KR100848813B1 - Transistor and nonvolatile memory using deformation resistivity of carbon nanotube and piezoelectric effect - Google Patents

Transistor and nonvolatile memory using deformation resistivity of carbon nanotube and piezoelectric effect Download PDF

Info

Publication number
KR100848813B1
KR100848813B1 KR1020070041249A KR20070041249A KR100848813B1 KR 100848813 B1 KR100848813 B1 KR 100848813B1 KR 1020070041249 A KR1020070041249 A KR 1020070041249A KR 20070041249 A KR20070041249 A KR 20070041249A KR 100848813 B1 KR100848813 B1 KR 100848813B1
Authority
KR
South Korea
Prior art keywords
transistor
carbon nanotube
piezoelectric element
deformation
carbon nano
Prior art date
Application number
KR1020070041249A
Other languages
Korean (ko)
Inventor
김형준
신영한
우윤성
이한보람
이성균
손종역
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to KR1020070041249A priority Critical patent/KR100848813B1/en
Application granted granted Critical
Publication of KR100848813B1 publication Critical patent/KR100848813B1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/02Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change
    • G11C13/025Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change using fullerenes, e.g. C60, or nanotubes, e.g. carbon or silicon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/40Piezoelectric or electrostrictive devices with electrical input and electrical output, e.g. functioning as transformers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs

Abstract

A transistor using deformation caused by piezoelectric effect of a carbon nano tube is provided to obtain a transistor of a new concept using deformation of a carbon nano tube caused by deformation of a piezoelectric device by using a device of a several nano meter using a carbon nano tube. A piezoelectric device(6) is disposed at one side of a carbon nano tube(5) so that the carbon nano tube is deformed by contraction or expansion of the piezoelectric device. A switching process is performed by a difference of specific resistance of the carbon nano tube generated by a deformation quantity of the carbon nano tube caused by the contraction or expansion of the piezoelectric device. The piezoelectric device can be a shape memory piezoelectric actuator.

Description

탄소나노튜브의 압전효과에 의한 변형을 이용한 트랜지스터 및 비휘발성 메모리 {TRANSISTOR AND NONVOLATILE MEMORY USING DEFORMATION RESISTIVITY OF CARBON NANOTUBE AND PIEZOELECTRIC EFFECT}Transistor and nonvolatile memory using deformation by piezoelectric effect of carbon nanotubes {TRANSISTOR AND NONVOLATILE MEMORY USING DEFORMATION RESISTIVITY OF CARBON NANOTUBE AND PIEZOELECTRIC EFFECT}

도 1a 및 1b는 각각 본 발명에 따른 탄소나노튜브의 압전효과에 의한 변형을 이용한 트랜지스터의 단면도 및 평면도이다.1A and 1B are a cross-sectional view and a plan view, respectively, of a transistor using a deformation due to the piezoelectric effect of carbon nanotubes according to the present invention.

도 2는 본 발명에 따른 트랜지스터에 있어서, 탄소나노튜브가 압전소자의 팽창에 의해 변형된 상태를 나타내는 개략도이다.2 is a schematic view showing a state in which a carbon nanotube is deformed by expansion of a piezoelectric element in a transistor according to the present invention.

도 3은 압전소자의 동작 특성을 나타낸 도면이다.3 is a view showing the operating characteristics of the piezoelectric element.

도 4는 형상 기억 메모리 압전소자(shape memory piezoelectric actuator)의 동작 원리를 나타낸 도면이다.FIG. 4 is a view showing an operating principle of a shape memory piezoelectric actuator.

도 5는 외부 신호에 대한 형상 기억 메모리 압전소자의 동작을 나타낸 개략도이다.Fig. 5 is a schematic diagram showing the operation of the shape memory memory piezoelectric element with respect to an external signal.

본 발명은 능동소자의 하나인 트랜지스터와 이에 의한 비휘발성 메모리에 관한 것으로, 보다 구체적으로는 탄소나노튜브의 변형에 의해 발생하는 비저항의 차 이를 이용하여 스위칭되는 탄소나노튜브 트랜지스터와, 이를 이용한 비휘발성 메모리에 관한 것이다.The present invention relates to a transistor, which is one of the active devices, and a nonvolatile memory thereby. More specifically, the present invention relates to a carbon nanotube transistor that is switched by using a difference of a specific resistance caused by deformation of a carbon nanotube, and a nonvolatile memory using the same. It's about memory.

