KR100850525B1 - Method for transforming cactus - Google Patents

Method for transforming cactus Download PDF

Info

Publication number
KR100850525B1
KR100850525B1 KR1020060129650A KR20060129650A KR100850525B1 KR 100850525 B1 KR100850525 B1 KR 100850525B1 KR 1020060129650 A KR1020060129650 A KR 1020060129650A KR 20060129650 A KR20060129650 A KR 20060129650A KR 100850525 B1 KR100850525 B1 KR 100850525B1
Authority
KR
South Korea
Prior art keywords
cactus
transformation
agrobacterium
transformed
plant
Prior art date
Application number
KR1020060129650A
Other languages
Korean (ko)
Other versions
KR20080056578A (en
Inventor
이정진
조창휘
홍승민
박인태
설은아
정유철
김태현
김동균
이석찬
Original Assignee
경기도농업기술원
(주)인비트로플랜트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경기도농업기술원, (주)인비트로플랜트 filed Critical 경기도농업기술원
Priority to KR1020060129650A priority Critical patent/KR100850525B1/en
Publication of KR20080056578A publication Critical patent/KR20080056578A/en
Application granted granted Critical
Publication of KR100850525B1 publication Critical patent/KR100850525B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/743Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Agrobacterium; Rhizobium; Bradyrhizobium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

본 발명은 선인장 형질전환 방법에 관한 것이다. 본 발명에 따르면, 선인장의 자구 생성을 유도하는 단계를, 선인장에 목적하는 특성을 갖는 유전자의 도입 전 후에 추가함으로써, 형질전환된 선인장 자구를 효과적으로 수득할 수 있다.  The present invention relates to a cactus transformation method. According to the present invention, transformed cactus domains can be effectively obtained by adding the step of inducing the generation of cacti domains before and after introduction of a gene having a desired characteristic in the cactus.

선인장 자구, 형질전환 Cactus bulb, transformation

Description

선인장의 형질전환 방법 {Method for transforming cactus}Method for transforming cactus {Method for transforming cactus}

도 1은 형질전환 되지 않은 선인장 자구를 나타낸 사진이다.1 is a photograph showing a cactus domain that is not transformed.

도 2는 형질전환 된 선인장 자구를 나타낸 사진이다.Figure 2 is a photograph showing the transformed cactus domains.

도 3은 형질전환된 선인장과 형질전환 되지 않은 선인장에서 GUS 염색결과를 나타낸다.Figure 3 shows the results of GUS staining in the transformed and untransformed cactus.

도 4는 선인장에서 GUS 유전자의 발현을 확인하기 위한 RT-PCR 결과를 나타낸다.Figure 4 shows the RT-PCR results for confirming the expression of the GUS gene in the cactus.

현재까지 다양한 식물 형질전환 방법이 보고되었다. 조직 또는 세포를 이용하여 유전자를 도입한 후 조직배양하는 방법 (transformation of cell or tissues), 조직배양 단계없이 목적물질을 발현하는 유전자 또는 식물체에 요구되는 형질 예를 들어 내병성을 제공하는 유전자를 식물체에 직접 도입하는 방법 (on planta transformation)이 있다. 조직 또는 세포를 이용하여 외래 유전자를 도입하는 방법은 식물 형질전환에 가장 일반적으로 사용하는 방법으로서, 식물체로부터 분리된 조직 또는 세포를 형질전환 시킨 후 이를 적합한 토양 또는 배지에서 조직 배양하여 형질전환된 식물체를 수득하는 것이다. 이 방법은 담배 및 페투니아에서 가장 잘 확립되었다. 조직 또는 는 세포의 형질전환은 토양 미생물인 아그로박테리움 (Agrobacterium)을 이용하거나, 유전자 총을 이용하는 방법 (bollistic transfer), 융합 (PEG mediated fusion), 일렉트로포레이션 (Electoporation) 또는 리포좀 (liposome)을 매개로 하는 방법등에 의해 수행된다. To date, various plant transformation methods have been reported. Transformation of cells or tissues after introduction of the gene using tissues or cells, genes expressing the target substance without tissue culture step, or traits required for plants, such as genes providing disease resistance to plants There is an on planta transformation. Introducing foreign genes using tissues or cells is the most commonly used method for plant transformation, in which tissues or cells isolated from plants are transformed, followed by tissue culture in a suitable soil or medium to be transformed plants. To obtain. This method is best established in tobacco and petunia. The transformation of tissue or silver cells can be accomplished using Agrobacterium, a soil microorganism, or by means of a gene gun (bollistic transfer), fusion (PEG mediated fusion), electroporation or liposomes. It is carried out by a method such as mediation.

특히 아그로박테리움 공동배양법은 종래에는 쌍자엽 식물의 형질전환에만 이용되었으나, 최근에는 단자엽 식물의 형질전환에도 이용되고 있는 방법으로서, 구체적으로는 조직절편을 아그로박테리움과 공동배양 시킨 후 적절한 선택성 마커 (selection marker)를 포함하는 재분화 배지에서 분화 (differentiation)시켜 형질전환 식물을 수득한다. 이 방법에 따르면 공동배양, 항생제등을 이용한 아그로박테리움 제거 및 형질전환체 동정 등이 요구되며, 이에 따라 각 단계를 거치는 동안 식물 조직의 재생 능력이 손상되어 재분화 개체를 얻지 못하거나 형질전환 식물체의 발생 빈도가 현저히 저하된다. 이러한 문제를 해결하기 위해 제안된 것이 식물체를 전배양 (preculture)하거나, 형질전환 효율을 증진 시킬 수 있는 병원성이 높은 아르고박테리움을 이용하고 있으나 근본적인 해결책은 제시된 바 없다. In particular, Agrobacterium co-cultivation method has been conventionally used only for the transformation of dicotyledonous plants, but in recent years also used for transformation of monocotyledonous plants, specifically, the tissue section is co-cultured with Agrobacterium and then an appropriate selective marker ( Transgenic plants are obtained by differentiation in a regeneration medium containing a selection marker. This method requires coculture, removal of Agrobacterium using antibiotics, identification of transformants, etc. As a result, the regeneration ability of plant tissues is impaired during each step, resulting in failure to obtain re-differentiated individuals or The frequency of occurrence is significantly reduced. In order to solve this problem, the proposed method uses a highly pathogenic argobacterium that can preculture plants or improve transformation efficiency, but no fundamental solution has been proposed.

