A (ja) 微細構造体の製造方法、電子機器
US20070019173A1 (en) Photolithography arrangement
US7969555B2 (en) Lens structure, optical system having the same, and lithography method using the optical system
US7705965B2 (en) Backside lithography and backside immersion lithography
JP2001013056A (ja) 微小開口形成方法
US6322957B1 (en) Light exposure method
Yang et al. Design and fabrication of microlens and spatial filter array by self-alignment
KR100580657B1 (ko) 마이크로 미러 어레이 및 그 제조 방법
US20130213944A1 (en) System for Laser Direct Writing of MESA Structures Having Negatively Sloped Sidewalls
JP2009051173A (ja) スタンパの製造方法および光学素子
KR100560295B1 (ko) 미세 패턴을 위한 노광 장치
KR20060032731A (ko) 레티클 이머젼 리소그래피용 노광 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121122

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20131111

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20141229

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20151201

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20161212

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20181210

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20191216

Year of fee payment: 12