KR100873574B1 - Fluidization reactor - Google Patents

Fluidization reactor Download PDF

Info

Publication number
KR100873574B1
KR100873574B1 KR1020070038500A KR20070038500A KR100873574B1 KR 100873574 B1 KR100873574 B1 KR 100873574B1 KR 1020070038500 A KR1020070038500 A KR 1020070038500A KR 20070038500 A KR20070038500 A KR 20070038500A KR 100873574 B1 KR100873574 B1 KR 100873574B1
Authority
KR
South Korea
Prior art keywords
dispersion plate
fluidized bed
bed reactor
plate
main body
Prior art date
Application number
KR1020070038500A
Other languages
Korean (ko)
Other versions
KR20080094281A (en
Inventor
이동현
손승용
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to KR1020070038500A priority Critical patent/KR100873574B1/en
Publication of KR20080094281A publication Critical patent/KR20080094281A/en
Application granted granted Critical
Publication of KR100873574B1 publication Critical patent/KR100873574B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0004Apparatus specially adapted for the manufacture or treatment of nanostructural devices or systems or methods for manufacturing the same
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

개시된 내용은 유동층 반응기의 분산판을 냉각하여 유동가스가 분산판의 통기공을 막는 현상을 방지하기 위한 유동층 반응기에 관한 것이다.Disclosed is a fluidized bed reactor for cooling a dispersion plate of a fluidized bed reactor to prevent a phenomenon in which the flowing gas blocks the vent holes of the dispersion plate.

유동층 반응기의 본체는 내부 공간을 가지며, 하측에 가스 유입관이 제공되고, 상측에 가스 유출관이 제공되어 있다. 본체의 내부에는 본체의 상하 방향과 수직하게 분산판이 제공되어 있다. 분산판은 내부 공간을 갖도록 제공되어 있다. 분산판에는 노즐이 배치되어 있으며, 냉각수 유입관 및 냉각수 유출관이 연결되어 있다. 냉각수 유입관 및 냉각수 유출관은 본체의 외부로부터 본체의 하부를 통과하여 분산판의 내부와 연통하도록 제공되어 있다. The body of the fluidized bed reactor has an inner space, a gas inlet pipe is provided on the lower side, and a gas outlet pipe is provided on the upper side. The inside of the main body is provided with a distribution plate perpendicular to the vertical direction of the main body. The distribution plate is provided to have an interior space. A nozzle is arranged in the dispersion plate, and a cooling water inlet pipe and a cooling water outlet pipe are connected. The coolant inlet tube and the coolant outlet tube are provided to communicate with the inside of the distribution plate from the outside of the body through the lower part of the body.

이와 같이 구성된 본 발명에 따르면, 유동층 반응기용 분산판을 냉각하기 위한 구조를 단순화함으로써 제조공정상 편리함을 제공할 수 있으며, 분산판을 냉각함으로써 유동가스가 분산판에서 열분해되지 않으며 이에 따라 분산판의 통기공이 막히는 현상을 방지할 수 있다. According to the present invention configured as described above, it is possible to provide convenience in the manufacturing process by simplifying the structure for cooling the dispersion plate for the fluidized bed reactor, by cooling the dispersion plate does not thermally decompose the flow gas in the dispersion plate and thus It is possible to prevent the clogging of pores.

유동층 반응기, 분산판, 탄소나노튜브 Fluidized bed reactors, dispersion plates, carbon nanotubes

Description

유동층 반응기{FLUIDIZATION REACTOR}Fluidized Bed Reactors {FLUIDIZATION REACTOR}

도 1은 본 발명에 따른 유동층 반응기의 단면도, 1 is a cross-sectional view of a fluidized bed reactor according to the present invention,

도 2는 본 발명에 따른 유동층 반응기용 분산판의 단면도, 2 is a cross-sectional view of a dispersion plate for a fluidized bed reactor according to the present invention,

도 3은 본 발명에 따른 유동층 반응기용 분산판의 사시도, 3 is a perspective view of a dispersion plate for a fluidized bed reactor according to the present invention,

도 4는 종래 기술에 따른 유동층 반응기의 단면도, 4 is a cross-sectional view of a fluidized bed reactor according to the prior art,

도 5는 종래 기술에 따른 유동층 반응기용 분산판의 단면도. 5 is a cross-sectional view of a dispersion plate for a fluidized bed reactor according to the prior art.