한편, 형질전환에 이용되는 토양 미생물로서 아그로박테리움외에 TMV (tobacco mosaic virus) 또는 CPMV (cow-pea mosaic virus) 등이 이용될 수 있다. 또한, 유전자 총을 이용한 방법은 텅스텐이나 금 입자에 외래 유전자의 DNA를 코팅한 후 유전자 총을 이용하여 고속으로 식물조직에 입자를 쏘아 DNA를 식물세포 속으로 도입시켜 식물을 형질전환 시키는 방법이다. 이 방법은 아그로박테리움의 숙 주범위에 들지 않는 화본과류를 비롯하여 단자엽 식물의 형질전환에 주로 이용되나, 쌍자엽 식물에 대해서도 사용되고 있다. 이 방법을 이용함에 있어, 포격되는 식물의 종류 및 조직에 따라 DNA가 식물세포로 침투될 수 있는 최적 조건은 다르며 입자의 크기 및 밀도 DNA의 양 및 피복 방법, 그 외 DNA로 피복된 입자의 발사속도 및 발사횟수 등 여러 요소들이 작용할 수 있고 이에 대한 최적조건의 확립이 매우 중요하다. 또한 이 방법은 일반적으로는 모든 조직에 적용가능하나 세포분열이 활발하고 재분화 능력이 있는 조직을 이용하는 것이 유리하다. 분열조직이나 어린 잎 그리고 배 발생 현탁액과 같은 조직을 이용하여 성공적으로 형질전환 식물을 얻는 사례가 다수 보고되었다. 이와 같이, 아그로박테리움공동 배양법이나 입자 포격을 이용한 식물 형질전환 방법은 식물의 재생 (regeneration) 과정이 필수적으로 필요하다. 따라서 재분화 방법이 잘 확립되어 있지 않거나 재분화 시간이 상당히 오랜 식물의 경우 이들 방법을 적용하기 어려운 단점이 있다. 또한 종종 재분화된 식물에서 체세포 변이 전환 과정에서 나타나는 원하지 않는 유전적 변이가 조직배양 과정 중 발생한다면 돌연변이 유발단계를 찾아 이를 선택저으로 방지할 수 있도록 적절한 조절기구를 마련해야 한다. 그러므로 체세포 돌연변이를 최소화 하고자 하는 요구는 기내 배양을 거치지 않고 손상되지 않은 조직 절편내로 유전자를 전이시켜 재분화 시킴으로써 조직배양 단계를 없애거나 소화하는 새로운 형질전환 방법의 개발이 필요하다. Meanwhile, in addition to Agrobacterium, TMV (tobacco mosaic virus) or CPMV (cow-pea mosaic virus) may be used as soil microorganisms used for transformation. In addition, a method using a gene gun is a method of transforming a plant by coating DNA of a foreign gene on tungsten or gold particles, and then using a gene gun to shoot particles in a plant tissue to introduce DNA into plant cells. This method is mainly used for transforming monocotyledonous plants, including horticulture, which does not fall within the host range of Agrobacterium, but is also used for dicotyledonous plants. In using this method, the optimum conditions under which DNA can penetrate into plant cells vary depending on the type and tissue of the bombarded plant, and the size and density of the DNA, the method of coating and the firing of the DNA-coated particles. Several factors, such as speed and number of shots, can work and establishing optimal conditions for them is very important. In addition, this method is generally applicable to all tissues, but it is advantageous to use tissues with active cell division and ability to differentiate. There have been many reports of successful transgenic plants using tissues such as meristems, young leaves and embryogenic suspensions. As such, the Agrobacterium co-culture method or plant transformation method using particle bombardment requires a regeneration process of the plant. Therefore, there is a disadvantage that it is difficult to apply these methods to plants that have not been well established or have a long regeneration time. In addition, if undesired genetic variation, which occurs during the somatic mutation transformation process in re-differentiated plants, occurs during the tissue culture process, appropriate control mechanisms should be established to find and prevent mutagenesis. Therefore, the need to minimize somatic mutations requires the development of new transformation methods that eliminate or digest tissue culture steps by transferring and regenerating genes into intact tissue sections without going through in-flight culture.

인플란타 형질전환 방법은 조직배양 및 재생과정 없이 형질전환체를 수득할 수 있는 방법으로서 제시되었다. 이 방법은 식물의 생장점 도는 분열 조직에 위치 하는 세포들을 형질전환 시킨 후 형질전환된 세포로부터 재분화하는 줄기에서 형질전환된 종자를 수득하거나, 부정근 수득하는 방법이다. 분열조직을 형질전환시키기 위한 방법으로서, 진공을 이용한 형질전환법, 화아침전법 (floral meristem dipping method), 아그로박테리움 분사법 (agrobacterium spraying method) 등이 개발되었다. 이 방법은 아라비돕시스 (Arabidopsis)에서 가장 잘 확립되었다. 구체적으로 화분에 있는 식물체의 분열조직에 직접 아그로박테리움을 도입시킨 후 이 식물체로부터 생산된 종자를 선별 배지에 배양하여 형질전환체를 선별한다. 아그로박테리움의 T-DNA가 생식세포의 염색체로 삽입되고 다음 세대로 전달되어 형질전환체가 나타난다. 한편, 아그로박테리움을 사용하지 않고, 수분시킨 꽃의 화주에 외래 유전자 DNA를 도포함으로써 형질전환된 종자를 얻는 방법이 벼 및 담배에서 1992년에 보고된 바 있다. 이 방법에 따르면, 식물의 수분과정에서 화분의 핵이 통과하는 화분관 (pollen tube pathway)이 형성되는 데, 화분관이 형성되고 있는 암술의 주두를 절단하고 DNA를 직접 도입시켜 형질전환된 종자를 수득할 수 있다. In planar transformation method has been proposed as a method to obtain a transformant without tissue culture and regeneration process. This method obtains transformed seeds or stems from stems that transform cells located in plant growth points or meristems and then re-differentiate from transformed cells. As a method for transforming meristems, transformation methods using vacuum, floral meristem dipping method, and agrobacterium spraying method have been developed. This method is best established in Arabidopsis. Specifically, Agrobacterium is introduced directly into the meristem of the plant in the pollen, and the transformants are selected by culturing seeds produced from the plant in a selection medium. Agrobacterium's T-DNA is inserted into the chromosomes of germ cells and passed on to the next generation to show transformants. On the other hand, a method of obtaining transformed seeds by applying foreign gene DNA to a flower owner of pollinated flowers without using Agrobacterium was reported in 1992 in rice and tobacco. According to this method, a pollen tube pathway is formed through pollen nucleus through pollination of plants, and the transformed seed can be obtained by cutting the stigma of pistil in which the pollen tube is formed and introducing DNA directly. Can be.

