KR100853104B1 - 덴드리머가 결합된 spr 칩을 이용한 단백질 정량방법 - Google Patents

덴드리머가 결합된 spr 칩을 이용한 단백질 정량방법 Download PDF

Info

Publication number
KR100853104B1
KR100853104B1 KR1020060084661A KR20060084661A KR100853104B1 KR 100853104 B1 KR100853104 B1 KR 100853104B1 KR 1020060084661 A KR1020060084661 A KR 1020060084661A KR 20060084661 A KR20060084661 A KR 20060084661A KR 100853104 B1 KR100853104 B1 KR 100853104B1
Authority
KR
South Korea
Prior art keywords
spr
antibody
dendrimer
chip
target protein
Prior art date
Application number
KR1020060084661A
Other languages
English (en)
Other versions
KR20080021346A (ko
Inventor
윤성태
Original Assignee
주식회사 휴온스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 휴온스 filed Critical 주식회사 휴온스
Priority to KR1020060084661A priority Critical patent/KR100853104B1/ko
Publication of KR20080021346A publication Critical patent/KR20080021346A/ko
Application granted granted Critical
Publication of KR100853104B1 publication Critical patent/KR100853104B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N2021/5903Transmissivity using surface plasmon resonance [SPR], e.g. extraordinary optical transmission [EOT]

Abstract

본 발명은 덴드리머(dendrimer)가 결합된 SPR(surface plasmon resonance) 칩을 이용한 단백질 정량방법에 관한 것으로, 보다 상세하게는 (a) SPR 칩의 금박막 표면에 에틸렌글리콜(ethyleneglycol)을 이용하여 자기조립 단분자층을 형성하는 단계; (b) 상기 형성된 SPR 칩의 자기조립 단분자층에 표적 단백질에 대한 항체를 고정시키는 단계; (c) 상기 고정된 항체와 표적 단백질을 포함한 시료를 반응시켜 상기 항체에 표적 단백질을 결합시키는 단계; 및 (d) 상기 결합된 표적 단백질과 덴드리머와 결합한 항체를 반응시킨 다음, 상기 덴드리머와 결합한 항체에 대한 굴절지수변화를 이용하여 표적 단백질을 정량하는 단계를 포함하는 단백질 정량방법에 관한 것이다.
본 발명에 따르면, 종래의 SPR 칩에 비하여 SPR 신호 증폭이 가능해져 민감도가 개선된 덴드리머가 결합된 SPR 칩을 이용하여, 극저농도의 생체물질까지도 검출할 수 있고, 저농도의 단백질을 분석해야하는 질병진단센서, 저분자를 검출해야 하는 화학센서 및 프로테오믹스 연구 등에 다양하게 적용할 수 있다.
SPR, 단백질 정량, 덴드리머