※ 도면의 주요부분에 대한 부호의 설명※ Explanation of code for main part of drawing

10 : 본체 11 : 가스 유입관10 main body 11: gas inlet pipe

12 : 가스 유출관 20 : 분산판12 gas outlet pipe 20 dispersion plate

30 : 노즐 41 : 냉각수 유입관30: nozzle 41: cooling water inlet pipe

42 : 냉각수 유출관 50 : 패킹42: coolant outflow pipe 50: packing

본 발명은 유동층 반응기의 분산판을 냉각하여 유동가스가 분산판에서 열분해되는 것을 방지함으로써 분산판의 통기공이 막히지 않게 할 수 있는 유동층 반응기에 관한 것이다.The present invention relates to a fluidized bed reactor capable of cooling the dispersion plate of the fluidized bed reactor to prevent pyrolysis of the fluidized gas in the dispersion plate so that the vent holes of the dispersion plate are not blocked.

일반적으로, 유동층 반응기는 석유화학 분야와 석탄의 가스화 공정의 반응에 이용되고 있다. 화학 반응로나 연소로의 분야, 예를 들면, 석탄 연소로, 석탄 가스화로, 탈황장치 등에 유동층 반응기가 넓게 사용되고 있다. In general, fluidized bed reactors are used for the reaction of the petrochemical field and the gasification process of coal. BACKGROUND ART Fluidized bed reactors are widely used in the field of chemical reactors and combustion furnaces, for example, coal combustion furnaces, coal gasifiers, desulfurization apparatuses and the like.

유동층 반응기는 좋은 열전달 특성 및 균일한 층온도분포를 나타내는 장점을 갖고 있다. 이러한 유동층 반응기에서는 하부로부터 유동가스가 공급되어 내부에 충전되어 있는 입자(유동매체)를 유동화시킨다. Fluidized bed reactors have the advantage of good heat transfer properties and uniform bed temperature distribution. In such a fluidized bed reactor, a flowing gas is supplied from the bottom to fluidize particles (fluid medium) filled therein.

유동층 반응기에는 분산판이 필수적으로 사용되고 있는데, 분산판은 유동가스를 유동층 반응기의 내부로 고르게 분산시키는 역할을 한다. 통상, 기체-고체 유동층 반응기에서는 분산판 위에 고체 입자를 올려놓고 분산판의 통기공을 통해 유동가스를 하부로부터 불어 넣으면 고체 입자가 유동층 반응기 내에서 유동한다. Dispersion plate is essentially used in the fluidized bed reactor, which serves to evenly distribute the fluid gas into the fluidized bed reactor. Typically, in a gas-solid fluidized bed reactor, the solid particles are placed in the fluidized bed reactor by placing solid particles on the dispersion plate and blowing a flow gas from the bottom through the vents of the dispersion plate.

최근에는 유동층 반응기를 이용하여 고온에서 탄소나노튜브를 합성하는 방법이 주목을 받고 있다. Recently, a method of synthesizing carbon nanotubes at a high temperature using a fluidized bed reactor has attracted attention.

탄소나노튜브 합성시 필요한 탄소소스를 유동층 반응기에 공급하는 경우, 몇몇 탄소소스는 열분해 온도가 낮아서 분산판의 통기공을 통과하기 전에 유동층 반응기 내부의 열에 의해서나 가열된 분산판과의 접촉에 의해서 촉매와의 반응 전에 분해되었다. 그러면, 이때 생성된 탄소 입자들이 분산판의 통기공을 막아버려 유동층 반응기의 성능을 현저히 저하시켰다. When supplying a carbon source required for synthesizing carbon nanotubes to a fluidized bed reactor, some carbon sources have a low pyrolysis temperature so that the catalyst may be catalyzed by heat inside the fluidized bed reactor or by contact with a heated dispersion plate before passing through the vent holes of the dispersion plate. Decomposed before reaction with. Then, the generated carbon particles blocked the vent holes of the dispersion plate to significantly reduce the performance of the fluidized bed reactor.

