KR100858711B1 - Trivalent chromium galvanizing solution - Google Patents

Trivalent chromium galvanizing solution Download PDF

Info

Publication number
KR100858711B1
KR100858711B1 KR1020070031199A KR20070031199A KR100858711B1 KR 100858711 B1 KR100858711 B1 KR 100858711B1 KR 1020070031199 A KR1020070031199 A KR 1020070031199A KR 20070031199 A KR20070031199 A KR 20070031199A KR 100858711 B1 KR100858711 B1 KR 100858711B1
Authority
KR
South Korea
Prior art keywords
trivalent chromium
plating solution
plating
chromium plating
agent
Prior art date
Application number
KR1020070031199A
Other languages
Korean (ko)
Inventor
김만
이주열
권식철
이상열
김동수
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020070031199A priority Critical patent/KR100858711B1/en
Application granted granted Critical
Publication of KR100858711B1 publication Critical patent/KR100858711B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/06Electroplating: Baths therefor from solutions of chromium from solutions of trivalent chromium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

A trivalent chromium plating solution is provided to form a plating layer easily by increasing reactivity, and to increase service life of the plating solution by adding a reducing agent into the trivalent chromium plating solution. A trivalent chromium plating solution comprises 0.4 to 0.6M of a trivalent chromium compound, 0.8 to 1.2M of a complex agent for suppressing a polymerization reaction of the trivalent chromium compound in an aqueous solution, 0.8 to 1.2M of an electroplating additive for increasing electric conductivity of a trivalent chromium ion, 0.8 to 1.2M of a buffering agent for correcting potential of hydrogen(pH) of the aqueous solution, 8 to 12 g/L of a depoalrizing agent for suppressing the oxidation of the trivalent chromium ion into a bivalent chromium ion, 1 to 4 g/L of an organic additive for increasing the surface glossiness of a plating layer, and 10 to 100 ppm of a reducing agent for increasing adhesion force of the plating layer, wherein the reducing agent is formed from an inorganic material or an organic material.

Description

3가크롬 도금액{Trivalent chromium galvanizing solution} Trivalent chromium galvanizing solution

도 1 은 본 발명에 의한 3가크롬도금액의 조성 및 전해도금 조건을 보인 표.1 is a table showing the composition and electroplating conditions of the trivalent chromium plating solution according to the present invention.

도 2 는 본 발명에 의한 3가크롬도금액의 일실시예에 따라 도금된 시편의 헐셀(hull cell) 실험 결과.Figure 2 is a hull cell (hull cell) test results of the plated specimen according to one embodiment of the trivalent chromium plating solution according to the present invention.

도 3 은 본 발명에 의한 3가크롬도금액에 첨가되는 유기물첨가제의 변화량에 따른 헐셀(hull cell) 실험 결과.Figure 3 is a hull cell (hull cell) experimental results according to the amount of change of the organic additive added to the trivalent chromium plating solution according to the present invention.

도 4 는 본 발명에 의한 3가크롬도금액의 일구성인 착화제의 변화량에 따른 헐셀(hull cell) 실험 결과.Figure 4 is a hull cell (hull cell) experimental results according to the amount of change in the complexing agent which is one component of the trivalent chromium plating solution according to the present invention.

도 5 는 본 발명에 의한 3가크롬도금액의 일구성인 환원제의 변화량에 따른 헐셀(hull cell) 실험 결과.5 is a hull cell (hull cell) test results according to the amount of change of the reducing agent which is one component of the trivalent chromium plating solution according to the present invention.

도 6 은 본 발명에 의한 3가크롬도금액을 이용한 도금방법에서 전류밀도의 변화에 따른 도금층의 두께 변화량을 보인 실험결과.6 is an experimental result showing the thickness change of the plating layer according to the change of the current density in the plating method using a trivalent chromium plating solution according to the present invention.

도 7 은 본 발명에 의한 3가크롬도금액의 일구성인 착화제의 배합비율에 따른 시편의 표면 형상을 보인 사진.Figure 7 is a photograph showing the surface shape of the specimen according to the mixing ratio of the complexing agent which is one component of the trivalent chromium plating solution according to the present invention.

도 8 은 본 발명에 의한 3가크롬도금액을 이용한 도금방법에서 도금조건 변화에 따른 시편의 표면 형상을 보인 사진.8 is a photograph showing the surface shape of the specimen according to the plating conditions change in the plating method using a trivalent chromium plating solution according to the present invention.

도 9 는 본 발명에 의한 3가크롬도금액을 이용한 도금방법을 나타낸 순서도.9 is a flowchart showing a plating method using a trivalent chromium plating solution according to the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

S100. 도금준비단계 S200. 반제품담지단계S100. Plating preparation step S200. Semi-finished product support stage

S300. 전류인가단계S300. Current application step

본 발명은 3가크롬도금액에 관한 것으로, 보다 상세하게는 반응성이 높아져 도금층 형성이 용이하도록 하는 3가크롬도금액에 관한 것이다.The present invention relates to a trivalent chromium plating solution, and more particularly, to a trivalent chromium plating solution for increasing the reactivity to facilitate the formation of a plating layer.

크롬도금은 각종 도금공정 중에서 가장 일반적이며 공정상 최종 처리에 해당되는 도금공정으로서, 통상 아름다운 광택의 금속 표면을 얻고자 하는 장식도금과 내마모성의 증대를 목적으로 하는 경질도금으로 분류될 수 있다.Chromium plating is a plating process that is the most common among the various plating processes and corresponds to the final treatment, and may be classified into decorative plating for obtaining a beautiful glossy metal surface and hard plating for the purpose of increasing wear resistance.

장식도금의 경우 도금 두께는 2/10,000 ~ 1/1,000mm 로서, 식기, 기타 일회용품에서 황동의 표면 도금에 주로 이용되며, 경질도금은 마모 수명의 요구에 따라 달라지지만 5/1,000 내지 수 분의 1mm 정도로 카메라 렌즈의 나사고정부분, 정밀기계의 끼워맞춤 부분, 주형의 내면, 인쇄용 판면 등에 마모 방지등을 위해 이용된다.In the case of decorative plating, the plating thickness is 2 / 10,000 ~ 1 / 1,000mm, and it is mainly used for surface plating of brass in tableware and other disposable products, and hard plating is 5 / 1,000 to 1mm for several minutes depending on the wear life. To this end, it is used for screw fixing part of camera lens, fitting part of precision machine, inner surface of mold, printing plate surface, etc. to prevent wear.

통상 크롬도금은 6가크롬인(CrO3)에 황산(H2SO4)을 혼합한 용액을 사용하여 전기도금을 하는데, 양극에는 크롬 금속을 사용하지 않고 납과 같이 황산에 침식되지 않는 것을 사용하고 용액 중의 크롬 감소분은 크롬산으로 보충하여 전착(電着)을 계속한다.In general, chromium plating is electroplated by using a solution of sulfuric acid (H 2 SO 4 ) mixed with hexavalent chromium (CrO 3 ). The anode is not used with chromium metal and is not eroded by sulfuric acid such as lead. The chromium reduction in solution is supplemented with chromic acid to continue electrodeposition.

