KR100857963B1 - Polymerization method of polyethylene and ethylene copolymer for extrusion blow molding - Google Patents

Polymerization method of polyethylene and ethylene copolymer for extrusion blow molding Download PDF

Info

Publication number
KR100857963B1
KR100857963B1 KR1020070032231A KR20070032231A KR100857963B1 KR 100857963 B1 KR100857963 B1 KR 100857963B1 KR 1020070032231 A KR1020070032231 A KR 1020070032231A KR 20070032231 A KR20070032231 A KR 20070032231A KR 100857963 B1 KR100857963 B1 KR 100857963B1
Authority
KR
South Korea
Prior art keywords
molecular weight
ethylene
polymer
stage reactor
ethylene copolymer
Prior art date
Application number
KR1020070032231A
Other languages
Korean (ko)
Inventor
박지용
홍승환
양춘병
Original Assignee
삼성토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성토탈 주식회사 filed Critical 삼성토탈 주식회사
Priority to KR1020070032231A priority Critical patent/KR100857963B1/en
Application granted granted Critical
Publication of KR100857963B1 publication Critical patent/KR100857963B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D22/00Producing hollow articles
    • B29D22/003Containers for packaging, storing or transporting, e.g. bottles, jars, cans, barrels, tanks
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound

Abstract

A method for preparing an ethylene polymer or ethylene copolymer for blow molding is provided to obtain an ethylene polymer or ethylene copolymer having excellent melt strength and appearance. A method for preparing an ethylene polymer or ethylene copolymer for blow molding uses two slurry phase polymerization reactors connected in series, wherein a first reactor is for preparing a low-molecular weight polymer and a second reactor is for preparing a high-molecular weight polymer. In the method, a solid complex titanium catalyst is used as a main catalyst, an organoaluminum compound is used as a cocatalyst, and ethyl aluminum sesquichloride is introduced in an amount corresponding to a molar ratio of 0.5-5.0 (aluminum/titanium in the main catalyst), and the main catalyst, cocatalyst and ethyl aluminum sesquichloride are introduced into the first reactor.

Description

중공성형용 에틸렌 중합체 및 에틸렌 공중합체의 제조방법{POLYMERIZATION METHOD OF POLYETHYLENE AND ETHYLENE COPOLYMER FOR EXTRUSION BLOW MOLDING} Method for producing ethylene polymer and ethylene copolymer for blow molding {POLYMERIZATION METHOD OF POLYETHYLENE AND ETHYLENE COPOLYMER FOR EXTRUSION BLOW MOLDING}

본 발명은 높은 용융강도 및 우수한 외관을 갖는 중공성형용 에틸렌 중합체 또는 에틸렌 공중합체의 제조방법에 관한 것으로서, 보다 상세하게는 어느 한 개의 반응기에서 저분자량의 고분자를 제조하고, 다른 한 개의 반응기에서 고분자량의 고분자를 제조하는 슬러리상의 두 개의 중합반응기를 사용하는 에틸렌의 직렬 또는 병렬 중합반응에 있어서, 고체착물 티타늄 촉매를 주촉매로서 사용하고, 유기알루미늄 화합물을 조촉매로서 사용하고, 추가로 에틸알루미늄세스퀴클로라이드를 알루미늄/티타늄 몰비기준으로 0.5~5.0으로 투입하므로써, 높은 용융강도 및 우수한 외관을 갖는 중공성형용 에틸렌 중합체 또는 에틸렌 공중합체의 제조방법에 관한 것이다.The present invention relates to a method for producing a blow molding ethylene polymer or ethylene copolymer having a high melt strength and excellent appearance, and more particularly, to prepare a low molecular weight polymer in one reactor, and high in another reactor In series or parallel polymerization of ethylene using two slurry reactors for preparing a polymer having a molecular weight, a solid complex titanium catalyst is used as a main catalyst, an organoaluminum compound is used as a promoter, and further ethyl aluminum The present invention relates to a method for producing a blow molding ethylene polymer or ethylene copolymer having high melt strength and excellent appearance by adding sesquichloride in an amount of 0.5 to 5.0 based on aluminum / titanium molar ratio.

폴리에틸렌 중공성형 용기는 용량에 따라 1ℓ 이하의 소형용기, 1~20ℓ의 중형용기, 20ℓ 이상의 대형용기로 구분되며, 소형용기에는 샴푸, 린스 등 생활용품이 주로 적용되고, 중형용기에는 식용유, 우유, 간장 등의 식품용품이 주로 적용되고, 대형용기에는 화학약품 등의 케미칼류가 주로 적용된다.  Polyethylene blow molding containers are divided into small containers of less than 1ℓ, medium containers of 1 ~ 20ℓ, and large containers of more than 20ℓ, and household goods such as shampoo and rinse are mainly applied to small containers, and cooking oil, milk, Food products such as soy sauce are mainly applied, and chemicals such as chemicals are mainly applied to large containers.

최근 중소형 용기를 중심으로 한 용기의 투명화 추세로 폴리에틸렌 테레프탈레이트 수지의 사용량이 증가되고 있으며, 이로 인해 종래의 폴리에틸렌 용기에 대한 외관품질 향상 요구가 점차 증가되고 있는 상태이다.Recently, the use of polyethylene terephthalate resin is increasing due to the tendency of the container centering on small and medium-sized containers, and as a result, the demand for improving the appearance quality of the conventional polyethylene container is gradually increasing.

대한민국특허 제2003-0066409호에서는 비틀림 강도, 환경응력균열내성(ESCR성), 내충격 강도 및 외관이 우수한 중공성형용 폴리에틸렌 수지로서 용융지수(MFR, 2.16kg 하중) 0.1~2.0g/10분, 밀도 0.957~0.967g/㎤, 용융지수비(MFR21.6/MFR2.16)가 200 이하인 수지를 기술하고 있다. Korean Patent No. 2003-0066409 is a hollow plastic polyethylene resin with excellent torsion strength, environmental stress crack resistance (ESCR resistance), impact resistance and appearance, and melt index (MFR, 2.16kg load) 0.1 ~ 2.0g / 10min, density A resin having a 0.957 to 0.967 g / cm 3 and melt index ratio (MFR21.6 / MFR2.16) of 200 or less is described.

그러나 이러한 방식으로 제조된 폴리에틸렌 수지가 모든 용기에 대해 상기에 기술된 특성을 만족시키지는 못한다. 예를 들면, 용융지수비가 너무 크거나 너무 작은 경우에는 중형용기 적용시 다이라인 발생 및 용융강도 저하에 의한 패리슨 처짐 및 중량미달 현상이 발생하는 문제점이 발생한다.However, polyethylene resins prepared in this manner do not satisfy the properties described above for all containers. For example, when the melt index ratio is too large or too small, problems arise in that the parison deflection and underweight occur due to the die line generation and the melt strength decrease when the medium container is applied.

대한민국특허 제2004-7004825호에서는 높은 환경응력균열내성 및 광택성이 발현되는 수지로서 용융지수가 0.5~2.0g/10분, 밀도가 0.925~0.940g/㎤, 분자량분포가 2~7인 것을 특징으로 하는 메탈로센 촉매계 폴리에틸렌 수지를 기술하고 있다. 그러나 이렇게 제조된 수지는 분자량분포가 너무 좁고 분자량이 낮아 중형용기 성형에는 부적합하다.Korean Patent No. 2004-7004825 is a resin that exhibits high environmental stress crack resistance and gloss resistance, and has a melt index of 0.5 to 2.0 g / 10 minutes, a density of 0.925 to 0.940 g / cm 3, and a molecular weight distribution of 2 to 7. A metallocene catalyst based polyethylene resin is described. However, the resin thus prepared is too narrow in molecular weight distribution and low in molecular weight, which is not suitable for forming a medium container.

본 발명자들은 상기한 문제점들을 해결하기 위해 연구를 거듭한 결과, 에틸렌 중합체 또는 공중합체 제조시 주촉매로서 고체착물 티타늄 촉매를 사용하고, 조촉매로서 유기알루미늄 화합물을 사용하며, 추가로 에틸알루미늄세스퀴클로라이드 를 알루미늄/티타늄 몰비기준으로 0.5~5.0의 양으로 적용하면 높은 용융강도와 우수한 외관특성이 발현되는 중공성형용 에틸렌 중합체 또는 에틸렌 공중합체를 제조할 수 있다는 것을 발견하게 되어 본 발명을 완성하게 되었다.The present inventors have conducted research to solve the above problems, as a result of using a solid complex titanium catalyst as a main catalyst in the preparation of ethylene polymer or copolymer, using an organoaluminum compound as a promoter, and further ethyl aluminum sesqui When chloride is applied in an amount of 0.5 to 5.0 based on the aluminum / titanium molar ratio, the present inventors have found that it is possible to prepare an ethylene polymer or an ethylene copolymer for blow molding that exhibits high melt strength and excellent appearance characteristics. .

본 발명은 에틸렌 중합 또는 에틸렌 공중합시에, 1단 반응기에서 저분자량의 고분자를 제조하고, 2단 반응기에서 고분자량의 고분자를 제조하는 슬러리상 두개의 중합반응기를 사용하는 에틸렌의 직렬 중합반응에 있어서, 고체착물 티타늄 촉매를 주촉매로서 사용하고, 유기알루미늄 화합물을 조촉매로서 사용하고, 추가로 에틸알루미늄세스퀴클로라이드를 알루미늄/티타늄 몰비기준으로 0.5~5.0의 양으로 투입하므로써, 높은 용융강도 및 우수한 외관을 갖는 중공성형용 에틸렌 중합체 또는 에틸렌 공중합체의 제조방법에 관한 것이다.In the present invention, in the ethylene polymerization or ethylene copolymerization, a low molecular weight polymer is produced in a first stage reactor and a high molecular weight polymer is produced in a two stage reactor. By using a solid complex titanium catalyst as a main catalyst, using an organoaluminum compound as a cocatalyst, and adding ethyl aluminum sesquichloride in an amount of 0.5 to 5.0 based on aluminum / titanium molar ratio, high melt strength and excellent The present invention relates to a method for producing an ethylene polymer or ethylene copolymer for blow molding having an external appearance.

본 발명의 방법에서 사용되는 주촉매인 고체착물 티타늄 촉매는 그 종류에 특별한 제한이 없이 당분야에 공지된 에틸렌 (공)중합용 티타늄 촉매를 사용할 수 있으며, 특히 전활성화된 고체착물 티타늄 촉매가 바람직하다. 바람직한 전활성화된 고체착물 티타늄 촉매로는 다음의 단계들을 포함하는 제조방법에 의해 제조된 것을 들 수 있다:The solid catalyst titanium catalyst, which is the main catalyst used in the method of the present invention, may be a titanium catalyst for ethylene (co) polymerization known in the art without particular limitation on its kind, and a preactivated solid complex titanium catalyst is particularly preferable. Do. Preferred preactivated solid complex titanium catalysts include those prepared by a process comprising the following steps:

(a) 할로겐화 마그네슘 화합물과 알코올을 접촉반응시켜 마그네슘 화합물 용액을 제조하는 단계;(a) contacting a magnesium halide compound with an alcohol to prepare a magnesium compound solution;

(b) 상기 마그네슘 화합물 용액에 하기 일반식(I)로 나타내어지는 프탈릭기를 갖는 화합물, 적어도 하나의 히드록시기를 갖는 에스테르 화합물 및 하기 일반식(II)로 나타내어지는 알콕시기를 갖는 실리콘 화합물을 반응시키는 단계;(b) reacting the magnesium compound solution with a compound having a phthalic group represented by the following general formula (I), an ester compound having at least one hydroxy group, and a silicon compound having an alkoxy group represented by the following general formula (II) ;

C6H4-[CO2-R]-a[CO2-R'] ........ (I) C 6 H 4- [CO 2 -R] -a [CO 2 -R '] ........ (I)

[여기에서 R, R'는 1~20개의 탄소원자를 갖는 탄화수소로서 알킬, 이소알킬, 터셔리알킬, 알케닐 또는 아릴이며, 서로 동일하거나 동일하지 않을 수 있고, a는 2, 3, 또는 4이다.]  [Where R, R 'is a hydrocarbon having 1 to 20 carbon atoms, alkyl, isoalkyl, tertiaryalkyl, alkenyl or aryl, which may or may not be the same as each other, and a is 2, 3, or 4 .]

RnSi(OR')4-n ........... (II)R n Si (OR ') 4-n ........... (II)

[여기에서 R, R'는 탄소수가 1~12개인 탄화수소이고, n은 0~3이다.][Where R and R 'are hydrocarbons having 1 to 12 carbon atoms and n is 0 to 3]

(c) 상기 반응물에 티타늄 화합물과 실리콘 화합물의 혼합물을 첨가하여 촉매를 재결정시켜 고착체물 티타늄 촉매를 제조하는 단계;(c) adding a mixture of a titanium compound and a silicon compound to the reactant to recrystallize the catalyst to prepare a solid titanium catalyst;

(d) 상기 고착체물 티타늄 촉매를 폴리(히드로바킬-알루미늄 옥사이드) 화합물로 전활성화시킨다.(d) The solid catalyst titanium catalyst is preactivated with a poly (hydrobakyl-aluminum oxide) compound.

본 발명의 방법에서 사용되는 조촉매로는 유기알루미늄 화합물로서 트리에틸알루미늄 및 트리이소부틸알루미늄과 같은 탄소수 1~6개의 알킬기를 가진 트리알킬알루미늄을 들 수 있다.Cocatalysts used in the process of the present invention include trialkylaluminums having 1 to 6 carbon atoms such as triethylaluminum and triisobutylaluminum as organoaluminum compounds.

본 발명의 방법에서 사용되는 에틸알루미늄세스퀴클로라이드의 투입량은 에틸알루미늄세스퀴클로라이드 중의 알루미늄/주촉매중의 티타늄의 몰비기준으로 0.5~5.0이 되는 양이다. 상기 알루미늄/티타늄 몰비가 0.5 미만이면 분자량분포가 좁아 융융강도 저하 및 다이라인과 같은 외관불량이 발생하게 되며, 알루미늄/티타늄 몰비가 5.0을 초과하게 되면 분자량분포가 너무 넓어져서, 융용강도가 저하되고, 외관이 불량해지는 현상이 나타난다.The amount of ethyl aluminum sesquichloride used in the method of the present invention is 0.5 to 5.0 in terms of the molar ratio of titanium in aluminum / main catalyst in ethyl aluminum sesquichloride. If the aluminum / titanium molar ratio is less than 0.5, the molecular weight distribution is narrow, resulting in low melt strength and appearance defects such as die line. If the aluminum / titanium molar ratio exceeds 5.0, the molecular weight distribution is too wide, and the melt strength is lowered. , The appearance of poor appearance.

상기 에틸알루미늄세스퀴클로라이드는 중합 반응시 주촉매 및 조촉매와 함께 투입하게 되며, 두개의 반응기를 직렬 연결중합시에는 1단 반응기에 주촉매 및 조촉매와 함께 투입하고, 병렬 연결 중합시에는 1, 2단 반응기 모두에 주촉매 및 조촉매와 함께 투입하게 된다.The ethyl aluminum sesquichloride is added together with the main catalyst and the cocatalyst during the polymerization reaction, and the two reactors are added together with the main catalyst and the promoter in the first stage reactor in series-linked polymerization, and in the case of parallel-linked polymerization, In this case, the main catalyst and the cocatalyst are added to both reactors.

본 발명의 에틸렌 공중합체 제조방법에서 공단량체로는 탄소수 4~6의 공단량체, 예로서 1-프로펜, 1-부텐, 1-헥센 등을 0.1~0.9몰로 사용할 수 있다. 중합단계에서 공단량체의 도입방법은 고분자량의 고분자가 생성되는 2단 반응기에 공단량체를 투입하여 공중합체를 제조한다. 이때 저분자량의 고분자가 제조되는 1단 반응기에 공단량체를 투입하면 저분자량의 에틸렌 공중합체가 생성되어 중공성형 용기의 중요한 특성인 환경응력균열내성의 저하를 야기하게 된다. In the method for preparing the ethylene copolymer of the present invention, comonomers having 4 to 6 carbon atoms, for example, 1-propene, 1-butene, 1-hexene, and the like may be used in 0.1 to 0.9 moles. In the method of introducing a comonomer in the polymerization step, a copolymer is prepared by adding a comonomer to a two-stage reactor in which a high molecular weight polymer is produced. In this case, when the comonomer is added to the first stage reactor in which the low molecular weight polymer is prepared, a low molecular weight ethylene copolymer is generated, which causes the degradation of environmental stress crack resistance, which is an important characteristic of the hollow molding container.

본 발명에 사용되는 반응기는 슬러리 반응기로서 두개의 반응기를 직렬 또는 병렬로 연결하여 사용하게 된다. 이때 반응기내의 희석제로 사용되는 용제는 헥산, 헵탄 등의 불활성 용제를 사용한다. 각단의 슬러리내 고분자의 고용분 농도는 100~400g/리터-헥산으로 유지한다.The reactor used in the present invention is used as a slurry reactor by connecting two reactors in series or in parallel. At this time, the solvent used as the diluent in the reactor uses an inert solvent such as hexane, heptane. The solid solution concentration of the polymer in the slurry at each stage is maintained at 100-400 g / liter-hexane.

각단 반응기에서 생성된 저분자량의 고분자와 고분자량의 고분자의 중합비는 중량비로 45:55~55:45인 것이 바람직한데, 상기 범위를 벗어나는 경우에는 분자량분포가 좁아지거나 또는 넓어져 용융강도의 저하를 발생시켜 바람직하지 않다.The polymerization ratio of the low molecular weight polymer and the high molecular weight polymer produced in each stage reactor is preferably in the weight ratio of 45:55 to 55:45. If it is out of the above range, the molecular weight distribution is narrowed or widened to decrease the melt strength. It is not preferable to generate.

본 발명에 사용되는 다단계 중합반응에서는 저분자량의 고분자가 생성되는 1단 반응기 내의 저분자량의 고분자의 용융지수(190℃, 2.16Kg)가 5~30g/10분인 것이 바람직한데, 용융지수가 5g/10분 미만인 경우에는 분자량분포가 좁아지는 문제 점이 있으며, 30g/10분을 초과하는 경우에는 분자량분포가 너무 넓어져서 바람직하지 않다.In the multi-stage polymerization reaction used in the present invention, it is preferable that the melt index of the low molecular weight polymer (190 ° C, 2.16Kg) is 5-30 g / 10 minutes in the first stage reactor in which the low molecular weight polymer is produced, and the melt index is 5 g / If it is less than 10 minutes, there is a problem that the molecular weight distribution is narrowed. If it exceeds 30 g / 10 minutes, the molecular weight distribution is too wide, which is not preferable.

본 발명의 방법으로 제조된 에틸렌 중합체 및 에틸렌 공중합체는 0.95~0.97g/㎤의 밀도를 갖는다. 또한, 본 발명의 방법으로 제조된 에틸렌 중합체 및 에틸렌 공중합체는 0.1~0.9g/10분 범위의 용융지수(190℃, 2.16Kg)를 갖는다.The ethylene polymer and ethylene copolymer prepared by the process of the invention have a density of 0.95-0.97 g / cm 3. In addition, the ethylene polymer and ethylene copolymer prepared by the method of the present invention has a melt index (190 ° C., 2.16 Kg) in the range of 0.1 to 0.9 g / 10 min.

이하 실시예 및 비교예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나 이들 실시예는 예시적인 목적일 뿐, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, these examples are for illustrative purposes only, and the present invention is not limited thereto.

실시예Example  And 비교예Comparative example

[[ 실시예Example 1] One]

주촉매Main catalyst 제조  Produce

I단계 : 마그네슘 용액의 제조Step I: Preparation of Magnesium Solution

질소분위기의 기계식 교반기가 설치된 1리터 반응기에서 MgCl2 9.5g, 헵탄 500㎖를 넣고 500rpm으로 교반시킨 후, 2-에틸헥산올 72㎖를 투입하고, 온도를 120℃로 올린 다음 3시간 동안 반응시켰다. 반응후에 얻어진 균일용액을 상온으로 식혔다. In a 1 liter reactor equipped with a nitrogen atmosphere mechanical stirrer, 9.5 g of MgCl 2 and 500 ml of heptane were added and stirred at 500 rpm. Then, 72 ml of 2-ethylhexanol was added, the temperature was raised to 120 ° C., and reacted for 3 hours. . The homogeneous solution obtained after the reaction was cooled to room temperature.

IIII 단계 : 마그네슘 용액과 Step: with magnesium solution 프탈릭기를Phthalic 갖는 화합물, 적어도 하나의 히드록시기를 갖는 에스테르 화합물 및 알콕시기를 갖는 실리콘 화합물의 접촉반응 Catalytic reaction of a compound having a compound, an ester compound having at least one hydroxyl group, and a silicon compound having an alkoxy group

상기 I단계에서 얻어진 마그네슘 용액을 70℃로 식히고, 여기에 디이소부틸프탈레이트 4.6㎖, 2-히드록시에틸 메타아크릴레이트 1.2㎖와 에틸실리케이트 10.0 ㎖를 첨가하여 1시간 동안 반응시켰다.The magnesium solution obtained in step I was cooled to 70 ° C, and 4.6 ml of diisobutyl phthalate, 1.2 ml of 2-hydroxyethyl methacrylate and 10.0 ml of ethyl silicate were added thereto, and reacted for 1 hour.

IIIIII 단계 : 티타늄 화합물, 실리콘 화합물의 혼합용액 처리 Step: treatment of mixed solution of titanium compound and silicon compound

상기 II 단계에서 제조된 용액을 상온으로 조정하고, 테트라클로로티타늄 90㎖와 테트라클로로실리콘 90㎖의 혼합용액을 2시간 동안 적가하였다. 적가가 완료되면 1시간에 걸쳐 반응기의 온도를 80℃로 승온시켜 1시간 동안 유지하였다. 반응기를 실온으로 냉각하고, 교반을 정지한 후 상층의 용액을 분리한 다음 미반응 유리 테트라클로로티타늄이 제거될 때까지 헥산 400㎖를 주입하여 세척하였다. 제조된 고체 촉매의 티타늄 함량은 4.0중량%이었다.The solution prepared in step II was adjusted to room temperature, and a mixed solution of 90 mL of tetrachlorotitanium and 90 mL of tetrachlorosilicon was added dropwise for 2 hours. When the dropping was completed, the temperature of the reactor was raised to 80 ° C. over 1 hour and maintained for 1 hour. The reactor was cooled to room temperature, the stirring was stopped and the solution of the upper layer was separated and washed by injecting 400 ml of hexane until the unreacted free tetrachlorotitanium was removed. The titanium content of the prepared solid catalyst was 4.0 wt%.

IVIV 단계 : 촉매의  Step: catalyst 전활성화Activation

상기에서 제조된 고체 티타늄 촉매를 티타늄 원자기준으로 6mmol/ℓ가 되도록 200㎖의 헥산 슬러리로 소분하였다. 고체 티타늄 촉매 헥산 슬러리 용액의 온도를 0℃로 낮추고, 교반시키면서 톨루엔에 알루미늄 무게기준으로 10% 메틸알루미노 옥세인이 녹아있는 용액 3.29㎖를 천천히 주입하였다. 주입이 완료된 후에 용액온도를 20℃로 상승시키고, 5시간 동안 교반시켜 고체 티타늄 촉매성분을 전활성화 시켰다. 5시간 경과 후에는 교반을 종료하고, -10℃에서 보관하였다.The solid titanium catalyst prepared above was subdivided into 200 ml of hexane slurry so as to be 6 mmol / L on the basis of titanium atoms. The temperature of the solid titanium catalyst hexane slurry solution was lowered to 0 ° C., and 3.29 mL of a solution containing 10% methylaluminooxane dissolved in toluene by weight of aluminum was slowly injected into toluene while stirring. After the injection was completed, the solution temperature was raised to 20 ° C. and stirred for 5 hours to preactivate the solid titanium catalyst. After 5 hours, stirring was terminated and stored at -10 ° C.

중합 polymerization

중합실험은 각단 반응기의 용량이 90리터인 두개의 반응기를 직렬로 연결하여 중합하였다. 각단의 중합량의 비율은 50:50으로 하였고, 각단의 에틸렌 투입량은 4kg/hr으로 하였다. 1단 반응기에서 중합된 슬러리상의 중합체는 압력차이에 의해 2단 반응기로 이송되어 중합이 계속되도록 하였다. 1단 반응기에 상기에서 제조 된 주촉매를 0.1mmol-Ti/hr로 공급하였고, 조촉매로 트리에틸알루미늄을 사용하여 중합을 진행하였다. 또한 에틸알루미늄세스퀴클로라이드를 알루미늄/주촉매중의 티타늄의 몰비 2.0으로 하여 주촉매 및 조촉매와 함께 투입하였다. 공단량체로는 1-부텐을 2단 반응기에 주입하여 고분자량의 고분자 부분에 공단량체가 도입되도록 하였다. 1단 반응기의 중합온도는 82℃, 반응압력은 8.0kg/㎠였으며, 2단 반응기의 중합온도는 75℃, 반응압력은 2.5kg/㎠로 진행하였다. 슬러리 농도는 1단 반응기에서 160g/리터-헥산, 2단 반응기에서 140g/리터-헥산으로 하였다. 중합이 완료된 슬러리상의 중합체는 원심분리기로 분리하고, 건조기로 건조시켜 분말로 얻었다. 이어 분말상 중합체를 칼슘스테아레이트 1000ppm, 펜타에리스리톨 테트라키스(3-(3,5-디-테트라-부틸-4-하이드록시페닐)프로피오네이트) 200ppm과 혼합하여 압출기에서 펠렛상으로 제립하였다.In the polymerization experiment, two reactors having a capacity of 90 liters in each stage were connected in series to polymerize. The ratio of polymerization amount in each stage was 50:50, and the ethylene input amount in each stage was 4 kg / hr. Slurry polymer polymerized in the first stage reactor was transferred to the two stage reactor by pressure difference to allow the polymerization to continue. The main catalyst prepared above was supplied at 0.1 mmol-Ti / hr in a single stage reactor, and polymerization was performed using triethylaluminum as a cocatalyst. In addition, ethylaluminum sesquichloride was added together with the main catalyst and the cocatalyst with a molar ratio of titanium in the aluminum / main catalyst of 2.0. As the comonomer, 1-butene was injected into the two-stage reactor so that the comonomer was introduced into the high molecular weight polymer portion. The polymerization temperature of the first stage reactor was 82 ℃, the reaction pressure was 8.0kg / ㎠, the polymerization temperature of the two stage reactor was 75 ℃, the reaction pressure proceeded to 2.5kg / ㎠. The slurry concentration was 160 g / liter-hexane in the first stage reactor and 140 g / liter-hexane in the two stage reactor. Slurry polymer after polymerization was separated by centrifugation, dried in a dryer to obtain a powder. The powdered polymer was then mixed with 1000 ppm of calcium stearate and 200 ppm of pentaerythritol tetrakis (3- (3,5-di-tetra-butyl-4-hydroxyphenyl) propionate) to granulate in pellet form in an extruder.

[[ 실시예Example 2] 2]

에틸알루미늄세스퀴클로라이드의 알루미늄/티타늄 몰비를 3.5으로 증가시켜 투입한 것을 제외하고는 실시예 1과 동일하게 하여 제조하였다.It was prepared in the same manner as in Example 1 except that the aluminum / titanium molar ratio of ethylaluminum sesquichloride was increased to 3.5.

[[ 비교예Comparative example 1] One]

에틸알루미늄세스퀴클로라이드를 투입하지 않은 것을 제외하고는 실시예 1과 동일하게 하여 제조하였다.Prepared in the same manner as in Example 1 except that ethyl aluminum sesquichloride was not added.

[[ 비교예Comparative example 2] 2]

에틸알루미늄세스퀴클로라이드의 알루미늄/티타늄 몰비를 6.0으로 하여 투입한 것을 제외하고는 실시예 1과 동일하게 하여 제조하였다.The preparation was carried out in the same manner as in Example 1, except that the aluminum / titanium molar ratio of ethylaluminum sesquichloride was adjusted to 6.0.

상기 실시예 및 제조예에서 제조된 펠렛상 중합체에 대하여 하기의 평가방법으로 물성을 측정하고, 중공성형하여 용기특성을 평가하였으며, 그 결과를 하기 표 1에 나타내었다.Physical properties of the pellet-like polymers prepared in Examples and Preparation Examples were measured and blow molded to evaluate container characteristics. The results are shown in Table 1 below.

용융지수 : 190℃, 2.16kg의 조건에서 측정하였다.Melt index: measured at 190 ° C. and 2.16 kg.

용융지수비 : 21.6kg하중하의 용융지수를 2.16kg하중하의 용융지수로 나누어 계산하였다. Melt Index Ratio: The melt index under the load of 21.6kg was divided by the melt index under the load of 2.16kg.

분자량분포 : GPC(겔퍼미에이션크로마토그래피)로 측정하여, 중량평균분자량과 수평균분자량의 비로서 나타내었다.Molecular weight distribution: Measured by GPC (gel permeation chromatography), and expressed as the ratio of the weight average molecular weight and the number average molecular weight.

용융강도 : 당사 용융강도 측정설비(SMER)를 이용하여 210℃의 온도에서 측정하였다. Melt strength: measured at a temperature of 210 ℃ using our melt strength measuring equipment (SMER).

중공성형시의 패리슨 안정성 : 50mmφ 압출기를 가진 중공 성형기에서 200℃의 온도에서 1.8ℓ 식용유 용기를 성형하여 용기의 중량을 측정하고, 외관정도를 관능평가하였다.Parison stability during blow molding: A 1.8 L cooking oil container was molded at a temperature of 200 ° C. in a blow molding machine having a 50 mm φ extruder, and the weight of the container was measured and the degree of appearance was evaluated.

항목Item 실시예 1Example 1 실시예 2Example 2 비교예 1Comparative Example 1 비교예 2Comparative Example 2 1단 반응기1 stage reactor 중합온도(℃)Polymerization temperature (℃) 8282 8282 8282 8282 중합압력 (kg/㎠)Polymerization pressure (kg / ㎠) 8.08.0 8.08.0 8.08.0 8.08.0 에틸렌유량(kg/hr)Ethylene Flow Rate (kg / hr) 4.04.0 4.04.0 4.04.0 4.04.0 헥산유량(kg/hr)Hexane Flow Rate (kg / hr) 19.019.0 19.019.0 19.019.0 19.019.0 조촉매종류Type of promoter TEA1 ) TEA 1 ) TEATEA TEATEA TEATEA EASC2 )(Al/Ti몰비)EASC 2 ) (Al / Ti molar ratio) 2.02.0 3.53.5 00 6.06.0 용융지수(g/10분)Melt Index (g / 10min) 1515 1515 1515 1515 2단 반응기Two stage reactor 중합온도(℃)Polymerization temperature (℃) 7575 7575 7575 7575 중합압력 (kg/㎠)Polymerization pressure (kg / ㎠) 2.52.5 2.52.5 2.52.5 2.52.5 에틸렌유량(kg/hr)Ethylene Flow Rate (kg / hr) 4.04.0 4.04.0 4.04.0 4.04.0 헥산유량(kg/hr)Hexane Flow Rate (kg / hr) 18.018.0 18.018.0 18.018.0 18.018.0 용융지수(g/10분)Melt Index (g / 10min) 0.50.5 0.50.5 0.50.5 0.50.5 중합체 물 성Polymer properties 용융지수(g/10분)Melt Index (g / 10min) 0.350.35 0.350.35 0.350.35 0.350.35 밀도(g/㎤)Density (g / cm 3) 0.9630.963 0.9630.963 0.9630.963 0.9630.963 용융지수비Melt Index Ratio 6060 6262 5555 7070 분자량분포(Mw/Mn)Molecular Weight Distribution (Mw / Mn) 12.512.5 12.812.8 11.511.5 13.513.5 용융강도(mN)Melt strength (mN) 154154 140140 115115 125125 외관Exterior 양호Good 양호Good 불량Bad 불량Bad 용기중량(g)Container weight (g) 8686 8585 8080 8282

(주) (week)

1) TEA : 트리에틸알루미늄1) TEA: triethylaluminum

2) EASC : 에틸알루미늄세스퀴클로라이드2) EASC: ethyl aluminum sesquichloride

상기 표 1의 결과로부터 주촉매로 전활성화된 고체착물 티타늄, 조촉매로 유기알루미늄 화합물을 사용하는 에틸렌 중합체 및 공중합체 제조에 있어서, 추가로 에틸알루미늄세스퀴클로라이드를 적정 함량으로 투입시 중공성형 및 제품에 있어서 중요한 높은 용융강도 및 우수한 외관이 발현됨을 확인할 수 있었다. From the results of Table 1, in the preparation of ethylene polymers and copolymers using a titanium complex pre-activated as a main catalyst, an organoaluminum compound as a cocatalyst, the addition of ethylaluminum sesquichloride in an appropriate amount to blow molding and It was confirmed that the high melt strength and excellent appearance are important in the product.

이상에서 설명된 바와 같이, 본 발명의 방법에 따라 제조되는 에틸렌 중합체 및 공중합체를 이용하여 중형용기의 중공성형시 우수한 패리슨 안정성과 외관특성을 나타내게 된다.As described above, using the ethylene polymer and copolymer prepared according to the method of the present invention exhibits excellent parison stability and appearance characteristics during the hollow molding of the medium container.

Claims (6)

1단 반응기에서 저분자량의 고분자를 제조하고, 2단 반응기에서 고분자량의 고분자를 제조하는 슬러리상 두개의 중합반응기를 사용하는 에틸렌의 직렬 중합반응에 있어서, 고체착물 티타늄 촉매를 주촉매로, 유기 알루미늄 화합물을 조촉매로 사용하고, 추가로 에틸알루미늄세스퀴클로라이드를 알루미늄/주촉매중의 티타늄의 몰비기준 0.5~5.0으로 투입하며, 상기 주촉매와 조촉매 및 에틸알루미늄세스퀴클로라이드는 1단 반응기에 투입되는 것을 특징으로 하는 중공성형용 에틸렌 중합체 또는 에틸렌 공중합체의 제조방법.In a series polymerization of ethylene using two slurry phase polymerization reactors for producing low molecular weight polymer in a first stage reactor and high molecular weight polymer in a two stage reactor, a solid complex titanium catalyst is used as a main catalyst, An aluminum compound is used as a promoter, and ethyl aluminum sesquichloride is added at a molar ratio of 0.5 to 5.0 based on the titanium in the aluminum / main catalyst, and the main catalyst, the promoter and the ethyl aluminum sesquichloride are used in a single stage reactor. Blow molding method for producing an ethylene polymer or ethylene copolymer for molding. 삭제delete 삭제delete 제 1항에 있어서, 1단 반응기에서 생성된 저분자량의 고분자와 2단 반응기에서 생성된 고분자량의 고분자의 중합비는 중량비로 45:55~55:45인 것을 특징으로 하는 에틸렌 중합체 또는 에틸렌 공중합체의 제조방법.The method of claim 1, wherein the polymerization ratio of the low molecular weight polymer produced in the first stage reactor and the high molecular weight polymer produced in the two stage reactor is 45:55 to 55:45 by weight ratio. Process for the preparation of coalescing. 제 1항에 있어서, 저분자량의 고분자가 생성되는 1단 반응기내의 저분자량의 고분자의 용융지수가 5~30g/10분인 것을 특징으로 하는 에틸렌 중합체 또는 에틸렌 공중합체의 제조방법.The method for producing an ethylene polymer or ethylene copolymer according to claim 1, wherein the melt index of the low molecular weight polymer in the first stage reactor in which the low molecular weight polymer is produced is 5 to 30 g / 10 minutes. 제 1항에 있어서, 제조되는 에틸렌 중합체 또는 공중합체의 용융지수는 0.1~0.9g/10분, 밀도는 0.95~0.97g/㎤인 것을 특징으로 하는 에틸렌 중합체 또는 에틸렌 공중합체의 제조방법.The method of claim 1, wherein the melt index of the produced ethylene polymer or copolymer is 0.1 to 0.9 g / 10 minutes, and the density is 0.95 to 0.9 g / cm 3.
KR1020070032231A 2007-04-02 2007-04-02 Polymerization method of polyethylene and ethylene copolymer for extrusion blow molding KR100857963B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070032231A KR100857963B1 (en) 2007-04-02 2007-04-02 Polymerization method of polyethylene and ethylene copolymer for extrusion blow molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070032231A KR100857963B1 (en) 2007-04-02 2007-04-02 Polymerization method of polyethylene and ethylene copolymer for extrusion blow molding

Publications (1)

Publication Number Publication Date
KR100857963B1 true KR100857963B1 (en) 2008-09-10

Family

ID=40022933

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070032231A KR100857963B1 (en) 2007-04-02 2007-04-02 Polymerization method of polyethylene and ethylene copolymer for extrusion blow molding

Country Status (1)

Country Link
KR (1) KR100857963B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11161921B2 (en) 2017-10-19 2021-11-02 Lg Chem, Ltd. Method for producing polyethylene resin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030056427A (en) * 2001-12-28 2003-07-04 삼성종합화학주식회사 Polymerization Method of Polyethylene and Ethylene Copolymer for the Pipe Material
WO2006014475A1 (en) 2004-07-07 2006-02-09 Dow Global Technologies Inc. Multistage process for producing ethylene polymer compositions
KR100583625B1 (en) * 1999-01-06 2006-05-26 삼성토탈 주식회사 Polymerization Method of Polyethylene and Ethylene Copolymer for the Pipe Material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100583625B1 (en) * 1999-01-06 2006-05-26 삼성토탈 주식회사 Polymerization Method of Polyethylene and Ethylene Copolymer for the Pipe Material
KR20030056427A (en) * 2001-12-28 2003-07-04 삼성종합화학주식회사 Polymerization Method of Polyethylene and Ethylene Copolymer for the Pipe Material
WO2006014475A1 (en) 2004-07-07 2006-02-09 Dow Global Technologies Inc. Multistage process for producing ethylene polymer compositions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11161921B2 (en) 2017-10-19 2021-11-02 Lg Chem, Ltd. Method for producing polyethylene resin

Similar Documents

Publication Publication Date Title
US6221982B1 (en) Production of polyethylene having a broad molecular weight distribution
US4792588A (en) Polyethylene composition
US4975485A (en) Ethylene polymer and process for preparing same
US6127484A (en) Olefin polymerization process
EP1780225A1 (en) Ziegler-Natta catalyst and its use to prepare multimodal polyolefin
US5276115A (en) Mono-1-olefin polymerization in the presence of hydrogen and a cyclopentadienyl compound
KR20060091528A (en) Hybrid supported metallocene catalyst and preparation of polyethylene copolymer using the same
EP0580930B1 (en) Process for producing polyethylene having a broad molecular weight distribution
US20090048402A1 (en) Preparing multimodal polyethylene having controlled long chain branching distribution
EP0882744B1 (en) Supported chromium-based catalyst for the production of polyethylene suitable for blow moulding
JPH0632829A (en) Catalyst system for olefin polymerization, method for its polymerization and obtained polymer
JP3752759B2 (en) Ethylene polymer and method for producing the same
JPH078890B2 (en) Olefin continuous polymerization
KR100857963B1 (en) Polymerization method of polyethylene and ethylene copolymer for extrusion blow molding
US6214947B1 (en) Production of polyethylene for blow moulding
US5576400A (en) Process for producing olefin polymer
US7084216B2 (en) Process for the polymerization of olefins
EP0509169B1 (en) Process of producing olefin polymer
JPH0699511B2 (en) Olefin continuous polymerization
KR102505939B1 (en) Processing method of polyolefin elastomer copolymer having ultra low density and high elastic property and polyolefin elastomer copolymer produced thereby
US6569964B2 (en) Alumoxane-enhanced, supported Ziegler-Natta catalysts, methods of making same, processes of using same and polymers produced therefrom
KR100583625B1 (en) Polymerization Method of Polyethylene and Ethylene Copolymer for the Pipe Material
KR100431457B1 (en) Methods for preparing of high activity catalysts for olefin polymerization, and methods for preparing polyolefin using the same
KR100377287B1 (en) Ethylene polymerization method
JPH078891B2 (en) Olefin continuous polymerization

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130624

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140703

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150626

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160628

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180626

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190624

Year of fee payment: 12