이러한 현상은 구멍의 크기가 작은 소결 금속(Sintered Metal) 분산판 뿐만 아니라 통기공의 크기가 큰 버블캡(Bubble Cap : 기포를 발생시키기 쉬운구조의 캡) 형태의 분산판에서 모두 나타났다. These phenomena were found both in the sintered metal dispersion plate having a small hole size, as well as in the form of a bubble cap having a large size of air vents.

그리하여, 분산판을 냉각하는 기술이 적용되었는데, 분산판 하단부분의 칼럼을 외부로부터 냉각시켜도 분산판 상단부분의 고온에 의해 분산판이 가열되어 버렸다. 그래서, 분산판과 탄소소스의 접촉에 의해 분산판의 통기공이 막히는 현상은 계속되었다.Thus, a technique of cooling the dispersion plate has been applied. Even when the column at the lower portion of the dispersion plate is cooled from the outside, the dispersion plate is heated by the high temperature of the upper portion of the dispersion plate. Therefore, the phenomenon that the vent hole of a dispersion plate was blocked by the contact of a dispersion plate and a carbon source continued.

첨부 도면 중, 도 4에는 종래 기술에 따른 유동층 반응기가 나타나 있으며, 도 5에는 냉각기가 부착된 종래의 분산판이 나타나 있다. In the accompanying drawings, FIG. 4 shows a fluidized bed reactor according to the prior art, and FIG. 5 shows a conventional dispersion plate with a cooler.

도 4 및 도 5를 참조하면, 가스화 발전에 있어서 탈황장치로 사용되는 유동층 반응기(1)가 나타나 있다. 유동층 반응기(1)는 하부측에 입구관(1a), 상부측에 출구관(1b)을 갖는 원통형 용기이며, 내부에 하단 분산판(2)과 상단 분산판(3)을 구비하고 있다. 4 and 5, there is shown a fluidized bed reactor 1 used as a desulfurization apparatus in gasification power generation. The fluidized bed reactor 1 is a cylindrical container having an inlet tube 1a on the lower side and an outlet tube 1b on the upper side, and has a lower dispersion plate 2 and an upper dispersion plate 3 therein.

각 분산판(2,3) 상에는 탈황제가 적재되어 있으며, 입구관(1a)으로부터 공급되는 유동가스에 의해 유동층 반응기(1)의 내부에는 각각 하단 유동층(4)과 상단 유동층(5)이 형성되어 있다. The desulfurizing agent is loaded on each of the dispersion plates 2 and 3, and the lower fluidized bed 4 and the upper fluidized bed 5 are formed inside the fluidized bed reactor 1 by the flowing gas supplied from the inlet pipe 1a. have.

도 5를 참조하면, 상단 및 하단 분산판(2,3)에는 다수의 노즐(6)이 기판(7) 상에 배치되어 있다. 기판(7)의 하면에는 평행하게 다수의 냉각관(8)이 배치되어 있고, 냉각관(8)의 하면에는 다공판(9)이 배치되어 있다. Referring to FIG. 5, a plurality of nozzles 6 are disposed on the substrate 7 at the upper and lower dispersion plates 2, 3. A plurality of cooling tubes 8 are arranged in parallel on the lower surface of the substrate 7, and a porous plate 9 is disposed on the lower surface of the cooling tube 8.

이러한 구성에 의해 다공판(9)의 하부로부터 공급되는 유동가스는 다공판(9)에 의해 거의 균일하게 분산되며, 각 냉각관(8)의 주변을 흘러 냉각되어 노즐(6)을 통과하여 기판(7) 상의 탈황제와 유동층(4,5)을 형성하였다. With this configuration, the flow gas supplied from the lower portion of the porous plate 9 is dispersed almost uniformly by the porous plate 9, flows through the periphery of each cooling tube 8, cools through the nozzles 6, and then the substrate. The desulfurization agent (7) and the fluidized beds (4, 5) were formed.

상단 및 하단 분산판(2,3)의 냉각관(8)에는 도시하지 않은 장치에 의해 냉각 수가 공급됨으로써, 각 유동층(4,5)의 온도를 조정하였다. Cooling water was supplied to the cooling pipes 8 of the upper and lower dispersion plates 2 and 3 by means of a device (not shown) to adjust the temperatures of the respective fluidized beds 4 and 5.

그러나, 종래 기술에 따른 유동층 반응기에 있어서는, 분산판에 냉각관을 별도로 부착해야 하였기에, 복잡한 구조를 가지며 제조 공정상의 번거로움이 있었다. However, in the fluidized bed reactor according to the prior art, it was necessary to attach the cooling tube to the dispersion plate separately, there was a complicated structure and hassle in the manufacturing process.

또한, 종래 기술에 따른 유동층 반응기에서는, 분산판을 통과하는 유동가스를 냉각시켜 유동층 반응기 내부의 온도를 조절하였기에, 유동층 반응기 내부의 온도를 정밀하게 조절하기 위해서는 분산판을 복수층으로 구비해야 하는 문제점이 있었다. In addition, in the fluidized bed reactor according to the prior art, since the temperature inside the fluidized bed reactor is controlled by cooling the flow gas passing through the dispersion plate, to precisely control the temperature inside the fluidized bed reactor, it is necessary to provide the dispersion plate in multiple layers. There was this.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은, 유동층 반응기의 분산판을 냉각하기 위한 구성을 단순하게 하여 제조공정상 편리함을 제공하며, 분산판을 냉각하여 유동가스가 분산판에서 열분해되지 않도록 함으로써 분산판의 통기공의 막힘 현상을 방지하기 위한 유동층 반응기를 제공하는 데에 있다. The present invention has been made to solve the above problems, an object of the present invention, by simplifying the configuration for cooling the dispersion plate of the fluidized bed reactor provides a convenience in the manufacturing process, by cooling the dispersion plate to the flow gas It is to provide a fluidized bed reactor for preventing the blockage of the vent holes of the dispersion plate by preventing pyrolysis in the dispersion plate.

상기 목적을 달성하기 위해서, 본 발명에 따른 유동층 반응기는, In order to achieve the above object, the fluidized bed reactor according to the present invention,

하측에 가스 유입관이 제공되고, 상측에 가스 유출관이 제공되고, 내부 공간을 갖는 본체; A main body having a gas inlet pipe provided at a lower side thereof, a gas outlet pipe provided at an upper side thereof, and having an inner space;

본체의 상하 방향과 수직하게 본체의 내부에 제공되고, 내부 공간을 갖도록 제공된 분산판; 및A dispersion plate provided inside the main body perpendicular to a vertical direction of the main body and provided to have an internal space; And

본체의 외부로부터 본체의 하부를 통과하여 분산판의 내부와 연통하도록 각 각 제공된 냉각수 유입관 및 냉각수 유출관을 포함한다. And a cooling water inlet tube and a cooling water outlet tube respectively provided to communicate with the inside of the dispersion plate from the outside of the body through the lower part of the body.

바람직하게는, 분산판에는, 분산판의 저면에서 본체와 연통하며 분산판의 내부 공간을 통과하여 분산판의 상면으로 돌출되도록 노즐이 제공된다. Preferably, the dispersion plate is provided with a nozzle so as to communicate with the main body at the bottom of the dispersion plate and to project through the inner space of the dispersion plate to the top surface of the dispersion plate.

바람직하게는, 분산판에는, 분산판의 내부 공간을 통과하여 본체의 내부와 연통하도록 통기구 및/또는 통기관이 제공된다. Preferably, the distribution plate is provided with a vent and / or a vent pipe to communicate with the inside of the main body through the inner space of the dispersion plate.

바람직하게는, 냉각수 유출관은 분산판의 저면으로부터 냉각수 유입관보다 높게 돌출된다. Preferably, the cooling water outlet pipe protrudes higher than the cooling water inlet pipe from the bottom of the dispersion plate.

이와 같이 구성된 본 발명에 따르면, 유동층 반응기용 분산판을 냉각하기 위한 구조를 단순화함으로써 제조공정상 편리함을 제공할 수 있으며, 유동가스가 분산판에서 열분해되는 것을 방지함으로써 분산판의 통기공이 막히지 않게 할 수 있다. According to the present invention configured as described above, it is possible to provide convenience in the manufacturing process by simplifying the structure for cooling the dispersion plate for the fluidized bed reactor, and to prevent the flow gas of the dispersion plate from pyrolysis in the dispersion plate so that the vent holes of the dispersion plate is not blocked. Can be.

이하에서는, 본 발명에 따른 바람직한 실시예를 첨부한 도면을 참조하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in detail.

첨부 도면 중, 도 1에는 본 발명에 따른 유동층 반응기가 나타나 있으며, 도 2 및 도 3에는 본 발명에 따른 유동층 반응기용 분산판이 나타나 있다. In the accompanying drawings, FIG. 1 shows a fluidized bed reactor according to the present invention, and FIGS. 2 and 3 show a dispersion plate for a fluidized bed reactor according to the present invention.

도 1을 참조하면, 유동층 반응기는 대략 원통형 본체(10)를 갖고 있다. 본체(10)의 하측에는 가스 유입관(11)이 제공되고, 상측에는 가스 유출관(12)이 제공되어 있다. 그리고, 본체(10)의 내부에는 분산판(20)이 제공되어 있다. Referring to FIG. 1, the fluidized bed reactor has a generally cylindrical body 10. A gas inlet pipe 11 is provided below the main body 10, and a gas outlet pipe 12 is provided above. The dispersion plate 20 is provided inside the main body 10.

분산판(20)에는 다수의 노즐(30)이 배치되어 있으며, 냉각수 유입관(41) 및 냉각수 유출관(42)이 연결되어 있다. A plurality of nozzles 30 are arranged in the dispersion plate 20, and the cooling water inlet pipe 41 and the cooling water outlet pipe 42 are connected to each other.

도 2 및 도 3을 참조하면, 분산판(20)은 본체(10)의 상하 방향과 수직하게 본체(10)의 내부에 제공되어 있다. 도면에서와 같이, 본체(10)는 상부 본체와 하부 본체로 분리되어, 두 본체(10) 사이에 분산판(20)이 조립 설치되어 있다. 본체(10)와 분산판(20) 사이에는 패킹(50)이 제공되어 있다. 분산판(20)은 내부에 공간이 제공되어 있다. 2 and 3, the dispersion plate 20 is provided inside the main body 10 perpendicular to the vertical direction of the main body 10. As shown in the figure, the main body 10 is separated into an upper main body and a lower main body, and a distribution plate 20 is assembled between the two main bodies 10. The packing 50 is provided between the main body 10 and the distribution plate 20. The dispersion plate 20 is provided with a space therein.

분산판(20)에는 노즐(30)이 배치되어 있는데, 노즐(30)은 분산판(20)의 저면(22)에서 본체(10)와 연통하도록 제공되어 있다. 그리고, 노즐(30)은 분산판(20)의 내부 공간을 통과하여 분산판(20)의 상면으로 돌출되어 있으며, 가스를 통과시키기 위한 통기공(31)을 갖고 있다. The nozzle 30 is disposed in the distribution plate 20, and the nozzle 30 is provided to communicate with the main body 10 at the bottom surface 22 of the distribution plate 20. The nozzle 30 passes through the inner space of the dispersion plate 20 and protrudes to the upper surface of the dispersion plate 20, and has a vent hole 31 for allowing gas to pass therethrough.

한편, 본 실시예에서는 나타내지 않았으나, 분산판(20)에는 노즐(30)을 대신하여 본체(10)의 내부와 연통하도록 통기구 및/또는 통기관이 제공될 수 있다.Meanwhile, although not shown in the present embodiment, the vent plate and / or the vent pipe may be provided in the dispersion plate 20 so as to communicate with the inside of the main body 10 instead of the nozzle 30.