이와 같이, 다양한 형질전환 방법이 식물의 형질전환에 이용되어 왔으나, 식물의 특성에 따라 적용할 수 있는 방법이 제한되어 비교적 한정된 종의 식물에 대해서만 성공적인 형질전환이 이루어 지고 있는 실정이다. As described above, various transformation methods have been used for the transformation of plants, but the method that can be applied according to the characteristics of the plant is limited, so that successful transformation is achieved only for a relatively limited species of plants.

한편 최근 관상용으로 가치가 급증하고 있는 선인장의 경우, 많은 연구자들이 형질전환을 시도한 바 있으나, 기존의 방법으로 효과적인 형질전환을 할 수 없는 것으로 알려졌다. On the other hand, in the case of cactus, which has recently increased in value for ornamental use, many researchers have attempted transformation, but it is known that the effective transformation cannot be performed by conventional methods.

선인장은 육질 다년생 초본식물로서 열대산 식물이며, 선인장과에 속하는 식 물은 전 세계에 2,000종 내외가 있고 나무선인장류, 선인장류, 흰털선인장류의 3군으로 크게 구분된다. 선인장은 분주, 삽목 또는 접목의 무성번식에 의하거나 유성번식으로서 종자번식에 의해 대량 배양하는 것이 가능하다. 최근 관상식물로서 선인장의 가치가 점점 높아가고 있는 추세이며, 특히 접목 선인장은 인기를 얻고 있다. 그러나 선인장에서 바이러스 감염문제는 심각한 문제로 대두되고 있다. 삼각주 등 대목에 바이러스가 감염되면 접목 활착율이 떨어지고 생육이 저조하며, 구색이 퇴색하고 품질이 떨어지게 된다. 현재 국내에서 발견된 선인장 바이러스로는 CVX (Cactus Virus X)등 3종류가 관찰되었다. 특히 관상용으로 가치가 있는 접목 선인장에서 이러한 바이러스 감염의 사례는 많이 보고되고 있어, 바이러스 감염의 예방이 관상용 접목 선인장 개발 농가의 중요 문제가 되고 있다. 바이러스에 감염된 선인장은 짙고 옅은 모자이크 무늬를 나타낸다. 바이러스에 감염된 삼각주 등의 대목에 접목된 선인장에서는 황화 및 기형으로 나타나며 심하면 고사한다. 감염 초기에는 육안식별이 곤란할 정도로 병증이 외부로 드러나지는 않지만, 시간이 지나면 모자이크, 기형, 위축, 괴저증상을 일으킨다. 꽃에서는 꽃잎에 모자이크 무늬를 형성한다. CVX는 접목작업시 손이나 기구에 부착되어 오염즙액이 상처를 통하여 전염된다. 현재 국내에서 분리된 선인장 바이러스는 약 3종으로 파악되고 있으며 이 종류들은 아직 매개곤충이 없는 것으로 알려져, 주로 영양번식시 기구에 의한 즙액전염이나 토양에 뿌리의 상처부위를 통하여 전염되고 있는 것으로 추정된다. 바이러스는 단독 감염보다는 2종 이상 복합 감염시 피해가 크다. Cactus is a fleshy perennial herbaceous plant, a tropical plant, and the plant belonging to the cactus family has about 2,000 species all over the world, and it is divided into three groups of tree cactus, cactus, and white hair cactus. Cactus can be cultured in large quantities by seed propagation, by asexual propagation of aliquots, cuttings or grafting, or as a sexual propagation. Recently, the value of cactus as an ornamental plant is increasing, especially grafted cactus is gaining popularity. However, viral infections in cacti are a serious problem. Virus infections in large trees, such as deltas, reduce graft activity, poor growth, assortment fades and poor quality. Currently, three types of cactus viruses have been found in Korea, including CVX (Cactus Virus X). In particular, many cases of such viral infection have been reported in grafted cactus, which is valuable for ornamental use, and prevention of viral infection has become an important problem for farmers developing ornamental grafted cactus. Virus-infected cactuses have a thick pale mosaic pattern. Cactus grafted to the larvae infected with the virus, such as sulphides and malformations, severe death. In the early stages of infection, the disease does not appear externally to the extent that it is difficult to visually identify, but over time, it causes mosaicism, malformations, atrophy, and necrosis. In flowers, they form mosaic patterns on the petals. CVX attaches to hands and instruments during grafting, and contaminated juice is transmitted through the wound. Currently, there are about 3 kinds of cactus viruses isolated in Korea, and these types are known to have no mediated insects, and they are mainly transmitted through the juice of roots and the wounds of the roots in soil. . Viruses are more damaging in combination infections of two or more than single infections.

또한 선인장류에 피해를 가장 많이 주고 있으며 병 발생시 방제가 어려운 병 으로는 줄기썩음병이 있다. 줄기의 지제부로부터 암갈색 내지 흑색의 부정형 병반이 형성되고 진전되면 병반이 확대되어 썩는다. 후사리움(Fusarium) 등의 진균이 원인이인 것으로 알려졌으며. 생육온도 범위는 6∼38℃이나 생육적온은 25∼28℃이다. 대부분의 진균은 상처부위를 통해 침입하므로 식재 시 식물에 상처가 없도록 해야 한다. 토양전염을 하며 진균이 원인으로 주변에서부터 썩기 시작한다. 영양번식 시에는 삽목전염을 하고 분생포자의 비산에 의한 공기 전염도 한다. 진행되면 검게 변색하여 결국은 식물 전체가 문드러지고 만다. 그 밖에 라이족토니아(Rhizoctonia)이이 원인인 밑둥썩음병, 세균성 연부병, 흑반병, 그을음병, 백견병 등이 있다. In addition, the most damaging to cacti species, stem disease is a disease that is difficult to control when the disease occurs. Dark brown to black irregular lesions are formed from the branch of the stem and when the lesions progress, the lesions expand and rot. It is known to be caused by fungi such as Fusarium. The growth temperature ranges from 6 to 38 ° C, but the growth temperature is 25 to 28 ° C. Most fungi invade through wounds, so planting should ensure that the plants are intact. It spreads soil and starts to rot from the ground due to fungi. During trophic breeding, it is spreading by cutting and air spreading by scattering of conidia. As it progresses, it fades black and eventually the whole plant is rubbed. In addition, Rhizoctonia is the cause of the rot, bacterial soft disease, black spot disease, soot disease, white dog disease.