또한, 크롬도금에 사용하는 도금액 속의 크롬산 농도에는 고농도와 저농도가 있으며, 액의 온도, 전류의 밀도, 즉 도금 조건에 따라 다양한 형태의 도금을 얻을 수 있다. 이와 같이 6가 크롬 도금은 반사도, 색상, 부식, 내식성이 뛰어날 뿐만 아니라 전류 효율이 높다는 장점이 있다.In addition, there are high concentrations and low concentrations of chromic acid in the plating liquid used for chromium plating, and various types of plating can be obtained depending on the temperature of the liquid and the density of the current. As such, hexavalent chromium plating has an advantage of excellent reflectivity, color, corrosion, corrosion resistance, and high current efficiency.

그러나, 이러한 장점에도 부구하고 6가크롬도금은 공정 중에 인체에 치명적인 크롬산 증기를 발생하고 6가크롬이온이 지하수나 강으로 유입될 경우 치명적인 환경오염을 유발하기 때문에 반드시 3가로 환원시켜 처리해야 하는 난제를 안고 있다.However, in spite of these advantages, hexavalent chromium plating generates chromic vapors that are deadly to humans during the process, and when hexavalent chromium ions enter the groundwater or river, it causes fatal environmental pollution. Is holding.

즉 6가크롬은 국제암탐색청(International Agency of Research on the Cancer, LARC)으로부터 암발생 물질로 분류되어 있으며, 향후 6가크롬의 사용금지와 함께 이의 대체 기술이 요구되어 최근에는 전 세계적으로 대체 물질 개발을 위한 연구가 활발히 진행되고 있다.In other words, hexavalent chromium is classified as a cancer-causing substance by the International Agency of Research on the Cancer (LARC), and its replacement technology is required in addition to prohibiting the use of hexavalent chromium in the future. Research for the development of materials is actively underway.

6가 크롬도금을 대체할 수 있는 다양한 시도 중에는 이온질화(ion-nitriding), 용사도금(plasma spraying), 이온도금(ion plating)등이 있으나, 6가크롬도금에 비하여 5~10배의 비용이 추가되는 문제와 대형 제품에는 적용이 어려운 문제점이 있다.Various attempts to replace hexavalent chromium plating include ion-nitriding, plasma spraying, and ion plating, but the cost is 5 to 10 times that of hexavalent chromium plating. There are problems to be added and difficult to apply to large products.

이에 따라 3가 크롬을 이용한 크롬도금이 가장 효과적이고 효율적인 것으로 인정받고 있다.Accordingly, chromium plating using trivalent chromium is recognized as the most effective and efficient.

그러나, 3가크롬도금액에 포함되는 3가크롬이온은 수용액중에 매우 복잡한 배위 화학적 구조를 가지며, 낮은 반응성으로 인하여 크롬도금층 형성이 어려운 문제점이 있다.However, trivalent chromium ions included in the trivalent chromium plating solution have a very complex coordination chemical structure in an aqueous solution, and have a problem in that a chromium plating layer is difficult to form due to low reactivity.

본 발명의 목적은 상기와 같은 문제점을 해결하기 위한 것으로, 보다 상세하게는 반응성을 높여 도금층 형성이 용이하도록 하는 3가크롬도금액을 제공하는 것에 있다.An object of the present invention is to solve the above problems, and more particularly, to provide a trivalent chromium plating solution to facilitate the formation of a plating layer by increasing the reactivity.

본 발명의 다른 목적은, 3가크롬도금액에 환원제를 첨가하여 도금액의 수명이 증대되도록 하는 3가크롬도금액을 제공하는 것에 있다.Another object of the present invention is to provide a trivalent chromium plating solution in which the life of the plating solution is increased by adding a reducing agent to the trivalent chromium plating solution.

본 발명에 의한 3가크롬도금액은, 3가크롬화합물 0.4 ~ 0.6M과, 상기 3가크롬화합물이 수용액 중에서 고분자화 반응이 억제되도록 하는 착화제 0.8 ~ 1.2M과, 3가크롬이온의 전기전도도를 높이기 위한 전도보조제 0.8 ~ 1.2M과, 수용액의 수소이온지수를 보정하는 완충제 0.8 ~ 1.2M과, 3가크롬이온이 2가로 산화되는 것을 억제하는 감극제 8 ~ 12g/l과, 도금층 표면의 광택을 높이기 위한 유기물첨가제 1 ~ 4 g/l과, 도금층의 부착력을 높이기 위한 환원제 10 ~100ppm을 포함하여 구성되며, 상기 환원제는 무기물질 또는 유기물질로 이루어지는 것을 특징으로 한다.The trivalent chromium plating solution according to the present invention comprises 0.4 to 0.6M of trivalent chromium compound, 0.8 to 1.2M of complexing agent to inhibit the polymerization reaction of the trivalent chromium compound in an aqueous solution, and trivalent chromium ion. 0.8 ~ 1.2M conduction aid to increase conductivity, 0.8 ~ 1.2M buffer to calibrate the hydrogen ion index of aqueous solution, 8-12g / l of depolarizing agent to suppress trivalent chromium oxidization, and surface of plating layer 1 to 4 g / l of an organic material additive to increase the gloss of, and a reducing agent 10 to 100ppm to increase the adhesion of the plating layer, characterized in that the reducing agent is made of an inorganic material or an organic material.

상기 3가크롬화합물은 황산크롬염(Cr2(SO4)3) 또는 염화크롬염(CrCl3)임을 특징으로 한다.The trivalent chromium compound is characterized in that the chromium sulfate (Cr 2 (SO 4 ) 3 ) or chromium chloride (CrCl 3 ).

상기 착화제는 oxalic acid, formic acid, glycine 중 하나 이상을 포함하여 구성됨을 특징으로 한다.The complexing agent is characterized in that it comprises one or more of oxalic acid, formic acid, glycine.

상기 전도보조제는 KCl, NH4Cl, K2SO4, (NH4)2SO4 중 하나 이상을 포함하여 구성됨을 특징으로 한다.The conduction aid is characterized in that it comprises one or more of KCl, NH 4 Cl, K 2 SO 4 , (NH 4 ) 2 SO 4 .

상기 완충제는 H3BO3가 적용됨을 특징으로 한다.The buffer is characterized in that H 3 BO 3 is applied.

상기 감극제는 NH4Br, NaBr, NaF 중 어느 하나임을 특징으로 한다.The depolarizing agent is characterized in that any one of NH 4 Br, NaBr, NaF.

상기 유기물첨가제는 PEG(Polythylene Glycol #1500)가 적용되며, 상기 PEG의 분자량은 300 내지 8000 임을 특징으로 한다.The organic additive is PEG (Polythylene Glycol # 1500) is applied, characterized in that the molecular weight of the PEG is 300 to 8000.

상기 무기물질은 Fe2 + 또는 Co2 +를 포함하는 것을 특징으로 한다.The inorganic material is characterized in that it contains Fe 2 + or Co 2 + .

상기 무기물질은, Fe2(SO4)3, FeS, FeCl2, Fe(C2O4), Fe(CH3CO2)2, (NH4)2Fe(SO4)2, Co(NO3)2, CuCl2 중 어느 하나임을 특징으로 한다.The inorganic material may be Fe 2 (SO 4 ) 3 , FeS, FeCl 2 , Fe (C 2 O 4 ), Fe (CH 3 CO 2 ) 2 , (NH 4 ) 2 Fe (SO 4 ) 2 , Co (NO 3 ) 2 , CuCl 2 characterized in that any one.