냉각수 유입관(41) 및 냉각수 유출관(42)은 분산판(20)의 내부와 연통하도록 각각 제공되어 있다. 즉, 냉각수 유입관(41) 및 냉각수 유출관(42)은 외부로부터 본체(10)의 하부를 통과하여 분산판(20)의 저면(22)에 연결되어 있다. 냉각수 유출관(42)은 분산판(20)의 저면(22)으로부터 냉각수 유입관(41)보다 높게 돌출되어 있다. 이에 따라, 분산판(20)의 내부에 유입된 냉각수는 일정 높이에 이르기까지 냉각수 유출관(42)으로 배출되지 않는다. The coolant inlet pipe 41 and the coolant outlet pipe 42 are provided to communicate with the inside of the distribution plate 20, respectively. That is, the cooling water inlet tube 41 and the cooling water outlet tube 42 are connected to the bottom surface 22 of the distribution plate 20 through the lower portion of the main body 10 from the outside. The cooling water outflow pipe 42 protrudes higher than the cooling water inflow pipe 41 from the bottom face 22 of the distribution plate 20. Accordingly, the coolant introduced into the distribution plate 20 is not discharged to the coolant outlet pipe 42 until the predetermined height is reached.

다시, 도 1 및 도 2를 참조하여, 상기와 같이 구성된 본 발명에 따른 유동층 반응기의 작용을 설명하기로 한다. 1 and 2, the operation of the fluidized bed reactor according to the present invention configured as described above will be described.

본체(10)의 내부에 분산판(20) 상에 고체 입자(유동매체)를 충전하고, 본체 (10)의 하부에서 가스 유입관(11)을 통해 유동가스를 공급한다. 그러면, 유동가스는 분산판(20)의 노즐(30)을 통해 고체 입자를 본체(10)의 내부로 균일하게 분산시켜서 유동층을 형성한다.The inside of the main body 10 is filled with solid particles (fluid medium) on the dispersion plate 20, and the flow gas is supplied through the gas inlet pipe 11 at the lower part of the main body 10. Then, the flowing gas uniformly disperses the solid particles into the body 10 through the nozzle 30 of the dispersion plate 20 to form a fluidized bed.

이러한 과정에서, 냉각수는 냉각수 유입관(41)을 통해 분산판(20)의 내부 공간에 유입되어 일정 높이로 채워진다. 또한, 냉각수가 계속 공급되어 분산판(20)의 내부 공간에 일정 높이 이상으로 채워지면, 냉각수는 냉각수 출구관(42)을 통해 본체(10)의 외부로 배출된다. 한편, 노즐(30)은 분산판(20)의 내부 공간을 통과하고 있으므로, 냉각수는 분산판(20)의 내부 공간을 지나면서 분산판(20) 뿐만 아니라 노즐(30)의 외벽도 냉각하게 된다.In this process, the coolant is introduced into the internal space of the distribution plate 20 through the coolant inlet pipe 41 and filled to a predetermined height. In addition, when the cooling water is continuously supplied and filled in the internal space of the dispersion plate 20 to a predetermined height or more, the cooling water is discharged to the outside of the main body 10 through the cooling water outlet pipe 42. On the other hand, since the nozzle 30 passes through the inner space of the dispersion plate 20, the cooling water cools not only the dispersion plate 20 but also the outer wall of the nozzle 30 while passing through the inner space of the dispersion plate 20. .

이때, 본체(10)로 유입된 유동가스는 냉각된 분산판(20)의 노즐(30)을 지나기 때문에, 분산판(20)에서 열분해되지 않아서 노즐(30)의 통기공(31)을 막지 않는다.At this time, since the flow gas flowing into the main body 10 passes through the nozzle 30 of the cooled dispersion plate 20, it does not thermally decompose in the dispersion plate 20 so as not to block the vent hole 31 of the nozzle 30. .

이와 같이, 본 발명에 따른 유동층 반응기는, 분산판(20)에 내부 공간을 제공하고 냉각수를 지속적으로 공급하여 분산판(20)을 냉각함으로써, 유동가스가 촉매와 반응하기 전에 열분해되어 분산판(20)의 노즐(30)의 통기공(31)을 막는 현상을 방지할 수 있다.As described above, the fluidized bed reactor according to the present invention provides an internal space to the dispersion plate 20 and continuously supplies cooling water to cool the dispersion plate 20, whereby the flow gas is pyrolyzed before reacting with the catalyst to form a dispersion plate ( The phenomenon which blocks the ventilation hole 31 of the nozzle 30 of 20 can be prevented.