이에 본 발명자들은 선인장에 내병성을 도입하거나 새로운 품종의 선인장을 개발하고자하는 노력의 일환으로 선인장의 형질전환 방법을 연구하였으며, 그 결과 기존의 식물 형질전환 방법을 개량한 방법으로, 형질전환이 어려운 것으로 알려졌던 선인장의 형질전환을 성공적으로 수행함으로써 본 발명을 완성하였다. The present inventors studied the transformation method of the cactus as part of an effort to introduce disease resistance to the cactus or to develop new varieties of cactus, and as a result, the transformation of the existing plant transformation method is difficult. The present invention was completed by successfully performing transformation of known cacti.

본 발명은 선인장의 형질전환방법을 제공하는 것을 목적으로 한다. An object of the present invention is to provide a method for transforming a cactus.

또한, 본 발명은 형질전환된 신규한 품종의 선인장을 제공하는 것을 목적으로 한다. It is also an object of the present invention to provide a novel cactus of transformed.

상기 목적을 달성하기 위해, 본 발명자들은 식물 형질전환 벡터를 이용하여 선인장에 도입하고자 하는 목적에 적합한 특성을 갖는 유전자를 선인장에 도입하고 발현 여부를 확인하였다. 식물 형질전환에는 아그로박테리움을 사용하였다. 구체적으로, 접목선인장의 자구가 형성될 부위에 핀-프리클 (pin-prickle) 방법 또는 진공-인필트레이션 (vacuum-infiltration) 방법, 또는 두 방법을 혼용하여 선인장을 형질전환시키고 GUS 유전자의 발현을 확인하였다. GUS 유전자를 포함하는 발현벡터를 아그로박테리움에 형질전환 시킨 후, 이를 YEP 고체 배지에 도포하고 배양기에서 2일간 배양한 후 군락을 이루며 자란 아그로박테리움을 선발하여 형질전환에 사용하였다. 핀-프리클 형질전환 방법은 접목 선인장 상단부에 자구가 형성될 부위를 0.1 내지 0.3 mm의 텅스텐 핀으로 5 내지 10회 찔러주어 상처를 준 후, 형질전환 완충액 (transformation buffer)에 담구어 아그로박테리움을 상처 부위에 접종하는 방법으로 시행하였다. 진공-인필트레이션 (vacuum-infiltration) 방법은 준비된 형질전환 완충액을 유리 비이커에 넣고 접목 선인장를 거꾸로 세워 자구부위가 담기도록 한 후, 진공 용기에 넣고 일정 시간동안 일정 압력(10 cmHg ~ 50 cmHg)으로 진공을 걸어 준 뒤, 진공 압력을 급격하게 제거하여 형질전환 완충액이이 효과적으로 침투될 수 있도록 하였다. 한편, 아그로박테리움을 감염시킨 선인장에서 자구의 생성을 유도하기 위하여, 선인장의 상단부 약 ⅓을 커터 나이프를 이용하여 절단하였다. In order to achieve the above object, the present inventors introduced a gene having a characteristic suitable for the purpose to be introduced into the cactus by using a plant transformation vector, and confirmed the expression. Agrobacterium was used for plant transformation. Specifically, the cactus is transformed by using a pin-prickle method or a vacuum-infiltration method, or a combination of both methods, at the site where the domain of the grafted cactus is to be formed, and the expression of the GUS gene is expressed. It was confirmed. After the expression vector containing the GUS gene was transformed into Agrobacterium, it was applied to YEP solid medium and incubated for 2 days in an incubator, and then Agrobacterium was grown to form a colony and used for transformation. In the pin-prickle transformation method, a region of the grafted cactus is formed by puncturing a wound 5 to 10 times with 0.1 to 0.3 mm of tungsten pins, and then immersed in a transformation buffer to agrobacterium. Was performed by inoculating the wound site. In the vacuum-infiltration method, the prepared transformation buffer is placed in a glass beaker, the grafted cactus is upside down to contain the domains, and then it is put in a vacuum container at a constant pressure (10 cmHg to 50 cmHg) for a predetermined time. After the vacuum was applied, the vacuum pressure was abruptly removed so that the transformation buffer could effectively penetrate. On the other hand, in order to induce the production of magnetic domains in the cactus infected with Agrobacterium, about the top of the cactus was cut using a cutter knife.

생성된 자구로부터 X-Gluc 염색법으로 GUS 단백질의 발현 여부를 확인하였다. 도 1에 나타나듯이 비 형질전환체는 조직 전체가 백색으로 탈색 되었지만, 형질전환체에서는 GUS 염색에 의하여 청록색으로 염색이 이루어짐을 확인하였다.From the resulting domains, the expression of GUS protein was confirmed by X-Gluc staining. As shown in FIG. 1, the non-transformant was discolored in white, but the transformant was confirmed to be dyed blue by GUS staining.

이하, 실시 예에 기초하여 본 발명을 상세히 설명한다. 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 권리범위가 이에 한정되는 것은 아니다. 본 발명의 상세한 설명에서 인용된 문헌은 본 발명에 참고로서 통합된다.Hereinafter, the present invention will be described in detail with reference to Examples. The following examples are only for illustrating the present invention, but the scope of the present invention is not limited thereto. The documents cited in the detailed description of the invention are incorporated herein by reference.

