KR100840707B1 - 비대칭 공진기를 구비하는 다파장 라만 레이저 발생장치 및이를 포함하는 광통신 시스템 - Google Patents

비대칭 공진기를 구비하는 다파장 라만 레이저 발생장치 및이를 포함하는 광통신 시스템 Download PDF

Info

Publication number
KR100840707B1
KR100840707B1 KR1020070009389A KR20070009389A KR100840707B1 KR 100840707 B1 KR100840707 B1 KR 100840707B1 KR 1020070009389 A KR1020070009389 A KR 1020070009389A KR 20070009389 A KR20070009389 A KR 20070009389A KR 100840707 B1 KR100840707 B1 KR 100840707B1
Authority
KR
South Korea
Prior art keywords
wavelength
reflector
optical fiber
fbg
laser
Prior art date
Application number
KR1020070009389A
Other languages
English (en)
Inventor
한수욱
김동환
임영은
Original Assignee
한국광기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국광기술원 filed Critical 한국광기술원
Priority to KR1020070009389A priority Critical patent/KR100840707B1/ko
Application granted granted Critical
Publication of KR100840707B1 publication Critical patent/KR100840707B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • H01S3/1051Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length one of the reflectors being of the type using frustrated reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/107Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using electro-optic devices, e.g. exhibiting Pockels or Kerr effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]
    • H01S5/187Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL] using Bragg reflection

Abstract

본 발명은 비대칭 공진기를 구비하는 다파장 라만 레이저 발생장치 및 이를 포함하는 광통신 시스템에 관한 것이다. 보다 상세하게는 다파장 광섬유 레이저의 각 파장별 출력을 생성하기 위한 공진기(cavity)에 있어서 반사체의 파장특성을 비대칭적으로 구성하되, 일측은 좁은 파장밴드(narrow band)의 반사체를 사용하고 타측은 보다 넓은 파장밴드(wide band)의 반사체를 사용함으로써, 공진기 구성을 위한 반사체의 개수를 감소시켜 제조비용을 절감하고 양쪽 공진기의 파장 특성을 정확히 맞출 필요가 없어서 제조가 용이할 뿐만 아니라, 손실을 줄이고 출력을 높일 수 있는 비대칭 공진기를 구비하는 다파장 라만 레이저 발생장치 및 이를 포함하는 광통신 시스템에 관한 것이다.
라만 레이저, 공진기, 비대칭 공진기, 광통신, 광섬유 브래그 격자, 저가화

Description

비대칭 공진기를 구비하는 다파장 라만 레이저 발생장치 및 이를 포함하는 광통신 시스템{Multi-wavelength Raman fiber laser with asymmetric cavities and Fiber optic communication system including the same}
도 1은 일반적인 다파장 라만 레이저의 구성도,
도 2는 본 발명의 바람직한 실시예에 따른 광통신 시스템의 구성도,
도 3a는 본 발명의 일 실시예에 따른 라만 레이저 발생장치의 구성도,
도 3b는 본 발명의 다른 실시예에 따른 라만 레이저 발생장치의 구성도,
도 4a는 본 발명의 바람직한 실시예에 따른 다파장 라만 레이저 출력을 얻기 위한 3채널 FBG의 반사파장을 도시한 그래프,
도 4b는 본 발명의 바람직한 실시예에 따른 다파장 라만 레이저 출력을 얻기 위한 Chirped FBG의 파장을 도시한 그래프,
도 5는 본 발명의 바람직한 실시예에 따른 다파장 라만 레이저의 파장과 출력의 관계를 도시한 그래프,
도 6a는 본 발명의 바람직한 실시예에 따른 다파장 라만 레이저의 실 구성도,
도 6b는 도 6a의 다파장 라만 레이저의 파장과 출력을 측정한 그래프이다.
<도면의 주요 부분에 대한 부호의 설명>
100, 100' - 라만 레이저 발생장치 110 - 레이저 광원
120, 120' - 제1반사체 130 - 제2반사체
140 - 이득 물질 200 - 변조기
250 - 송신기 300 - 결합기
400 - 전송매체 500 - 검출기
600 - 신호처리기 650 - 수신기
700 - 출력부
본 발명은 비대칭 공진기를 구비하는 다파장 라만 레이저 발생장치 및 이를 포함하는 광통신 시스템에 관한 것이다. 보다 상세하게는 다파장 광섬유 레이저의 각 파장별 출력을 생성하기 위한 공진기(cavity)에 있어서 반사체의 파장특성을 비대칭적으로 구성하되, 일측은 좁은 파장밴드(narrow band)의 반사체를 사용하고 타측은 보다 넓은 파장밴드(wide band)의 반사체를 사용함으로써, 공진기 구성을 위한 반사체의 개수를 감소시켜 제조비용을 절감하고 양쪽 공진기의 파장 특성을 정확히 맞출 필요가 없어서 제조가 용이할 뿐만 아니라, 손실을 줄이고 출력을 높일 수 있는 비대칭 공진기를 구비하는 다파장 라만 레이저 발생장치 및 이를 포함하는 광통신 시스템에 관한 것이다.
최근 광통신 분야에서는 전송용량을 늘리기 위해 넓은 대역폭을 갖는 라만 광증폭기의 개발이 활발히 이루어지고 있다. 이러한 라만 광증폭기는 일반 전송선로를 이득 물질(gain medium)로 사용하는 방식으로서, 이는 라만 스톡 천이(Raman Stoke Shift) 현상을 이용한 증폭 방법이다. 이와 같은 넓은 대역의 증폭 여기광을 얻기 위해서는 다파장 펌프 레이저를 필요로 한다. 특히, 라만 증폭 현상을 이용한 다채널 장파장(1400nm 대역) 레이저는 라만 광증폭기를 경제적으로 구성하는 방식이다.
라만 레이저를 이용한 다채널 광섬유 레이저는 코어 섬유상에 레이저 공진기(laser cavity)를 구성하여 요구되는 파장을 갖는 레이저를 얻게 된다. 이러한 공진기의 구성을 위해서는 두 개의 반사체(reflector)를 이용하며, 광섬유상에 반사체를 만드는 방법으로는 광섬유 브래그 격자(Fiber Bragg Grating)를 이용한 기술이 알려져 있다.
도 1은 일반적인 다파장 라만 레이저 발생장치의 구성도이다.
일반적인 다파장 라만 레이저 발생장치는, 도 1을 참조하면, 레이저 광원(10), 이득 물질(40)을 사이에 둔 일측 브래그 격자들(20) 및 타측 브래그 격자들(30)을 구비한다. 레이저 광원(10)에서 방출된 λ1 파장을 갖는 광은 일측 브래그 격자들(20)과 타측 브래그 격자들(30) 사이를 왕복하면서 이득 물질(40)을 통해 증폭되어, 입력광인 λ1보다 장파장인 λ2, λ3, λ4 및 λ5의 파장을 갖는 출력광을 얻게 된다.
이러한 방식에서는 다수개의 공진기가 구성되어야 한다. 도 1과 같이 λ2 5의 다파장을 얻기 위해서는 일측 브래그 격자 5개, 타측 브래그 격자 4개가 필요하다. 즉, 필요로 하는 출력 파장 수만큼의 공진기를 구성하여야 한다. 따라서, 레이저 장치의 제작 비용이 고가일 수밖에 없다는 문제점이 있다. 또한, 일측 브래그 격자와 타측 브래그 격자는 대응되는 파장끼리 파장 특성이 정확히 일치하여야 한다. 서로 동일한 파장 특성을 갖는 브래그 격자를 파장 수만큼 얻기는 매우 어려우며, 원격에 있는 브래그 격자의 파장이 환경 변화에 영향을 받는다는 문제점이 있다. 따라서, 이러한 문제점을 개선하기 위한 광섬유 레이저 제작 기술 개발의 필요성이 대두된다.
본 발명은 상기와 같은 과제를 해결하기 위해 안출된 것으로, 특히 다파장 광섬유 레이저의 각 파장별 출력을 생성하기 위한 공진기(cavity)에 있어서 반사체의 파장특성을 비대칭적으로 구성하되, 일측은 좁은 파장밴드(narrow band)의 반사체를 사용하고 타측은 보다 넓은 파장밴드(wide band)의 반사체를 사용함으로써, 공진기 구성을 위한 반사체의 개수를 감소시켜 제조비용을 절감하고 양쪽 공진기의 파장 특성을 정확히 맞출 필요가 없어서 제조가 용이할 뿐만 아니라, 손실을 줄이고 출력을 높일 수 있는 비대칭 공진기를 구비하는 다파장 라만 레이저 발생장치 및 이를 포함하는 광통신 시스템을 제공하는 데 그 목적이 있다.
상기 목적을 달성하기 위해 안출된 본 발명에 따른 라만 레이저 발생장치는 일측 공진기는 좁은 파장 영역을 갖는 제1반사체를 구비하고, 타측 공진기는 상기 제1반사체의 파장 영역을 포함하는 넓은 파장 영역을 갖는 제2반사체를 구비하여 상기 반사체들의 파장 특성이 비대칭적으로 구성되며, 상기 제1반사체와 상기 제2반사체는 광섬유 브래그 격자(Fiber Bragg Grating, 이하 "FBG")인 것을 특징으로 한다.
또한, 상기 제1반사체는 파장이 가변되는 튜너블(tunable) FBG인 것이 바람직하다.
또한, 상기 제1반사체는 적어도 하나 구비될 수 있다.
또한, 상기 제2반사체는 격자 간격이 가변적인 첩트(chirped) FBG 하나로 구성되는 것이 바람직하다.
또한, 본 발명에 따른 광통신 시스템은 변조된 광을 전송매체에 전달하는 결합기; 변조된 광의 전송매체 역할을 하는 광섬유; 상기 광섬유를 통해 전송된 정보를 상기 광 반송파로부터 추출하는 검출기; 및 상기 라만 레이저 발생장치를 포함하는 것을 특징으로 한다.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다. 또한, 이하에서 본 발명의 바람직한 실시 예를 설명할 것이나, 본 발명의 기술적 사상은 이에 한정하거나 제한되지 않고 당업자에 의해 변형되어 다양하게 실시될 수 있음은 물론이다.
먼저, 본 발명의 바람직한 실시예에 따른 광통신 시스템에 대해 설명한다.
도 2는 본 발명의 바람직한 실시예에 따른 광통신 시스템의 구성도이다.
본 발명의 바람직한 실시예에 따른 광통신 시스템은, 도 2를 참조하면, 송신기(250), 전송 매체(400), 수신기(650), 및 출력부(700)를 포함하여 이루어진다. 또한, 상기 송신기(250)는 라만 레이저 발생장치(100), 변조기(200), 결합기(300)를 포함하며, 상기 수신기(650)는 검출기(500), 신호처리기(600)를 포함한다.
상기 라만 레이저 발생장치(100)는 레이저 광원을 통해 펌핑된 광을 공진기(cavity)와 이득 물질을 통해 다파장의 반송파 광원을 발생시키는 부분이다. 이를 통해 상기 라만 레이저 발생장치(100)는 하나의 전송매체(400)를 통해 동시에 여러 신호를 전송할 수 있는 파장분할다중화(WDM)가 가능하도록 한다. 상기 라만 레이저 발생장치(100)에 대해서는 후술하기로 한다.
상기 변조기(200)는 입력된 전기적 메시지를 적합한 형태로 변환하고 상기 라만 레이저 발생장치(100)로부터 발생된 전파에 싣는 역할을 한다. 변조 형태는 아날로그 변조 또는 디지털 변조로 이루어질 수 있으며, 어떠한 변조 방식을 적용할 지는 시스템 설계의 초기단계에서 결정되는 것이 바람직하다. 한편, 도시되지 않았으나 상기 변조기(200)는 라만 레이저 발생장치(100) 내에 구비될 수도 있음은 물론이다.
상기 결합기(300)는 변조기(200)를 통해 변조된 광을 전송매체(400)에 전달하는 부분이다. 광원과 광섬유의 결합은 경우에 따라 매우 비효율적일 수 있다. 예를 들어, 광원과 광섬유 사이에 공기 갭이 존재하는 경우 반사 손실이 존재할 수 있고, 광원 면적이 광섬유의 코어 면적보다 큰 경우 전력 손실이 발생할 수 있다. 결합효율 η= Pf/Ps(여기서, Pf는 광섬유 전력, Ps는 광원에 의해 방출되는 전력)로 주어진다. 상기 결합기(300)는 결합효율을 최대화하도록 설계되는 것이 바람직하다.
상기 전송매체(400)는 결합기(300)를 통해 전달된 광을 수신기(650)로 전송하는 매체이며, 광섬유가 사용되는 것이 바람직하다. 광섬유는 감쇠가 적고 효율적으로 광을 집속할 수 있는 것이 바람직하다. 상기 전송매체(400)의 중간에는 수신기에 충분한 전력을 공급하기 위해 약한 신호의 레벨을 강화하는 광 증폭기와, 약화되고 왜곡된 광신호를 전기신호로 변환하고 보다 멀리 전송하기 위해 원래의 디지털 펄스열을 재발생하는 재생기가 구비될 수 있다.
상기 검출기(500)는 광섬유를 통해 전송된 정보를 상기 광 반송파로부터 추출하는 부분이다. 상기 검출기(500)는 전력 소모가 적고 광신호에 대한 민감도가 크며, 광전력의 변화에 대한 응답성이 우수한 것이 바람직하다.
상기 신호처리기(600)는 신호를 증폭하고 필터링하는 기능을 수행한다. 필터링 시에는 변조기(200)에서 추가되었던 바이어스(bias)는 물론, 원치 않는 주파수를 차단하여 신호대 잡음비(SNR) 특성을 향상시킨다.
상기 출력부(700)는 송신기(250)에서 수신기(650)로 전송된 신호를 사용자가 인식할 수 있도록 디스플레이 장치 등을 통해 출력하는 부분이다.
다음으로, 상기 라만 레이저 발생장치(100)에 대해 설명한다.
도 3a는 본 발명의 일 실시예에 따른 라만 레이저 발생장치의 구성도이며, 도 3b는 본 발명의 다른 실시예에 따른 라만 레이저 발생장치의 구성도이다. 도 4a는 본 발명의 바람직한 실시예에 따른 다파장 라만 레이저 출력을 얻기 위한 3채널 FBG의 반사파장을 도시한 그래프이며, 도 4b는 본 발명의 바람직한 실시예에 따른 다파장 라만 레이저 출력을 얻기 위한 Chirped FBG의 파장을 도시한 그래프이다. 도 5는 본 발명의 바람직한 실시예에 따른 다파장 라만 레이저의 파장과 출력의 관계를 도시한 그래프이다. 도 6a는 본 발명의 바람직한 실시예에 따른 다파장 라만 레이저의 실 구성도이며, 도 6b는 도 6a의 다파장 라만 레이저의 파장과 출력을 측정한 그래프이다.
상기 라만 레이저 발생장치(100)에 대해 설명하기 전에 FBG의 원리에 대해 간단히 설명하기로 한다.
일반적으로 광섬유에 의해 전송되는 빛은 광섬유의 코어(core)와 클래딩(cladding) 경계면에서의 전반사 조건에 의해 진행된다. FBG는 탄성파에 의한 광섬유의 횡방향 진동으로 코어/클래딩 모드간 결합률을 높이기 위해서 식각에 의해 직경에 변화를 준 것으로, 코어 내에 주기적인 굴절률의 변화가 있게 된다. 이러한 FBG에 광을 입사시키면 코어 내의 굴절률 차이로 인하여 브래그 조건을 만족하는 파장의 광은 반사되고 나머지 파장대의 광은 그대로 투과하게 되므로, FBG는 특정 파장대의 빛만을 선택할 수 있는 광필터로서 많이 이용된다. 브래그 조건에 의해 결정되는 FBG의 반사파장(λB)은 아래의 수학식 1과 같이 광섬유 격자 내에서 굴절률이 변화하는 주기(Λ)와 유효 굴절률(neff)로 표현된다.
λB = 2neffΛ
그리고, FBG의 반사율(R)은 아래의 수학식 2와 같이 결합 계수(κ)와 광섬유 격자의 길이(L)에 의존한다.
R = tanh2(κL), κ = πΔnη/λB
여기서, η은 격자 제작시 자외선 빔이 광섬유 코어에 결합되는 비율이며, Δn은 코어 내 굴절률 변화폭의 크기로서 굴절률 변조 지수이다. 상기 수학식 1 및 2로부터 FBG의 길이 L, 코어 내 굴절률 변화량 Δn 및 격자 주기 Λ에 따라서 FBG의 특성이 정해짐을 알 수 있다.
FBG의 이론적 해석을 위해서는 진행파 A(z)와 반사파 B(z)로 구성된 FBG내의 파동함수를 파동방정식에 대입하여 얻은 결합모드방정식(수학식 3)을 이용한다. 수학식 3에서 δ는 전파상수차, κ는 격자의 결합 계수를 나타낸다. FBG를 4단자 소자로 고려하여 결합모드 방정식을 풀고, 경계조건을 대입하여 행렬식으로 정리하면 수학식 4와 같이 FBG를 입출력 전계와 특성 행렬로 표현할 수 있다.
FBG는 입사한 빛의 반사 특성을 이용하므로, 수학식 4를 통해 반사파의 크기(r)와 위상(Φ)을 구하면 수학식 5와 같이 된다. 반사파의 크기 성분을 제곱한 파워(power)로부터 반사 특성을 구할 수 있다.
Figure 112007009118628-pat00001
Figure 112007009118628-pat00002
Figure 112007009118628-pat00003
본 발명의 일 실시예에 따른 라만 레이저 발생장치(100)는, 도 3a를 참조하면, 레이저 광원(110), 제1반사체(120), 제2반사체(130), 및 이득 물질(140)을 포함하여 형성된다.
상기 레이저 광원(110)은 레이저 다이오드, 발광 다이오드 등이 사용될 수 있으며, λ1의 파장을 갖는 펌핑광(pumping light)을 공급한다. 일례로, 상기 레이 저 광원(110)으로는 1070.8nm 파장의 광원이 이용될 수 있다.
상기 제1반사체(120)는 특정 파장의 광은 반사시키고, 나머지 파장의 광은 투과함으로써 필터 역할을 하는 부분이다. 즉, 상기 제1반사체(120)는 해당 파장만 반사시켜 이득 물질(140)로 인가하고 나머지 파장 대역은 통과시킨다. 상기 제1반사체(120)로는 박막 필터를 이용한 반사기 등도 사용될 수 있으나, 제조가 용이하고 영구적이며 안정적이라는 측면에서 FBG가 사용되는 것이 바람직하다. FBG는 기계적 혹은 열적으로 격자주기 변화를 구현하여 격자 공진 파장을 동조시킬 수 있는 장점이 있다.
이때, 상기 제1반사체(120)는 일측 공진기(cavity)를 구성하며, 좁은 파장 영역을 갖는 FBG로 이루어지는 것이 바람직하다. 예를 들어, 상기 제1반사체(120)는 중심 파장이 λ1, λ2, λ3 및 λ4인 FBG가 직렬로 배치될 수 있다. 도 4a에는 상기 제1반사체(120)가 3개의 FBG로 이루어져, 3채널 출력을 얻을 수 있는 경우의 각 FBG의 반사파장이 도시되어 있다. 도 4a를 참조하면, 각 FBG의 중심파장은 λ1=1410.0nm, λ2=1430.0nm, λ3=1450.0nm로 제1반사체를 이루는 FBG는 각각 중심파장이 서로 소정 간격 이격되도록 형성된다. 또한, 각 FBG는 중심파장에서 양쪽으로 많아야 대략 0.175nm의 파장 영역을 갖는 매우 좁은 파장 영역을 갖는다. 일례로, 중심파장이 1410.0nm인 경우(도 4b의 맨 위 그래프)는 최대 반사출력을 얻는 파장 영역이 대략 1409.825nm ~ 1410.175nm의 범위에 있어, 영역의 크기가 대략 0.175nm×2=0.25nm에 불과하다. 이러한 범위 밖에 있는 파장대의 광은 투과시키게 된다. 이러한 제1반사체(120)의 개수는 다중화하고자 하는 파장의 개수, 즉 채널의 개수에 따라 가변적으로 형성될 수 있음은 물론이다.
또한, 본 발명의 다른 실시예에 따른 라만 레이저 발생장치(100')는, 도 3b를 참조하면, 제1반사체(120') 중 적어도 어느 하나는 가변 파장 브래그 격자(이하, "Tunable FBG")로 형성될 수 있다. 도 3b에서 비스듬한 화살표를 갖는 FBG 기호는 Tunable FBG를 나타낸다. 도 3b에는 제1반사체(120')가 4개의 Tunable FBG로 구성되어 있으며, 각 Tunable FBG의 파장은 레이저 광원의 파장이 λ1인 경우 각각 λ23, λ34, λ45 및 λ56의 범위를 갖는다. 상기 제1반사체(120')가 Tunable FBG로 구성되면 출력 파장을 다양하게 변화시켜 자유로운 동조가 가능하다. 즉, 도 3a의 실시예에 따르면 λ2, λ3, λ4 및 λ5의 고정된 출력 파장을 얻는 반면, 도 3b의 실시예에 따르면 1400nm 이상의 가변적인 출력 파장을 얻을 수 있다. 이와 같이 제1반사체로 Tunable FBG를 활용하면 하나의 FBG로도 여러 개의 출력 파장을 얻을 수 있어, 공진기 구성에서 FBG의 개수를 줄일 수 있다.
상기 제2반사체(130)는 제1반사체(120)의 파장 영역을 포함하는 넓은 파장 영역을 갖는 FBG인 것이 바람직하다. 상기 제2반사체(130)는 타측 공진기를 구성하여, 일측 공진기인 제1반사체(120, 120')와 파장 특성이 비대칭적으로 구성된다.
상기 제2반사체(140)는 높은 반사율(High Reflection)을 가지며 격자 간격이 가변적인 첩트(chirped) FBG 하나로 구성되는 것이 바람직하다. 일반적인 FBG는 격자 간격이 일정하기 때문에 반사되는 빛의 세기가 중심 파장에서 최대이고, 중심 파장에서 멀어질수록 약해진다. 반면, Chirped FBG는 중심 파장을 중심으로 어느 정도의 파장 대역에 걸쳐 평평한 특성을 보인다. 따라서, 광신호를 반사시키고자 할 경우 일반 FBG를 사용하면 광신호의 파장이 변하거나 온도 변화에 따라 격자의 중심 파장이 변하는 경우 반사되는 빛의 세기가 크게 변하는 반면, Chirped FBG를 사용하면 어느 정도의 파장 변화 및 격자의 중심 파장 변화에도 불구하고 반사되는 빛의 세기가 일정한 특성을 보이게 된다. 그에 따라 광섬유에서 발생하는 분산을 보상하는 역할도 수행하게 된다.
도 3a의 실시예에서 상기 제2반사체(130)는 λ25의 파장 영역을 포함하는 넓은 파장 영역을 갖는 고반사(HR) Chirped FBG로 구성된다. 제1반사체(120)가 각각 λ2, λ3, λ4 및 λ5의 중심 파장을 갖는 FBG로 이루어져 있기 때문에, 제2반사체(130)는 이들 중심 파장을 모두 포함하는 Chirped FBG로 구성된다.
또한, 도 3b의 실시예에서 상기 제2반사체(130)는 λ26의 파장 영역을 포함하는 넓은 파장 영역을 갖는 고반사(HR) Chirped FBG로 구성된다. 제1반사체(120')가 각각 λ23, λ34, λ45 및 λ56의 범위를 갖는 Tunable FBG로 이루어져 있기 때문에, 제2반사체(130)는 이들 가변 파장 영역을 모두 포함하는 Chirped FBG로 구성된다.
예를 들어, 상기 제2반사체(130)는 도 4b를 참조하면 1430±30nm의 파장 대역을 나타내도록 구현될 수 있다. 상기에서 언급한 바와 같이, 도 4a에서 제1반사체가 각각 1410nm, 1430nm 및 1450nm의 중심 파장을 갖는 FBG로 구성된 경우, 제2 반사체는 대략 1400nm ~ 1460nm의 넓은 파장 대역을 갖는 Chirped FBG로 구성된다. 따라서, 도 4a와 도 4b에서 제1반사체(120)의 중심 파장이 대략 1410~1450nm 범위의 서로 이격된 다파장을 갖는 반면, 제2반사체(130)는 제1반사체(120)의 중심 파장 범위를 커버할 수 있도록 대략 1400~1460nm의 넓은 파장 대역을 갖게 된다. 한편, 도 4b에서 검정색 그래프는 제2반사체(130)의 반사(Reflection) 파장 대역을 타내고, 빨강색 그래프는 제2반사체(130)의 투과(Transmission) 파장 대역을 나타낸다. 즉, 상기 제2반사체(130)는 대략 1400nm ~ 1460nm 이외의 파장 대역은 투과시킴으로써 소멸되도록 한다.
이때, 상기 제2반사체(130)는 일종의 파장 무의존 반사체 역할을 수행하게 된다. 파장 무의존 반사체로는 유전체 거울(dielectric mirror)이 일반적으로 사용되고 있으나, 유전체 거울을 사용하는 경우에는 레이저 파워 일부를 출력으로 얻어내기 위해 광 커플러(optical coupler)가 추가적으로 필요하다. 더욱이, 유전체 거울은 광섬유와는 이종 물질이므로 이종 물질간 결합에 의한 손실이 발생할 수밖에 없으며, 광 커플러의 추가 구성시 손실이 더욱 증가함은 물론이다. 또한, 광섬유 계열의 소자가 아닌 박막(thin film) 계열은 고출력 광원에 의해 데미지(damage)를 입기 쉬우므로, 100mW 이상의 고출력 레이저에는 적합하지 않다.
상기 이득 물질(140)은 레이저 광원(110)을 통해 입력되는 펌핑광에 의하여 자연 방출광을 생성한다. 상기 이득 물질(140)은 게르마늄 첨가 광섬유(Ge-Doped Fiber, 이하 "GDF"), 인 첨가 광섬유(Phosphorus-Doped Fiber, 이하 "PDF"), 산란 보상 광섬유(Dispersion Compensating Fiber, 이하 "DCF")와 같이 활성 광섬유에 반도체 원소를 첨가시켜 제조한다.
빛이 광 도파로, 즉 광섬유로 진행하기 위해서는 스넬의 법칙에 의한 전반사 조건을 만족해야 한다. 일반적으로 빛은 굴절률이 낮은 매질에서 높은 매질로 입사될 때, 입사각을 증가시키면 특정한 임계각 이상에서는 굴절되지 않고 전반사를 일으키게 된다. 임계각보다 큰 입사각으로 빛이 들어오면 모두 반사되는데, 이를 광섬유에 적용시키면 굴절률이 높은 광섬유 내의 코어(빛의 진행 도파로)에 임계각 이상의 빛이 입사되면 전반사를 일으키면서 코어를 따라 진행하게 된다. 이는 코어와 클래딩의 굴절률 차이에서 기인하는 것이다. 여기서, 굴절률을 높여주는 물질로는 게르마늄(GeO2), 인(P2O5)이 있고, 굴절률을 낮춰주는 물질로는 보론(B2O3), 불화물(F) 등이 있다. 일반적인 단일 모드 광섬유(Single Mode Fiber, 이하 "SMF")는 코어와 클래딩의 굴절률 차이 Δn=0.01이고, 코어/클래딩의 크기는 8/125㎛이다. GDF와 PDF 역시 기본적으로 SMF 조건을 만족시키며, 각각 게르마늄, 인이라는 첨가물의 농도를 대략 23mol%와 12mol%로 하여 제작한 것으로, 각각의 라만 이득 특성 지수는 SMF와 비교하여 5~7배 정도인 라만용 특수 광섬유이다. 도핑농도뿐만 아니라 굴절률의 차이 역시 GDF는 Δn=0.032, PDF는 Δn=0.01로 상대적으로 높아서, 라만 이득 특성을 높이게 된다. 게르마늄의 음향자 에너지는 440cm-1이고, 인의 음향자 에너지는 1330cm-1로 이 값으로부터 펌프 파장이 정해졌을 때의 라만 스톡 천이가 일어나는 파장 또는 주파수 대역을 예측할 수 있다.
DCF의 경우 SMF의 분산 특성을 보상해 주는 본래의 목적으로 이용되기도 하 지만, 그 구조상의 특징때문에 GDF나 PDF와 같이 라만용 광섬유로 많이 이용된다. DCF는 GDF나 PDF와는 달리 광섬유의 변형된 굴절률 구조, 즉 코어의 굴절률이 높고 코어의 크기가 3㎛로 작기 때문에 발생하는 비선형성이 라만 이득 특성을 향상시킨다. 비선형성은 코어의 크기, 엄밀히 말해서 펌프 광원에 대한 유효 코어 면적(effective area)에 반비례하는 특성을 갖는다.
이러한 광섬유에 소정 파장을 갖는 펌핑광을 공급하면 여기(exitation)에 의해 소정 파장의 유도 광자를 방출함으로써 해당 광섬유를 통해 전파되는 광신호가 증폭된다.
도 5는 본 발명의 바람직한 실시예에 따른 다파장 라만 레이저의 파장과 출력의 관계를 공진기의 실제 구성과 같이 서로 대향하도록 도시한 그래프이다.
도 5에서 가로축은 광섬유의 길이(Fiber Length)를 나타내고, 세로축은 제1반사체와 제2반사체의 파장 대역(Wavelength)을 나타내며, 높이축은 반사 출력(Reflection)을 나타낸다. 또한, Cavity 1은 Chirped FBG를 적용한 제2반사체를 나타내고, Cavity 2는 중심 파장의 대역이 이격된 다수개의 FBG(Discrete FBGs)를 적용한 제1반사체를 나타낸다. 또한, Chirped FBG와 Discrete FBG 사이에 위치한 Raman Gain Medium은 이득 물질을 나타내며, GDF, PDF 및 DCF와 같은 것들이 사용될 수 있다.
Cavity 1의 파장 영역과 Cavity 2의 파장 영역을 대응시켜 보면 다음과 같은 사실을 알 수 있다. Cavity 2 측은 6개의 서로 이격된 파장 대역을 가지고 있으며, 각각 중심파장이 대략 1410nm, 1420nm, 1430nm, 1440nm, 1450nm 및 1460nm이다. 한 편, Cavity 1 측은 Cavity 2의 파장 대역을 모두 커버할 수 있도록 1400nm ~ 1460nm의 넓은 파장 대역을 갖는 FBG(wideband FBG)로 이루어져 있다. 따라서, Cavity 1은 Cavity 2의 FBG 각각이 반사한 중심파장을 모두 반사시켜 다파장 라만 레이저를 생성할 수 있다.
도 6a는 본 발명의 바람직한 실시예에 따라 실험된 다파장 라만 레이저의 실 구성도이며, 도 6a의 다파장 라만 레이저의 파장과 출력을 측정하여 도 6b의 그래프를 얻었다.
도 6a에서 레이저 광원으로는 1070.8nm의 파장을 갖는 YLR-20 레이저를 사용하였다. YLR-20은 IPG Photonics 사(社)에서 출시된 이터븀(Yitterbium, Yb)을 이득 매질로 하는 광섬유 레이저로, 출력 파장이 1070.8nm, 최대 출력 파워가 20W인 라만 펌프용 레이저이다. YLR-20의 출력 파워 11.7W는 1070.8nm 파워미터로 측정한 결과로, 14xx nm 3파장 레이저를 발진하는데 필요한 입력 펌프 파워를 나타낸다.
또한, 제1반사체로는 Tunable FBG 3개와 Discrete FBG 2개를 사용하였고, 제2반사체로는 고반사(HR) Chirped FBG 1개를 사용하였다. 도 6a의 공진기 양 끝단의 동일한 반사체에서 1st 1123.96HR, 2nd 1182.46HR, 3rd 1267.98HR, 4th 1320.52HR은 입력 펌프 1070.8nm를 기준으로 하여 GDF의 1~4차 라만 스톡 천이의 중심파장에 해당하는 반사체로, 각각은 99.9% 이상의 반사도를 가지며, 서로 대칭 구조를 이루고 있다. 이 반사체의 중심 파장은 GDF에 음향양자 에너지 440cm-1 펌프광 1070.8nm를 입사했을 때 연쇄적으로 생기는 라만 스톡 천이에 해당한다. 이러한 반사체는 14xx nm 레이저 발진을 효율적으로 일으키기 위한 것으로 문턱 파워(threshold power)를 낮추어 결과적으로 레이저 효율을 높여 준다.
이득 물질로는 1km 길이의 GDF를 사용하였다. OSA(Optical Spectrum Analyzer)는 3파장 레이저의 스펙트럼 대비 출력파워를 실시간으로 확인할 수 있는 분석기이다. 측정 조건은 Agilent 86140B, Resolution 2nm, Sensitivity -75dBm으로 하였다. 그 결과, 1400nm 이상의 가변적인 출력 파장을 얻었다.
도 6b는 도 6a의 구조를 갖는 레이저의 입력 펌프 대비 출력 파형을 OSA로 확인한 결과이다. Tunable FBG의 파장을 1415nm, 1430nm, 1445nm로 설정하였을 때 레이저의 출력 파장 역시 일치함을 확인하고, FBG의 반사도에 따라 각각의 출력이 결정됨을 확인할 수 있다. 1375nm, 1400nm, 1461.8nm, 1478nm에서 나타나는 저출력의 레이저는 Four-wave-mixing 효과에 의한 비선형 현상으로, 출력 파장과 출력 파워는 실질적인 레이저의 출력 파장과 파워에 의해 결정된다.
이와 같이 함으로써 상기 라만 레이저 발생장치는 양측 공진기의 파장 특성을 정확히 맞출 필요가 없으므로 레이저 공진기의 구성이 용이하게 된다. 또한, 상기 라만 레이저 발생장치는 공진기의 구성을 위한 FBG의 개수를 감소시킬 수 있으므로 제조가 용이하다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다. 따라서, 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상 을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
본 발명에 의하면 적어도 하나의 좁은 파장 영역을 갖는 광섬유 격자형 반사체와 넓은 파장 영역을 갖는 광섬유 격자형 반사체로 레이저의 공진기를 구성함으로써 양측 공진기의 파장 특성을 정확히 맞출 필요가 없어 공진기의 구성이 용이하다는 효과가 있다.
또한, 본 발명에 의하면 공진기를 구성하기 위한 광섬유 브래그 격자의 개수를 줄일 수 있어 제조 원가를 감소시킬 수 있는 효과가 있다.
또한, 본 발명에 의하면 광섬유 계열의 첩트 격자를 사용하여 손실을 줄이고, 가변 파장 브래그 격자(tunable FBG)를 통해 출력 파장의 동조가 자유롭다는 효과가 있다.
또한, 본 발명에 의하면 파장 대역이 넓은 첩트 광섬유 브래그 격자를 사용함으로써 파장 확충 등의 업그레이드가 용이한 효과가 있다.

Claims (5)

  1. 라만 레이저를 발생시키는 장치에 있어서,
    일측 공진기(cavity)는 좁은 파장 영역을 갖는 제1반사체를 구비하고, 타측 공진기는 상기 제1반사체의 파장 영역을 포함하는 넓은 파장 영역을 갖는 제2반사체를 구비하여 상기 반사체들의 파장 특성이 비대칭적으로 구성되며,
    상기 제1반사체와 상기 제2반사체는 광섬유 브래그 격자(Fiber Bragg Grating)인 것을 특징으로 하는 라만 레이저 발생장치.
  2. 제1항에 있어서,
    상기 제1반사체는 파장이 가변되는 튜너블(tunable) 광섬유 브래그 격자인 것을 특징으로 하는 라만 레이저 발생장치.
  3. 제1항에 있어서,
    상기 제1반사체는 적어도 하나 구비되는 것을 특징으로 하는 라만 레이저 발생장치.
  4. 제1항에 있어서,
    상기 제2반사체는 격자 간격이 가변적인 첩트(chirped) 광섬유 브래그 격자 하나로 구성되는 것을 특징으로 하는 라만 레이저 발생장치.
  5. 변조된 광을 전송매체에 전달하는 결합기;
    상기 결합기를 통해 전달된 광의 전송매체 역할을 하는 광섬유;
    상기 광섬유를 통해 전송된 정보를 추출하는 검출기; 및
    제1항 내지 제4항 중 어느 한 항에 따른 라만 레이저 발생장치
    를 포함하는 것을 특징으로 하는 광통신 시스템.
KR1020070009389A 2007-01-30 2007-01-30 비대칭 공진기를 구비하는 다파장 라만 레이저 발생장치 및이를 포함하는 광통신 시스템 KR100840707B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070009389A KR100840707B1 (ko) 2007-01-30 2007-01-30 비대칭 공진기를 구비하는 다파장 라만 레이저 발생장치 및이를 포함하는 광통신 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070009389A KR100840707B1 (ko) 2007-01-30 2007-01-30 비대칭 공진기를 구비하는 다파장 라만 레이저 발생장치 및이를 포함하는 광통신 시스템

Publications (1)

Publication Number Publication Date
KR100840707B1 true KR100840707B1 (ko) 2008-06-24

Family

ID=39772251

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070009389A KR100840707B1 (ko) 2007-01-30 2007-01-30 비대칭 공진기를 구비하는 다파장 라만 레이저 발생장치 및이를 포함하는 광통신 시스템

Country Status (1)

Country Link
KR (1) KR100840707B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170141072A (ko) * 2016-06-14 2017-12-22 광주과학기술원 위상 광섬유 시험기를 위한 잡음 저감 장치
KR101844689B1 (ko) * 2013-07-24 2018-04-02 후아웨이 테크놀러지 컴퍼니 리미티드 조정가능 광학 수신기, 조정가능 광학 송신기 및 조정가능 광학 송수신기
KR20190136429A (ko) * 2018-05-30 2019-12-10 국방과학연구소 광 섬유 레이저 장치 및 이의 동작방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000073244A (ko) * 1999-05-08 2000-12-05 윤덕용 라만 광섬유 변조기 및 광 변조방법
KR20010045864A (ko) * 1999-11-09 2001-06-05 윤덕용 파장 가변 단일 주파수 레이저
US6549329B2 (en) 1999-10-29 2003-04-15 Jds Uniphase Corporation Multiple wavelength optical sources
KR20050099744A (ko) * 2004-04-12 2005-10-17 한국과학기술연구원 광섬유 격자를 이용한 광섬유 라만 레이저와 이를 이용한장거리용 센서
KR20050111884A (ko) * 2004-05-24 2005-11-29 한국과학기술연구원 few mode 광섬유 격자를 이용한 라만 또는 어븀광섬유 레이저와 이를 이용한 온도와 스트레인 분리 및장거리 센서
JP2006122081A (ja) 2004-10-26 2006-05-18 Nidek Co Ltd 医療用レーザ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000073244A (ko) * 1999-05-08 2000-12-05 윤덕용 라만 광섬유 변조기 및 광 변조방법
US6549329B2 (en) 1999-10-29 2003-04-15 Jds Uniphase Corporation Multiple wavelength optical sources
KR20010045864A (ko) * 1999-11-09 2001-06-05 윤덕용 파장 가변 단일 주파수 레이저
KR20050099744A (ko) * 2004-04-12 2005-10-17 한국과학기술연구원 광섬유 격자를 이용한 광섬유 라만 레이저와 이를 이용한장거리용 센서
KR20050111884A (ko) * 2004-05-24 2005-11-29 한국과학기술연구원 few mode 광섬유 격자를 이용한 라만 또는 어븀광섬유 레이저와 이를 이용한 온도와 스트레인 분리 및장거리 센서
JP2006122081A (ja) 2004-10-26 2006-05-18 Nidek Co Ltd 医療用レーザ装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101844689B1 (ko) * 2013-07-24 2018-04-02 후아웨이 테크놀러지 컴퍼니 리미티드 조정가능 광학 수신기, 조정가능 광학 송신기 및 조정가능 광학 송수신기
KR20170141072A (ko) * 2016-06-14 2017-12-22 광주과학기술원 위상 광섬유 시험기를 위한 잡음 저감 장치
KR102471156B1 (ko) * 2016-06-14 2022-11-28 광주과학기술원 위상 광섬유 시험기를 위한 잡음 저감 장치
KR20190136429A (ko) * 2018-05-30 2019-12-10 국방과학연구소 광 섬유 레이저 장치 및 이의 동작방법
KR102089077B1 (ko) * 2018-05-30 2020-03-13 국방과학연구소 광 섬유 레이저 장치 및 이의 동작방법

Similar Documents

Publication Publication Date Title
US10461489B2 (en) Photonic devices and methods of using and making photonic devices
JP3357291B2 (ja) ラマンファイバレーザを有するシステム
US5666372A (en) Embedded Bragg grating laser master-oscillator and power-amplifier
EP1124295A2 (en) Raman fiber laser
US6980578B2 (en) Optical bandpass filter using long period gratings
JP2008511862A (ja) 半導体に基づくラマンレーザ及び増幅器用半導体導波路における二光子吸収による生成キャリアのライフタイム短縮
Peng et al. Intensity and wavelength-division multiplexing FBG sensor system using a tunable multiport fiber ring laser
US6459829B1 (en) Multiple wavelength excitation optical multiplexing device, multiple wavelength excitation light source incorporating aforementioned device, and optical amplifier
CN109378687B (zh) 光纤激光放大器系统受激布里渊散射抑制方法
US6674773B1 (en) Multi-wavelength Raman laser
JP2011114061A (ja) レーザ発振器、及び、モードフィルタ
KR100840707B1 (ko) 비대칭 공진기를 구비하는 다파장 라만 레이저 발생장치 및이를 포함하는 광통신 시스템
KR100628472B1 (ko) few mode 광섬유 격자를 이용한 라만 또는 어븀 광섬유 레이저와 이를 이용한 온도와 스트레인 동시 측정을 위한 장거리 센서
JPH11344620A (ja) 広帯域長周期格子
Guo et al. Symmetric step-apodized distributed feedback fiber laser with improved efficiency
Delgado-Pinar et al. Wavelength-switchable fiber laser using acoustic waves
JP2004184524A (ja) 光モジュール、光ファイバおよび光伝送システム
US20050152412A1 (en) Raman laser with improved output power and lower sensitivity to the output coupler reflectivity
JP3875597B2 (ja) 長周期格子を使用する光学帯域通過フィルタ
Xiong et al. Experimental optimization of high power Raman fiber lasers at 1495 nm using phosphosilicate fibers
KR100669536B1 (ko) 광섬유 격자를 이용한 광섬유 라만 레이저와 이를 이용한장거리용 센서
Zhang et al. Multimode Interference Tunable Filter in Chalcogenide Fiber
Otto et al. Flexible manufacturing method for long-period fibre gratings with arbitrary index modulation profiles
WO2020155250A1 (zh) 单频激光光源
Sharma et al. Dispersion Compensation for 40Gbps Optical Waveguide System by Using FBG

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130524

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140520

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150429

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160526

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170516

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180514

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190613

Year of fee payment: 12