또한, 본 발명에 따른 유동층 반응기는, 분산판(20)을 냉각하기 위한 구조를 단순화함으로써 제조공정상 편리함을 제공할 수 있다. In addition, the fluidized bed reactor according to the present invention can provide convenience in the manufacturing process by simplifying the structure for cooling the dispersion plate (20).

이상에서는, 본 발명의 일실시예를 설명하였지만, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 벗어나지 않는 범위 내 에서 변경 및 변형한 것도 본 발명의 권리범위에 속함은 당연하다.In the above, one embodiment of the present invention has been described, but modifications and variations within the scope without departing from the technical spirit of the present invention by those skilled in the art belong to the scope of the present invention Of course.

이상 설명한 바와 같이, 본 발명에 따르면, 분산판을 냉각하여 유동가스가 분산판에서 열분해되지 않도록 함으로써 분산판의 통기공이 막히는 현상을 방지할 수 있다. As described above, according to the present invention, the phenomenon that the vent holes of the dispersion plate are blocked can be prevented by cooling the dispersion plate so that the flow gas is not pyrolyzed in the dispersion plate.

또한, 본 발명에 따르면, 유동층 반응기의 분산판을 냉각하기 위한 구조를 단순화함으로써 제조공정상 편리함을 제공할 수 있다. In addition, according to the present invention, it is possible to provide convenience in the manufacturing process by simplifying the structure for cooling the dispersion plate of the fluidized bed reactor.

Claims (4)

삭제delete 하측에 가스 유입관(11)이 제공되고, 상측에 가스 유출관(12)이 제공되고, 내부 공간을 갖는 본체(10);A main body 10 having a gas inflow pipe 11 provided below, a gas outflow pipe 12 provided above, and having an inner space; 상기 본체(10)의 상하 방향에 대하여 수직하게 상기 본체(10)의 내부에 제공되고, 내부 공간을 갖도록 제공된 분산판(20); 및A dispersion plate 20 provided inside the main body 10 perpendicular to the up and down direction of the main body 10 and provided to have an inner space; And 상기 본체(10)의 외부로부터 상기 본체(10)의 하부를 통과하여 상기 분산판(20)의 내부와 연통하도록 각각 제공된 냉각수 유입관(41) 및 냉각수 유출관(42)을 포함하고, And a cooling water inlet tube 41 and a cooling water outlet tube 42 respectively provided to pass through the lower portion of the body 10 from the outside of the body 10 to communicate with the inside of the distribution plate 20. 상기 분산판(20)에는, 상기 분산판(20)의 저면(22)에서 상기 본체(10)의 내부와 연통하며 상기 분산판(20)의 내부 공간을 통과하여 상기 분산판(20)의 상면(21)으로 돌출되도록 노즐(30)이 제공된 것을 특징으로 하는 유동층 반응기. The dispersion plate 20 communicates with the inside of the main body 10 at the bottom surface 22 of the dispersion plate 20 and passes through an internal space of the dispersion plate 20 to form an upper surface of the dispersion plate 20. Fluidized bed reactor, characterized in that the nozzle (30) is provided to protrude to (21). 제 2항에 있어서, 상기 분산판(20)에는, 상기 분산판(20)의 내부 공간을 통과하여 상기 본체(10)의 내부와 연통하도록 통기관이 제공된 것을 특징으로 하는 유동층 반응기. The fluidized bed reactor according to claim 2, wherein the distribution plate (20) is provided with a vent pipe to communicate with the inside of the main body (10) through the internal space of the distribution plate (20). 제 2항에 있어서, 상기 냉각수 유출관(42)은 상기 분산판(20)의 저면(22)으로부터 상기 냉각수 유입관(41)보다 높게 돌출된 것을 특징으로 하는 유동층 반응기.3. The fluidized bed reactor according to claim 2, wherein the coolant outlet pipe (42) protrudes higher than the coolant inlet pipe (41) from the bottom (22) of the distribution plate (20).
KR1020070038500A 2007-04-19 2007-04-19 Fluidization reactor KR100873574B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070038500A KR100873574B1 (en) 2007-04-19 2007-04-19 Fluidization reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070038500A KR100873574B1 (en) 2007-04-19 2007-04-19 Fluidization reactor