탄소나노튜브란 지구상에 다량으로 존재하는 탄소로 이루어진 탄소 동소체로서 하나의 탄소가 다른 탄소 원자와 육각형 벌집 무늬로 결합되어 튜브형태를 이루고 있는 물질이며, 튜브의 직경이 나노미터 수준으로 극히 미세한 물질이다. 이러한 탄소나노튜브는 sp2 결합 구조를 가지며, 그래파이트 면(graphite sheet)이 나노 크기의 직경으로 둥글게 말린 상태로, 그래파이트 면이 말리는 각도 및 형태에 따라서 전기적으로 도체 또는 반도체의 특성을 보이기 때문에, 다양한 분야에 응용이 가능한 소재이다.A carbon nanotube is a carbon allotrope composed of carbon present in a large amount on the earth, and one carbon is combined with other carbon atoms in a hexagonal honeycomb pattern to form a tube, and the diameter of the tube is very minute with a nanometer level. . These carbon nanotubes have a sp2 bonding structure, and the graphite sheet is rounded to a nano-sized diameter, so that the graphite surface is electrically conductive or semiconductor depending on the angle and shape of the graphite sheet being dried. The material can be applied to.

한편, 종래 탄소나노튜브를 일차원 나노소자의 형태로 만들기 위해서, 전장효과 트랜지스터의 형태로 게이트에 전원을 가하여 스위칭하는 구조의 탄소나노튜브 트랜지스터가 알려져 있다. 그러나, 상기 트랜지스터의 경우, 게이트 전압에 대한 스위칭 효율이 높지 않은 문제점이 있어, 이를 극복하기 위한 여러 가지 시도들이 진행되고 있다.On the other hand, in order to make a carbon nanotube in the form of a one-dimensional nano device, a carbon nanotube transistor having a structure in which a gate is applied by switching a power source in the form of a field effect transistor is known. However, in the case of the transistor, there is a problem that switching efficiency with respect to the gate voltage is not high, and various attempts have been made to overcome this problem.

본 발명의 목적은 탄소나노튜브의 변형에 의한 스위칭 특성을 활용할 수 있는 탄소나노튜브 트랜지스터를 제공하는 것이다.It is an object of the present invention to provide a carbon nanotube transistor that can utilize switching characteristics by deformation of carbon nanotubes.

또한, 본 발명의 다른 목적은, 형상 기억 메모리 압전소자가 갖는 메모리 효과를 이용하여 비휘발성 메모리를 제공하는 것이다.Another object of the present invention is to provide a nonvolatile memory utilizing the memory effect of the shape memory piezoelectric element.

상기 목적을 달성하기 위한 본 발명에 따른 탄소나노튜브 트랜지스터는, 탄소나노튜브의 양단부에 각각 전기적으로 접촉되는 소스 전극과 드레인 전극을 포함하고, 상기 탄소나노튜브의 일측에 압전소자가 배치되어 있으며, 상기 탄소나노튜브의 일측에 압전소자가 배치되어 있고, 상기 압전소자에 의한 상기 탄소나노튜브의 변형을 통해 스위칭이 이루어지는데 구성적 특징이 있다.Carbon nanotube transistor according to the present invention for achieving the above object comprises a source electrode and a drain electrode which are in electrical contact with both ends of the carbon nanotube, respectively, the piezoelectric element is disposed on one side of the carbon nanotube, A piezoelectric element is disposed on one side of the carbon nanotube, and switching is performed through deformation of the carbon nanotube by the piezoelectric element.

또한, 상기 압전소자는 형상 기억 메모리 압전소자일 수 있으며, 형상 기억 메모리 압전소자의 메모리 특성을 이용하게 되면, 비휘발성 메모리를 얻을 수 있다.Further, the piezoelectric element may be a shape memory memory piezoelectric element, and by using the memory characteristics of the shape memory piezoelectric element, a nonvolatile memory may be obtained.

이하, 본 발명의 바람직한 실시예를 첨부도면을 참조로 상세하게 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

첨부한 도 1a 및 1b는 각각 본 발명의 실시예에 따른 탄소나노튜브의 단면도와 평면도를 나타낸 것이다.1A and 1B show a cross-sectional view and a plan view of a carbon nanotube according to an embodiment of the present invention, respectively.