상기 유기물질은, hydrazine, sodiumborohydride, dimethylaminoborane 중 어느 하나임을 특징으로 한다.The organic material is characterized in that any one of hydrazine, sodiumborohydride, dimethylaminoborane.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

이와 같은 구성을 가지는 3가크롬도금액에 의하면, 반응성이 높아져 도금층 형성이 용이한 이점이 있다.According to the trivalent chromium plating solution having such a configuration, there is an advantage that the reactivity is increased and the plating layer is easily formed.

이하에서는 본 발명에 의한 3가크롬도금액의 구성을 살펴보기로 한다.Hereinafter, the configuration of the trivalent chromium plating solution according to the present invention will be described.

도면에 도시된 바와 같이, 본 발명에 의한 3가크롬도금액은 3가크롬이온을 제공하기 위한 3가크롬화합물과, 상기 3가크롬화합물이 수용액 중에서 고분자화 반응이 억제되도록 하는 착화제와, 상기 3가크롬이온의 전기전도도를 높이기 위한 전도보조제와, 수용액의 수소이온지수를 보정하기 위한 완충제와, 3가크롬이온이 2가로 산화되는 것을 억제하는 감극제와, 도금층 표면의 광택을 높이기 위한 유기물첨가제와, 도금층의 부착력을 높이기 위한 환원제를 포함하여 구성된다.As shown in the figure, the trivalent chromium plating solution according to the present invention comprises a trivalent chromium compound for providing trivalent chromium ions, a complexing agent such that the trivalent chromium compound is inhibited from polymerization in an aqueous solution, A conduction aid for increasing the electrical conductivity of the trivalent chromium ion, a buffer for correcting the hydrogen ion index of the aqueous solution, a polarizing agent for inhibiting the trivalent chromium ion from oxidizing divalent, and a glossiness of the surface of the plating layer It is comprised including the organic substance additive and the reducing agent for improving the adhesive force of a plating layer.

상기 3가크롬화합물은 대표적으로 황화물(Cr2(SO4)3)와 염화물(CrCl3) 2가지 종류로 존재하는데 본 발명의 실시예에서는 황산크롬염(Cr2(SO4)3)이 적용되며, 이러한 황산크롬염은 3가크롬도금액에 0.4 내지 0.6M 이 포함된다.The trivalent chromium compound is typically present in two types of sulfides (Cr 2 (SO 4 ) 3 ) and chlorides (CrCl 3 ). In an embodiment of the present invention, chromium sulfate (Cr 2 (SO 4 ) 3 ) is applied. The chromium sulfate salt is 0.4 to 0.6M in the trivalent chromium plating solution.

따라서, 상기 황화물크롬에 포함된 3가크롬은 결국 크롬피막층을 형성하게 되며, 염화크롬염(CrCl3)을 적용하여 구성할 수도 있음은 물론이다.Therefore, the trivalent chromium contained in the chromium sulfide eventually forms a chromium film layer and may be configured by applying chromium chloride salt (CrCl 3 ).

상기 착화제는 3가크롬화합물에 포함된 3가크롬이온이 수용액 중에서 고분자화(경화)되는 것을 방지하기 위한 구성으로, oxalic acid, formic acid, glycine 중 하나 이상을 포함하여 구성되며, 상기 3가크롬도금액에는 0.8 내지 1.2M이 포함된다.The complexing agent is a component for preventing the trivalent chromium ion contained in the trivalent chromium compound from polymerizing (curing) in an aqueous solution. The complexing agent includes one or more of oxalic acid, formic acid, and glycine. The chromium plating solution contains 0.8 to 1.2 M.

상기 3가크롬도금액에는 완충제가 0.8 내지 1.2M 포함된다. 상기 완충제는 3가크롬도금액의 수소이온지수(pH)가 4 미만이 될 수 있도록 보정하기 위한 것으로,본 발명의 실시예에서는 붕산(H3BO3)이 적용된다.The trivalent chromium plating solution contains 0.8 to 1.2 M of a buffer. The buffer is for calibrating the hydrogen ion index (pH) of the trivalent chromium plating solution to be less than 4, and boric acid (H 3 BO 3 ) is applied in the embodiment of the present invention.

즉, 상기 3가크롬이온은 배위화학적 특성상 국부적인 곳에서 수소이온지수(pH)가 4이상이 되면 고분자화 반응이 가속화되는데 상기 완충제는 이러한 고분자화의 가속화를 보정하기 위한 구성이다. That is, the trivalent chromium ion accelerates the polymerization reaction when the hydrogen ion index (pH) is 4 or more in a localized region due to coordination chemical properties, and the buffer is configured to correct the acceleration of the polymerization.

상기 3가크롬도금액에는 전도보조제가 0.8 내지 1.2M 포함되며, 상기 전도보조제는 KCl, NH4Cl, K2SO4, (NH4)2SO4 중 하나 이상을 포함하여 구성된다. 따라서, 상기 전도보조제가 포함된 3가크롬도금액에 도금이 요구되는 (피도금체)반제품을 담수시켜 도금을 실시하게 되면 상기 전도보조제는 전기전도도를 향상시켜 크롬피막의 형성을 돕게 된다.The trivalent chromium plating solution contains 0.8 to 1.2 M of a conductive auxiliary agent, and the conductive auxiliary agent includes one or more of KCl, NH 4 Cl, K 2 SO 4 , and (NH 4 ) 2 SO 4 . Therefore, when the plating is performed by desalination of the (plated body) semi-finished product which is required to be plated in the trivalent chromium plating solution containing the conductive assistant, the conductive assistant improves the electrical conductivity to help the formation of the chromium film.

상기 감극제는 3가크롬도금액에 8 내지 12g/l 포함된다. 상기 감극제는 olation 반응기가 서로 결합시 일어나는 고분자화 반응에 의해 3가크롬도금층 형성이 어려워지는 것을 방지하기 위한 것으로, NH4Br, NaBr, NaF 중 어느 하나가 적용된다.The depolarizing agent is included in the trivalent chromium plating solution from 8 to 12 g / l. The depolarizing agent is for preventing the formation of the trivalent chromium plating layer by the polymerization reaction occurring when the olation reactors are bonded to each other, and any one of NH 4 Br, NaBr, and NaF is applied.

보다 상세하게는 상기 3가크롬이온이 수용액 중에 6개의 물분자와 결합하여 8면체(Octahedral)의 구조로 수화(Aquation)되며, 수화된 크롬이온은 수소이온지수가 4 이상 일 때 OH-이온으로 치환되어 가수분해(Hydrolysis)된다.More specifically, the trivalent chromium ion is hydrated in the structure of octahedral by combining with six water molecules in an aqueous solution, and the hydrated chromium ion is converted into OH ion when the hydrogen ion index is 4 or more. Substituted and hydrolyzed.

따라서, 가수분해된 크롬이온과 수화상태의 크롬이온, 그리고, 가수분해된 크롬이온들은 OH에 의해 서로 결합되어 Olation 반응을 일으키게 되며, 이러한 반응에 의해 Olation 반응기가 서로 결합하여 크롬 전착을 방해하는 고분자화반응이 유발된다.Therefore, hydrolyzed chromium ions, hydrated chromium ions, and hydrolyzed chromium ions are bonded to each other by OH to cause an Olation reaction, which causes the Olation reactors to bind to each other and interfere with chromium electrodeposition. Fire reactions are induced.

상기 감극제는 OH음이온 대신 다른 음이온들이 크롬이온과 결합되도록 함으로써 산화를 억제하여 Olation반응을 방지할 수 있게 된다.The depolarizer prevents the oxidation reaction by inhibiting oxidation by allowing other anions to be combined with chromium ions instead of OH anions.

상기 유기물첨가제는 분자량 300 내지 8000인 계면활성제(PEG:Polythylene Glycol #1500)가 적용되며, 1 내지 4 g/l가 포함되어 도금층 표면의 광택을 높이는 역할을 하게 된다.The organic additive is a surfactant having a molecular weight of 300 to 8000 (PEG: Polyethylene Glycol # 1500) is applied, it contains 1 to 4 g / l serves to increase the gloss of the surface of the coating layer.

상기 환원제는 도금층의 광택 전류 영역 확대, 부착력 향상 및 도금욕 수명 증대를 위한 것으로 수용액에 10 내지 100ppm 포함되며, 무기물질 또는 유기물질로 이루어진다.The reducing agent is included in the aqueous solution of 10 to 100ppm in order to expand the gloss current region of the plating layer, improve adhesion, and increase the plating bath life, and is made of an inorganic material or an organic material.

보다 상세하게는, 상기 무기물질은 Fe2 + 또는 Co2 +를 포함하는 것으로, FeSO4, FeS, FeCl2, Fe(C2O4), Fe(CH3CO2)2, (NH4)2Fe(SO4)2, Co(NO3)2, CuCl2 중 어느 하나가 적용된다.More specifically, the inorganic material includes Fe 2 + or Co 2 + , FeSO 4 , FeS, FeCl 2 , Fe (C 2 O 4 ), Fe (CH 3 CO 2 ) 2 , (NH 4 ) 2 Fe (SO 4 ) 2 , Co (NO 3 ) 2 , CuCl 2 is applied.

그리고, 상기 유기물질은 hydrazine, sodiumborohydride, dimethylaminoborane 중 어느 하나가 적용된다.And, the organic material is any one of hydrazine, sodiumborohydride, dimethylaminoborane is applied.

따라서, 상기 무기물질 또는 유기물질이 3가크롬도금액에 포함된 상태에서 전착도금을 실시하게 되면 반제품 표면에 대한 3가크롬도금층의 부착력은 향상된다.Therefore, when electrodeposition plating is performed while the inorganic material or organic material is contained in the trivalent chromium plating solution, the adhesion of the trivalent chromium plating layer on the surface of the semi-finished product is improved.

이하 상기와 같이 구성되는 3가크롬도금액을 이용한 도금방법을 첨부된 도 1 내지 도 8을 참조하여 설명한다.Hereinafter, a plating method using a trivalent chromium plating solution configured as described above will be described with reference to FIGS. 1 to 8.

도 1에는 본 발명에 의한 3가크롬도금액의 조성 및 전해도금 조건을 보인 표가 도시되어 있고, 도 2에는 본 발명에 의한 3가크롬도금액의 일실시예에 따라 도금된 시편의 헐셀(hull cell) 실험 결과가 도시되어 있다.1 shows a table showing the composition and electroplating conditions of a trivalent chromium plating solution according to the present invention, and FIG. 2 shows a hull cell of a specimen plated according to an embodiment of the trivalent chromium plating solution according to the present invention. hull cell) Experimental results are shown.

그리고, 도 3 내지 도 7 에는 본 발명에 의한 3가크롬도금액에 포함된 구성요소의 첨가량을 변화시켰을 때 시편에 대한 헐셀(hull cell) 실험 결과가 도시되어 있으며, 도 8에는 본 발명에 의한 3가크롬도금액을 이용한 도금방법에서 도금조건 변화에 따른 시편의 표면 형상을 보인 사진이 도시되어 있다.3 to 7 show the results of a hull cell test on the specimen when the amount of the component contained in the trivalent chromium plating solution according to the present invention is changed, and FIG. In the plating method using a trivalent chromium plating solution, a photograph showing the surface shape of the specimen according to the plating conditions is shown.

먼저 도 1과 같이 구성된 3가크롬도금액을 도금조 내부에 준비한 다음 다수 시편을 동일한 크기로 잘라 준비하게 된다.First, the trivalent chromium plating solution configured as shown in FIG. 1 is prepared inside the plating bath, and then a plurality of specimens are cut to the same size and prepared.

그리고, 상기 3가크롬도금액의 온도 및 수소이온지수를 일정 범위로 맞추는 도금준비단계(S100)를 실시하게 된다. 즉, 상기 도금준비단계(S100)는 3가크롬도금액의 온도가 30 내지 70℃ 범위 내에 들도록 함과 동시에 수소이온지수는 1 내지 4가 되도록 하는 과정이다.Then, the plating preparation step (S100) of adjusting the temperature and the hydrogen ion index of the trivalent chromium plating solution to a predetermined range is performed. That is, the plating preparation step (S100) is a process such that the temperature of the trivalent chromium plating solution is within the range of 30 to 70 ℃ and the hydrogen ion index is 1 to 4.

상기 수소이온지수가 1 내지 4가 되도록 설정하는 이유는 전술한 바와 같이, 상기 크롬이온의 고분자화 반응을 억제하기 위한 것이다.The reason for setting the hydrogen ion index to 1 to 4 is to suppress the polymerization reaction of the chromium ion as described above.

이후 상기 3가크롬도금액에 다수 피도금체(반제품)을 담지하는 반제품담지단계(S200)가 실시된다.Thereafter, the semi-finished product supporting step (S200) of carrying a plurality of plating bodies (semi-finished products) in the trivalent chromium plating solution is performed.

상기와 같이 3가크롬도금액 내부에 시편이 담지되면 상기 피도금체(또는 반제품)에는 음극을 연결하고, 도금조에는 양극을 인가하여 전류를 인가하는 전류인가단계(S300)를 실시하게 된다.As described above, when the specimen is supported in the trivalent chromium plating solution, a cathode is connected to the plated body (or a semi-finished product), and a current is applied to the plating bath by applying an anode to apply a current (S300).

이때, 상기 도금조에서 양극과 연결되는 부위는 graphite 및 불용성양극이 사용됨이 바람직하다. 보다 상세하게는, 상기 불용성 양극은 Ir,Ta, Pt 중 하나 이상을 포함하는 복합체가 적용된다.In this case, it is preferable that graphite and an insoluble anode are used as a portion connected to the anode in the plating bath. More specifically, the insoluble anode is a composite containing at least one of Ir, Ta, Pt is applied.

그리고, 상기 전류인가단계(S300)에서 유효전류 인가범위는 1 내지 25A/dm2가 바람직하며 이러한 이유는 실험 결과를 통해 상세히 설명하기로 한다.In addition, the effective current application range in the current application step (S300) is preferably 1 to 25A / dm 2 and this reason will be described in detail through the experimental results.

이하 첨부된 도면을 참조하여 본 발명에 의한 3가크롬도금액의 조성 한정 이유를 설명하기로 한다.Hereinafter, the reason for limiting the composition of the trivalent chromium plating solution according to the present invention will be described with reference to the accompanying drawings.

먼저, 3가크롬화합물은 황산크롬염(Cr2(SO4)3)가 적용되었으며 3가크롬도금액 에 250g/l가 포함된다. 그리고, 착화제로는 1M의 Oxalic가 포함되고, 완충제, 전도보조제는 각각 H3BO4, NH4Cl, KCl이 각각 1M씩 첨가된다.First, as the trivalent chromium compound, chromium sulfate salt (Cr 2 (SO 4 ) 3 ) was applied, and 250 g / l was included in the trivalent chromium plating solution. In addition, the complexing agent includes 1 M of oxalic, and the buffering agent and the conduction aid are added with H 3 BO 4 , NH 4 Cl, and KCl, respectively, 1 M.