Publications (2)

Publication Number Publication Date
KR20080094281A KR20080094281A (en) 2008-10-23
KR100873574B1 true KR100873574B1 (en) 2008-12-12

Family

ID=40154485

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070038500A KR100873574B1 (en) 2007-04-19 2007-04-19 Fluidization reactor

Country Status (1)

Country Link
KR (1) KR100873574B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4095100A4 (en) * 2020-02-18 2023-08-30 SK Innovation Co., Ltd. Fluidized bed reactor and method for recovering active metal of lithium secondary battery using same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101102814B1 (en) * 2008-12-22 2012-01-05 제일모직주식회사 Fluidized Bed Reactor for Carbon Nanotubes, Method for Preparing thereof and Carbon Nanotube Using the Same
KR101642283B1 (en) * 2014-12-24 2016-07-26 주식회사 포스코 Lithium secondary battery cathode materials manufacturing apparatus and method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09313922A (en) * 1996-05-29 1997-12-09 Ishikawajima Harima Heavy Ind Co Ltd Reaction tower having dispersing plate provided with cooling apparatus
JPH10235146A (en) 1997-02-28 1998-09-08 Ishikawajima Harima Heavy Ind Co Ltd Fluidized bed reaction tower
KR19990000051A (en) * 1997-06-02 1999-01-15 손영목 Solid Particle Circulating Fluidized Bed Heat Exchanger for Waste Gas Recovery
US6132690A (en) 1997-10-14 2000-10-17 Agip Petroli S.P.A. Reactor for chemical reactions in triphasic systems having superimposed thermal exchange sections

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09313922A (en) * 1996-05-29 1997-12-09 Ishikawajima Harima Heavy Ind Co Ltd Reaction tower having dispersing plate provided with cooling apparatus
JPH10235146A (en) 1997-02-28 1998-09-08 Ishikawajima Harima Heavy Ind Co Ltd Fluidized bed reaction tower
KR19990000051A (en) * 1997-06-02 1999-01-15 손영목 Solid Particle Circulating Fluidized Bed Heat Exchanger for Waste Gas Recovery
US6132690A (en) 1997-10-14 2000-10-17 Agip Petroli S.P.A. Reactor for chemical reactions in triphasic systems having superimposed thermal exchange sections

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4095100A4 (en) * 2020-02-18 2023-08-30 SK Innovation Co., Ltd. Fluidized bed reactor and method for recovering active metal of lithium secondary battery using same

Also Published As

Publication number Publication date
KR20080094281A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
US8303696B2 (en) Carbon dioxide absorber and regeneration assemblies useful for power plant flue gas
JP5428146B2 (en) Trichlorosilane production equipment
CN101668833B (en) Device for producing a product gas from a fuel, such as biomass
KR100873574B1 (en) Fluidization reactor
CZ9903136A3 (en) Hat transfer process and apparatus for making the same
TW201113479A (en) Method and device for the use of oxygen in the steam reforming of biomass
US3075580A (en) Heat exchanger and method
JP2008133168A (en) Trichlorosilane production apparatus
US9199215B2 (en) Compact Fischer Tropsch system with integrated primary and secondary bed temperature control
FI96321C (en) Method and reactor for treating process gas
US4213938A (en) Fluid bed reactor
CN103194261A (en) System and method for protecting a dip tube
KR101982786B1 (en) Fluidized bed reactor
CN105413591A (en) Multi-section type heat insulation fixed bed reactor for PX production
CN105879925B (en) A kind of combination catalyst cooler
JP2005015294A (en) Chemical reaction apparatus
KR102544436B1 (en) boiling water reactor
CN210128641U (en) Ash cooler and waste heat utilization system
FI96136C (en) Method for regenerative heat transfer
CN109310969A (en) Axial/radial flow-transfer device
JPH09313922A (en) Reaction tower having dispersing plate provided with cooling apparatus
KR101651755B1 (en) Dehydogenation reactor
CN217829945U (en) Circulation type fixed bed reactor
SK282384B6 (en) Process for cooling hot granulated solid materials
CN111854477B (en) Cooling device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120917

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20131007

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150127

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20151002

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160926

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180927

Year of fee payment: 11