상기 도 1a 및 1b에 도시된 바와 같이, 본 발명에 따른 탄소나노튜브 트랜지스터(1)는 기판(2) 상에 나란하게 배치된 소스 전극(3)과 드레인 전극(4)의 사이에 탄소나노튜브(5)가 위치하고, 상기 탄소나노튜브(5)의 하부에 압전소자(6)가 위치하도록 되어 있다.As shown in FIGS. 1A and 1B, the carbon nanotube transistor 1 according to the present invention includes a carbon nanotube between a source electrode 3 and a drain electrode 4 arranged side by side on a substrate 2. (5) is located, and the piezoelectric element 6 is located under the carbon nanotubes (5).

다음으로, 본 발명에 따른 탄소나노튜브 트랜지스터(1)의 동작에 대해서 설명한다.Next, the operation of the carbon nanotube transistor 1 according to the present invention will be described.

먼저, 압전소자(6)에 전압을 인가하면 압전소자(6)는 도 3에 도시된 바와 같이 팽창하게 되는데, 이와 같이 압전소자(6)가 팽창하면 도 2에 도시된 바와 같이 탄소나노튜브(5)에 변형이 생기게 되며, 이러한 변형에 의하여 탄소나노튜브(5)의 비저항 값은 증가하게 된다.First, when a voltage is applied to the piezoelectric element 6, the piezoelectric element 6 expands as shown in FIG. 3. When the piezoelectric element 6 expands as described above, the carbon nanotube ( Deformation occurs in 5), and the specific resistance value of the carbon nanotubes 5 is increased by such deformation.

그리고, 상기 압전소자(6)에 가해진 전압을 소거하면, 압전소자(6)가 수축하여, 도 1a에 도시된 바와 같이, 탄소나노튜브(5)도 원래의 형상으로 돌아가며, 이에 따라 탄소나노튜브(5)의 비저항 값도 변형된 상태에 비해 상대적으로 낮아지게 된다.When the voltage applied to the piezoelectric element 6 is erased, the piezoelectric element 6 contracts, and as shown in FIG. 1A, the carbon nanotubes 5 also return to their original shapes. The resistivity value of (5) is also relatively low compared to the deformed state.

즉, 본 발명에 따른 탄소나노튜브 트랜지스트(1)는 압전소자(6)의 팽창과 수축을 통해 달라지는 탄소나노튜브(5)의 비저항 값, 즉 스위칭 특성에 의해 동작하게 된다.That is, the carbon nanotube transistor 1 according to the present invention is operated by the specific resistance value of the carbon nanotubes 5, which is changed through expansion and contraction of the piezoelectric element 6, that is, switching characteristics.

도 4는 형상 기억 메모리 압전소자(shape memory piezoelectric actuator)의 동작 원리를 나타낸 것이다. 일반적인 강유전체 이력곡선(hysteresis loop)과는 다르게 이력곡선이 한쪽으로 편향되어 있으면, 잔류분극도 분극의 방향에 따라 다르며, 이에 의해 강유전체의 변형은 비대칭적으로 형성된다. 즉, 강유전체의 분극이 위로 향하는 경우, 강유전체의 잔류분극 값이 큰 값(도면의 ○)을 가지므로 팽창이 되며, 전원을 차단하여도 팽창한 상태가 유지된다. 그러나, 강유전체의 분극이 아래로 향하는 경우에는 포화분극(saturation polarization)에 의해 팽창한 상태로 되며, 이때 전원을 차단하면 낮은 잔류분극(도면의 ●)에 의해 작은 변형을 가지게 되어 수축하는 결과를 나타내게 된다. 즉, 전기장을 인가한 상태에서는 팽창을 하지만 전기장이 없어질 경우 양의 전기장에 대해서는 팽창, 음의 전기장에 대해서는 수축한 상태로 메모리 효과를 나타내게 된다.4 shows the operation principle of a shape memory piezoelectric actuator. Unlike a typical ferroelectric hysteresis loop, if the hysteresis curve is deflected to one side, the residual polarization also depends on the direction of polarization, whereby the deformation of the ferroelectric is formed asymmetrically. That is, when the polarization of the ferroelectric is upward, the residual polarization value of the ferroelectric has a large value (○ in the figure) and expands, and the expanded state is maintained even when the power is cut off. However, when the polarization of the ferroelectric is directed downward, it is in an expanded state due to saturation polarization. At this time, when the power is cut off, the low residual polarization ((in the figure) causes a small deformation resulting in shrinkage. do. That is, when the electric field is applied but expands, but when the electric field disappears, the memory effect is obtained in the state of expansion for the positive electric field and in the state of contraction for the negative electric field.

한편, 도 5는 외부 신호에 대해 상기 형상 기억 메모리 압전소자의 동작을 나타내는 것이다. 도시된 바와 같이, "(1)"의 상태에서 양의 신호를 입력하면 팽창하게 되고 신호를 차단하여도 팽창한 상태를 유지하게 된다. 그리고 "(2)"의 상태에서 음의 신호를 입력하면 팽창된 상태를 유지하며 신호를 차단하게 되면 잔류분극의 비대칭에 의한 낮은 잔류분극에 의해 수축한 상태, 즉 "(1)"의 상태가 된다. 즉, 전원을 차단한 상태에서 2가지의 다른 상태를 갖는 메모리 효과를 나타낸다.5 shows the operation of the shape memory memory piezoelectric element with respect to an external signal. As shown in the figure, when a positive signal is input in the state of "(1)", it expands and maintains the expanded state even when the signal is blocked. When the negative signal is input in the state of "(2)", the state of expansion is maintained, and when the signal is blocked, the state of "(1)" is contracted by the low residual polarization due to the asymmetry of the residual polarization. do. That is, a memory effect having two different states with the power off.

따라서, 상기 압전소자(6)에 상기와 같이 외부 신호에 대해 메모리 효과를 갖는 형상 기억 메모리 압전소자를 적용하게 되면, 비휘발성 메모리를 얻을 수 있게 된다.Therefore, when the shape memory memory piezoelectric element having a memory effect on the external signal is applied to the piezoelectric element 6 as described above, a nonvolatile memory can be obtained.

탄소나노튜브에 의하면 수 나노미터 수준의 소자를 만들 수 있으므로, 본 발명에 따른 압전소자의 변형에 의한 탄소나노튜브의 변형을 이용한 새로운 개념의 트랜지스터를 얻을 수 있으며, 이 트랜지스터는 형상 기억 메모리 압전소자를 사용하게 되면 비휘발성 메모리에 응용할 수 있다.According to the carbon nanotubes, a device having a level of several nanometers can be manufactured, and thus a new concept transistor using a deformation of the carbon nanotubes by the deformation of the piezoelectric element according to the present invention can be obtained. Can be used for non-volatile memory.

Claims (3)

탄소나노튜브의 양단부에 각각 전기적으로 접촉되는 소스 전극과 드레인 전극을 포함하는 탄소나노튜브 트랜지스터로서,A carbon nanotube transistor comprising a source electrode and a drain electrode in electrical contact with both ends of the carbon nanotubes, respectively. 상기 탄소나노튜브의 일측에 압전소자가 배치하여 상기 압전소자의 수축 또는 팽창을 통해 상기 탄소나노튜브가 변형될 수 있도록 하고,A piezoelectric element is disposed on one side of the carbon nanotubes so that the carbon nanotubes may be deformed through contraction or expansion of the piezoelectric element. 상기 압전소자의 수축 또는 팽창에 따른 탄소나노튜브의 변형량의 차이에 의해 발생하는 상기 탄소나노튜브의 비저항 값의 차이를 통해 스위칭이 이루어지도록 한 것을 특징으로 하는 탄소나노튜브 트랜지스터.Carbon nanotube transistor characterized in that the switching is made through the difference in the specific resistance value of the carbon nanotubes generated by the difference in the deformation amount of the carbon nanotubes due to the shrinkage or expansion of the piezoelectric element. 제 1 항에 있어서, 상기 압전소자는 형상 기억 메모리 압전소자인 것을 특징으로 하는 탄소나노튜브 트랜지스터.The carbon nanotube transistor according to claim 1, wherein the piezoelectric element is a shape memory memory piezoelectric element. 제 2 항에 기재된 트랜지스터를 이용한 비휘발성 메모리.The nonvolatile memory using the transistor of Claim 2.
KR1020070041249A 2007-04-27 2007-04-27 Transistor and nonvolatile memory using deformation resistivity of carbon nanotube and piezoelectric effect KR100848813B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070041249A KR100848813B1 (en) 2007-04-27 2007-04-27 Transistor and nonvolatile memory using deformation resistivity of carbon nanotube and piezoelectric effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070041249A KR100848813B1 (en) 2007-04-27 2007-04-27 Transistor and nonvolatile memory using deformation resistivity of carbon nanotube and piezoelectric effect