Description

덴드리머가 결합된 SPR 칩을 이용한 단백질 정량방법{Method for Detecting Proteins Using the SPR Chip on Which Dendrimer is Attached}
도 1은 덴드리머가 결합된 SPR 칩의 제작 과정을 도식화한 것으로 각각의 단계가 의미하는 바는 다음과 같다:
(a) SPR 칩 금박막 표면에 에틸렌글리콜(ethyleneglycol)을 이용하여 자기조립단분자층(self-assembled monolayer)을 형성한 다음, 바이오틴화(biotinylation)된 스트렙타비딘(streptavidin)과 같은 링커(linker)를 고정하고, 표적 단백질에 결합하는 항체를 반응시켜 SPR 칩 표면을 개질하는 단계;
(b) 바이오틴화된 표적 단백질 시료를 흘려주어 항원-항체 반응을 유도하는 단계;
(c) 덴드리머가 결합된 항체 및 항원을 반응시켜, SPR 신호 증폭에 의한 저농도 물질을 검출하는 단계.
도 2는 각 단계의 반응에 따라 실시간 변화되는 PSA-ACT(100 ng/ml)의 SPR 값을 나타내는 그래프이다.
도 3은 PSA-ACT 항원-항체 반응의 면역학적 검정법에 의한 직선 범위를 나타내는 그래프이다.
본 발명은 덴드리머(dendrimer)가 결합된 SPR(surface plasmon resonance) 칩을 이용한 단백질 정량방법에 관한 것으로, 보다 상세하게는 (a) SPR 칩의 금박막 표면에 에틸렌글리콜(ethyleneglycol)을 이용하여 자기조립 단분자층을 형성하는 단계; (b) 상기 형성된 SPR 칩의 자기조립 단분자층에 표적 단백질에 대한 항체를 고정시키는 단계; (c) 상기 고정된 항체와 표적 단백질을 포함한 시료를 반응시켜 상기 항체에 표적 단백질을 결합시키는 단계; 및 (d) 상기 결합된 표적 단백질과 덴드리머와 결합한 항체를 반응시킨 다음, 상기 덴드리머와 결합한 항체에 대한 굴절지수변화를 이용하여 표적 단백질을 정량하는 단계를 포함하는 단백질 정량방법에 관한 것이다.
SPR 센서는 기본적으로 금속 박막의 감지막 근처에 있는 시료의 굴절률 변화를 측정하는데 이용된다. 이는 곧 종래 아베(ABBE) 굴절계 및 타원편광법(ellipsometry)과 같은 측정방식을 대신할 뿐만 아니라 감지막 근처의 미세한 물리 화학적 변화를 효율적으로 감지하는데 유용하다.
이러한 현상을 나타내는 금속 박막으로는 금, 은, 구리 및 알루미늄과 같이 외부 자극에 의해 전자 방출이 쉽고, 음의 유전상수를 갖는 금속들이 주로 사용되는데, 그 중에서 가장 예리한 SPR 공명 피크를 나타내는 은 및 우수한 표면 안정성 을 나타내는 금이 보편적으로 이용되고 있다.
SPR이 일어나는 공명각, 즉 반사광이 최소가 되는 각도는 금속 박막 표면층의 유전체 질량의 증가 또는 구조의 변형이 일어나면, 결과적으로 유효 굴절률(effective refractive index)이 변화하면서 함께 변화한다. 따라서 이러한 물질의 변화를 광학적 방법으로 계측할 수 있는 SPR 원리를 이용하면, 금속 박막 표면층의 적절한 화학적 변형을 통해 다양한 생화학 물질들 사이의 선택적 결합 또는 분리와 같은 반응을 공명각의 변화로 감지할 수 있고, SPR 센서는 고감도 바이오센서로 활용될 수 있다.
SPR 분석법은 스크리닝(screening) 목적의 분자인식(molecular recognition)에 관한 연구에 널리 사용되어 왔다. 일반적으로 SPR 분석법은 비교적 큰 분자를 리간드로 고정하여 저분자들의 결합 반응 여부를 연구하는데 많이 이용되었으나, 항체 및 항원과 같은 고분자들 사이의 결합 반응 연구에는 많이 사용되지 않았다.
ELISA(enzyme-linked immunosorbent assay) 방법과 비교하여, SPR 분석법은 약 20 ng의 시료만을 필요로 하며, 100회 이상의 반복 실험 및 실시간 또는 온라인(on-line) 측정이 가능하고, 형광 또는 발색 라벨링(labelling)이 필요 없다는 장점이 있다.
현재 상용화되어 있는 표면 플라즈몬 공명장치로는 Biacore사, ECO CHEM사, IAsys사 및 Texas Instrument사 제품이 있는데, 이들은 모두 반사되어 나오는 빛을 한 점에서의 빛의 세기만을 측정하기 때문에 정밀도가 낮고, 민감도가 현저하게 떨어지는 문제점이 있다. 따라서 저분자 물질이나 극미량 농도의 물질을 분석하기 위 해서는 일반적인 칩표면을 이용하기 보다는, 다른 기술을 이용하여 표면처리한 SPR 칩표면을 사용해야한다.
SPR 칩의 표면 처리 후 효소반응을 SPR 센서에 도입하고 SPR 신호의 증폭을 통하여, 미량 농도 및 다양한 농도의 생체분자 분석을 하는 방법이 공개된 바 있다(대한민국 등록특허 제511055호). 상기 특허에서는 SPR 칩 상에 항원-항체 반응을 결합시키고, 그 위에 다시 상기 항원과 결합하는 감지용 항체를 결합시킨 다음, 효소침전반응을 수행하여 SPR 신호를 증폭시킴으로써 다양한 농도의 단백질을 정량가능하다고 개시하고 있다.
한편, 다수 개의 SPR 표면을 포함하는 SPR 센서 시스템(EP 1259796), 기준값 없이도 공명 주파수를 독립적으로 측정할 수 있는 SPR 센서(WO 01/90728) 등 생체물질의 정량분석을 위한 SPR 센서 제조 기술 분야에서의 다양한 시도가 있으나, 시료의 정량이 가능한 상기 SPR 센서들은 전반적으로 민감도가 떨어짐에 따라 저농도의 생체물질의 측정에 한계가 있다.
따라서, 당업계에서는 상기의 문제점을 해결하기 위하여, SPR 신호를 증폭시켜 민감도를 개선함으로써, 저농도의 단백질까지도 정량할 수 있는 방법의 개발이 개발이 절실하게 요구되고 있다.
이에, 본 발명자들은 상기 종래기술의 문제점을 개선하고자 예의 노력한 결과, SPR 칩에 덴드리머를 결합시켜 SPR 신호를 증폭시킴으로써, SPR 칩을 이용하여 저농도의 단백질까지도 정량할 수 있다는 것을 확인하고 본 발명을 완성하게 되었다.
본 발명의 목적은 덴드리머와 결합한 SPR 칩을 이용하여 저농도의 단백질을 정량하는 방법을 제공하는 데 있다.
상기 목적을 달성하기 위하여 본 발명은 (a) SPR 칩의 금박막 표면에 에틸렌글리콜(ethyleneglycol)을 이용하여 자기조립 단분자층을 형성하는 단계; (b) 상기 형성된 SPR 칩의 자기조립 단분자층에 표적 단백질에 대한 항체를 고정시키는 단계; (c) 상기 고정된 항체와 표적 단백질을 포함한 시료를 반응시켜 상기 항체에 표적 단백질을 결합시키는 단계; 및 (d) 상기 결합된 표적 단백질과 덴드리머와 결합한 항체를 반응시킨 다음, 상기 덴드리머와 결합한 항체에 대한 굴절지수변화를 이용하여 표적 단백질을 정량하는 단계를 포함하는 단백질 정량방법을 제공한다.
본 발명에 있어서, 상기 (a) 단계의 에틸렌글리콜은 카르복실기(-COOH) 말단의 에틸렌글리콜 및 히드록시기(-OH) 말단의 에틸렌글리콜의 혼합물인 것을 특징으로 할 수 있고, 상기 카르복실기(-COOH) 말단의 에틸렌글리콜 및 히드록시기(-OH) 말단의 에틸렌글리콜의 비율은 1:12인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 (b) 단계의 표적 단백질은 PSA-ACT 복합 단백질인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 (d) 단계의 덴드리머는 PAMAM(NH2)32 ([NH2CH2CH2SSCH2CH2NH2]:(G=3))인 것을 특징으로 할 수 있고, 상기 (d) 단계의 덴드리머와 결합한 항체는 덴드리머와 항체가 아미드 결합된 것임을 특징으로 할 수 있다.
이하 본 발명을 보다 상세하게 설명한다.
본 발명은 덴드리머가 결합된 SPR 센서칩을 이용하여, SPR 신호를 증폭시킴으로써 저농도의 단백질까지도 검출할 수 있는 단백질 정량방법에 관한 것이다.
본 발명에서 덴드리머란 잘 정돈된 화학구조를 가진 3차원적 공간 형태로 많은 분지를 갖는 고분자로서, 중심(core)영역, 분지영역 및 외부표면(말단) 영역으로 이루어지는 것을 특징으로 한다.
특히 덴드리머는 분지 영역에 의하여 내부공간이 형성된 모양을 가지고 있어서, 용매 또는 작은 유기 물질 이외에 염료나 형광물질과 같은 큰 분자 및 금속 이온들을 포집할 수 있고, 운반체로서도 이용가능하다.
또한, 덴드리머의 가장 큰 특징은 말단 영역에 작용기가 많다는 것이다. 따라서, 표면에 존재하는 작용기를 화학적으로 개질하면 덴드리머 자체의 성질이 변화될 뿐만 아니라, 물질적 및 기계적 성질도 변화되므로 기능성을 갖는 화합물을 합성할 수 있다. 이밖에, 상기 덴드리머의 표면에는 동일한 작용기가 많이 존재하기 때문에, 이를 이용하면 기능상의 시너지 효과도 얻을 수 있게 된다.
본 발명은, SPR 칩의 금 박막에 p-편광된 빛을 전반사 이상으로 입사시키면 일부는 반사되어 나오고, 일부는 금박막의 표면을 따라 진행하는 표면 플라즈몬 파(surface plasmon wave)가 되어 분산되는데, 상기 SPR 칩은 프리즘을 통해 조사된 광원이 센서 칩 위의 금박막에 고정 되어 있는 리간드에 결합한 물질의 질량, 형상 등에 따라 공명각(resonance angle)이 변화하는 원리를 이용한 것이다.
일반적으로 센서 칩은 유리판, 상기 유리판 상에 50 nm 두께로 입혀진 금 박막(gold film) 및 그 위에 도포된 덱스트란(dextran)층으로 구성되어 있다. 상기 칩이 시스템에 장착되면, 여러 개의 플로우 셀(flow cell)이 형성되어 있는 통합미세유로장치(integrated μ-fluidic cartridge)와 결합하여, 마이크로밸브(microvalve)에 의한 조절을 통해 각 플로우 셀(flow cell)을 독립적으로 혹은 연속적으로 사용할 수 있게 된다.
상기 플로우 셀로 시료가 흘러가면서 수행되는, 리간드가 고정된 칩 상의 두 물질 간의 결합 및 분리과정은 공명각의 변화를 야기하고, 상기 공명각의 변화는 센서그램(sensorgram)을 통해 실시간으로 확인할 수 있다. 여기서 SPR 신호의 단위는 RU(response unit)를 사용하며, 1000 RU의 변화는 1 ng/mm2(0.1도의 SPR 각도의 변화)의 질량 변화를 의미한다.
본 발명에서는 SPR 칩의 민감도 향상을 위해 덴드리머를 도입하는데, 구체적으로, SPR 칩 표면에 비특이적 흡착을 최소화할 수 있는 자기조립 단분자층을 형성하고, 상기 자기조립 단분자층 상에 표적 단백질의 항체 및 항원을 차례로 고정시 킨 다음, 최종적으로 덴드리머에 3차원 입체 구조로 결합된 항체를 도입하여(도 1), SPR 신호를 증폭함으로써 저농도의 단백질을 검출할 수 있었다(도 2).
도 1의 그래프는 BIACORE 회사의 SPR 분석장비에 의해 측정된 결과로서, 우선 개질된 칩 표면에서의 첫 번째 PSA-ACT 항원-항체 반응을 0 ~ 5000 ng/ml의 농도 범위 내에서 수행하였다. 이 때, 항원-항체 반응의 선형회귀(linear regression) 공식은 y = 0.1036x + 12.884 (R2 = 0.9955, n=6)이고, 여기서 y는 SPR 신호의 RU 값, x는 분석 시료 농도, R2는 상기 선형회귀 공식의 오차율을 나타내는 지수 및 n은 실시료 샘플의 개수를 나타낸다. 또한, 상대적인 표준편차 값은 2.16이었고, 상기 공식에서 PSA-ACT의 항원-항체 반응만 시켰을 때 최소 검출 한계가 62.5 ng/ml인 것을 확인할 수 있었다.
상기 첫 번째 PSA-ACT 항원-항체 반응이 끝난 후 SPR 신호 증폭을 위해 PSA-ACT 항체가 3차원으로 고정된 덴드리머를 다시 흘려주었다. 이 때, 항원-항체 반응의 선형회귀(linear regression) 공식은 y = 1.2071x + 101.73 (R2 = 0.9986, n=6)으로 나타났다. 여기서, 상대적인 표준편차 값은 3.34 였고, 검출 한계는 첫 번째 항원-항체 반응과 비교하여 8.3 ng/ml 까지 낮아졌다.
상기 두 공식의 기울기를 비교해 볼 때, PSA-ACT 항원-항체 반응만 수행하였을 때보다, 덴드리머를 이용하여 SPR 신호를 증폭시켰을 때 그 민감도가 11.6배 향상되는 것을 확인할 수 있었다.
따라서 본 발명에 따른 단백질 정량 방법은, SPR 칩 상에서 표적 항원을 검 출하기 위한 항체를 덴드리머에 3차원 입체구조로 결합시켜 다시 항원과 반응시키는 기법을 이용함으로써, SPR 신호를 증폭하여 검출한계를 기존 방법보다 훨씬 더 낮출 수 있으므로, SPR 센서 시스템을 기반으로 한 질병진단용 센서로 활용 가능한 분석방법이 될 것이다.
이하, 실시예를 통하여 보다 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1 : PSA - ACT 복합체의 항원-항체 반응 측정
1-1. 금박막 표면 상에 올리고( oligo )( ethylene glycol )를 이용한 자기조립 단분자층 형성
본 실시예에서는 칩의 금박막 표면 상에 비특이적 흡착을 줄이기 위해, 말단기가 카르복실기(-COOH)로 치환되어 있는 EG(ethylene glycol)6 올리고머 {HS(CH2)11(OH2CH2)6OCH2COOH} 및 말단기가 하이드록실기(-OH)로 치환되어 있는 EG3 올리고머 {HS(CH2)11(OH2CH2)3OH}를 1:12 비율로 0.5 mM 순수 에탄올 용액에 혼합하여, 금박막 표면에 자기조립 단분자층을 형성하였다. 그 후, 상기 금박막 표면에 남아있는 잔여물을 제거하기 위해 초순수 증류수(18.2 mΩ/cm) 및 순수 에탄올로 차례로 세척하였다.
1-2. 자기조립 단분자층의 카르복실기 및 PSA - ACT 항체의 바이오틴화
실시예 1-1에서 형성된 자기조립 단분자층에 PAS-ACT 항체를 고정시키기 위하여 스트렙타비딘(streptavidin)을 링커로 사용하는데, 이를 위하여 자기조립 단분자층의 카르복실기 및 PSA-ACT 항체를 바이오틴화(biotylation)하였다.
우선 실시예 1-1의 자기조립 단분자층이 형성된 칩의 금박막 표면에 스트렙타비딘을 효과적으로 고정하기 위하여, 자기조립 단분자층의 에틸렌글리콜 말단에 있는 카르복실기에 바이오틴(biotin)을 하기의 방법으로 결합시켰다(O'Shannessey, D.J. and Quarles, R.H., J. Immunol . Methods , 99:153-161, 1987).
상기 자기조립 단분자층이 형성된 칩의 금박막 표면을 0.1 M MES 완충제(pH = 4.7 ~ 5.5) 5 ml로 세척한 다음, 상온에서 상기 금박막 표면을 100 mg/ml EDC (1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide hydrochloride) 65 μl 및 바이오틴 하이드라지드(biotin hydrazide)(50 mM) 130 μl의 혼합 용액에 12시간 동안 담가 놓았다. 이어서 약하게 교반한 후, 반응시킨 칩 표면을 고순도 질소 가스로 건조하였다.
또한 스트렙타비딘에 고정할 PSA-ACT 항체를 바이오틴화 하기 위해 EZ-Link Sulfo-NHS-LC-Biotinylation Kit(PIERCE 사)를 이용하여 그 프로토콜(protocol)을 순차적으로 수행하였다.
1-3. PSA - ACT 항체가 고정된 SPR 센서 칩의 제작
실시예 1-2의 표면 개질된 칩을 SPR 바이오센서 시스템(BIACORE 2000)에 장착한 다음, 상기 개질된 SPR 센서칩 표면에 스트렙타비딘 및 PSA-ACT 항체의 고정를 수행하였다. 이하 본 실시예는 5 μl/ml 용액의 흐름속도 및 25 ℃ 온도 조건하에서 진행되었다.
SPR 바이오센서 시스템의 플로우 셀(flow cell) 2 (Fc2)에 스트렙타비딘이 포함된 용액(20 μg/ml, pH = 7.4 인 HBS 완충제에 녹임)을 7분 동안 주입하여 스트렙타비딘의 고정한 다음, 미반응된 표면의 비특이적 흡착을 줄이기 위해 1M 에탄올아민(ethanolamine)-HCl을 7분 동안 흘려주었다. 여기서, 보다 정확한 데이터를 검출하기 위하여 Fc1을 기준 셀(reference cell)로 사용하였고, SPR 신호 값은 Fc2에서 Fc1을 뺀 값을 이용하였다.
이어서 바이오틴화된 PSA-ACT 항체(20 mg/ml HBS 완충제에 녹임)를 SPR 센서칩 표면에 약 7분 동안 주입한 후, 스트렙타비딘 상에 고정되지 않은 바이오틴화된 PSA-ACT 모노클로날(monoclonal) 항체를 제거하기 위하여 50 mM NaOH 용액 및 1 M NaCl 용액의 혼합용액을 2분 동안 흘려주어, 최종적으로 전립선암의 지표물질인 PSA-ACT 항원을 검출할 수 있는 SPR 센서 칩을 제작하였다.
1-4. 항원-항체 면역 반응에 의한 PSA - ACT 항원의 검출실험
실시예 1-3의 PSA-ACT 항체를 고정한 SPR 센서칩의 굴절 지수를 관찰하기 위 해서 PSA-ACT의 농도를 달리하여, PSA-ACT 검출실험을 하기와 같이 수행하였다.
실시예 1-2에 따른 바이오틴화된 PSA-ACT 항원을 각각 0, 1, 10, 100, 500, 1000 및 5000 ng/ml의 농도로 희석하여 pH 7.4인 HBS 완충제에 혼합한 다음, 상기 혼합 용액들을 실시예 1-3의 PSA-ACT 항체를 고정한 칩 표면에 흘려주어 농도별 굴절지수 변화를 관찰하였다. 상기 혼합용액을 Fc2에 각각 2분 동안 주입하여, 항원-항체 반응을 수행한 다음, PSA-ACT 항원을 검출하고, 칩의 재사용을 위해서, SPR 센서칩에 50 mM NaOH 및 1 M NaCl의 혼합용액을 2분 동안 주입하였다. 여기서, 모든 용액의 유속은 10 μl/min을 유지하였고, 상기에 0 ng/ml 농도의 PSA-ACT 분석물(analyte)을 주입했다는 것은 블랭크(blank)를 잡기 위해 HBS 완충제만 흘려준 것을 의미한다.
상기 PSA-ACT 검출실험과 같이 면역 반응만을 수행하였을 경우에는 PSA-ACT 시료 농도가 증가함에 따라 SPR 센서칩의 굴절지수도 증가하는 것으로 확인되었으나, RU 값이 100 이하로 그 민감도가 낮고, 또한 블랭크와 비교했을 때 1 ng/ml ~ 10 ng/ml 농도 범위 내에서는 RU 값에 큰 차이가 없어 신뢰도가 떨어졌다(도 3).
따라서 1 ng/ml 정도의 저농도 물질을 검출하기 위해서는, SPR 신호의 증폭이 필요다는 확인하고 본 발명자들은 PSA 항체를 3차 입체 구조로 고정한 덴드리머를 이용하여 SPR 신호 증폭을 시도하였다.
실시예 2: 덴드리머를 이용한 SPR 신호증폭 및 저농도 PSA - ACT 항원의 검출실험
실시예 1-4에 따른 항원-항체의 면역 반응만으로는 100 ng/ml 이하의 농도를 가진 PSA-ACT 단백질을 분석해 낼 수 없었고, 결과적으로 상기와 같은 검출한계는 SPR 센서를 이용한 질병진단에 있어 심각한 한계를 드러낸다.
따라서 본 실시예에서는 본 발명에 따른 덴드리머와 결합한 SPR 센서칩이 신호증폭에 의하여 민감도가 개선되었다는 것을 확인하기 위하여, 실시예 1-4의 SPR 센서칩 표면상의 항원-항체 결합체상에 덴드리머가 3차원 구조로 결합된 항체를 부가적으로 반응시켰을 때의 굴절지수 변화를 관찰하였다.
우선, 덴드리머 및 PSA-ACT 폴리클로날 항체를 3차원 입체 구조로 결합시킴으로써, 항원을 인지하는 결합부위를 다량 존재하게 만들어 결합력을 강화하였다. 여기서, 덴드리머 {PAMAM(NH2)32([NH2CH2CH2SSCH2CH2NH2]:(G=3)); Sigma}는 PSA 폴리클로날 항체와의 3차 입체 구조를 형성하기 위해 이용되었고, PSA 폴리클로날 항체 및 덴드리머의 결합은 0.1M EDC/0.1M NHS(N-Hydroxysuccinimide) 1:1 혼합용액을 이용하여 덴드리머의 말단기 및 항체의 아미드 결합을 통하여 수행되었다.
상기 덴드리머 PAMAM(NH2)32([NH2CH2CH2SSCH2CH2NH2]:(G=3))를 참조하자면, G(generation)=1 이란 덴드리머의 단량체로서, CH2SSCH2를 의미한다. G=2는 G=1에 CH2를 양쪽에 결합시킨 CH2CH2SSCH2CH2를 의미하며, 따라서, G=3은 G=1에 CH2가 2개씩 결합한 것을 의미한다. 본 발명에서 사용한 덴드리머는 G=3의 덴드리머로써 말단기를 NH2로 개질한 덴드리머이다.
실시예 1-4의 SPR 센서칩 표면에 고정된 PSA-ACT 항체와의 항원-항체의 면역 반응이 끝난 후, 상기 덴드리머가 3차원 입체 구조로 결합된 PSA-ACT 폴리클로날 항체(20 μg/ml HBS 완충제에 녹임)를 2분 동안 10μl/min 유속으로 Fc2에 주입하고, 칩의 재사용을 위한 과정을 상기 실시예 1-4와 같이 수행하였다.
그 결과, 항원-항체의 면역반응만을 수행하였을 때보다, 본 실시예에 따라 덴드리머가 3차원 입체 구조로 결합된 항체를 다시 반응시켰을 때, 덴드리머에 의한 분자량의 증가로 인해 굴절지수변화에 민감하게 작용하여 SPR 신호가 증폭되었음을 관찰할 수 있었다(도 2).
또한 도 3 면역학적 검정법의 직선범위를 나타내는데, 항원 및 항체의 면역반응에 의한 SPR 신호 값의 기울기(0.1036)에 비해 면역반응 후의 항원-항체에 다시 덴드리머가 3차원 입체 구조로 결합된 항체를 사용한 SPR 신호 값의 기울기(1.2071)가 약 11.6 배로 SPR 신호 값이 현저하게 증폭되었음을 알 수 있다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것은 아니다. 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
본 발명은 덴드리머가 결합되어 민감도가 개선된 SPR 센서칩을 이용한, 저농도의 단백질을 정량할 수 있는 방법을 제공하는 효과가 있다.
본 발명에 따르면, 종래의 SPR 칩에 비하여 SPR 신호 증폭이 가능해져 민감도가 개선된 덴리머가 결합된 SPR 칩을 이용하여, 극저농도의 생체물질까지도 검출할 수 있고, 저농도의 단백질을 분석해야하는 질병진단센서, 저분자를 검출해야 하는 화학센서 및 프로테오믹스 연구 등에 다양하게 적용될 수 있다.

Claims (6)

  1. 다음 단계들을 포함하는 SPR(Surface Plasmon Resonance) 칩의 신호증폭을 이용한 단백질의 정량방법:
    (a) SPR 칩의 금박막 표면에 에틸렌글리콜(ethyleneglycol)을 이용하여 자기조립 단분자층을 형성하는 단계;
    (b) 상기 형성된 SPR 칩의 자기조립 단분자층에 표적 단백질에 대한 항체를 고정시키는 단계;
    (c) 상기 고정된 항체와 표적 단백질을 포함하는 시료를 반응시켜 상기 항체에 표적 단백질을 결합시키는 단계; 및
    (d) 상기 결합된 표적 단백질과 덴드리머가 결합되어 있는 항체를 반응시킨 다음, 상기 덴드리머가 결합되어 있는 항체에 대한 굴절지수변화를 이용하여 표적 단백질을 정량하는 단계
  2. 제1항에 있어서, 상기 (a) 단계의 에틸렌글리콜은 카르복실기(-COOH) 말단의 에틸렌글리콜 및 히드록시기(-OH) 말단의 에틸레글리콜의 혼합물인 것을 특징으로 하는 단백질 정량방법.
  3. 제2항에 있어서, 상기 카르복실기(-COOH) 말단의 에틸렌글리콜 및 히드록시기(-OH) 말단의 에틸레글리콜의 비율은 1:12인 것을 특징으로 하는 단백질 정량방법.
  4. 제1항에 있어서, 상기 (b) 단계의 표적 단백질은 PSA-ACT(Prostate Specific Antigen-Alpha 1 Antichymotrypsin) 복합 단백질인 것을 특징으로 하는 단백질 정량방법.
  5. 제1항에 있어서, 상기 (d) 단계의 덴드리머는 PAMAM(NH2)32 ([NH2CH2CH2SSCH2CH2NH2]:(G=3))인 것을 특징으로 하는 단백질 정량방법.
  6. 제1항에 있어서, 상기 (d) 단계의 덴드리머 및 항체의 결합은 아미드 결합에 의한 것임을 특징으로 하는 단백질 정량방법.
KR1020060084661A 2006-09-04 2006-09-04 덴드리머가 결합된 spr 칩을 이용한 단백질 정량방법 KR100853104B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060084661A KR100853104B1 (ko) 2006-09-04 2006-09-04 덴드리머가 결합된 spr 칩을 이용한 단백질 정량방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060084661A KR100853104B1 (ko) 2006-09-04 2006-09-04 덴드리머가 결합된 spr 칩을 이용한 단백질 정량방법

Publications (2)

Publication Number Publication Date
KR20080021346A KR20080021346A (ko) 2008-03-07
KR100853104B1 true KR100853104B1 (ko) 2008-08-21

Family

ID=39395871

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060084661A KR100853104B1 (ko) 2006-09-04 2006-09-04 덴드리머가 결합된 spr 칩을 이용한 단백질 정량방법

Country Status (1)

Country Link
KR (1) KR100853104B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675279A (zh) * 2013-12-23 2014-03-26 山东理工大学 一种前列腺肿瘤标志物免疫传感器的制备方法及应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109682967B (zh) * 2018-12-17 2021-12-28 暨南大学 Pamam在制备用于免疫检测的试剂中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020192722A1 (en) 2001-04-02 2002-12-19 Prolinx Incorporated Sensor surfaces for detecting analytes
KR20020096101A (ko) * 2001-06-16 2002-12-31 국방과학연구소 콜로이달 골드를 이용하여 표면 플라즈몬 공명 센서로분석 물질을 검출하는 방법
US7010182B2 (en) 2002-07-31 2006-03-07 Luna Innovations Incorporated Biosensors having enhanced environmental sensitivity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020192722A1 (en) 2001-04-02 2002-12-19 Prolinx Incorporated Sensor surfaces for detecting analytes
KR20020096101A (ko) * 2001-06-16 2002-12-31 국방과학연구소 콜로이달 골드를 이용하여 표면 플라즈몬 공명 센서로분석 물질을 검출하는 방법
US7010182B2 (en) 2002-07-31 2006-03-07 Luna Innovations Incorporated Biosensors having enhanced environmental sensitivity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675279A (zh) * 2013-12-23 2014-03-26 山东理工大学 一种前列腺肿瘤标志物免疫传感器的制备方法及应用

Also Published As

Publication number Publication date
KR20080021346A (ko) 2008-03-07

Similar Documents

Publication Publication Date Title
Wu et al. Biomedical and clinical applications of immunoassays and immunosensors for tumor markers
US10145844B2 (en) Methods and devices for detection and measurement of analytes
Ladd et al. Direct detection of carcinoembryonic antigen autoantibodies in clinical human serum samples using a surface plasmon resonance sensor
Kim et al. Development of indirect-competitive quartz crystal microbalance immunosensor for C-reactive protein
Li et al. Label-free sandwich imaging ellipsometry immunosensor for serological detection of procalcitonin
US8093005B2 (en) Preparation and use of a reactive solid support surface
Kumbhat et al. Surface plasmon resonance biosensor for dopamine using D3 dopamine receptor as a biorecognition molecule
KR100737689B1 (ko) 표면 플라즈몬 공명 센서의 신호 증폭 방법
JP2006250668A (ja) 非標識バイオチップ
Chung et al. Additive assay of cancer marker CA 19-9 by SPR biosensor
US20070155022A1 (en) Degenerate binding detection and protein identification using Raman spectroscopy nanoparticle labels
Tang et al. Novel immunoassay for carcinoembryonic antigen based on protein A-conjugated immunosensor chip by surface plasmon resonance and cyclic voltammetry
Ribeiro et al. Electrochemistry-assisted surface plasmon resonance biosensor for detection of CA 15–3
Ma et al. Antibody-free discrimination of protein biomarkers in human serum based on surface-enhanced Raman spectroscopy
Liu et al. Rapid and regenerable surface plasmon resonance determinations of biomarker concentration and biomolecular interaction based on tris-nitrilotriacetic acid chips
Gobi et al. Surface plasmon resonance detection of endocrine disruptors using immunoprobes based on self-assembled monolayers
US20100086920A1 (en) Method to assess cancer susceptibility and differential diagnosis of metastases of unknown primary tumors
KR100853104B1 (ko) 덴드리머가 결합된 spr 칩을 이용한 단백질 정량방법
Che et al. Peptide-based antifouling aptasensor for cardiac troponin I detection by surface plasmon resonance applied in medium sized Myocardial Infarction
KR100673835B1 (ko) Spr을 이용하여 단백질을 정량하는 방법
US8110409B2 (en) Method to measure serum biomarkers for the diagnosis of liver fibrosis
KR100511055B1 (ko) 효소침전반응과 결합된 spr을 이용한 바이오칩 및바이오센서 측정방법
KR101062316B1 (ko) 탄소나노튜브를 이용한 표면 플라즈몬 공명 센서의 신호증폭 방법
Majdinasab et al. Label-free SERS for rapid identification of interleukin 6 based on intrinsic SERS fingerprint of antibody‑gold nanoparticles conjugate
Wang et al. Aspects of recent development of immunosensors

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130813

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140623

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150507

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160627

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170519

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180503

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190619

Year of fee payment: 12