그리고, 상기 감극제로는 10g/l의 NH4Br 이 포함되며, 유기물첨가제는 PEG 2g/l가 첨가되었다.In addition, 10 g / l of NH 4 Br is included as the depolarizing agent, and 2 g / l of PEG was added to the organic additive.

이러한 조성으로 이루어진 3가크롬화합물을 도금조 내부에 준비하고, 양극 및 음극에는 Graphite와 황동을 각각 사용하였다. 그리고, 상기 음극과 양극에 인가한 전류는 5A/dm2 이며, 전착시간은 10분간 실시하였다. A trivalent chromium compound having such a composition was prepared inside the plating bath, and graphite and brass were used as the anode and the cathode, respectively. And, the current applied to the cathode and anode is 5A / dm 2 Electrodeposition time was performed for 10 minutes.

그리고, 상기 3가크롬도금액을 이용하여 시편을 도금하는 과정중에 3가크롬도금액의 온도, 수소이온지수 그리고, Oxalic acid, KCl 및 NH4Cl의 첨가량을 변화시킨 헐셀 실험결과는 도 2에 도시된 바와 같다.In addition, in the process of plating the specimen using the trivalent chromium plating solution, a Hulk cell test result of changing the temperature of the trivalent chromium plating solution, the hydrogen ion index, and the addition amount of oxalic acid, KCl and NH 4 Cl was shown in FIG. As shown.

도 2의 헐셀 실험결과와 같이, 3가크롬도금액의 온도를 30℃, 40℃, 50℃로 변화시킨 경우 시편의 우측 전면(저전류영역)에는 반광택 부위가 나타났으나, 온도 변화에 따른 변화는 그다지 크게 나타나지 않았다.As shown in the results of the hull cell experiment of FIG. 2, when the temperature of the trivalent chromium plating solution was changed to 30 ° C., 40 ° C., and 50 ° C., a semi-gloss portion appeared on the right front side (low current region) of the specimen. The change was not significant.

그리고, 3가크롬도금액의 수소이온지수를 2.0, 2.5, 3.0, 3.5로 각각 변화시켰을 경우에도 시편의 우측면(저전류영역) 일부에는 반광택부위가 나타났다.Also, even when the hydrogen ion index of the trivalent chromium plating solution was changed to 2.0, 2.5, 3.0, and 3.5, semi-glossy portions appeared on a part of the right side (low current region) of the specimen.

Oxalic acid의 첨가량을 0.25M로 하였을 때는 도금이 되지 않았으며, 0.5M에서는 시편 좌측(고전류 영역)에 무광택 현상이 나타났고, 0.75M 이상에서는 저전류 영역을 제외한 대부분의 전류 영역에서 광택 도금이 이루어졌다. When the addition amount of oxalic acid was 0.25M, plating was not performed. At 0.5M, matte phenomenon appeared on the left side of the specimen (high current region). lost.

KCl의 첨가량을 0M, 0.5M, 1.0M, 2.0M로 각각 변화시켰을 경우, 0M에서는 대부분의 인가 전류 영역에서 무광택 도금이 이루어졌고, 0.5M 이상에서는 시편의 좌측면(고전류 영역)에 무광택 부분이 상당히 감소하여 광택 도금 영역이 확대된 한편, 시편의 우측면(저전류 영역)에서는 무도금 부위가 약간 감소하는 현상을 보였다. When the amount of KCl added was changed to 0M, 0.5M, 1.0M, and 2.0M, respectively, matt plating was performed in most of the applied current region at 0M, and the matte portion was formed at the left side (high current region) of the specimen at 0.5M or more. There was a significant decrease in the gloss plating area, while a slight decrease in the unplated area on the right side (low current area) of the specimen.

NH4Cl의 첨가량을 0.5M, 1.0M, 2.0M로 변화시킨 경우, 0.5M일 때에는 시편의 좌측면(고전류 영역) 무광택 도금 표면이 나타났으며, 1.0M 이상이 첨가된 경우에는 저전류 영역을 제외한 대부분의 전류 영역에서 광택 도금이 이루어졌다.When the amount of NH 4 Cl was changed to 0.5M, 1.0M, or 2.0M, at 0.5M, the left surface (high current region) matte plating surface of the specimen appeared, and when more than 1.0M was added, the low current region Glossy plating was performed in most current regions except for.

도 3에는 유기물첨가제의 변화량에 따른 헐셀(hull cell) 실험 결과가 도시되어 있다. Figure 3 shows the results of the hull cell (hull cell) experiment according to the amount of change of the organic additive.

도시된 바와 같이, 유기물첨가제의 첨가량을 2g, 4g, 6g으로 증가시키면서 헐셀 실험을 수행한 결과, 시편의 좌측면에는 무광택 표면이 동일한 면적으로 나타났으며, 시편의 우측면에는 유기물첨가제의 첨가량이 증가됨에 따라 반광택 표면적이 증가하는 것을 알 수 있다. 따라서, 유기물 첨가량이 2g/L일 때 가장 넓은 광택부위를 얻을 수 있다. As shown, the results of the hull cell experiment with increasing the amount of the organic additive to 2g, 4g, 6g, the matte surface of the left side of the specimen appeared the same area, the amount of the organic additive is increased on the right side of the specimen It can be seen that the semi-gloss surface area increases. Therefore, the widest glossiness can be obtained when the amount of added organic matter is 2 g / L.

도 4에서는 착화제에 적용되는 formic acid와 oxalic acid을 혼합 사용시 formic acid와 oxalic acid의 혼합비에 따른 시편의 헐셀 실험결과가 도시되어 있다.Figure 4 shows the results of the hull cell test of the specimen according to the mixing ratio of formic acid and oxalic acid when mixed with formic acid and oxalic acid applied to the complexing agent.

도면과 같이, 즉 3가크롬도금액에 포함되는 착화제는 1M을 기준으로 하였으 며, 상기 formic acid가 0.5M일 때 oxalic acid는 0.5M, 상기 formic acid가 0.2M 첨가될 때 상기 oxalic acid는 0.8M을 첨가하였다.As shown, that is, the complexing agent contained in the trivalent chromium plating solution was based on 1M. When the formic acid is 0.5M, the oxalic acid is 0.5M, and when the formic acid is 0.2M, the oxalic acid is 0.8M was added.

상기와 같은 착화제의 변화량에 따라 시편의 표면상태가 상이하게 달라지는 것을 알 수 있다. 즉, 상기 formic acid가 oxalic acid보다 상대적으로 많아짐에 따라 상기 시편의 좌측면(고전류 영역)에는 반광택 표면이 증가하게 되었으며, formic acid 보다 oxalic acid의 양이 증가하여 oxalic acid만 적용되었을 때는 시편의 좌측면(고전류 영역)에 무광택 표면이 완전히 제거되고 광택 도금이 발생하였다.It can be seen that the surface state of the specimen is changed differently according to the amount of change in the complexing agent as described above. That is, as the formic acid was relatively higher than oxalic acid, the semi-gloss surface was increased on the left side (high current region) of the specimen, and the amount of oxalic acid was increased than that of the formic acid. On the left side (high current region), the matte surface was completely removed and glossy plating occurred.

따라서, 상기 착화제의 경우 한 가지 이상을 혼합하여 사용함이 바람직한 것을 알 수 있다.Therefore, in the case of the complexing agent it can be seen that it is preferable to use a mixture of one or more.

도 5에는 환원제의 종류와 첨가량의 변화에 따른 시편의 표면상태가 나타나있다.Figure 5 shows the surface state of the specimen according to the type and amount of the reducing agent added.

도면과 같이 상기 환원제를 무기물질로 적용한 상태에서 첨가량을 50, 150, 300mg/L로 각각 변화시켰을 때 시편의 우측 전면에는 반광택 표면이 형성되었다. As shown in the figure, when the addition amount was changed to 50, 150, and 300 mg / L in the state where the reducing agent was applied as an inorganic material, a semi-gloss surface was formed on the right front side of the specimen.

그리고, 상기 환원제를 유기물질로 적용한 상태에서 첨가량을 100, 250, 400mg/L로 각각 변화시켜 첨가하였을 때 시편의 우측면에는 반광택 표면적이 증가하는 것을 알 수 있다.In addition, it can be seen that the semi-gloss surface area is increased on the right side of the specimen when the addition amount is changed to 100, 250, 400 mg / L in the state where the reducing agent is applied as an organic material.

도 6에는 본 발명의 다른 실시예가 도시되어 있다. 즉, 3가크롬화합물은 황산크롬염(Cr2(SO4)3)이 적용되었으며 3가크롬도금액에 250g/l가 포함된다. 그리고 상기 완충제, 전도보조제는 각각 H3BO4, NH4Cl, KCl이 각각 1M씩 첨가된다.6 illustrates another embodiment of the present invention. That is, as the trivalent chromium compound, chromium sulfate salt (Cr 2 (SO 4 ) 3 ) was applied and the trivalent chromium plating solution contained 250 g / l. In addition, the buffer and the conductive support agent are each H 3 BO 4 , NH 4 Cl, KCl is added by 1M each.

상기 감극제로는 10g/l의 NH4Br 이 포함되며, 유기물첨가제는 PEG 2g/l가 첨가되었다.The depolarizer includes 10 g / l NH 4 Br, and an organic additive was added PEG 2g / l.

이러한 조성으로 이루어진 3가크롬화합물을 도금조 내부에 준비하고, 양극 및 음극에는 Graphite와 steel을 각각 사용하였다. 그리고, 상기 음극과 양극에 인가한 전류는 5A/dm2, 10A/dm2, 15A/dm2, 20A/dm2, 25A/dm2로 변화시켰으며, 이와 동시에 착화제의 성분비를 변화시킴으로써 도금층의 두께를 측정하였다.A trivalent chromium compound having such a composition was prepared inside the plating bath, and graphite and steel were used for the anode and the cathode, respectively. The current applied to the cathode and the anode was changed to 5 A / dm 2 , 10 A / dm 2 , 15 A / dm 2 , 20 A / dm 2 , 25 A / dm 2 , and at the same time, the plating layer was changed by changing the component ratio of the complexing agent. The thickness of was measured.

도금층의 두께 측정 결과, 착화제가 formic만 적용된 경우 전류가 증가함에 따라 도금층의 두께가 급격하게 두꺼워지는 것을 알 수 있다.As a result of measuring the thickness of the plating layer, it can be seen that the thickness of the plating layer rapidly increases as the current increases when only the complexing agent is applied formic.

반면, formic acid와 oxalic acid의 비가 8:2, 6:4, 4:6, 2:8 로 oxalic acid의 상대함량이 증가함에 따라 도금층의 두께 변화 기울기가 감소하여, oxalic acid만 적용된 경우 전류 인가량이 변화하게 되더라도 5A/dm2 내지 25A/dm2의 범위내에서는 도금층의 두께 변화가 크게 발생되지 않음을 알 수 있다.On the other hand, when the ratio of formic acid and oxalic acid is 8: 2, 6: 4, 4: 6, 2: 8 and the relative content of oxalic acid is increased, the slope of the thickness change of the coating layer decreases, and the current is applied when only oxalic acid is applied. Even if the amount is changed, it can be seen that the thickness change of the plating layer is not largely generated within the range of 5A / dm 2 to 25A / dm 2 .

도 7에는 착화제와 전도보조제의 종류를 변화시키고 이와 동시에 첨가량을 각각 변화시켰을 때 도금층의 표면을 확대하여 나타낸 사진이 도시되어 있다.7 is a photograph showing an enlarged surface of the plating layer when the kind of the complexing agent and the conduction aid are changed, and at the same time, the amount of addition is changed.

Formic acid와 oxalic acid의 혼합 착화제 시스템에서 oxalic acid의 상대 첨가비가 0.5, 0.75, 1.0으로 증가함에도 도금층 표면의 nodule 밀도는 낮아지며, 표면 균일도는 크게 향상되었다.In the mixed complexing system of formic acid and oxalic acid, the nodule density on the surface of the coating layer was lowered and the surface uniformity was greatly improved even though the relative addition ratios of oxalic acid increased to 0.5, 0.75, and 1.0.

또한, NH4Cl의 첨가량을 증가시킴에 따라 도금 균일도는 향상되며, 특히 1M 이상에서는 nodule 크기와 밀도가 상당히 적어져 매우 균일한 광택 표면을 얻을 수 있다.In addition, as the amount of NH 4 Cl is increased, plating uniformity is improved. Especially, at 1M or more, nodule size and density are considerably reduced, thereby obtaining a very uniform gloss surface.

KCl의 첨가량을 0.5, 1.0, 2.0M로 각각 변화시켜 첨가한 경우, 농도에 관계없이 도금층의 표면에 전체적으로 일정 크기의 nodule이 고르게 발생한다.When the amount of KCl added was changed to 0.5, 1.0, or 2.0 M, respectively, nodule of a certain size was evenly generated on the surface of the plating layer regardless of the concentration.

도 8에는 3가크롬도금액의 온도 및 수소이온지수를 변화시켰을 때 도금층의 표면 상태를 보인 사진과, 착화제로서 Formac, Glycine, Oxalic를 혼합하여 사용 시 광학 사진 그리고, 환원제로서 무기물 적용 시 광학 사진이 도시되어 있다.8 is a photograph showing the surface state of the plating layer when the temperature and the hydrogen ion index of the trivalent chromium plating solution are changed, an optical photograph when a mixture of Formac, Glycine, and Oxalic is used as a complexing agent, and an optical material when the inorganic material is applied as a reducing agent. The picture is shown.

도면에 도시된 바와 같이, Formic acid, Glycine, Oxalic acid를 각각 3가크롬도금액에 첨가한 경우 3가크롬 도금층의 nodule 밀도가 달라짐을 볼 수 있다. 이러한 착화제의 특성을 이용하여, 단독 혹은 혼합 착화제를 사용함으로써 제품 용도에 따라 nodule 밀도를 제어할 수 있는 도금액을 제조할 수 있다. As shown in the figure, when formic acid, Glycine, Oxalic acid is added to the trivalent chromium plating solution, respectively, it can be seen that the nodule density of the trivalent chromium plating layer is changed. By utilizing the characteristics of such a complexing agent, a plating liquid capable of controlling the nodule density can be prepared according to a product use by using a single or mixed complexing agent.

이러한 본 발명의 범위는 상기에서 예시한 실시예에 한정하지 않고, 상기와 같은 기술범위 안에서 당업계의 통상의 기술자에게 있어서는 본 발명을 기초로 하는 다른 많은 변형이 가능할 것이다.The scope of the present invention is not limited to the above-exemplified embodiments, and many other modifications based on the present invention may be made by those skilled in the art within the above technical scope.

위에서 상세히 설명한 바와 같이 본 발명에 의한 3가크롬도금액에서는, 무기물질 또는 유기물질로 이루어진 환원제가 첨가된다.As described in detail above, in the trivalent chromium plating solution according to the present invention, a reducing agent made of an inorganic material or an organic material is added.

따라서, 도금층의 광택 전류 영역 확대, 부착력 향상 및 도금욕 수명 증대를 도모할 수 있는 이점이 있다.Therefore, there is an advantage that the gloss current region of the plating layer can be expanded, the adhesion can be improved, and the plating bath life can be increased.

또한, 전도보조제가 첨가됨으로써 도금층 형성이 보다 용이하며, 형성된 도금층의 두께가 고른 이점이 있다.In addition, the addition of the conductive assistant is easier to form a plating layer, there is an advantage that the thickness of the formed plating layer.

본 발명에서는 착화제로서 oxalic acid가 적용되며, 도금 속도의 향상을 위해 formid acid가 적정 비율로 혼합된다.In the present invention, oxalic acid is applied as a complexing agent, and formid acid is mixed at an appropriate ratio to improve the plating rate.

따라서, 도금층의 형성 속도가 빨라지므로 생산성이 향상되는 이점이 있다.Therefore, the formation speed of the plating layer is faster, there is an advantage that the productivity is improved.

Claims (15)

3가크롬화합물 0.4 ~ 0.6M과,Trivalent chromium compound 0.4 ~ 0.6M, 상기 3가크롬화합물이 수용액 중에서 고분자화 반응이 억제되도록 하는 착화제 0.8 ~ 1.2M과,0.8 to 1.2 M of a complexing agent to inhibit the polymerization reaction of the trivalent chromium compound in an aqueous solution; 3가크롬이온의 전기전도도를 높이기 위한 전도보조제 0.8 ~ 1.2M과,0.8 ~ 1.2M conduction aid to increase the electrical conductivity of trivalent chromium ion, 수용액의 수소이온지수를 보정하는 완충제 0.8 ~ 1.2M과,0.8 ~ 1.2M buffer for calibrating the hydrogen ion index of aqueous solution, 3가크롬이온이 2가로 산화되는 것을 억제하는 감극제 8 ~ 12g/l과,8-12 g / l of a polarizing agent which suppresses trivalent chromium ion from oxidizing to divalent, 도금층 표면의 광택을 높이기 위한 유기물첨가제 1 ~ 4 g/l과,1 ~ 4 g / l of organic additives to increase the gloss of the plating layer surface, 도금층의 부착력을 높이기 위한 환원제 10 ~100ppm을 포함하여 구성되며,Consists of 10 ~ 100ppm reducing agent to increase the adhesion of the plating layer, 상기 환원제는 무기물질 또는 유기물질로 이루어지는 것을 특징으로 하는 3가크롬도금액.The reducing agent is a trivalent chromium plating solution, characterized in that consisting of an inorganic material or an organic material. 제 1 항에 있어서, 상기 3가크롬화합물은 황산크롬염(Cr2(SO4)3) 또는 염화크롬염(CrCl3)임을 특징으로 하는 3가크롬도금액.The trivalent chromium plating solution according to claim 1, wherein the trivalent chromium compound is chromium sulfate (Cr 2 (SO 4 ) 3 ) or chromium chloride salt (CrCl 3 ). 제 2 항에 있어서, 상기 착화제는 oxalic acid, formic acid, glycine 중 하나 이상을 포함하여 구성됨을 특징으로 하는 3가크롬도금액.The trivalent chromium plating solution according to claim 2, wherein the complexing agent comprises at least one of oxalic acid, formic acid, and glycine. 제 3 항에 있어서, 상기 전도보조제는 KCl, NH4Cl, K2SO4, (NH4)2SO4 중 하나 이상을 포함하여 구성됨을 특징으로 하는 3가크롬도금액.The trivalent chromium plating solution of claim 3, wherein the conduction aid comprises at least one of KCl, NH 4 Cl, K 2 SO 4 , and (NH 4 ) 2 SO 4 . 제 4 항에 있어서, 상기 완충제는 H3BO3가 적용됨을 특징으로 하는 3가크롬도금액.The trivalent chromium plating solution according to claim 4, wherein the buffer is applied with H 3 BO 3 . 제 5 항에 있어서, 상기 감극제는 NH4Br, NaBr, NaF 중 어느 하나임을 특징으로 하는 3가크롬도금액.The trivalent chromium plating solution according to claim 5, wherein the depolarizing agent is any one of NH 4 Br, NaBr, and NaF. 제 6 항에 있어서, 상기 유기물첨가제는 PEG(Polythylene Glycol #1500)가 적용되며, 상기 PEG의 분자량은 300 내지 8000 임을 특징으로 하는 3가크롬도금액.The trivalent chromium plating solution according to claim 6, wherein the organic additive is PEG (Polythylene Glycol # 1500), and the molecular weight of the PEG is 300 to 8000. 제 1 항에 있어서, 상기 무기물질은 Fe2 + 또는 Co2 +를 포함하는 것을 특징으로 하는 3가크롬도금액.The method of claim 1, wherein the inorganic material is an amount of trivalent chromium, characterized in that it comprises a Fe + 2 or Co + 2. 제 8 항에 있어서, 상기 무기물질은,The method of claim 8, wherein the inorganic material, Fe2(SO4)3, FeS, FeCl2, Fe(C2O4), Fe(CH3CO2)2, (NH4)2Fe(SO4)2, Co(NO3)2, CuCl2 중 어느 하나임을 특징으로 하는 3가크롬도금액.Fe 2 (SO 4 ) 3 , FeS, FeCl 2 , Fe (C 2 O 4 ), Fe (CH 3 CO 2 ) 2 , (NH 4 ) 2 Fe (SO 4 ) 2 , Co (NO 3 ) 2 , CuCl Trivalent chromium plating solution, characterized in that any one of two . 제 1 항에 있어서, 상기 유기물질은,The method of claim 1, wherein the organic material, hydrazine, sodiumborohydride, dimethylaminoborane 중 어느 하나임을 특징으로 하는 3가크롬도금액Trivalent chromium plating solution characterized in that any one of hydrazine, sodiumborohydride, dimethylaminoborane 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020070031199A 2007-03-30 2007-03-30 Trivalent chromium galvanizing solution KR100858711B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070031199A KR100858711B1 (en) 2007-03-30 2007-03-30 Trivalent chromium galvanizing solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070031199A KR100858711B1 (en) 2007-03-30 2007-03-30 Trivalent chromium galvanizing solution

Publications (1)

Publication Number Publication Date
KR100858711B1 true KR100858711B1 (en) 2008-09-17

Family

ID=40023175

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070031199A KR100858711B1 (en) 2007-03-30 2007-03-30 Trivalent chromium galvanizing solution

Country Status (1)

Country Link
KR (1) KR100858711B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100977068B1 (en) * 2010-01-25 2010-08-19 한용순 Electroplating appartus and Trivalent chromium alloy electroplating solution for amorphous Trivalent chromium alloy electroplating layer
KR100996298B1 (en) 2008-07-24 2010-11-23 한국기계연구원 Hard Trivalent chromium electroplating solution and manufacturing method of the same
CN102383149A (en) * 2011-11-09 2012-03-21 广东达志环保科技股份有限公司 Environment-friendly trivalent chromium electroplating solution and environment-friendly trivalent chromium electroplating method thereof
KR101187562B1 (en) 2010-06-21 2012-10-04 한국기계연구원 Control method for electrodeposited layer nodule's diameter of use trivalent chromium electroplating solution
KR101198353B1 (en) 2010-07-29 2012-11-09 한국기계연구원 Trivalent chromium plating solution and plating method using the same
WO2012161361A1 (en) * 2011-05-24 2012-11-29 동부제철 주식회사 Solution composition for chemical treatment of trivalent chromium, preparation method thereof, chemical treatment method of electrolytic tinplate steel using the same
CN102925934A (en) * 2012-10-29 2013-02-13 南京大地冷冻食品有限公司 Trivalent chromium plating liquid having high deposition speed
WO2020189802A1 (en) * 2019-03-15 2020-09-24 유한회사 한국신기술 Antioxidant, comprising cyano-carboxy group composite free from sulfur (s) component, for preventing oxidation of trivalent chromium ions to divalent chromium ions, and trivalent chromium electroplating solution comprising same
CN114729463A (en) * 2019-10-31 2022-07-08 科文特亚股份公司 Sulfate-based ammonium-free trivalent chromium decorative plating process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112493A (en) 1980-02-13 1981-09-04 Agency Of Ind Science & Technol Chrome plating method
KR19990053139A (en) * 1997-12-23 1999-07-15 이구택 Electrolytic chromate treatment method of galvanized steel sheet excellent in whiteness
JP2002285375A (en) 2001-03-28 2002-10-03 Chunichi Craft Kk Trivalent chromium plating bath
KR20050052214A (en) * 2003-11-29 2005-06-02 테크앤라이프 주식회사 Chrom galvanizing solution and manufacturing process of it
JP2006249518A (en) 2005-03-11 2006-09-21 Koka Chrom Kogyo Kk Method for supplying chromium ion to trivalent chromium plating bath

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112493A (en) 1980-02-13 1981-09-04 Agency Of Ind Science & Technol Chrome plating method
KR19990053139A (en) * 1997-12-23 1999-07-15 이구택 Electrolytic chromate treatment method of galvanized steel sheet excellent in whiteness
JP2002285375A (en) 2001-03-28 2002-10-03 Chunichi Craft Kk Trivalent chromium plating bath
KR20050052214A (en) * 2003-11-29 2005-06-02 테크앤라이프 주식회사 Chrom galvanizing solution and manufacturing process of it
JP2006249518A (en) 2005-03-11 2006-09-21 Koka Chrom Kogyo Kk Method for supplying chromium ion to trivalent chromium plating bath

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100996298B1 (en) 2008-07-24 2010-11-23 한국기계연구원 Hard Trivalent chromium electroplating solution and manufacturing method of the same
KR100977068B1 (en) * 2010-01-25 2010-08-19 한용순 Electroplating appartus and Trivalent chromium alloy electroplating solution for amorphous Trivalent chromium alloy electroplating layer
KR101187562B1 (en) 2010-06-21 2012-10-04 한국기계연구원 Control method for electrodeposited layer nodule's diameter of use trivalent chromium electroplating solution
KR101198353B1 (en) 2010-07-29 2012-11-09 한국기계연구원 Trivalent chromium plating solution and plating method using the same
WO2012161361A1 (en) * 2011-05-24 2012-11-29 동부제철 주식회사 Solution composition for chemical treatment of trivalent chromium, preparation method thereof, chemical treatment method of electrolytic tinplate steel using the same
CN102383149A (en) * 2011-11-09 2012-03-21 广东达志环保科技股份有限公司 Environment-friendly trivalent chromium electroplating solution and environment-friendly trivalent chromium electroplating method thereof
CN102383149B (en) * 2011-11-09 2014-07-02 广东达志环保科技股份有限公司 Environment-friendly trivalent chromium electroplating solution and environment-friendly trivalent chromium electroplating method
CN102925934A (en) * 2012-10-29 2013-02-13 南京大地冷冻食品有限公司 Trivalent chromium plating liquid having high deposition speed
CN102925934B (en) * 2012-10-29 2015-10-28 南京大地冷冻食品有限公司 A kind of trivalent chromium bath of high sedimentation velocity
WO2020189802A1 (en) * 2019-03-15 2020-09-24 유한회사 한국신기술 Antioxidant, comprising cyano-carboxy group composite free from sulfur (s) component, for preventing oxidation of trivalent chromium ions to divalent chromium ions, and trivalent chromium electroplating solution comprising same
CN114729463A (en) * 2019-10-31 2022-07-08 科文特亚股份公司 Sulfate-based ammonium-free trivalent chromium decorative plating process
US20220403538A1 (en) * 2019-10-31 2022-12-22 Coventya S.P.A. Sulfate based, ammonium free trivalent chromium decorative plating process

Similar Documents

Publication Publication Date Title
KR100858711B1 (en) Trivalent chromium galvanizing solution
Lu et al. The effect of formic acid concentration on the conductivity and corrosion resistance of chromium carbide coatings electroplated with trivalent chromium
Dolati et al. The electrodeposition of quaternary Fe–Cr–Ni–Mo alloys from the chloride-complexing agents electrolyte. Part I. Processing
EP2054539B1 (en) Method for deposition of chromium layers as hard- chrome plating, electroplating bath and hard- chrome surfaces
EP2815002B1 (en) Color control of trivalent chromium deposits
KR100970951B1 (en) Trivalent chromium electroplating solution for decoration
US20120024714A1 (en) Trivalent chromium plating solution and plating method using the same
TW200949021A (en) Pyrophosphate-based bath for plating of tin alloy layers
KR100996298B1 (en) Hard Trivalent chromium electroplating solution and manufacturing method of the same
KR101266252B1 (en) Trivalent chromium galvanizing solution for bright dark black color and manufacturing method of the same
Yao et al. Environmentally friendly chromium electrodeposition: effect of pre-electrolysis on a Cr (III) bath in an anion-exchange membrane reactor
WO2019142487A1 (en) Method for producing plated structure
JP6989646B2 (en) A method for passivating the surface of a black plate or tinplate and an electrolytic system for carrying out the method.
KR101264189B1 (en) Trivalent chromium galvanizing solution for mat dark black color and manufacturing method of the same
WO2022123019A1 (en) Method for electrodepositing a dark chromium layer on a substrate and substrate having at least one side fully covered with a dark chromium layer
JP7151673B2 (en) Method for forming metal plating film
US8282808B2 (en) Use of phosphinic acids and/or phosphonic acids in redox processes
Serdiuk et al. Effect of Hydrodynamic Parameters on Membrane Electrolysis Enhancement
Telezhkina et al. Corrosion and physical-mechanical properties of Cr–P–W alloy obtained by electrodeposition from water–dimethylformamide electrolytes
KR102014342B1 (en) Electroless chromium plating composition and chromium plating method using them
CN106400064A (en) Scaffolding composite electroplate liquid with low economic cost
EP4101947A1 (en) Method for electrodepositing a dark chromium layer, substrate comprising same, and electroplating bath thereof
WO2022123012A1 (en) Electroplating bath for depositing a black chromium layer and method for electroplating a black chromium layer on a substrate
EP4259853A2 (en) Electroplating bath for depositing a black chromium layer, method for depositing, and substrate comprising such a layer
CN117512731A (en) Surface treatment process of electronic copper foil

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130910

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140626

Year of fee payment: 7