KR100836280B1 - The structure of the distributing waterway of the cohesion settling pond - Google Patents

The structure of the distributing waterway of the cohesion settling pond Download PDF

Info

Publication number
KR100836280B1
KR100836280B1 KR1020060126824A KR20060126824A KR100836280B1 KR 100836280 B1 KR100836280 B1 KR 100836280B1 KR 1020060126824 A KR1020060126824 A KR 1020060126824A KR 20060126824 A KR20060126824 A KR 20060126824A KR 100836280 B1 KR100836280 B1 KR 100836280B1
Authority
KR
South Korea
Prior art keywords
coagulation
distribution channel
water
flocculation
flow rate
Prior art date
Application number
KR1020060126824A
Other languages
Korean (ko)
Inventor
박노석
정남정
김충환
김성수
주대성
Original Assignee
한국수자원공사
에스아이비(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수자원공사, 에스아이비(주) filed Critical 한국수자원공사
Priority to KR1020060126824A priority Critical patent/KR100836280B1/en
Application granted granted Critical
Publication of KR100836280B1 publication Critical patent/KR100836280B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/2405Feed mechanisms for settling tanks
    • B01D21/2416Liquid distributors with a plurality of feed points
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

An installation structure of a distributing waterway for coagulation-and-settling ponds is provided to distribute uniformly water for purification into a plurality of coagulation-and-settling ponds installed in parallel, improve water purification efficiency of the coagulation-and-settling ponds, and maintain and manage the coagulation-and-settling ponds easily. In coagulation-and-settling ponds(L1-L8) including a straight distributing waterway(20) which is installed in the width direction of the coagulation-and-settling ponds in front of a plurality of coagulation-and-settling ponds installed in parallel to supply water for purification into the respective coagulation-and-settling ponds at a predetermined flow rate, an installation structure of the distributing waterway for the coagulation-and-settling ponds comprises: a dividing wall(22) which is installed at the widthwise intermediate position of the distributing waterway, and in which inner and outer distributing waterways(26,24) are formed by bisecting the distributing waterway in the longitudinal direction such that water flows the coagulation-and-settling ponds at the inlet side of the distributing waterway by rotating the water to the opposite direction from an inner end of the distributing waterway after water is flown into one side of the distributing waterway at a predetermined flow rate; and inflow ports each of which is formed in the coagulation-and-settling ponds, and perforated parts(28) which are formed in the dividing wall oppositely to the inflow ports, and into which the water for purification flows to distribute uniformly the flow rate of water flown into the respective coagulation-and-settling ponds.

Description

응집침전지의 분배수로 설치구조{The structure of the distributing waterway of the cohesion settling pond}Structure of the distributing waterway of the cohesion settling pond}

도 1 및 도 2는 종래의 응집침전지에 설치된 분배수로의 설치구조도,1 and 2 is an installation structure diagram of a distribution channel installed in a conventional flocculation settled battery,

도 3은 도 1의 일자형 분배수로를 갖는 종래의 침전조에서 각 침전조의 유출웨어에서 발생되는 수두손실그래프,3 is a head loss graph generated in the outflow wear of each settling tank in the conventional settling tank having a straight distribution channel of FIG.

도 4는 본 발명에 따른 응집침전지의 분배수로 설치구조도,Figure 4 is a distribution structure of the distribution channel of the flocculation needle battery according to the present invention,

도 5는 도 4의 분배수로 구조를 갖는 응집침전지에서 각 응집침전지의 유출웨어에서 나타나는 수두손실그래프이다.5 is a head loss graph that appears in the outflow ware of each flocculation needle battery in the flocculation needle battery having the structure of FIG. 4.

※ 도면의 주요부분에 대한 부호의 간단한 설명※ Brief description of symbols for the main parts of the drawings

L1~L8 : 응집침전지 20 : 분배수로L 1 to L 8 : flocculation settler 20: distribution channel

22 : 분할벽 24 : 외측 분배수로22: dividing wall 24: outer distribution channel

25 : 밀폐부 26 : 내측 분배수로25: sealing part 26: the inner distribution channel

28 : 관통부 28: through part

G1 : 외측 분배수로 이용시 응집침전지의 유출웨어 수두손실 그래프,G1: Outflow wear head loss graph of flocculation settler when using as external distribution water,

G2: 내측 분배수로 이용시 응집침전지의 유출웨어 수두손실 그래프,G2: Outflow wear head loss graph of the flocculator when used as the inner distribution water,

G3 : 전체 응집침전지의 평균 수두손실 그래프G3: average head loss graph of total flocculation settler

본 발명은 응집침전지의 분배수로 설치구조에 관한 것으로, 상세하게는 정수장에서 병렬구조로 다수개가 연속적으로 설치되는 응집침전지에 정수용 물을 공급하도록 응집침전지의 전방에 설치되는 분배수로의 구조를 개선하여 다수개의 병렬구조로 설치된 각 응집침전지에 물이 균등하게 공급되도록 하여 정수효율의 향상과 응집침전지의 유지 및 관리가 용이하도록 하는 응집침전지의 분배수로 설치구조에 관한 것이다.The present invention relates to a distribution channel installation structure of agglomeration sedimentation battery, and in detail, to improve the structure of the distribution channel installed in front of the agglomeration sedimentation battery to supply water for purification to agglomeration sedimentation battery which is installed in parallel in a water purification plant. The present invention relates to a distribution structure of a cohesive needle battery distribution structure that allows water to be equally supplied to each coagulation needle battery installed in a plurality of parallel structures to improve water purification efficiency and to easily maintain and manage the coagulation needle battery.

일반 정수장의 응집침전지는 그 크기가 매우 넓을 뿐만 아니라 대량의 생활용수를 정수하기 위해 수개의 장방형 응집침전지가 일체로 구성되어 있다.Agglomerated sedimentation batteries in general water purification plants are not only very large in size, but also composed of several rectangular agglomeration sedimentation batteries to purify a large amount of living water.

종래의 장방형 응집침전지는 길이방향의 일측에서 정수처리용 물이 유입되어 병렬설치된 수개의 각 응집침전지로 분배 유입되어 침전과정을 거친후에 반대측의 유출웨어를 통해 유출되어 일괄 집수되는 구조로 이루어져 있다.The conventional rectangular coagulation sedimentation battery has a structure in which water for treatment treatment flows into one of several coagulation sedimentation cells installed in parallel in one side of the longitudinal direction and flows out through the outflow ware on the other side after the sedimentation process.

이러한 종래의 장방형 응집침전지의 실시예가 도 1 및 도 2에 도시되어 있다.An embodiment of such a conventional rectangular coagulation needle battery is shown in FIGS. 1 and 2.

도 1에 도시된 실시예는 병렬구조로 설치된 수개의 응집침전지 전방에 일자형 분배수로가 구비된 것으로, 이 분배수로로 유입된 정수처리용 물이 분배수로의 내측으로 이동하면서 분배수로 입구측의 침전조에서부터 분배수로 끝단까지 설치된 침전조에 이르기까지 각 응집침전지의 전방에 설치된 유입포트를 통해 유입되어져 정수처리가 이루어지게 된다.The embodiment shown in FIG. 1 is provided with a straight distribution channel in front of several coagulation settling cells installed in a parallel structure, and the water for treatment of water introduced into the distribution channel moves to the inside of the distribution channel and the sedimentation tank at the inlet side of the distribution channel. It is introduced through the inlet port installed in the front of each flocculation settler to the sedimentation tank installed to the end of the distribution water to the water treatment is made.

그러나, 이러한 종래의 분배수로를 갖는 침전조의 경우, 분배수로로 유입된 정수처리용 물이 분배수로 입구측의 응집침전지에서부터 분배수로 끝단의 응집침전지에 이르기까지 각 응집침전지로 분배되는 유량이 달라 정수처리의 효율을 저하시키는 요인이 되었으며, 정수장의 효율적인 관리를 어렵게 하는 문제점이 있었다.However, in the case of the sedimentation tank having such a conventional distribution channel, the flow rate of the purified water flowing into the distribution channel is distributed to each flocculation settler from the coagulation settler at the inlet side of the distribution channel to the coagulation settler at the end of the distribution line. It has been a factor to reduce the efficiency of the treatment, there was a problem that makes the effective management of the water purification plant difficult.

즉, 도 1에 도시된 바와 같이 각 응집침전지가 수평으로 설치되고 각 응집침전지에 설치된 유출웨어의 높이를 동일하게 설계한 일자형 분배수로 구조를 갖는 응집침전지의 경우, 분배수로(2)의 입구측에 위치하고 있는 응집침전지(L1)와 입구에서 가장 먼곳에 위치하고 있는 응집침전지(L8)에 유입되는 유량(Q=A×V; Q=유량, A=유체통과 단면적, V=유속)을 비교해 보면, 입구측에서 유입되는 유체의 속도가 가장 빨라 입구측에 근접한 응집침전지(L1)의 유체 유입량(q1)이 가장 많고 입구측에서 멀어질수록 유체의 이동속도가 늦어져 입구에서 떨어진 응집침전지(L8)에 공급되는 유체 유입량(q8)이 가장 적게 나타나는 것임을 각 응집침전지(L1~L8)의 유출웨어에서의 수두손실을 나타내는 도 3의 그래프를 통해 알 수 있다.That is, as shown in FIG. 1, in the case of the flocculation needle battery having a flat distribution channel structure in which each flocculation needle battery is installed horizontally and the height of the outflow ware installed in each flocculation needle battery is the same, the inlet side of the distribution channel 2 is shown. When comparing the flow rate (Q = A × V; Q = flow rate, A = fluid and cross-sectional area, V = flow velocity) flowing into the coagulation needle battery L1 located at and the coagulation needle battery L8 located farthest from the inlet, The flow rate of the fluid flowing from the inlet side is the fastest, so that the fluid inflow amount q1 of the coagulation accumulator L1 close to the inlet side is the largest, and the farther from the inlet side, the slower the movement speed of the fluid is. It can be seen from the graph of FIG. 3 showing the head loss in the outflow wear of each flocculation needles (L1 ~ L8) that the fluid inflow q8 supplied to the least appears.

즉, 도 3의 그래프를 통해 분배수로(2)의 입구측에서 멀어질수록 응집침전지의 유출웨어의 수두손실이 선형적으로 감소하는 경향을 보이는 것은 분배수로 입구측(L1)과 분배수로 말단부(L8) 사이의 각 응집침전지에 유입되는 유량이 q1>q2>q3···>q8으로 나타남을 예측할 수 있으며, 결국 분배수로 입구측 응집침전지와 분배수로 말단부 응집침전지간에 ΔE만큼의 수두손실 차이가 발생되는 것임을 알 수 있다.That is, as the distance from the inlet side of the distribution channel 2 through the graph of FIG. 3 shows that the head loss of the outflow ware of the flocculating sedimentation battery linearly decreases, the distribution channel inlet side L1 and the distribution channel end portion ( It can be predicted that the flow rate flowing into each coagulation sedimentation cell between L8) is q1> q2> q3 ··> q8, so that the difference in head loss of ΔE between the inlet coagulation and the coagulation terminal at the distal end is It can be seen that.

따라서, 이러한 일자형 분배수로의 구조를 갖는 종래 응집침전지의 경우, 각 응집침전지에 유입되는 유량의 균등분배가 이루어지지 못함으로써 많은 유량이 유입되는 응집침전지와 그렇지 못한 응집침전지 사이에 정수성능의 차이로 전체 응집침전지의 정수효율을 떨어뜨리는 요인으로 작용하였으며, 각 응집침전지의 정수성능의 차이는 일정기간 사용후 응집침전지에 형성되는 슬러지의 양에도 차이가 있게 되어 응집침전지의 세척을 일률적으로 시행하지 못하는 문제점이 발생되어 응집침전지의 유지 및 관리에 불편함이 발생됨은 물론 많은 비용손실과 응집침전지의 가동효율을 떨어뜨리는 요인으로 작용하였었다.Therefore, in the case of the conventional flocculation settler having the structure of such a linear distribution channel, the equal flow rate of the flow rate flowing into each flocculation settler cannot be equalized, resulting in a difference in the hydrostatic performance between the flocculation settler with a large flow rate and the flocculation settler with no flow rate. It acted as a factor to reduce the water purification efficiency of the whole coagulation sedimentation battery, and the difference in the water purification performance of each coagulation sedimentation battery also differs in the amount of sludge formed in the coagulation sedimentation battery after a certain period of time. As a result of the problem, the maintenance and management of the flocculation accumulator was inconvenient, as well as a lot of cost loss and the operation efficiency of the flocculation accumulator was reduced.

이러한 종래의 일자형 분배수로에서 각 응집침전지로 유량의 균등분배가 이루어지지 못하는 문제점을 해결하기 도 2와 같은 테이퍼형상의 분배수로가 안출된 바 있다.In order to solve the problem that the distribution of flow rates cannot be uniformly distributed to each flocculation settler in the conventional straight distribution channel, a tapered distribution channel as shown in FIG. 2 has been devised.

도 2와 같은 테이퍼 형상의 분배수로를 갖는 응집침전지의 경우, 입구에 유입되는 유량이 각 침점지에 균등하게 분배 공급되는 장점은 있었으나, 이러한 테이퍼형상의 분배수로의 경우 일정한 유량이 항상 균일하게 공급되는 경우에는 그 효용성이 높으나, 공급되는 유량이 적고 불규칙한 유량이 공급되는 경우 그 효용성이 떨어지는 문제점이 있었다.In the case of the flocculation settled battery having a tapered distribution channel as shown in FIG. 2, the flow rate flowing into the inlet was distributed evenly to each pointed paper, but in the case of the tapered distribution channel, a constant flow rate was always uniformly supplied. In the case of the high efficiency, there is a problem that the efficiency is lowered when the flow rate is small and irregular flow rate is supplied.

본 발명은 상술한 종래의 응집침전지에 구비된 분배수로의 문제점을 해결하기 위해 안출된 것으로, 본 발명은 신규 설치시 뿐만 아니라 종래에 설치된 일자형 분배수로에 대해서도 큰 비용을 들이지 않고 구조변경 가능하여 적용할 수 있도록 함으로써 병렬 설치된 다수개의 응집침전지에 정수처리용 물의 균등분배가 이루어지도록 하는 응집침전지의 분배수로 설치구조를 제공하고자 하는데 그 목적이 있다.The present invention was devised to solve the problems of the distribution channel provided in the conventional flocculation settled battery, the present invention can be applied to change the structure without incurring a large cost in addition to the new installation as well as conventionally installed linear distribution channel It is an object of the present invention to provide an installation structure with a distribution water of a coagulation sedimentation battery which allows an even distribution of water for treatment of water to a plurality of coagulation sedimentation cells installed in parallel.

또한, 본 발명은 각 응집침전지의 균등한 유량 분배를 유도하여 전체 응집침전지의 정수성능을 동일하게 유지시켜 응집침전지의 정수효율 향상과, 응집침전지의 유지 및 관리가 용이하도록 하는 응집침전지의 분배수로 설치구조를 제공하고자 하는데 또 다른 목적이 있다.In addition, the present invention induces an equal flow rate distribution of each flocculation settler to maintain the same water purification performance of the entire flocculation settler to improve the purification efficiency of the flocculation settler, and to maintain the management of the flocculation settler, Another purpose is to provide an installation structure.

상술한 목적을 달성하기 위해, 본 발명에 따른 응집침전지의 분배수로 설치구조는 병렬설치된 다수개의 응집침전지 전방에 응집침전지의 폭방향으로 설치되어 각 응집침전지에 일정량의 물을 공급하도록 일자(一字)형 분배수로가 설치된 응집침전지에 있어서, 상기 분배수로의 폭방향 중간위치에는 분배수로로 유입되는 유량이 일측으로 유입된 후에 분배수로의 내측단에서 유입방향과 반대방향으로 선회되어 분배수로 입구측까지 다시 흘러가도록 분배수로를 길이방향으로 양분하여 내·외측 분배수로가 형성되도록 분할벽이 설치되어지되, 상기 분할벽에는 각 응집침전지에 형성된 유입포트와 마주보는 위치에 관통부가 일정간격으로 형성되어 정수처리용 물이 유입될 수 있는 구조로 이루어진다.In order to achieve the above object, the distribution channel installation structure of the flocculation needle battery according to the present invention is installed in the width direction of the flocculation needle battery in front of the plurality of flocculation needle batteries installed in parallel to supply a certain amount of water to each flocculation needle battery. In the flocculation settling cell provided with the distribution channel, the flow rate flowing into the distribution channel flows to one side at an intermediate position in the width direction of the distribution channel, and then rotates in the opposite direction to the inflow direction at the inner end of the distribution channel. The dividing wall is provided to divide the dividing channel into the longitudinal direction so as to flow again until the inner and outer distribution channel is formed. The dividing wall is formed at predetermined intervals at positions facing the inlet port formed in each coagulation needle battery. It consists of a structure that can be introduced into the water for treatment.

이하, 명세서에 첨부된 도면을 참고하면서 본 발명의 실시예를 더욱 상세히 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 4는 본 발명의 실시예에 따른 응집침전지의 분배수로 설치구조의 평면도를 도시하고 있는 것으로, 도면에 도시된 바와 같이 병렬설치된 다수개의 응집침전지(L1~L8) 전방에 응집침전지의 폭방향으로 각 응집침전지에 정수처리용 물을 공급할 수 있도록 일자(一字)형 분배수로(20)가 구비되며, 상기 분배수로(20)에서 유입된 물이 각 응집침전지 (L1~L8)의 내측으로 유입되도록 각 응집침전지의 입구측에는 물이 출입되는 유입포트(P; 도 5 참조)가 구비되어 있다.4 is a plan view of the distribution structure of the distribution channel of the flocculation needle battery according to an embodiment of the present invention, the width of the flocculation needle battery in front of the plurality of flocculation needle batteries (L 1 ~ L 8 ) installed in parallel as shown in the figure In order to supply water for treatment of the coagulation sedimentation in each direction is provided with a straight (type 1) type distribution channel 20, the water flowing in the distribution channel 20 is each coagulation needle (L 1 ~ L 8 ) An inlet port P (refer to FIG. 5) is provided at the inlet side of each coagulation needle battery so as to flow into the inside of the coagulation needle.

소정의 폭으로 이루어진 상기 분배수로(20)의 내측 폭방향 중간위치에는 분배수로(20)로 유입되는 정수처리용 물이 일측으로 유입된 후에 분배수로(20)의 내측 끝단에서 방향을 선회하여 분배수로 입구측까지 분리된 이동통로로 다시 흘러갈 수 있도록 분배수로(20)의 길이방향으로 분할벽(22)이 설치되어 분배수로(20)를 폭방향으로 양분하여 내·외측 분배수로(26,24)가 각각 분리 구성되도록 한다. After the water for treatment water flowing into the distribution channel 20 flows to one side at an intermediate position in the inner width direction of the distribution channel 20 having a predetermined width, the direction is turned at the inner end of the distribution channel 20. The partition wall 22 is installed in the longitudinal direction of the distribution channel 20 so as to flow again to the moving passage separated to the inlet side of the drainage channel, and divides the distribution channel 20 in the width direction so that the inner and outer distribution channels 26, 24) are configured separately.

상기 분할벽(22)의 마지막 선단부는 분배수로(20)의 끝단 내벽과 일정거리 이격된 구조로 설치되고, 분배수로(20) 입구측의 내측 분배수로(26)는 외측 분배수로(24)로 유입된 물이 분할벽(22)의 마지막단에서 유턴하여 입구측까지 순환된 후에 분배수로(20) 밖으로 빠져나가지 못하도록 분할벽(22)의 일단과 외측 응집침전지(L1)의 외벽이 연결되어 밀폐부(25)가 형성된 구조로 이루어져 있다.The last end of the dividing wall 22 is installed in a structure spaced apart from the inner wall of the distal end of the distribution channel 20 by a predetermined distance, and the inner distribution channel 26 on the inlet side of the distribution channel 20 is connected to the outer distribution channel 24. One end of the dividing wall 22 and the outer wall of the outer coagulation settlement cell L1 are connected and sealed so that the inflow of water is turned off at the end of the dividing wall 22 and circulated to the inlet side. It consists of a structure in which the portion 25 is formed.

상기 분할벽(22)에는 각 응집침전지(L1~L8)의 전방에 형성된 유입포트(P)와 마주보는 위치에서 동일한 갯수와 크기의 관통부(28)가 병렬 설치된 각 응집침전지에 대응하여 일정간격으로 연속 설치된 구조로 이루어져 외측 분배수로(24)에서 내측 분배수로(26)로 물이 유입될 수 있는 구조로 이루어지며, 상기 관통부(28)는 응집침전지 입구측의 유입포트와 동일한 갯수와 크기로 이루어지는 것이 바람직하다.The partition wall 22 has a predetermined interval corresponding to each coagulation needle battery in which the penetrating portions 28 having the same number and size are disposed in parallel at the position facing the inflow port P formed in front of each coagulation needle battery L1 to L8. It consists of a structure that is continuously installed in the structure of the water can be introduced from the outer distribution channel 24 to the inner distribution channel 26, the through portion 28 is the same number and size as the inlet port of the inlet side of the flocculation settler It is preferable that it consists of.

이하에서는 상술한 응집침전지의 분배수로 설치구조의 작용 및 효과에 대해서 설명한다.Hereinafter, the operation and effect of the installation structure with the distribution water of the flocculation needle battery described above will be described.

도 4에 도시된 바와 같이, 본 발명에 따른 분배수로(20)가 설치된 응집침전지(L1~L8)의 경우, 각 응집침전지로 유입되는 정수처리용 물이 분할된 분배수로(20)에서 응집침전지의 외측 분배수로(24)로 유입되고, 외측 분배수로(24)로 유입된 물은 분배수로(20)의 끝단부까지 진입된 후에 끝단부에서 라운드형 내벽을 따라 유턴되어 내측 분배수로(26)로 유입되고, 내측 분배수로(26)로 유입된 물은 분배수로(20) 입구측의 밀폐부(25)까지 이동하는 ⊃형의 흐름을 갖게 된다.As shown in FIG. 4, in the case of the flocculation settler batteries L1 to L8 provided with the distribution channel 20 according to the present invention, the flocculation settler in the distribution channel 20 in which the water for water treatment flowed into each flocculation settler is divided. After the water flows into the outer distribution channel 24 of the distribution channel 24, the water flowing into the outer distribution channel 24 is turned to the end of the distribution channel 20 and is u-turned along the round inner wall at the end, and the inner distribution channel 26 is formed. Water flowing into the inner distribution channel 26 has a U-shaped flow that moves to the sealing portion 25 at the inlet side of the distribution channel 20.

이와 같은 설치구조로 이루어진 응집침전지의 분배수로(20)는 입구측에서 내측으로 이동할수록 정수처리용 물이 갖는 에너지는 점점 감소하게 되어, 외측 분배수로(24)의 입구측의 분할벽(22)에 형성된 관통부(28)로 많은 양의 물이 유입되고, 분배수로의 내측으로 이동할수록 분할벽(22)의 관통부(28)로 유입되는 유량이 점점 감소하게 된다.As the distribution channel 20 of the flocculation settlement battery having such an installation structure moves from the inlet side to the inner side, the energy of the purified water gradually decreases, and the partition wall 22 on the inlet side of the outer distribution channel 24 is reduced. A large amount of water flows into the penetrating portion 28 formed therein, and the flow rate flowing into the penetrating portion 28 of the dividing wall 22 gradually decreases as it moves inwardly of the distribution channel.

분배수로(20)의 마지막까지 유입된 물은 분배수로(20) 끝단부의 라운드형 내벽을 따라 자연스럽게 방향을 선회하여 내측 분배수로(26)로 유량의 흐름이 바뀌면서 외측 분배수로(24)와 반대로 흐름이 형성된다.Water introduced to the end of the distribution channel 20 flows naturally along the round inner wall at the end of the distribution channel 20 and flows in the opposite direction to the outer distribution channel 24 while changing the flow of the flow to the inner distribution channel 26. Is formed.

즉, 최초 정수처리용 물이 유입되는 외측 분배수로(24)의 경우, 입구에서부터 분배수로 내측 끝단으로 진입될수록 물의 에너지가 줄어들어 외측 분배수로(24)의 내측 끝단에서 유량이 갖는 에너지가 최소가 되지만, 반대로 외측 분배수로(24) 말단에서 방향을 선회한 물의 흐름은 내측 분배수로(26)의 입구측에서 시발점이 되고 내측 분배수로(26) 말단부(분배수로의 입구측)가 종점이 되므로, 내측 분배수로(26)의 경우 그 시발점인 분배수로(20) 끝단부의 유체 에너지가 가장 크게 되고, 분배수로의 입구측, 즉 밀폐부(25)가 형성된 내측 분배수로(26)의 말단부에서 유체가 갖는 에너지가 최소가 된다.That is, in the case of the outer distribution channel 24 into which the first purified water flows, the energy of the water decreases as it enters the inner end of the distribution channel from the inlet to minimize the energy of the flow rate at the inner end of the outer distribution channel 24. On the contrary, since the flow of water turning in the direction from the end of the outer distribution channel 24 becomes the starting point at the inlet side of the inner distribution channel 26 and the end portion (inlet side of the distribution channel) of the inner distribution channel 26 becomes the end point, In the case of the distribution channel 26, the fluid energy at the end of the distribution channel 20, which is the starting point thereof, is greatest, and the fluid has the inlet side of the distribution channel, that is, the distal end of the inner distribution channel 26 in which the seal 25 is formed. Energy is minimal.

따라서, 외측에서 유입되어 내측으로 흐르는 ⊃형 분배수로(20)로 이루어지는 본 발명의 경우, 각 응집침전지로 유입되어 정수과정을 거친 후에 각 응집침전지의 유출웨어를 통해 배출되는 첫번째 응집침전지(L1)에서 마지막 응집침전지(L8)에 이르는 수두손실 에너지 관계를 도 5와 같이 나타낼 수 있다.Therefore, in the case of the present invention consisting of the X-shaped distribution channel 20 flowing from the outside flowing inwards, the first coagulation needle cell (L1) is introduced into each coagulation sedimentation battery and discharged through the outflow ware of each coagulation needle cell after the water purification process In FIG. 5, the head loss energy relation ranging from to the final coagulation settlement battery L8 may be represented.

도 5의 그래프에서 부호 G1은 본 발명에 따른 분배수로의 설치구조에서 외측 분배수로(24)로 유체가 유입되는 경우 각 응집침전지의 유출웨어에서 나타나는 수두손실 그래프이지만, 본 발명에서는 외측 분배수로(24)를 거쳐 다시 내측 분배수로(26)로 유체가 선회되어 이동되므로 내측 분배수로(26)로 유체가 이동하는 경우에는 각 응집침전지의 유출웨어에서 나타나는 수두손실그래프는 외측 분배수로(24)가 갖는 에너지 손실그래프인 G1과 대칭되는 구조를 갖는 G2로 나타나게 된다.In the graph of FIG. 5, reference numeral G1 denotes a head loss graph that appears in the outflow wear of each flocculation settler when the fluid flows into the outer distribution channel 24 in the installation structure of the distribution channel according to the present invention. Since the fluid is pivoted and moved back to the inner distribution channel 26 through 24, when the fluid moves to the inner distribution channel 26, the head loss graph that appears in the outflow ware of each flocculation settler is the outer distribution channel 24. It is represented by G2 having a structure symmetrical with G1, which is an energy loss graph.

따라서, 본 발명에 따른 응집침전지의 분배수로 설치구조는 외측 분배수로(24)에서 유체가 정방향(도면에서 →방향)으로 유입되었다면, 내측 분배수로(26)에서는 역방향(도면에서 ←방향)으로 유체가 흐르게 되어, 전체 분배수로(20)의 내측에서는 유입된 유체가 각 응집침전지의 유입포트를 통해 응집침전지 내부로 유입되는 물은 각 응집침전지에서 균일한 에너지를 갖게 되어 각 응집침전지에 유체의 균일한 배분이 이루어지게 되며, 결국 각 응집침전지의 유출웨어를 통해 배출되는 처리수의 수두손실 역시 도 5의 그래프에서 G3과 같이 평균치에 수렴되어 나타나게 된다.Therefore, in the distribution channel installation structure of the flocculation settlement battery according to the present invention, if the fluid flows in the forward direction (→ direction in the drawing) from the outer distribution channel 24, the fluid flows in the reverse direction (← direction in the drawing) in the inner distribution channel 26. Flows in the inside of the total distribution channel 20, and the water flowing into the coagulant settler through the inlet port of each coagulant settler has uniform energy in each coagulated settler. The distribution is made, and in the end, the head loss of the treated water discharged through the outflow ware of each flocculator is also converged to the average value as shown in the graph of FIG. 5.

이를 다시 설명하면, 외측 분배수로(24)의 입구측에서 내측 끝단까지 유체가 유입되어질 때, 분배수로 입구근처의 분할벽(22)의 관통부(28)에서 내측 끝단 분할벽의 관통부에 유입되는 유량은 유속에 비례하여 q1>q2>q3>q4>q5>q6>q7>q8의 관계가 유지되고, 외측 분배수로(24)에서 유입되어 방향을 선회한 유체는 외측 분배수로와 반대로 유체의 유속이 형성되므로 각 응집침전지의 유입포트(p1~p8))에 유입되는 유체의 유량이 q9>q10>q11>q12>q13>q14>q15>q16의 관계가 유지되므로, 결국 각 응집침전지 L1~L8에 유입되는 유체의 유량은 아래와 같은 식으로 표현될 수 있다.In other words, when the fluid flows from the inlet side to the inner end of the outer distribution channel 24, the fluid flows into the penetrating portion of the inner end partition wall from the penetrating portion 28 of the partition wall 22 near the inlet port. The flow rate is maintained in proportion to the flow rate q1> q2> q3> q4> q5> q6> q7> q8, and the fluid flowing in the outer distribution channel 24 and turning in the direction is opposite to the outer distribution channel. Since the flow rate is formed, the flow rate of the fluid flowing into the inflow ports (p1 to p8) of each coagulation settler is maintained in the relation q9> q10> q11> q12> q13> q14> q15> q16. The flow rate of the fluid flowing into L8 can be expressed as follows.

L1(q1+q16)=L2(q2+q15)=L3(q3+q14)=L4(q4+q13)=L5(q5+q12)=L6(q6+q11)=L7(q7+q10)=L8(q8+q9) - - - - -(식 1)L1 (q1 + q16) = L2 (q2 + q15) = L3 (q3 + q14) = L4 (q4 + q13) = L5 (q5 + q12) = L6 (q6 + q11) = L7 (q7 + q10) = L8 (q8 + q9)-----(Equation 1)

즉, 각 응집침전지에 유입되는 유량(Q=A×V)은 유체가 통과하는 단면적이 모두 동일한 경우 유속에 비례하므로, 외측 분배수로 입구측의 관통부를 지나가는 유체의 유속은 빠르지만, 상기 관통부와 대응되는 응집침전지 입구측의 유입포트를 통과하는 유체 유속은 느리기 때문에, 결국 외측 분배수로의 빠른 유속의 유체와 내측 분배수로의 느린 유속의 유체가 만나서 분배수로 입구측과 분배수로 안쪽간에 각 응집침전지로 유입되는 유체의 유량은 유속의 평균화로 거의 동일한 양으로 유입되는 결과를 얻게 되어 비록 다수개의 응집침전지가 병렬 설치된 경우에도 동일한 유량의 공급이 가능해져 각 응집침전지의 유출웨어를 통해 배출되므로 유체의 손실수두를 균일하게 유지시킬 수 있도록 한다.That is, the flow rate (Q = A × V) flowing into each coagulation settler is proportional to the flow rate when the cross-sectional area through which the fluid passes is the same, so that the flow rate of the fluid passing through the inlet side through the outer distribution water is fast, Since the fluid flow rate through the inlet port on the inlet side of the flocculation settler corresponding to is slow, the fluid of the fast flow rate to the outer distribution water and the fluid of the slow flow rate to the inner distribution water meet and each flocculation between the inlet and the distribution water flow paths. Since the flow rate of the fluid flowing into the settling basin is almost the same as the flow rate, it is possible to supply the same flow rate even when multiple flocculation batteries are installed in parallel. Ensure that the head of the loss is kept even.

따라서, 각 응집침전지의 정수성능을 전체적으로 동일한 수준으로 유지하게 되어 유출웨어를 통해 유출된 유체의 정수품질도 종래보다 월등히 향상시킬 수 있도록 하며, 각 응집침전지의 균일한 정수성능을 유지할 수 있도록 함으로써 응집침전지의 유지 및 관리가 용이하도록 한다.Therefore, the water purification performance of each coagulation sedimentation battery is maintained at the same level as a whole, so that the water purification quality of the fluid discharged through the outflow wear can be significantly improved than before, and the coagulation by maintaining the uniform water purification performance of each coagulation sedimentation battery. To facilitate the maintenance and management of the settling basin.

즉, 각 응집침전지의 유출웨어에서 나타나는 수두손실의 차이는 각 응집침전지의 정수성능에 영향을 미치고, 정수성능의 차이는 각 응집침전지에 쌓이는 슬러지의 양에 있어서도 많은 차이가 있게 되어 슬러지의 불균일한 양에 따라 각 응집침전지별로 세척하는 주기가 달라짐으로써 응집침전지의 유지 및 관리에 어려움이 있었으나, 본 발명의 실시예를 적용하는 경우 각 응집침전지의 정수성능을 균일하게 유지시킬 수 있기 때문에 정수된 유체의 수질을 향상시킴은 물론 응집침전지의 유지 및 관리가 용이하고, 잦은 응집침전지의 세척에 따른 불필요한 비용손실을 줄일 수 있도록 한다.In other words, the difference of head loss in the outflow ware of each flocculation sedimentation affects the purification performance of each flocculation sedimentation battery, and the difference of purification performance is also different in the amount of sludge accumulated in each flocculation sedimentation battery. The cleaning cycle for each coagulant settler is different according to the amount, which makes it difficult to maintain and manage the coagulant settler. However, when the embodiment of the present invention is applied, the purified water can be maintained uniformly because the water purification performance of each coagulation settler can be maintained uniformly. In addition to improving the water quality, it is easy to maintain and manage the flocculator and reduce unnecessary cost loss due to frequent flocculation.

또한, 본 발명에 따른 분배수로 설치구조는 그 구조가 간단하여 신규 시설시 큰 비용이 들지 않을 뿐만 아니라 종래에 설치된 응집침전지의 분배수로에도 큰비용을 들이지 않고 쉽게 구조변경이 가능하도록 하여 그 유용성을 높일 수 있도록 한다.In addition, the distribution channel installation structure according to the present invention has a simple structure, which does not require a large cost in a new facility, and also enables the structural change to be easily carried out without a large cost in a distribution channel of a conventional flocculation settler. To increase.

이상에서 상술한 바와 같이, 본 발명에 따른 응집침전지의 분배수로 설치구조는 구조가 간단하여 종래의 설치된 응집침전지는 물론 신규로 시공되는 정수장에 쉽게 적용할 수 있고, 다수개의 응집침전지에 균등하게 유체의 분배가 가능하도록 하여 유체가 공급된 각 응집침전지에서의 정수성능이 균일하게 유지되도록 하여 정수품질의 향상과 응집침전지의 유지 및 관리를 효율적으로 할 수 있도록 하여 불필요한 비용손실이 발생되는 것을 억제할 수 있도록 한다.As described above, the installation structure of the distribution channel of the flocculation sedimentation battery according to the present invention has a simple structure and can be easily applied to a conventionally installed coagulation sedimentation battery as well as a newly constructed water purification plant, and the fluid is uniformly applied to a plurality of flocculation sedimentation cells. It is possible to distribute water and maintain the water purification performance uniformly in each flocculation sedimentation battery supplied with fluid to improve the quality of water purification and maintain and manage the flocculation sedimentation battery efficiently. To help.

Claims (2)

병렬설치된 다수개의 응집침전지 전방에 응집침전지의 폭방향으로 설치되어 각 응집침전지에 일정량의 유량을 공급하도록 설치되는 일자(一字)형 분배수로가 구비된 응집침전지에 있어서,In the flocculation needle battery provided with a straight distribution channel installed in the width direction of the flocculation needle battery in front of a plurality of flocculation needle cells installed in parallel to supply a certain amount of flow rate to each flocculation needle battery, 상기 분배수로의 폭방향 중간위치에는 분배수로로 유입되는 유량이 일측으로 유입된 후에 분배수로의 내측단에서 반대방향으로 선회되어 분배수로 입구측의 응집침전지까지 흘러갈 수 있도록 분배수로를 길이방향으로 양분하여 내·외측 분배수로가 구성되도록 분할벽이 설치되고, 상기 분할벽에는 각 응집침전지에 형성된 유입포트와 마주보는 위치에 정수용 물이 유입되는 관통부가 형성되어 각 응집침전지에 균등한 유량분배가 이루어질 수 있는 구조로 이루어지는 것을 특징으로 하는 응집침전지의 분배수로 설치구조.In the intermediate width direction of the distribution channel, the flow channel flowing into the distribution channel flows to one side, and then rotates in the opposite direction from the inner end of the distribution channel so that the distribution channel flows to the coagulation settlement at the inlet side. The dividing wall is provided so that the inner and outer distribution channels are divided into two parts. The dividing wall is formed with a through portion through which water for water flows in a position facing the inflow port formed in each coagulation needle battery, so that the flow distribution is equally distributed to each coagulation needle battery. Distributing water installation structure of the flocculation settler, characterized in that made of a structure that can be made. 제1항에 있어서,The method of claim 1, 상기 분배수로의 내측단 내벽은 유입된 유량의 원활한 선회를 위해 라운드형으로 이루어지고, 선회된 유량이 마지막으로 도달되는 입구측 응집침전지의 분배수로 마지막단에는 유입된 유량의 배출을 차단하는 밀폐부가 분할벽에 연결 설치된 구조로 이루어지는 것을 특징으로 하는 응집침전지의 분배수로 설치구조.The inner wall of the inner end of the distribution channel is formed in a round shape for smooth turning of the flow rate, and a closed part blocking the discharge of the flow rate at the end of the distribution water of the inlet coagulation settled cell at which the turned flow rate is finally reached. A distribution channel installation structure of a cohesive sedimentation battery, characterized in that the structure is connected to the partition wall.
KR1020060126824A 2006-12-13 2006-12-13 The structure of the distributing waterway of the cohesion settling pond KR100836280B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060126824A KR100836280B1 (en) 2006-12-13 2006-12-13 The structure of the distributing waterway of the cohesion settling pond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060126824A KR100836280B1 (en) 2006-12-13 2006-12-13 The structure of the distributing waterway of the cohesion settling pond

Publications (1)

Publication Number Publication Date
KR100836280B1 true KR100836280B1 (en) 2008-06-09

Family

ID=39770533

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060126824A KR100836280B1 (en) 2006-12-13 2006-12-13 The structure of the distributing waterway of the cohesion settling pond

Country Status (1)

Country Link
KR (1) KR100836280B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100941387B1 (en) * 2009-09-17 2010-02-10 씨아이바이오텍(주) Coagulating sedimentation processing apparatus for removing total phosphorus(t-p) and organic matters in waste water
KR101071354B1 (en) * 2010-12-15 2011-10-10 주식회사 젠트로 Construction structure of the distributing waterway for settling pond

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993024217A1 (en) 1992-06-02 1993-12-09 Vattenfall Utveckling Ab Unit for treating liquid
KR200215692Y1 (en) 2000-09-27 2001-03-15 주식회사삼안건설기술공사 Magnetic cohesive sediment reactor
KR200235122Y1 (en) 2001-04-06 2001-10-11 장명화 Treatment Equipment of Wastewater
KR200308742Y1 (en) 2002-12-16 2003-03-26 한국수자원공사 Structure of the inlet of distribution channel
KR20030083674A (en) * 2003-10-13 2003-10-30 홍기원 Device For Distribution of Flow Rate in Distribution Channel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993024217A1 (en) 1992-06-02 1993-12-09 Vattenfall Utveckling Ab Unit for treating liquid
KR200215692Y1 (en) 2000-09-27 2001-03-15 주식회사삼안건설기술공사 Magnetic cohesive sediment reactor
KR200235122Y1 (en) 2001-04-06 2001-10-11 장명화 Treatment Equipment of Wastewater
KR200308742Y1 (en) 2002-12-16 2003-03-26 한국수자원공사 Structure of the inlet of distribution channel
KR20030083674A (en) * 2003-10-13 2003-10-30 홍기원 Device For Distribution of Flow Rate in Distribution Channel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100941387B1 (en) * 2009-09-17 2010-02-10 씨아이바이오텍(주) Coagulating sedimentation processing apparatus for removing total phosphorus(t-p) and organic matters in waste water
KR101071354B1 (en) * 2010-12-15 2011-10-10 주식회사 젠트로 Construction structure of the distributing waterway for settling pond

Similar Documents

Publication Publication Date Title
CN205804273U (en) River drain cleaning system
CN103392661A (en) Water circulating aquaculture system
CN209396975U (en) Multistage drop aerobic ecological system
CN204208343U (en) Inclined plate sedimentation device
KR100836280B1 (en) The structure of the distributing waterway of the cohesion settling pond
CN202223939U (en) Seawater coagulation sedimentation device
CN203613012U (en) Jet flow integrated settling filter device
CN102389866B (en) Backwash-type fountain root-irrigation irrigator
CN105110479A (en) System and method thereof capable of effectively alleviating constructed wetland filler blocking
CN211513522U (en) Inclined plate sedimentation device
CN105289053A (en) Grit chamber and water inlet end structure and tail input water treatment method thereof
CN202526949U (en) Integrated sedimentation clarification tank
CN214763502U (en) Multistage sedimentation device for blast furnace granulated slag system
CN205328708U (en) Overall arrangement of compound water purification surface low wetland system
CN204958535U (en) System for can effectively improve constructed wetland filler blocks up
CN203668087U (en) Combined flocculation and sedimentation tank
CN208911521U (en) A kind of combined regulation concentration basin
CN203483966U (en) Precipitating device
CN208533489U (en) A kind of hole side water-permeable fishway import water charging system setting water blocking pier
CN105536348A (en) Micro-pressure washing type desilting filtering system facility and application thereof
CN106284185A (en) Secondary waters sponge water circulation system
CN205360823U (en) Minute -pressure washout type sinks husky filtration system facility
CN102886158A (en) Pond in water cooling tower for circulating water
CN202876448U (en) Pool for circulation water cooling tower
CN204251417U (en) A kind of self-cleaning type aquatic ecological restoration wetland pond

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130603

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140527

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150430

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170516

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180531

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190528

Year of fee payment: 12