실시예Example

실시예 1: 아그로박테리움 형질전환Example 1 Agrobacterium Transformation

형질전환 시험을 위하여 식물 형질전환 벡터로서 pBI121 벡터(Clontech, USA)를 사용하였다. 형질전환 여부를 검출하기 위하여 벡터의 T-border 내에 Cauliflower Mosaic Virus(CaMV) 35S 프로모터에 의해 발현되는 β-글루크로니다제(glucuronidase)(GUS) 유전자를 도입했다. 아그로박테리움을 형질전환에 이용하였으며, 이를 위해 GUS 유전자를 포함하는 재조합 벡터를 아그로박테리움에 형질전환 하였다. 아그로박테리움 형질전환은 Freeze-thaw 방법을 사용하였다. 아그로박테리움은 LBA4404(Invitrogen, CA)를 사용하였으며, 준비된 pBI121 벡터 10 ㎕를 아그로박테리움 100 ㎕에 첨가하고, 얼음에서 30분 동안 반응시켰다. 다음 세포를 액체 질소에서 1분 동안 급속하게 얼려주고 곧바로 37℃ heat-block에서 5분 동안 반응시켰다. 반응 종료 후, 1 ㎖의 액체 YEP배지 (Yeast extract 1%, NaCl 0.5%, Bactopepton 1%)를 가한 뒤, 희석된 아그로박테리움을 28℃, 200 rpm에서 4시간 동안 혼탁 배양했다. 배양이 완료된 후, 3,000 rpm에서 2분간 원심 분리하여 상층액을 제거하고 수합된 아그로박테리움을 100 ㎕의 액체 YEP 배지에 재 희석 시켜다. 희석된 아그로박테리움을 카나마이신이 25 ㎎/ℓ의 농도로 첨가된 YEP 고체 배지에 도포하여 28℃ 배양기에서 2일간 배양하여 군락을 이루며 자란 아그로박테리움을 선발하여 형질전환에 사용하였다.The pBI121 vector (Clontech, USA) was used as the plant transformation vector for the transformation test. To detect the transformation, a β-glucuronidase (GUS) gene expressed by the Cauliflower Mosaic Virus (CaMV) 35S promoter was introduced into the T-border of the vector. Agrobacterium was used for transformation, and for this purpose, a recombinant vector containing the GUS gene was transformed into Agrobacterium. Agrobacterium transformation was performed using the Freeze-thaw method. Agrobacterium was used as LBA4404 (Invitrogen, CA), and 10 µl of the prepared pBI121 vector was added to 100 µl of Agrobacterium, and reacted on ice for 30 minutes. The cells were then rapidly frozen in liquid nitrogen for 1 minute and immediately reacted for 5 minutes at 37 ° C heat-block. After completion of the reaction, 1 ml of liquid YEP medium (Yeast extract 1%, NaCl 0.5%, Bactopepton 1%) was added, and the diluted Agrobacterium was incubated at 28 ° C. and 200 rpm for 4 hours. After the incubation was completed, the supernatant was removed by centrifugation at 3,000 rpm for 2 minutes, and the diluted Agrobacterium was diluted again in 100 µl of liquid YEP medium. Diluted Agrobacterium was applied to YEP solid medium to which kanamycin was added at a concentration of 25 mg / L and incubated for 2 days in a 28 ° C. incubator to select agrobacterium grown in colonies and used for transformation.

실시예 2: 선인장의 형질전환Example 2: Transformation of Cactus

(1) 아그로박테리움 배양(1) Agrobacterium culture

아그로박테리움은 28℃ 250rpm의 혼탁배양기에서 OD값 600에서 측정하였을 때, 0.7~0.8 정도의 값이 나올 때까지 액체 YEP 배지 (Yeast extract 1%, NaCl 0.5%, Bactopepton 1%)에서 배양한 후 실험에 이용하였다. 총 500 ㎖의 YEP 배지에서 아그로박테리움을 배양한 후, 3,000 rpm으로 15분간 원심 분리하여 아그로박테리움을 회수하였으며, 회수한 아그로박테리움을 형질전환 완충액 (1/2 MS 염, 50 g/ℓ 수크로즈, 0.5 g/ℓ MES, 및 200 ㎕/ℓ silwet (pH 5.7)) 50 ㎖에 희석하여 사용하였다.Agrobacterium was incubated in a liquid YEP medium (Yeast extract 1%, NaCl 0.5%, Bactopepton 1%) until a value of 0.7-0.8 was measured in a turbidity incubator at 28 ° C and 250 rpm. It was used for the experiment. After culturing Agrobacterium in 500 ml of YEP medium in total, Agrobacterium was recovered by centrifugation at 3,000 rpm for 15 minutes, and the recovered Agrobacterium was transformed into a transformation buffer (1/2 MS salt, 50 g / L). Diluted in 50 ml of sucrose, 0.5 g / l MES, and 200 μl / l silwet (pH 5.7)) was used.

(2) Pin-prickle 형질전환(2) Pin-prickle transformation

접목 선인장 (Notocactus scopa, Sungjung, 입수처: 경기도 농업기술원 선인장연구소) 상단부 구에 자구가 형성될 부위 (가시부위)를 0.1~0.3 mm의 텅스텐 핀으로 5~10회 정도 찔러주어 상처를 주고, 형질전환 완충액 (transformation buffer)에 담구어 아그로박테리움을 상처 부위에 접종하는 방법으로 시행하였다.Grafting cactus ( Notocactus scopa, Sungjung, obtained from: Cactus Research Institute, Gyeonggi-do Agricultural Research Institute) Agrobacterium was inoculated at the wound site by dipping into a transformation buffer.

(3) 진공-인필트레이션 (vacuum-infiltration) 방법(3) Vacuum-infiltration method

준비된 형질전환 완충액을 유리 비이커에 넣고 접목 선인장(Notocactus scopa, Sungjung, 입수처: 경기도 농업기술원 선인장연구소)을 거꾸로 세워 자구부위가 담기도록 한 후, 진공 용기에 넣어 일정 시간동안 (5분 ~ 30분) 일정 압력(10 cmHg ~ 50 cmHg)으로 진공을 걸어 준 뒤, 진공 압력을 급격하게 제거하여 형질전환 완충액이이 효과적으로 침투될 수 있도록 하였다. 또한 위 진공-인필트레이션(vacuum-infiltration) 방법과 핀-프리클 (pin-prickle) 방법을 혼합하거나 단독으로 처리하여 실험을 시행하였다.Place the prepared transfection buffer in a glass beaker, turn up the grafted cactus ( Notocactus scopa, Sungjung, obtained from Gyeonggi-do Institute of Agricultural Research and Development, Cactus Research Institute) to hold the mole region, and put it in a vacuum container for a period of time (5 to 30 minutes). ) Vacuum was applied at a constant pressure (10 cmHg ~ 50 cmHg), and the vacuum pressure was rapidly removed to allow the transformation buffer to effectively penetrate. In addition, the experiment was performed by mixing or treating the gastric vacuum-infiltration method and the pin-prickle method alone.

(4) 아그로박테리움 접종 개체의 안정화(4) Stabilization of Agrobacterium inoculated individuals

아그로박테리움을 접종시킨 선인장은 종이 타올을 이용하여 과도한 완충액을 제거하고, 28℃ 암소에서 24시간동안 배양하였다.Cactus inoculated with Agrobacterium was used to remove excess buffer using paper towels and incubated for 24 hours in a 28 ℃ cow.

(5) 자구의 유도(5) induction of domain

아그로박테리움을 감염시킨 선인장에서 자구의 생성을 유도하기 위하여, 선인장의 상단부 약 ⅓을 커터 나이프를 이용하여 절단하였다. 상단부가 절단된 선인장을 다시 28℃ 암소에서 24시간동안 배양하였다. 이후, 개체를 흙에 옮겨 심어 배양하였다. 약 4주 이후부터 선인장의 가시 부위에 자구가 형성되기 시작하고, 자구의 지름이 약 1 ㎝정도 되었을 때 모체에서 분리하여 형질전환 여부를 검증하였다. 대조구로서 자구 생성을 유도하지 않은 군을 이용하였으며, 이들 대조구에서 생성된 자구로부터 GUS 유전자의 발현 여부를 조사하여 자구 생성을 유도한 군과 비교하였다. 그 결과 표 1에서 확인되는 바와 같이, 형질전환 전후에 자구생성을 유도한 군에서만 GUS 유전자가 생성되었음을 확인하였다. In order to induce the production of magnetic domains in the cactus infected with Agrobacterium, about the top of the cactus was cut using a cutter knife. The cactus cut off at the top was incubated for 24 hours in the dark at 28 ℃. Thereafter, the individual was transferred to soil and planted. After about 4 weeks, the spines of the cactus began to form, and when the diameter was about 1 cm, the mother was separated from the mother and verified for transformation. As a control group, the group that did not induce the generation of the magnetic domains was used, and the expression of the GUS gene was examined from those generated in the control group and compared with the group that induced the generation of the magnetic domains. As a result, as confirmed in Table 1, it was confirmed that the GUS gene was generated only in the group inducing autogenogenesis before and after transformation.

실시예 3: 형질전환 검증 (GUS 염색법)Example 3: Transformation Verification (GUS Staining)

형질전환을 검증하기 위하여 pBI121 식물 형질전환 벡터에 삽입된 GUS 유전자를 이용하여 X-Gluc 염색법으로 GUS 단백질의 발현 여부를 확인하였다. 먼저 유도된 선인장 자구 조직을 미리 냉각시킨 90% 아세톤에 넣고 약 20분간 얼음 속에서 고정한 후, 종이 타월을 이용하여 표피에 남아있는 아세톤을 제거했다. 아세톤이 제거된 식물을 X-Gluc 염색액(0.1% Triton-X, 50 mM NaPO4, 2 mM potassium ferricyanide, 2 mM potassium ferrocyanide, 10 mM EDTA, 2 mM X-Gluc)에 넣고 조직에 완전히 염색액이 스며들 수 있도록 약 30분 동안 진공펌프를 이용하여 진공상태를 유지하였다. 충분히 염색액에 조직이 적셔진 다음 염색액에 넣은 상태에서 37℃ 항온배양기에 넣어 약 8시간 반응시켰다. 염색 종료 후, 70% 알콜에 염색된 자구 조직을 넣고 비 형질전환 자구의 조직이 완전히 백색이 되도록 탈색시키고, 형질전환체와 비교하여 검증하였다. 도 1 및 도 2에 나타나듯이 비 형질전환체는 조직 전체가 백색으로 탈색 되었지만, 형질전환체에서는 GUS 염색에 의하여 청록색으로 염색이 이루어짐을 확인하였다.In order to verify the transformation, the expression of the GUS protein was confirmed by X-Gluc staining using the GUS gene inserted into the pBI121 plant transformation vector. First, the induced cactus glomerular tissue was placed in pre-cooled 90% acetone and fixed in ice for about 20 minutes, and then acetone remaining on the epidermis was removed using a paper towel. Acetone-free plants were placed in X-Gluc staining solution (0.1% Triton-X, 50 mM NaPO 4 , 2 mM potassium ferricyanide, 2 mM potassium ferrocyanide, 10 mM EDTA, 2 mM X-Gluc) and stained completely onto tissue. The vacuum was maintained for about 30 minutes using a vacuum pump to allow this to soak. The tissue was sufficiently moistened in the dyeing solution, and then placed in the dyeing solution and reacted for about 8 hours in a 37 ° C incubator. After staining, 70% alcohol stained porcine tissue was added and the tissues of the non-transformed domains were decolorized to become completely white and verified by comparison with the transformants. As shown in FIGS. 1 and 2, the non-transformant was discolored in white, but the transformant was confirmed to be dyed blue by GUS staining.

표 1. 형질전환 효율Table 1. Transformation Efficiency

Figure 112006093741374-pat00001
Figure 112006093741374-pat00001

실시예 4: 형질전환 검증 (GUS 염색법)Example 4: Transformation Verification (GUS Staining)

실시예 3과 같은 방법을 수행하되, 형질전환을 시행한 모체와 실시예 2-(5)에 기술된 방법으로 유도한 자구를 동시에 염색하는 방법으로 모체의 GUS 염색 부위에서 생성된 자구가 동일한 GUS 염색 형태를 보이는 것을 확인함으로써 유전자의 전이와 전이된 유전자의 발현을 확인하였다. 도 3에서, 왼쪽은 형질전환하지 않은 선인장에서의 GUS 염색 결과를 나타내고, 오른쪽은 형질전환을 수행한 선인장에서의 GUS 염색 결과를 나타낸다.The same method as in Example 3 was carried out, but the mother cells generated at the GUS staining site of the mother were identically stained by transforming the mothers transformed with the domains induced by the method described in Example 2- (5). By confirming the stained form was confirmed the transfer of the gene and the expression of the transferred gene. In FIG. 3, the left side shows the GUS staining results in the untransformed cactus, and the right side shows the GUS staining results in the cactus which had been transformed.

실시예 5: 형질전환 검증 (RT-PCR)Example 5: Transformation Verification (RT-PCR)

형질전환한 선인장에서 GUS 유전자가 안정적으로 발현되는 지 여부를 분자생물학적 방법을 통하여 확인하기 위해, RT-PCR을 수행하였다. 먼저 선인장의 총 RNA를 열추출 (hot-extraction) 방법으로 추출하였다. 대상 조직을 액체질소에서 급속 냉동시킨 후 막자 사발에서 곱게 갈고 2 ㎖ 마이크로 원심분리기 튜브 (micro centrifuge tube)에 옮겼다. 여기에 약 80℃로 가열한 500 ㎕의 추출 버퍼 [페놀 : 0.1 M LiCl, 100 mM Tris-HCl, pH=8.0), 10 mM EDTA, 1% SDS (1:1)]를 가하고 교반한 후, 250 ㎕ 클로로포름-이소아밀알코올 (chloroform-isoamylalchol) (24:1)을 가하고 다시 교반 하였다. 12,000 rpm에서 5분간 원심분리 한 후 상층액을 새로운 튜브에 옮겼다. 다음 동량의 4 M LiCl을 가하고 14시간 동안 실온에서 반응시킨 후 12,000 rpm에서 10분간 원심 분리하여 상층액을 제거하고 침전물을 수득하였다. 침전물을 150 ㎕의 디에틸파이로카보네이트 (diethyl pyrocabonate) (DEPC)가 처리된 증류수에 용해시키고 1/10 부피의 3 M 아세트산나트륨과 총 부피의 2배의 100% 에탄올을 가하고 -20℃ 냉동고에서 3시간 동안 반응시켰다. 다음 15,000 rpm 4℃에서 30분간 원심 분리하여 침전물을 수득하고 50 ㎕의 DEPC 처리 증류수에 녹여 -70℃ 냉동고에 보관하였다. 정제된 총 RNA의 농도를 분광분석기를 통하여 측정한 뒤 총 RNA가 5 ㎍이 함유될 수 있도록 DEPC 처리된 증류수에 전체 부피가 10.5 ㎕가 되도록 희석시켜 0.5 ㎖ 마이크로 원심분리기 튜브에 분주하였다. 다음 10 pM 올리고-dT 3.0 ㎕를 첨가하고 PCR 써모사이클러 (thermocycler) (PTC-0100, MJ Research)로 70℃에서 10분간 열을 가한 후 4℃로 냉각한 후 2.5 mM dNTPs 6.0 ㎕ 와 5배 농축 반응 완충액 5.0 ㎕를 가했다. 이후 37℃로 재가열하여 10분간 반응시키고 다시 4℃로 냉각했다. 다음 200 U/㎕의 역전사효소 0.5 ㎕를 가한 후 37℃에서 1시간동안 반응 시켰다. 후속하여 70℃에서 10분간 반응시켜 cDNA를 합성한 후 4℃에서 보관했다. 이후 원하는 유전자의 발현 여부를 확인하기 위하여 대상 유전자의 증폭을 위해 합성된 cDNA 3.0 ㎕, 10 pM 유전자 특이 프라이머 5`부위와 3`부위를 각각 1.0 ㎕씩, 2.5 mM dNTPs 2.5 ㎕과 멸균증류수 10 ㎕를 넣고, 2.0 ㎕의 10 배 농축 반응 완충액, taq 중합효소 0.5 ㎕를 첨가하여 PCR 써모사이클러 (PTC-0100, MJ Research)로 PCR을 수행하였다. PCR은 각각 i) 95℃에서 10분, ii) 94℃에서 30초, iii) 56℃에서 30초, iv) 72℃에서 30초간 수행한 다음 ii) 단계에서 iv) 단계를 30회 반복 수행한 후 72℃에서 약 10분간 수행하여 완성하였다. 도 5에서 형질전환 하지 않은 선인장에서는 GUS 유전자의 발현이 RT-PCR을 통하여 확인 되지 않았으나, 형질전환을 한 모체와 이로부터 생성된 자구에서는 GUS 유전자의 발현이 확인되었다. 도 4에서 제 1열은 DNA 사이즈 마커, 제 2열은 형질전환하지 않은 선인장에서 RT-PCR 결과, 제 3열은 형질전환한 선인장 모체에서 RT-PCR 결과, 제 4열은 형질전환한 선인장 모체에서 생성된 자구에서의 RT-PCR 결과를 각각 나타낸다.RT-PCR was performed to confirm whether the GUS gene is stably expressed in the transformed cactus through molecular biological methods. First, total RNA of cactus was extracted by hot-extraction method. The tissue of interest was flash frozen in liquid nitrogen and ground finely in a mortar and transferred to a 2 ml micro centrifuge tube. To this was added 500 μl of extraction buffer [phenol: 0.1 M LiCl, 100 mM Tris-HCl, pH = 8.0), 10 mM EDTA, 1% SDS (1: 1)] heated to about 80 ° C., followed by stirring. 250 μl chloroform-isoamylalchol (24: 1) was added and stirred again. After centrifugation for 5 minutes at 12,000 rpm, the supernatant was transferred to a new tube. Then, an equal amount of 4 M LiCl was added and reacted at room temperature for 14 hours, followed by centrifugation at 12,000 rpm for 10 minutes to remove the supernatant and to obtain a precipitate. The precipitate was dissolved in 150 μl of diethyl pyrocabonate (DEPC) -treated distilled water, and added 1/10 volume of 3 M sodium acetate and twice the total volume of 100% ethanol in a -20 ° C. freezer. The reaction was carried out for 3 hours. Next, the precipitate was obtained by centrifugation at 15,000 rpm 4 ° C. for 30 minutes, dissolved in 50 μl of DEPC-treated distilled water, and stored in a -70 ° C. freezer. The concentration of purified total RNA was measured through a spectrometer, and diluted in a 0.5 ml microcentrifuge tube after diluting to a total volume of 10.5 μl in DEPC treated distilled water so that the total RNA contained 5 μg. Next, 3.0 μl of 10 pM oligo-dT was added, heated at 70 ° C. for 10 minutes with a PCR thermocycler (PTC-0100, MJ Research), cooled to 4 ° C., and then 5 times with 6.0 μl of 2.5 mM dNTPs. 5.0 μl of concentrated reaction buffer was added. After reheating to 37 ℃ to react for 10 minutes and cooled to 4 ℃ again. Then, 0.5 U of 200 U / μl reverse transcriptase was added and reacted at 37 ° C. for 1 hour. Subsequently, cDNA was synthesized by reacting at 70 ° C. for 10 minutes and then stored at 4 ° C. Then, to confirm the expression of the desired gene, 3.0 μl of synthesized cDNA, 1.0 μl of 5 ′ and 3 ′ regions of the cDNA synthesized for amplification of the target gene, respectively, 2.5 μl of 2.5 mM dNTPs and 10 μl of sterile distilled water. PCR was performed using a PCR thermocycler (PTC-0100, MJ Research) by adding 2.0 μl of 10-fold concentrated reaction buffer and 0.5 μl of taq polymerase. PCR was carried out i) 10 minutes at 95 ° C, ii) 30 seconds at 94 ° C, iii) 30 seconds at 56 ° C, iv) 30 seconds at 72 ° C, and then iv) steps 30 times in step ii). After the completion of about 10 minutes at 72 ℃. In FIG. 5, the expression of the GUS gene was not confirmed through RT-PCR in the non-transformed cactus. However, the expression of the GUS gene was confirmed in the transformed mother and the generated sperm. In Figure 4, the first column shows the DNA size marker, the second row shows the RT-PCR result in the untransformed cactus, the third row shows the RT-PCR result in the transformed cactus mother, and the fourth row shows the transformed cactus mother. RT-PCR results are shown for each domain generated in

이와 같이, 본 발명에 따르면, 기존에 형질전환이 용이하지 않은 식물종으로 알려진 선인장을 용이하게 형질전환시킬 수 있다. 따라서, 본 발명에 따른 형진전환 방법으로 선인장을 형질전환 함으로써 내병성 또는 항바이러스성 등이 강화된 신품종 선인장을 개발하는 것이 가능하다. As such, according to the present invention, it is possible to easily transform a cactus known as a plant species, which is not easily transformed. Therefore, by transforming the cactus with the transformation method according to the present invention, it is possible to develop a new breed of cactus having enhanced disease resistance or antiviral resistance.

Claims (4)

도입을 원하는 외래 유전자를 포함하는 발현벡터를 선인장의 자구 생성부위에 핀-프리클(pin-prickle) 방법, 진공-인필트레이션(vacuum-infiltration) 방법, 또는 상기 두 방법을 혼용하는 방법으로 도입하는 단계; 및An expression vector containing a foreign gene to be introduced is introduced into a cactus locus-producing region by a pin-prickle method, vacuum-infiltration method, or a combination of the two methods. Doing; And 상기 발현벡터의 도입 전후에 선인장의 일부를 절단하여 자구생성을 유도하는 단계를 포함하는, 선인장 형질전환 방법. Cactus transformation method comprising the step of inducing autogenogenesis by cutting a portion of the cactus before and after the introduction of the expression vector. 제 1항에 있어서, 발현벡터가 아그로박테리움에 의해 선인장에 도입됨을 특징으로 하는, 선인장 형질전환 방법. The method of claim 1, wherein the expression vector is introduced into the cactus by Agrobacterium. 삭제delete 제 1항 또는 제 2항에 있어서, 진공-인필트레이션 방법이 10 cmHg 내지 50 cmHg의 진공을 5분 내지 30분 동안 가한 후 진공 압력을 급격하게 제거함을 특징으로 하는, 선인장 형질전환 방법. 3. The cactus transformation method according to claim 1 or 2, characterized in that the vacuum-filtration method rapidly removes the vacuum pressure after applying a vacuum of 10 cmHg to 50 cmHg for 5 to 30 minutes.
KR1020060129650A 2006-12-18 2006-12-18 Method for transforming cactus KR100850525B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060129650A KR100850525B1 (en) 2006-12-18 2006-12-18 Method for transforming cactus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060129650A KR100850525B1 (en) 2006-12-18 2006-12-18 Method for transforming cactus

Publications (2)

Publication Number Publication Date
KR20080056578A KR20080056578A (en) 2008-06-23
KR100850525B1 true KR100850525B1 (en) 2008-08-05

Family

ID=39802747

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060129650A KR100850525B1 (en) 2006-12-18 2006-12-18 Method for transforming cactus

Country Status (1)

Country Link
KR (1) KR100850525B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102440178A (en) * 2010-09-30 2012-05-09 京畿道 Cultivation method of novel cactus variety Gymnocalycium mihanovichii Yellow Top
KR102285637B1 (en) * 2020-11-05 2021-08-04 (주)지플러스생명과학 Plant transformation method for plant-based biopharmaceutical production

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105409773B (en) * 2015-11-27 2018-05-08 浙江省农业科学院 A kind of method of crow plumage jade aseptic seeding and Regeneration System

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
‘Genetic transformation of prickly-pear cactus by Agrobacterium tumefaciens’, Plant Cell, Tissue and Organ Culture, Vol.86(3), 2006년 9월, 요약본*

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102440178A (en) * 2010-09-30 2012-05-09 京畿道 Cultivation method of novel cactus variety Gymnocalycium mihanovichii Yellow Top
KR102285637B1 (en) * 2020-11-05 2021-08-04 (주)지플러스생명과학 Plant transformation method for plant-based biopharmaceutical production

Also Published As

Publication number Publication date
KR20080056578A (en) 2008-06-23

Similar Documents

Publication Publication Date Title
US11512320B2 (en) Methods of gene editing and transforming cannabis
NL8801444A (en) Genetic transformation of eukaryotic cells - esp. plant cells, by treating dried cells with DNA soln.
BG106105A (en) Plant transformation method
CN100532554C (en) Plant anther specific promoter and its application
US5422259A (en) Transgenic plants belonging to the species Cucumis melo
CN114561397B (en) Application of CsCaBP1 gene in inducing citrus canker resistance
Dolgov et al. Agrobacterial transformation of chrysanthemum
KR100850525B1 (en) Method for transforming cactus
CN115851823B (en) Cymbidium CgARF18 gene and application thereof
Suratman et al. Cotyledon with hypocotyl segment as an explant for the production of transgenic Citrullus vulgaris Schrad (watermelon) mediated by Agrobacterium tumefaciens
CN116083445A (en) CrBZR1 gene and application thereof
AU8487898A (en) Method of genetically transforming banana plants
Hu et al. Shoot Regeneration from Cultured Leaf Explants of Lycium barbarumand Agrobacterium-Mediated Transformation1
US7026529B2 (en) Methods for Agrobacterium-mediated transformation of dandelion
US11499158B2 (en) Method for modifying plant
KR100797644B1 (en) Fruit-specific expression promoter derived from citrus unshiu and fruit-specific expression vector comprising the same
CN113215191A (en) Agrobacterium-mediated genetic transformation method for toona sinensis
US8148603B2 (en) Transgenic ficus, method for producing same and use thereof
CN115806999B (en) Tobacco NtEIJ gene and application thereof
CN115704035B (en) Tobacco NtDSR2 gene and application thereof
KR100496029B1 (en) Method for Producing Transgenic Perilla Plants, and Herbicide-Resistent Perilla Plants by the Method
CN116004647B (en) Tobacco NtSWEET gene and application thereof
AU2021107266A4 (en) A method of vacuum infiltration assisting agrobacterium-mediated genetic transformation of sugarcane
CN115807010B (en) Honeysuckle leaf glandular hair-growing gene and application thereof
KR20100041560A (en) Antibiotics marker free festuca spp. plants having resistance against two herbicides

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110728

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee