KR100838060B1 - Electrolytic solution for overcharge protection of lithium secondary batteries and lithium secondary batteries using the same - Google Patents

Electrolytic solution for overcharge protection of lithium secondary batteries and lithium secondary batteries using the same Download PDF

Info

Publication number
KR100838060B1
KR100838060B1 KR1020010058006A KR20010058006A KR100838060B1 KR 100838060 B1 KR100838060 B1 KR 100838060B1 KR 1020010058006 A KR1020010058006 A KR 1020010058006A KR 20010058006 A KR20010058006 A KR 20010058006A KR 100838060 B1 KR100838060 B1 KR 100838060B1
Authority
KR
South Korea
Prior art keywords
lithium secondary
battery
electrolyte
weight
dioxolane
Prior art date
Application number
KR1020010058006A
Other languages
Korean (ko)
Other versions
KR20030025076A (en
Inventor
이하영
나성환
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020010058006A priority Critical patent/KR100838060B1/en
Publication of KR20030025076A publication Critical patent/KR20030025076A/en
Application granted granted Critical
Publication of KR100838060B1 publication Critical patent/KR100838060B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 100℃ 이상이거나 4.3V 이상의 전압에서 폴리머화되어 전지의 전기적 소통을 불가능하게 함으로써 전지의 안정성을 향상시키는 전해액 및 이를 사용한 리튬 2차전지에 관한 것이다.The present invention relates to an electrolyte and a lithium secondary battery using the same, which improves the stability of the battery by polymerizing at a voltage of 100 ° C. or higher or 4.3 V or higher to disable electrical communication.

본 발명에서는 1,3-디옥솔란 5∼55중량%와 MEC/DEC 45∼95중량%의 혼합물을 리튬 2차 전지의 전해액으로 사용하며, 추가로 트리메틸아민, 트리에틸아민, 트리부틸아민, 트리프로필아민, 트리벤질아민 등을 전체 1,3-디옥솔란의 5중량%이하로 첨가할 수 있다. 본 발명에 따른 유기 전해액은 전지가 고온에 노출되거나 과충전되었을때 전지의 과열, 발화의 위험을 억제할 수 있다.In the present invention, a mixture of 5 to 55% by weight of 1,3-dioxolane and 45 to 95% by weight of MEC / DEC is used as an electrolyte of a lithium secondary battery, and further trimethylamine, triethylamine, tributylamine, tri Propylamine, tribenzylamine and the like can be added at 5% by weight or less of the total 1,3-dioxolane. The organic electrolyte according to the present invention can suppress the risk of overheating and ignition of the battery when the battery is exposed to high temperature or overcharged.

리튬 2차 전지용 전해액, 1,3-디옥솔란, MEC/DECElectrolyte for lithium secondary battery, 1,3-dioxolane, MEC / DEC

Description

리튬 2차전지용 과충전 방지 전해액 및 이를 이용한 리튬 2차 전지 {Electrolytic solution for overcharge protection of lithium secondary batteries and lithium secondary batteries using the same}Overcharge prevention electrolyte for lithium secondary battery and lithium secondary battery using same {Electrolytic solution for overcharge protection of lithium secondary batteries and lithium secondary batteries using the same}

본 발명은 리튬 2차전지용 과충전 방지 전해액 및 이를 이용한 리튬 2차전지에 관한 것으로서, 더욱 상세하게는 100℃ 이상이거나 4.3V 이상의 전압에서 폴리머화되어 전지의 전기적 소통을 불가능하게 함으로써 전지의 안정성을 향상시키는 전해액에 관한 것이다.The present invention relates to an overcharge preventing electrolyte for a lithium secondary battery and a lithium secondary battery using the same. More particularly, the polymerization at a voltage of 100 ° C. or higher or 4.3 V or higher prevents electrical communication of the battery, thereby improving stability of the battery. It relates to an electrolyte solution.

전해액의 조성을 변화시키거나 전해액에 첨가제를 넣어 주어 리튬 2차 전지의 과충전을 억제하고자 하는 시도가 많이 있었다. 미국 특허 제 5580684호에서는 인산에스테르계 물질로서 트리메틸 포스페이트 1∼10중량%, 트리스(트리플루오로에틸)포스페이트 10∼20중량%, 트리스(2-클로로에틸)포스페이트 등을 전해액에 첨가하여 전해액의 자기소화성(self-extinguishing)을 증대시킴으로써 전지 이상 발생시 안정성을 높일 수 있음을 보고하였으며, 미국 특허 제 5776627호에서는 티오펜, 비페닐, 퓨란 등을 첨가하여 전지 이상시 이들이 폴리머화되어 리튬의 이동을 방해하고 이 때 발생하는 기체로써 전지의 벤트(vent)를 쉽게 열리도록 하여 전지의 안 정성을 높일 수 있음을 보고하였다.There have been many attempts to suppress the overcharging of lithium secondary batteries by changing the composition of the electrolyte or by adding an additive to the electrolyte. In US Pat. No. 5,580,684, 1-10 wt% of trimethyl phosphate, 10-20 wt% of tris (trifluoroethyl) phosphate, tris (2-chloroethyl) phosphate, etc. are added to the electrolytic solution as a phosphate ester-based material. Increasing self-extinguishing has been reported to increase stability in case of battery abnormalities. US Pat. No. 5,776,627 adds thiophene, biphenyl, furan and the like to polymerize them in case of battery abnormalities, thereby preventing the movement of lithium. As a gas generated at this time, the vent of the battery can be easily opened to increase the stability of the battery.

이러한 것들과 유사하게, 미국 특허 제 5763119호에서는 1,2-디메톡시-4-브로모-벤젠을, 미국 특허 제 5709968호에서는 2-클로로-p-크실렌, 4-클로로-아니솔을, 미국 특허 제 5858573호에서는 전해액에 2,7-디아세틸 티안트렌 등을 각각 첨가함으로써 전지의 안전성을 향상시킬 수 있음을 보고하였다. 그러나 이러한 전해액 첨가제들은 전지의 정상적인 작동 조건에서 폴리머화된다든지, 전지의 고율특성, 저온특성, 수명특성 등 제반성능을 떨어뜨림으로써 그 사용이 제한되어 왔다.Similarly, 1,2-dimethoxy-4-bromo-benzene is described in US Pat. No. 5,573,119, 2-chloro-p-xylene, 4-chloro-anisole in U.S. Pat. Patent 5858573 reports that the safety of a battery can be improved by adding 2,7-diacetyl thianthrene or the like to the electrolyte, respectively. However, these electrolyte additives have been limited in their use by polymerizing under normal operating conditions of the battery, or by degrading the overall performance such as high rate characteristics, low temperature characteristics, and lifetime characteristics of the batteries.

따라서, 본 발명은 전지가 고온에 노출되거나 과충전 되었을 때 전지의 과열, 발화의 위험을 억제할 수 있는 리튬 2차전지용 과충전 방지 전해액을 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide an overcharge preventing electrolyte solution for a lithium secondary battery that can suppress the risk of overheating and ignition of a battery when the battery is exposed to high temperatures or overcharged.

상기와 같은 목적을 달성하기 위하여, 본 발명은 100℃ 이상이거나 4.3V 이상의 전압에서 폴리머화되어 전지의 전기적 도통을 불가능하게 함으로써 전지의 안정성을 향상시키는 전해액을 제공한다.In order to achieve the above object, the present invention provides an electrolyte solution that improves the stability of the battery by polymerizing at a voltage of 100 ° C or higher or 4.3 V or higher to disable electrical conduction of the battery.

본 발명에 따른 리튬 2차 전지용 전해액은 사슬형 카보네이트 및 1,3-디옥솔란을 포함한다.The electrolyte solution for a lithium secondary battery according to the present invention includes a chain carbonate and 1,3-dioxolane.

상기 사슬형 카보네이트는 메틸에틸카보네이트 및 디에틸카보네이트 (MEC/DEC)의 혼합물인 것이 바람직하며, 그 중량비는 2:8∼8:2이 바람직하다.The chain carbonate is preferably a mixture of methyl ethyl carbonate and diethyl carbonate (MEC / DEC), and the weight ratio thereof is preferably from 2: 8 to 8: 2.

상기 전해액 중 사슬형 카보네이트의 비율은 45∼95중량%이고 1,3-디옥솔란 의 비율은 5∼55중량%인 것이 바람직하다. 상기 1,3-디옥솔란의 비율이 5중량% 이하이면 전지 보호 기능이 거의 나타나지 않고 55중량% 이상이면 전해액과 완전히 혼합되지 못하며 장시간 방치시 전해액 아래로 침전되어 전지 성능에 악영향을 줄 수 있다.The proportion of the chain carbonate in the electrolyte is preferably 45 to 95% by weight and the proportion of 1,3-dioxolane is 5 to 55% by weight. If the ratio of the 1,3-dioxolane is 5% by weight or less, the battery protection function is hardly exhibited. If the ratio of 1,3-dioxolane is 55% by weight or more, the mixture may not be completely mixed with the electrolyte and may be impaired under the electrolyte when left for a long time.

또한 본 발명에 따른 리튬 2차 전지용 전해질은 폴리머화 억제제를 더 포함할 수 있다. 이러한 폴리머화 억제제는 상기 전해액 중 사슬형 카보네이트의 비율이 45∼65중량% 이내이고 1,3-디옥솔란의 비율이 35∼55중량%인 경우에 사용하는 것이 바람직하며, 이는 전해액에 35중량% 이상의 1,3-디옥솔란만을 사용하였을 경우에는 전지의 충격 또는 전지 온도 상승의 영향으로 인하여 정상적인 전지 작동 구간에서도 전해액이 폴리머화되는 현상이 나타날 수 있기 때문에 이를 억제하기 위해 사용하는 것이다. 상기 폴리머화 억제제는 3차 아만, 보다 구체적으로는 트리메틸아민, 트리에틸아민, 트리프로필아민, 트리부틸아민 및 트리벤질아민으로 이루어진 군에서 선택되는 것이 바람직하다.In addition, the electrolyte for a lithium secondary battery according to the present invention may further include a polymerization inhibitor. Such a polymerization inhibitor is preferably used when the proportion of the chain carbonate in the electrolyte is within 45 to 65% by weight and the proportion of 1,3-dioxolane is 35 to 55% by weight, which is 35% by weight in the electrolyte. When only 1,3-dioxolane is used, the electrolyte may polymerize even during normal battery operation due to the impact of battery shock or battery temperature rise. The polymerization inhibitor is preferably selected from the group consisting of tertiary aman, more specifically trimethylamine, triethylamine, tripropylamine, tributylamine and tribenzylamine.

본 발명에 따르면, 상기 전해액을 사용한 리튬 2차 전지가 제공되며, 2차 전지를 구성하는 상기 전해액 이외의 구성 부재에 관해서는 특별히 한정되지 않고, 종래에 사용되고 있는 통상의 구성 부재를 사용할 수 있다. 또한, 본 발명에 의한 리튬 2차 전지의 구조 역시 특별히 한정되지 않는다.According to this invention, the lithium secondary battery using the said electrolyte solution is provided, It does not specifically limit about structural members other than the said electrolyte solution which comprises a secondary battery, The conventional structural member used conventionally can be used. In addition, the structure of the lithium secondary battery according to the present invention is also not particularly limited.

이하 본 발명을 보다 구체적으로 설명한다. Hereinafter, the present invention will be described in more detail.

전해액은 전지의 안전성과 밀접하게 연관되어 있다. 전지의 작동 전압 구간 내에서 분해 등의 반응을 일으키지 않아야 하며 리튬 이온의 이동도가 좋아야 하고 온도에 크게 영향 받지 않아야 한다. 또한 전지가 외부 위험 인자에 노출될 경우나 전지의 이상 동작 시 전지의 충/방전 기능을 정지시킬 수 있는 것이라면 보호 회로의 기능을 보완하거나 대체할 수 있으므로 전지의 안전성을 크게 향상시킬 수 있다. 전지의 이상 동작이 발생하게되는 온도는 통상 100℃ 이상이며 4.3V 이상의 전압에서도 전지의 오동작이 일어난다. 따라서 위와 같은 조건에서만 전지 보호 작용이 일어나고 정상적인 전지 작동 구간에서는 전지의 성능에 악영향을 미치지 않아야 한다. 이러한 특성은 전해액에 1,3-디옥솔란을 다량 첨가함으로써 구체화될 수 있으며 이때, 전지의 저온 방전 특성 등 제반 성능에 영향을 미치지 않기 위해서는 MEC/DEC의 혼합물을 전해액의 주요 성분으로 사용한다. 본 발명에 사용되는 전해액의 염으로는 LiPF6, LiBF4, LiClO4, LiAsF6 등이 있으며 LiPF 6, LiAsF6 바람직하다.The electrolyte is closely related to the safety of the battery. It should not cause decomposition or other reactions within the operating voltage range of the battery, and should have good mobility of lithium ions and not be greatly influenced by temperature. In addition, if the battery is exposed to an external risk factor or if the battery's charge / discharge function can be stopped during abnormal operation of the battery, the function of the protection circuit can be supplemented or replaced, thereby greatly improving the safety of the battery. The temperature at which abnormal operation of the battery occurs is usually 100 ° C. or higher, and battery malfunction occurs even at a voltage of 4.3 V or higher. Therefore, the battery protection action only occurs in the above conditions, and should not adversely affect the performance of the battery in the normal battery operating period. This property can be specified by adding a large amount of 1,3-dioxolane to the electrolyte. In this case, a mixture of MEC / DEC is used as the main component of the electrolyte in order not to affect overall performance such as low-temperature discharge characteristics of the battery. Salts of the electrolytic solution used in the present invention include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 and the like LiPF 6 , LiAsF 6 desirable.

1,3-디옥솔란은 실험결과 100℃ 이상의 온도 또는 4.3V 이상의 전압에서 전해액과 반응하여 폴리머화됨을 관찰하였으며 이러한 반응에 의하여 리튬 이온의 이동을 정지시킴으로써 전지의 충/방전 동작을 정지시키는 것으로 추정된다.Experimental results showed that 1,3-dioxolane polymerized by reacting with electrolyte at a temperature of 100 ℃ or higher or voltage of 4.3V or higher. do.

그러나 1,3-디옥솔란은 35중량% 이상을 첨가하였을 경우에는 전지 사용중의 충격이나 전지 온도 상승의 영향으로 정상적인 전지 작동 구간에서도 전해액이 폴리머화되는 현상을 나타내 수 있으므로 신뢰성 있는 전지의 생산을 위해서 1,3-디옥솔란의 폴리머화를 억제할 수 있는 물질을 동시에 첨가 한다. 즉, 3차 아민, 구체적으로 트리메틸아민, 트리에틸아민, 트리부틸아민, 트리프로필아민, 트리벤질아민 등을 전체 1,3-디옥솔란의 5부피% 이하로 첨가함으로써 전지의 정상 작동시 폴 리머화되는 현상을 충분히 억제할 수 있다. However, when more than 35% by weight of 1,3-dioxolane is added, the electrolyte may polymerize even during normal battery operation due to the impact of battery use or the increase of battery temperature. At the same time, a substance capable of inhibiting the polymerization of 1,3-dioxolane is added. That is, tertiary amines, specifically trimethylamine, triethylamine, tributylamine, tripropylamine, tribenzylamine, etc., are added to 5% by volume or less of the total 1,3-dioxolane, thereby polymerizing in normal operation of the battery. It is possible to sufficiently suppress the phenomena that become unnatural.

이하, 본 발명을 바람직한 실시예 및 시험예를 통하여 더욱 상세히 설명하나, 본 발명이 이에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to preferred examples and test examples, but the present invention is not limited thereto.

하기 실시예에서 사용된 LiPF6은 일본 하시모토 주식회사의 전지시약급 제품을 정제없이 사용하였고, 유기전해액 제조시 사용된 용매는 Merck사의 전지시약급 제품이었으며, 모든 실험은 아르곤 가스(99.9999% 이상) 분위기하에서 실시하였다.LiPF 6 used in the following Example was used without a battery reagent grade product of Hashimoto, Japan, without purification, the solvent used in the preparation of the organic electrolyte solution was a battery reagent grade product of Merck, all experiments were argon gas (99.9999% or more) atmosphere It was carried out under.

실시예 1Example 1

전해액을 보관할 플라스틱통에 1M LiPF6 용액을 만들 수 있는 함량의 LiPF6를 넣은 다음, 메틸에틸카보네이트와 디에틸카보네이트를 넣고 격렬하게 흔들어주어 상기 리튬금속염을 용해시켰으며, 이때, 메틸에틸카보네이트 : 디에틸카보네이트의 중량비는 2 : 8이었다. 다음으로, 1,3-디옥솔란을 제조되는 전해액의 총 중량에 대하여 5중량%가 되도록 부가하여 본 발명에 따른 유기 전해액을 제조하였다.It was to hold the electrolytic solution into the LiPF 6 of the content to create a 1M LiPF 6 solution in a plastic barrel've then given into vigorous shaking, methyl ethyl carbonate and diethyl carbonate dissolving the lithium salt, at this time, methyl ethyl carbonate: D The weight ratio of ethyl carbonate was 2: 8. Next, 1,3-dioxolane was added in an amount of 5% by weight based on the total weight of the prepared electrolyte, thereby preparing an organic electrolyte according to the present invention.

실시예 2Example 2

상기한 실시예 1에서 1,3-디옥솔란을 전해액의 총 중량에 대하여 10중량%가 되도록 부가한 것을 제외하고는 실시예 1과 동일한 방법으로 본 발명에 따른 유기 전해액을 제조하였다.An organic electrolyte solution according to the present invention was prepared in the same manner as in Example 1, except that 1,3-dioxolane was added to 10 wt% based on the total weight of the electrolyte in Example 1 above.

실시예 3Example 3

상기한 실시예 1에서 메틸에틸카보네이트 : 디에틸카보네이트의 중량비를 5:5로 하고, 1,3-디옥솔란을 전해액의 총 중량에 대하여 35중량%가 되도록 부가한 것을 제외하고는 실시예 1과 동일한 방법으로 본 발명에 따른 유기 전해액을 제조하였다.Example 1 and 1 except that the weight ratio of methyl ethyl carbonate to diethyl carbonate is 5: 5 and 1,3-dioxolane is added so as to be 35% by weight relative to the total weight of the electrolyte. In the same manner, an organic electrolyte solution according to the present invention was prepared.

실시예 4Example 4

상기한 실시예 1에서 1,3-디옥솔란을 전해액의 총 중량에 대하여 40중량%가 되도록 부가하고, 폴리머화 억제제로서 트리메틸아민을 전체 1,3-디옥솔란의 3부피%가 되도록 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 본 발명에 따른 유기 전해액을 제조하였다.In Example 1 described above, 1,3-dioxolane was added at 40% by weight relative to the total weight of the electrolyte solution, and trimethylamine was added as 3% by volume of the total 1,3-dioxolane as a polymerization inhibitor. Except for the organic electrolyte according to the present invention was prepared in the same manner as in Example 1.

실시예 5Example 5

상기한 실시예 4에서 1,3-디옥솔란을 전해액의 총 중량에 대하여 55중량%가 되도록 부가하고, 폴리머화 억제제로서 트리벤질아민을 전체 1,3-디옥솔란의 5부피%가 되도록 첨가한 것을 제외하고는 실시예 4와 동일한 방법으로 본 발명에 따른 유기 전해액을 제조하였다. In Example 4 described above, 1,3-dioxolane was added at 55% by weight relative to the total weight of the electrolyte solution, and tribenzylamine was added as 5% by volume of the total 1,3-dioxolane as a polymerization inhibitor. An organic electrolyte solution according to the present invention was prepared in the same manner as in Example 4.

비교예 1∼3Comparative Examples 1 to 3

상기한 실시예 1의 유기 전해액에 첨가제로 1,3-디옥솔란 대신에 트리메틸포스페이트 5중량%를 첨가한 것을 비교예 1, 티오펜 10중량%를 첨가한 것을 비교예 2, 티오펜 5중량%를 첨가한 것을 비교예 3으로 하였다.Comparative Example 1, 10 wt% of thiophene was added to Comparative Example 1, 5 wt% of thiophene, to which the organic electrolyte solution of Example 1 was added 5 wt% of trimethyl phosphate instead of 1,3-dioxolane as an additive. What was added was made into the comparative example 3.

시험예 1Test Example 1

상술한 실시예 1-5와 비교예 1-3의 유기 전해액을 이용하여 다음과 같은 겔형 고분자 전해질을 함유하는 리튬 2차 전지를 제조하여 각각에 대하여 과충전 방지 정도를 측정하였다. Using the organic electrolyte solution of Example 1-5 and Comparative Example 1-3 described above to prepare a lithium secondary battery containing the gel polymer electrolyte as follows to measure the degree of overcharge protection for each.                     

싸이클로-헥사논 250ml와 아세톤 250ml를 혼합한 유기용매에 결합제로서 비닐리덴플루오라이드/헥사플루오로프로필렌 공중합체(여기서 헥사플루오로프로필렌의 함량이 15중량%임) 20g을 부가하여 볼밀에서 2시간 동안 혼합하여 용해하였다. 이 혼합물에 캐소드 활물질로서 LiCoO2 1000g과 도전제로서 카본블랙 20g을 부가한 다음, 이를 8시간 동안 혼합하여 캐소드 활물질 조성물을 형성하였다.To an organic solvent mixed with 250 ml of cyclo-hexanone and 250 ml of acetone, 20 g of vinylidene fluoride / hexafluoropropylene copolymer (wherein the hexafluoropropylene content is 15% by weight) was added for 2 hours in a ball mill. Mixed to dissolve. 1000 g of LiCoO 2 as a cathode active material and 20 g of carbon black as a conductive agent were added to the mixture, which was then mixed for 8 hours to form a cathode active material composition.

상기 캐소드 활물질 조성물을 320㎛ 갭의 닥터 블래이드를 사용하여 두께가 147㎛이고 폭이 4.9cm이며, 싸이클로-헥사논 250ml와 아세톤 250ml를 혼합한 유기용매에 비닐리덴플루오라이드/헥사플루오로프로필렌 공중합체(여기서 헥사플루오로프로필렌의 함량이 15중량%임) 20g과 카본블랙 20g을 부가하고 8시간 동안 혼합하여 제조한 전처리 조성물을 스프레이 코팅법으로 코팅하여 전처리한 알루미늄 박막상에 코팅 및 건조하여 캐소드 전극판을 만들었다. Vinylidene fluoride / hexafluoropropylene copolymer of the cathode active material composition using a doctor blade having a 320 μm gap and a thickness of 147 μm and a width of 4.9 cm and an organic solvent mixed with 250 ml of cyclo-hexanone and 250 ml of acetone (The content of hexafluoropropylene is 15% by weight.) 20 g and 20 g of carbon black are added, and the pretreatment composition prepared by mixing for 8 hours is coated with a spray coating method and coated on a pretreated aluminum thin film and dried to form a cathode electrode. Made a plate.

한편, 애노드 전극판은 다음 과정에 따라 제조하였다.Meanwhile, the anode electrode plate was manufactured according to the following procedure.

N-메틸피롤리돈 300ml와 아세톤 100ml를 혼합한 유기용매에 결합제로서 비닐리덴플루오라이드/헥사플루오로프로필렌 공중합체(여기서 헥사플루오로프로필렌의 함량이 15중량%임) 20g을 부가하여 볼밀에서 2시간 동안 혼합하여 용해하였다. 이 혼합물에 애노드 활물질로서 메조카본파이버(MCF) 1000g을 부가한 다음, 이를 3시간 동안 혼합하여 애노드 활물질 조성물을 형성하였다.To the organic solvent in which 300 ml of N-methylpyrrolidone and 100 ml of acetone were mixed, 20 g of vinylidene fluoride / hexafluoropropylene copolymer (wherein the hexafluoropropylene content was 15% by weight) was added as a binder. Dissolve by mixing for hours. 1000 g of mesocarbon fiber (MCF) was added to the mixture as an anode active material, and then mixed for 3 hours to form an anode active material composition.

상기 애노드 활물질 조성물을 420㎛ 갭의 닥터 블래이드를 사용하여 두께가 178㎛이고 폭이 5.1cm이며, N-메틸피롤리돈 300ml와 아세톤 100ml를 혼합한 유기용 매에 비닐리덴플루오라이드/헥사플루오로프로필렌 공중합체(여기서 헥사플루오로프로필렌의 함량이 15중량%임) 50g과 카본블랙 5g을 부가하고 2시간 동안 혼합하여 제조한 전처리 조성물을 스프레이 코팅법으로 코팅하여 전처리한 구리박막상에 코팅 및 건조하여 애노드 전극판을 만들었다.The anode active material composition was 178 µm thick and 5.1 cm wide using a 420 µm gap doctor blade, and vinylidene fluoride / hexafluoro in an organic solvent in which 300 ml of N-methylpyrrolidone and 100 ml of acetone were mixed. 50 g of propylene copolymer (where the content of hexafluoropropylene is 15% by weight) and 5 g of carbon black are added and mixed for 2 hours, followed by coating and drying on a pretreated copper thin film by spray coating. To make an anode electrode plate.

한편, 실시예 1∼5 및 비교예 1∼3의 유기 전해액 500ml에 비닐리덴플루오라이드/헥사플루오로프로필렌 공중합체(여기서 헥사플루오로프로필렌의 함량이 15중량%임) 15g 및 무기 충진제로서 실리카 40g을 부가하고 90℃로 가온하여 겔형 고분자 전해질을 제조하였다.On the other hand, 15 g of vinylidene fluoride / hexafluoropropylene copolymer (wherein the hexafluoropropylene content is 15% by weight) was added to 500 ml of the organic electrolyte solution of Examples 1 to 5 and Comparative Examples 1 to 3, and 40 g of silica was used as the inorganic filler. Was added and heated to 90 ° C. to prepare a gel polymer electrolyte.

상기 캐소드 전극판과 애노드 전극판 사이에 상기 겔-형 고분자 전해질을 코팅한 다음, 이를 젤리롤 방식으로 권취하여 전극 조립체를 만들었다. 이 전극 조립체를 파우치안에 넣어 리튬 2차 전지를 완성하였다. The gel-type polymer electrolyte was coated between the cathode electrode plate and the anode electrode plate, and then wound in a jellyroll manner to form an electrode assembly. This electrode assembly was placed in a pouch to complete a lithium secondary battery.

이와 같이 완성된 각각의 리튬 2차 전지에 대하여 과충전 방지 정도를 측정하여 하기 표 1에 나타내었다.The degree of overcharge protection for each of the lithium secondary batteries thus obtained was measured and shown in Table 1 below.

[표 1] 12V 과충전 안전성 실험 결과[Table 1] 12V overcharge safety test results

안전safety 파열rupture 발화Fire 합계Sum 실시예1Example 1 1818 2020 1212 5050 실시예2Example 2 2020 1919 1111 5050 실시예3Example 3 3939 1111 00 5050 실시예4Example 4 4242 88 00 5050 실시예5Example 5 4040 1010 00 5050 비교예1Comparative Example 1 1010 2626 1515 5050 비교예2Comparative Example 2 1313 2828 99 5050 비교예3Comparative Example 3 1111 2323 1616 5050

고온의 환경에 전지가 노출될 때, 또는 전지의 이상 작동으로 인하여 전지의 온도가 급격히 상승할 때, 충전기나 전지 보호회로의 오작동 또는 사용자의 부주의 등으로 전지가 4.3V 이상 충전될 때 전지의 작동을 정지시킴으로써 전지의 안전성을 확보할 수 있다. 또한 과전류로 충전하거나 방전될 때에도 전지의 온도가 상승하게 되므로 이러한 과전류로 인한 전지의 파열, 발화의 위험을 충분히 억제시킬 수 있다.When the battery is exposed to high temperature, or when the temperature of the battery rises rapidly due to abnormal operation of the battery, or when the battery is charged to more than 4.3V due to malfunction of the charger or battery protection circuit or user's carelessness, etc. The safety of the battery can be ensured by stopping the. In addition, since the temperature of the battery increases even when charged or discharged with an overcurrent, the risk of rupture and ignition of the battery due to the overcurrent can be sufficiently suppressed.

Claims (9)

중량비가 2:8∼8:2의 범위의 메틸에틸카보네이트 및 디에틸카보네이트(MEC/DEC)의 혼합물, 1,3-디옥솔란, 폴리머화 억제제 및 LiPF6염을 포함하는 리튬 2차 전지용 전해액.An electrolyte solution for a lithium secondary battery comprising a mixture of methyl ethyl carbonate and diethyl carbonate (MEC / DEC), 1,3-dioxolane, a polymerization inhibitor, and a LiPF 6 salt in a weight ratio in the range of 2: 8 to 8: 2. 삭제delete 삭제delete 제 1항에 있어서, 상기 전해액 중 카보네이트 혼합물의 비율이 45∼95중량%이고 1,3-디옥솔란의 비율이 5∼55중량%인 것을 특징으로 하는 리튬 2차 전지용 전해액.The electrolyte solution for a lithium secondary battery according to claim 1, wherein the proportion of the carbonate mixture in the electrolyte is 45 to 95% by weight and the proportion of 1,3-dioxolane is 5 to 55% by weight. 삭제delete 제 1항에 있어서, 상기 전해액 중 카보네이트 혼합물의 비율이 45∼65중량%이고 1,3-디옥솔란의 비율이 35∼55중량%인 것을 특징으로 하는 리튬 2차 전지용 전해액. The electrolyte solution for a lithium secondary battery according to claim 1, wherein the proportion of the carbonate mixture in the electrolyte is 45 to 65% by weight and the proportion of 1,3-dioxolane is 35 to 55% by weight. 제 1항, 상기 폴리머화 억제제는 트리메틸아민, 트리에틸아민, 트리프로필아민, 트리부틸아민 및 트리벤질아민으로 이루어진 군에서 선택된 것임을 특징으로 하는 리튬 2차 전지용 전해액. The electrolyte of claim 1, wherein the polymerization inhibitor is selected from the group consisting of trimethylamine, triethylamine, tripropylamine, tributylamine, and tribenzylamine. 제 7항에 있어서, 상기 폴리머화 억제제로서 첨가된 물질이 전체 1,3-디옥솔란의 5부피% 이하인 것을 특징으로 하는 리튬 2차 전지용 전해액.The electrolyte solution for a lithium secondary battery according to claim 7, wherein the material added as the polymerization inhibitor is 5 vol% or less of the total 1,3-dioxolane. 제 1항, 제 4항 또는 제 6항 내지 제 8항 중 어느 한 항에 따른 전해액을 사용한 리튬 2차 전지.The lithium secondary battery using the electrolyte solution in any one of Claims 1, 4, or 6-8.
KR1020010058006A 2001-09-19 2001-09-19 Electrolytic solution for overcharge protection of lithium secondary batteries and lithium secondary batteries using the same KR100838060B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010058006A KR100838060B1 (en) 2001-09-19 2001-09-19 Electrolytic solution for overcharge protection of lithium secondary batteries and lithium secondary batteries using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010058006A KR100838060B1 (en) 2001-09-19 2001-09-19 Electrolytic solution for overcharge protection of lithium secondary batteries and lithium secondary batteries using the same

Publications (2)

Publication Number Publication Date
KR20030025076A KR20030025076A (en) 2003-03-28
KR100838060B1 true KR100838060B1 (en) 2008-06-13

Family

ID=27724737

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010058006A KR100838060B1 (en) 2001-09-19 2001-09-19 Electrolytic solution for overcharge protection of lithium secondary batteries and lithium secondary batteries using the same

Country Status (1)

Country Link
KR (1) KR100838060B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069852A1 (en) 2005-12-14 2007-06-21 Lg Chem, Ltd. Non-aqueous electrolyte and secondary battery comprising the same
CN115189027B (en) * 2022-07-29 2024-10-18 武汉理工大学 Polymerization inhibitor suitable for cyclic ether lithium ion battery electrolyte and application method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506068A (en) * 1993-03-01 1996-04-09 Tadiran, Ltd. Non-aqueous safe secondary cell
US5759714A (en) * 1996-01-17 1998-06-02 Fuji Photo Film Co., Ltd. Non-aqueous-electrolyte secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506068A (en) * 1993-03-01 1996-04-09 Tadiran, Ltd. Non-aqueous safe secondary cell
US5759714A (en) * 1996-01-17 1998-06-02 Fuji Photo Film Co., Ltd. Non-aqueous-electrolyte secondary battery

Also Published As

Publication number Publication date
KR20030025076A (en) 2003-03-28

Similar Documents

Publication Publication Date Title
US8158285B2 (en) Electrolyte solvent for improving safety of battery and lithium secondary battery comprising the same
EP1696501B1 (en) Electrolyte for a lithium battery and a lithium battery comprising the same
EP2160787B1 (en) Non-aqueous electrolyte solution for lithium-ion secondary battery and lithium-ion secondary battery including the same
US7160648B2 (en) Polymer electrolyte composition for improving overcharge safety and lithium battery using the same
US20050221197A1 (en) Electrolyte for lithium battery and lithium battery comprising the same
KR100635704B1 (en) Electrolyte for rechargeable lithium ion battery and rechargeable lithium ion battery comprising same
KR100424257B1 (en) Non aqueous electrolyte for improving overcharge safety and lithium battery using the same
KR100838060B1 (en) Electrolytic solution for overcharge protection of lithium secondary batteries and lithium secondary batteries using the same
EP1716616B1 (en) Non-aqueous electrolyte for battery
KR100693288B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR100922740B1 (en) Separator and eloctrode comprising cationic polymer and lithium battery employing the same
KR100424259B1 (en) Non aqueous electrolyte for improving overcharge safety and lithium battery using the same
KR100424260B1 (en) Non aqueous electrolyte for improving overcharge safety and lithium battery using the same
KR100449756B1 (en) electrolyte based on non-water for improving overcharge safety and lithium battery using the same
KR100472506B1 (en) Rechargeable lithium batteries comprising non-aqueous electroyte containing polymerizable aromatic additives for overcharge protection
KR100551003B1 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery
KR100424258B1 (en) Non aqueous electrolyte for improving overcharge safety and lithium battery using the same
KR20040056895A (en) Electrode with an Improved Wettability for Lithium Ion Battery
KR100325872B1 (en) Organic electrolytes and lithium secondary batteries using the same
KR100334077B1 (en) Compositions of cathod-active materials and lithium ion polymer batteries manufactured by employing the same
KR100445030B1 (en) Non aqueous electrolyte for improving overcharge safety and lithium battery using the same
KR20050036617A (en) Nonaqueous electrolyte for lithium secondary battery
KR20030073604A (en) Non aqueous electrolyte for improving overcharge safety and lithium battery using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130522

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140526

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150519

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160518

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170526

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180518

Year of fee payment: 11