Publications (1)

Publication Number Publication Date
KR100848813B1 true KR100848813B1 (en) 2008-07-28

Family

ID=39825337

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070041249A KR100848813B1 (en) 2007-04-27 2007-04-27 Transistor and nonvolatile memory using deformation resistivity of carbon nanotube and piezoelectric effect

Country Status (1)

Country Link
KR (1) KR100848813B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113562690A (en) * 2020-04-28 2021-10-29 清华大学 Nano manipulator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060050134A (en) * 2004-10-13 2006-05-19 삼성전자주식회사 Unipolar nanotube transistor having carrier-trapping material and method of fabricating the same
JP2006156816A (en) 2004-11-30 2006-06-15 Sharp Corp Semiconductor device
KR20070002119A (en) * 2005-06-30 2007-01-05 한국화학연구원 Carbon nanotube transistor with su-8 resist coated in electrode
JP2007096129A (en) 2005-09-29 2007-04-12 Kyoto Univ Molecule transistor, and method for manufacturing the same and nonvolatile memory and piezoelectric sensor using the same method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060050134A (en) * 2004-10-13 2006-05-19 삼성전자주식회사 Unipolar nanotube transistor having carrier-trapping material and method of fabricating the same
JP2006156816A (en) 2004-11-30 2006-06-15 Sharp Corp Semiconductor device
KR20070002119A (en) * 2005-06-30 2007-01-05 한국화학연구원 Carbon nanotube transistor with su-8 resist coated in electrode
JP2007096129A (en) 2005-09-29 2007-04-12 Kyoto Univ Molecule transistor, and method for manufacturing the same and nonvolatile memory and piezoelectric sensor using the same method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113562690A (en) * 2020-04-28 2021-10-29 清华大学 Nano manipulator
CN113562690B (en) * 2020-04-28 2022-05-31 清华大学 Nano manipulator

Similar Documents

Publication Publication Date Title
EP2345071B1 (en) Graphene memory cell and fabrication methods thereof
US8431921B2 (en) Memristor having a triangular shaped electrode
JP4405427B2 (en) Switching element
US7186380B2 (en) Transistor and sensors made from molecular materials with electric dipoles
KR101303579B1 (en) Electromechanical switch and method of manufacturing the same
US8227701B2 (en) Reconfigurable electric circuitry and method of making same
US20040181630A1 (en) Devices having horizontally-disposed nanofabric articles and methods of making the same
US8445884B2 (en) Memristor with nanostructure electrodes
KR20060086235A (en) Multi-bit non-volatile memory device, and method of operating the same
US20090189152A1 (en) Ferroelectric memory device
US8270200B2 (en) Nanoscale three-terminal switching device
US8553455B2 (en) Shape memory device
Farronato et al. Memtransistor devices based on MoS2 multilayers with volatile switching due to Ag cation migration
US20190378977A1 (en) Ferroelectric strain based phase-change device
Luo et al. Light-controlled nanoscopic writing of electronic memories using the tip-enhanced bulk photovoltaic effect
JP5276178B2 (en) Switch element and circuit with switch element
CN108389962B (en) Ferroelectric resistance random access memory with in-plane read and write and method for enhancing read/write signals thereof
KR100657973B1 (en) Mechanical memory device and fabrication method of the same
KR100848813B1 (en) Transistor and nonvolatile memory using deformation resistivity of carbon nanotube and piezoelectric effect
KR20110008553A (en) Semiconductor memory device and method of forming the same
Sattari-Esfahlan et al. Flexible graphene-channel memory devices: A review
KR101150270B1 (en) Semiconductor device using graphene, and fabricating method for the device
JP4843760B2 (en) Memory element using carbon nanotube
KR101620456B1 (en) Electro mechanical transistor
KR101173115B1 (en) Semiconductor device using carbon nano material, and fabricationg method for the device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee