KR100831401B1 - Method for manufacturing aluminium coated Nd-Fe-B magnet - Google Patents

Method for manufacturing aluminium coated Nd-Fe-B magnet Download PDF

Info

Publication number
KR100831401B1
KR100831401B1 KR1020010048566A KR20010048566A KR100831401B1 KR 100831401 B1 KR100831401 B1 KR 100831401B1 KR 1020010048566 A KR1020010048566 A KR 1020010048566A KR 20010048566 A KR20010048566 A KR 20010048566A KR 100831401 B1 KR100831401 B1 KR 100831401B1
Authority
KR
South Korea
Prior art keywords
copper
aluminum
magnet
sample
vacuum
Prior art date
Application number
KR1020010048566A
Other languages
Korean (ko)
Other versions
KR20030014536A (en
Inventor
홍재화
문종호
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020010048566A priority Critical patent/KR100831401B1/en
Publication of KR20030014536A publication Critical patent/KR20030014536A/en
Application granted granted Critical
Publication of KR100831401B1 publication Critical patent/KR100831401B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

본 발명은 알루미늄 도금층의 밀착성 및 내식성이 향상되며, 표면 형상 및 색상이 우수한 Nd-Fe-B계 자석 제조방법을 제공한다. 그 제조방법은, 일정형태의 Nd-Fe-B계 시료를 탈지 처리하여 준비하는 단계; 상기 시료에 구리를 10nm 이상의 두께로 진공 증착하는 단계; 및 상기 구리가 진공증착된 시료에 알루미늄을 진공 증착하는 단계를 포함한다. 그와 같은 방법으로 제조된 Nd-Fe-B계 자석은 Nd-Fe-B계 시료 본체와, 상기 Nd-Fe-B계 시료 본체에 약 10 내지 120nm의 두께로 증착되는 구리층과, 상기 구리층 표면 전체에 약 5 내지 900g/㎡의 도금량으로 증착되는 알루미늄층으로 구성된다. The present invention provides an Nd-Fe-B-based magnet manufacturing method having improved adhesion and corrosion resistance of the aluminum plating layer and excellent surface shape and color. The manufacturing method comprises the steps of preparing a degreasing treatment Nd-Fe-B-based sample of a certain form; Vacuum depositing copper to a thickness of 10 nm or more on the sample; And vacuum depositing aluminum on the copper-deposited sample. The Nd-Fe-B-based magnet manufactured by such a method includes a Nd-Fe-B-based sample body, a copper layer deposited on the Nd-Fe-B-based sample body at a thickness of about 10 to 120 nm, and the copper. It consists of an aluminum layer deposited at a plating amount of about 5 to 900 g / m 2 over the layer surface.

자석, Nd-Fe-B계, 밀착성, 내식성, 구리층.Magnet, Nd-Fe-B type, adhesiveness, corrosion resistance, copper layer.

Description

네오디뮴-철-보론계 자석 제조방법{Method for manufacturing aluminium coated Nd-Fe-B magnet}Neodymium-iron-boron magnet manufacturing method {Method for manufacturing aluminum coated Nd-Fe-B magnet}

도 1은 본 발명에 따른 네오디뮴-철-보론계 자석을 제조하기 위한 진공 증착 장치를 보여주는 개략도.1 is a schematic view showing a vacuum deposition apparatus for manufacturing a neodymium-iron-boron-based magnet according to the present invention.

도 2는 본 발명에 따라 제조된 네오디뮴-철-보론계 자석의 알루미늄 도금층을 테이프를 이용한 박리 실험을 통한 밀착성을 평가한 그래프.Figure 2 is a graph evaluating the adhesion through the peeling test using an aluminum plating layer of a neodymium-iron-boron-based magnet prepared according to the present invention.

도 3은 본 발명에 따라 제조된 네오디뮴-철-보론계 자석의 내식성을 염수 분위기에서 실험한 결과를 보여주는 그래프. Figure 3 is a graph showing the results of experiments in salt water atmosphere corrosion resistance of neodymium-iron-boron-based magnets prepared in accordance with the present invention.

♣ 도면의 주요 부분에 대한 부호의 설명 ♣♣ Explanation of symbols for the main parts of the drawing ♣

10: 본체 12: 시료바구니10: main body 12: sample basket

14: 시료 가열장치 16: 구리 증발원14: sample heater 16: copper evaporation source

18: 알루미늄 증발원 20: 도금 두께 측정기18: aluminum evaporation source 20: plating thickness meter

본 발명은 네오디뮴-철-보론(Nd-Fe-B)계 자석을 제조하는 방법에 관한 것으로서, 보다 상세하게는 더 우수한 밀착성 및 내식성을 갖는 알루미늄 진공 증착 네오디뮴-철-보론계 자석을 제조하는 방법에 관한 것이다. The present invention relates to a method for manufacturing a neodymium-iron-boron (Nd-Fe-B) -based magnet, and more particularly to a method for producing an aluminum vacuum vapor deposition neodymium-iron-boron-based magnet having better adhesion and corrosion resistance It is about.

일반적으로, Nd-Fe-B 자석은 1982년 일본의 스미토모 특수 금속에서 개발하여 상업화한 자석으로 최대 자기 에너지가 가장 큰 강력한 영구 자석이다. 이 자석은 SmCo 자석에 비해 저가이고, 자원 제약도 적으며, 대량 생산에 적합한 분말 야금 공정을 이용하여 제조할 수 있어 최근 급속하게 널리 이용되고 있다.In general, Nd-Fe-B magnets were developed and commercialized by Sumitomo Special Metals in Japan in 1982, and are strong permanent magnets with the largest maximum magnetic energy. This magnet is cheaper than SmCo magnets, has less resource constraints, and can be manufactured using powder metallurgy processes suitable for mass production.

이와 같은 종래의 네오디뮴-철-보론계 자석은 내식성이 약한 문제점을 가지고 있다. 이에 따라, 종래에는 내식성을 향상시키기 위해 자석의 표면을 수지로 코팅하거나 Cr을 습식 도금하거나, Al을 진공 증착하거나 이온 플레이팅 방식을 취하고 있다. Such a conventional neodymium-iron-boron-based magnet has a weak corrosion resistance. Accordingly, conventionally, in order to improve corrosion resistance, the surface of the magnet is coated with a resin, wet plating Cr, Al is vacuum deposited, or ion plating.

즉, 금속표면에는 약 5nm의 산화층이 자연적으로 생성되어 도금층과의 결합력을 저하시키므로, Al의 진공 증착시 그 진공 증착기 내에서 Ar 등의 불활성 가스를 도입하거나, 고압상태로 스퍼터링을 행하거나, 또는 밀착력을 높이기 위해 Al을 이온화 시켜 증착하는 이온 플레이팅 방식을 행하고 있다. That is, since an oxide layer of about 5 nm is naturally formed on the metal surface to lower the bonding strength with the plating layer, during the vacuum deposition of Al, an inert gas such as Ar is introduced into the vacuum evaporator, or sputtering is performed at a high pressure. In order to increase adhesion, an ion plating method of ionizing and depositing Al is performed.

그러나, 전술된 바와 같은 방법은, 시료에 고압을 가하기 위한 전원장치와, 가스를 일정량 공급해야하는 장치 등이 추가로 설치되어야 함은 물론, 공정이 복잡하고 전체적이 코팅 시간이 장기화되는 문제점이 있다. However, the method as described above, a power supply for applying a high pressure to the sample, a device for supplying a certain amount of gas, etc. must be additionally installed, there is a problem that the process is complicated and the overall coating time is prolonged.

이에 본 발명은 상술된 문제점들을 해결하기 위해 발명된 것으로서, 본 발명의 목적은 용이하고 간단하며 저렴한 방식으로 내식성 및 밀착성이 우수한 Nd-Fe-B계 자석을 제조하는 방법을 제공하는데 있다. Accordingly, the present invention has been invented to solve the above problems, and an object of the present invention is to provide a method of manufacturing an Nd-Fe-B-based magnet excellent in corrosion resistance and adhesion in an easy, simple and inexpensive manner.                         

본 발명의 다른 목적은 Nd-Fe-B계 자석에 알루미늄을 증착하기 전에 구리를 10nm 이상 증착시키고 그 다음에 알루미늄을 증착시킴으로써 공정이 간단하면서도 밀착성과 내식성이 우수한 Nd-Fe-B계 자석을 제조하는 방법을 제공하는데 있다. Another object of the present invention is to produce a Nd-Fe-B-based magnets having a simple process and excellent adhesion and corrosion resistance by depositing 10 nm or more of copper before depositing aluminum on the Nd-Fe-B-based magnets and then by depositing aluminum. To provide a way.

본 발명의 또 다른 목적은 상기 방식에 의해 제조된 Nd-Fe-B계 자석을 제공하는데 있다. Still another object of the present invention is to provide an Nd-Fe-B magnet manufactured by the above method.

이 같은 목적들은, Nd-Fe-B계자석 제조방법에 있어서, 일정형태의 Nd-Fe-B계시료를 탈지처리하여 준비하는 단계; 상기 시료에 구리를 10nm 이상의 두께로 진공증착하는 단계; 및 상기 구리가 진공증착된 시료에 알루미늄을 진공증착하는 단계를 포함하는 Nd-Fe-B계 자석 제조방법에 의해 달성될 수 있다.These objects, in the Nd-Fe-B-based magnet manufacturing method, comprising the steps of preparing a degreasing treatment of the Nd-Fe-B-based sample of a certain form; Vacuum depositing copper to a thickness of 10 nm or more on the sample; And it can be achieved by the Nd-Fe-B-based magnet manufacturing method comprising the step of vacuum-depositing aluminum on the copper-deposited sample.

본 발명의 하나의 특징에 따르면, 상기 구리 진공 증착단계는 구리의 저항 가열 증발단계를 포함하며, 상기 알루미늄 진공 증착단계는 알루미늄의 저항 가열 증발단계를 포함한다. According to one feature of the invention, the copper vacuum deposition step includes a resistive heat evaporation step of copper, and the aluminum vacuum deposition step includes a resistive heat evaporation step of aluminum.

상술된 목적들은 또한, Nd-Fe-B계 시료본체와, 상기 Nd-Fe-B계 시료본체에 약 10 내지 120nm의 두께로 증착되는 구리층과, 상기 구리층 둘레에 약 5 내지 900g/㎡의 양으로 증착되는 알루미늄층을 구비하는 Nd-Fe-B계자석에 의해 달성될 수 있다. The above-mentioned objects also include an Nd-Fe-B-based sample body, a copper layer deposited on the Nd-Fe-B-based sample body at a thickness of about 10 to 120 nm, and about 5 to 900 g / m 2 around the copper layer. It can be achieved by the Nd-Fe-B-based magnet having an aluminum layer deposited in an amount of.

본 발명은, 알루미늄 증착방식을 이용하여 Nd-Fe-B계자석을 제조하는 방법에 있어서, 그 Nd-Fe-B계 자석에 알루미늄을 증착하기 전에 구리를 10nm이상의 두께의 범위로 진공 증착하여 밀착성과 내식성이 우수한 알루미늄 증착 Nd-Fe-B계자석 제조방에 관한 것이다. The present invention relates to a method of manufacturing an Nd-Fe-B magnet by using an aluminum vapor deposition method, wherein the copper is vacuum-deposited to a thickness of 10 nm or more before the aluminum is deposited on the Nd-Fe-B magnet. The present invention relates to an aluminum vapor-deposited Nd-Fe-B-based magnet manufacturing excellent in corrosion resistance.

보다 상세히 설명하면, 전술된 바와 같이, 금속의 표면에는 두께 약 5 nm 정도의 산화층이 자연적으로 생성되는데 이러한 산화층은 코팅층과의 결합성을 떨어뜨리는 요인이 되며, 이에 따라 Nd-Fe-B계 자석의 경우 표면 산화층 때문에 알루미늄 증착시 그 알루미늄층과 Nd-Fe-B계 자석과의 밀착력이 저하된다. 그러나 Nd-Fe-B계 자석의 표면에 생성된 산화층과 구리와는 상호간의 결합성이 우수함은 물론 구리와 알루미늄간의 결합성도 우수하다. 이때, 구리와 알루미늄간의 결합성이 우수하다는 것은 표면 산화의 우려가 없는 진공 상태에서 코팅한다는 것을 전제로 함을 이해해야 할 것이다. In more detail, as described above, an oxide layer having a thickness of about 5 nm is naturally formed on the surface of the metal, and this oxide layer is a factor that degrades the bond with the coating layer, and thus the Nd-Fe-B magnet In the case of aluminum deposition due to the surface oxide layer, the adhesion between the aluminum layer and the Nd-Fe-B-based magnet is reduced. However, the bonding between the oxide layer formed on the surface of the Nd-Fe-B magnet and the copper is excellent, as well as the bonding between copper and aluminum. At this time, it should be understood that the excellent bonding between copper and aluminum is based on the premise that the coating is performed in a vacuum without fear of surface oxidation.

따라서, 본 발명은 이 같은 이론적 근거를 기초로 하여 Nd-Fe-B계 자석에 적정 두께의 구리를 증착시킨 다음, 알루미늄을 증착시키면 구리가 Nd-Fe-B계 자석과 알루미늄 도금층간의 밀착력을 현저하게 증가시키게 되며, 이에 따라 밀착력이 우수한 알루미늄 도금층에 의해 자석 전체의 내식성이 향상되는 결과를 제공하게 되는 것이다.Therefore, the present invention is based on this theoretical basis, after depositing the copper of the appropriate thickness on the Nd-Fe-B-based magnet, and then aluminum is deposited, the copper significantly increases the adhesion between the Nd-Fe-B-based magnet and the aluminum plating layer In this case, the corrosion resistance of the entire magnet is improved by the aluminum plating layer having excellent adhesion.

한편, 이러한 구리의 부착에 의한 알루미늄 도금 피막의 밀착성 향상 및 알루미늄 도금층에 의한 내식성의 향상은 구리의 부착두께가 10nm 이상일 경우에 나타나는 반면, 그 미만에서는 밀착성이 저하되는 것으로 나타났다. 이에 따라, 구리의 부착 또는 증착두께는 10nm 이상으로 설정되는 것이 바람직하다. On the other hand, the adhesion improvement of the aluminum plating film by the adhesion of copper and the improvement of corrosion resistance by the aluminum plating layer appear when the adhesion thickness of copper is 10 nm or more, but it turned out that adhesiveness falls below that. Accordingly, the deposition or deposition thickness of copper is preferably set to 10 nm or more.

또한, 본 발명에서는 이상과 같이 Nd-Fe-B 계 자석에 구리을 증착시킨 후, 전자선 증발 방법으로 알루미늄을 증착시키게 된다. 이때 진공도는 10-4 Torr 이하로 유지되거나, 순수한 아르곤 분위기의 저진공에서 증착함이 바람직하다. 그 이유는 진공도가 나쁘거나 용기내 산소 등이 일정량 이상의 부분압을 가하게 되면 진공 용기내의 산소가 구리를 산화시켜 밀착력을 저하시킬 우려가 있기 때문이다. In the present invention, after depositing copper on the Nd-Fe-B-based magnet as described above, aluminum is deposited by the electron beam evaporation method. At this time, the degree of vacuum is maintained below 10 -4 Torr, or preferably deposited in a low vacuum of pure argon atmosphere. This is because when the degree of vacuum is poor or when oxygen in the container is applied at a partial pressure of a predetermined amount or more, the oxygen in the vacuum container may oxidize copper and lower the adhesion.

이하, 본 발명에 따른 Nd-Fe-B계 자석 제조방법 중 알루미늄의 진공 증착 방법의 바람직한 실시예를 도면을 참고로 하여 설명한다.Hereinafter, a preferred embodiment of the vacuum deposition method of aluminum in the Nd-Fe-B-based magnet manufacturing method according to the present invention will be described with reference to the drawings.

본 발명에 적용되는 구리 증발용 저항 가열 증발원이 설치된 진공 증착 장치의 개략도를 보여주는 도 1을 참조하면, 진공 증착 장치는 장방형의 본체(10)와, 그 본체 내에서 시료를 고정시키기 위한 시료바구니(12)와, 시료바구니(12)에 담겨진 시료를 가열하기 위한 시료가열장치(14)와, 구리 증발원(16)과, 알루미늄 증발원(18)과, 도금의 두께를 측정하기 위한 도금두께 측정장치(20)와, 시료와 각각의 증발원간의 선택적인 노출을 실행하기 위한 셔터(22)를 구비한다. 특히, 본 발명에 따른 Nd-Fe-B계 자석 제조방법에 적용되는 증착장치에 적용되는 구리 증발원(16) 및 알루미늄 증발원(18)은 모두 저렴한 저항 가열식 증발원인 것이 바람직하다.Referring to FIG. 1 showing a schematic view of a vacuum deposition apparatus provided with a resistive heating evaporation source for copper evaporation applied to the present invention, the vacuum deposition apparatus includes a rectangular main body 10 and a sample basket for fixing a sample in the main body ( 12), a sample heating device 14 for heating a sample contained in the sample basket 12, a copper evaporation source 16, an aluminum evaporation source 18, and a plating thickness measuring device for measuring the thickness of the plating ( 20) and a shutter 22 for performing selective exposure between the sample and each evaporation source. In particular, it is preferable that both the copper evaporation source 16 and the aluminum evaporation source 18 applied to the deposition apparatus applied to the Nd-Fe-B-based magnet manufacturing method according to the present invention are inexpensive resistance heating evaporation sources.

Nd-Fe-B계 자석의 제조방법에 의하면, 먼저 대기중에서 Nd-Fe-B계 자석(이하 시료라 칭함)을 통상의 탈지 과정을 거쳐 진공 증착 장치에 장입시킨다. 이때, 시료는 본체(10)에 구비된 망사형의 바구니(12)에 담아 진공 증착 중에는 이를 회전시켜 Nd-Fe-B 계 자석에 구리와 알루미늄이 균일하게 도금되게 하는 것이 바람직하다. According to the method for producing an Nd-Fe-B magnet, first, an Nd-Fe-B magnet (hereinafter referred to as a sample) is charged into a vacuum deposition apparatus through a normal degreasing process in the air. At this time, the sample is preferably placed in the mesh basket 12 of the main body 10 to rotate during vacuum deposition so that the copper and aluminum uniformly plated on the Nd-Fe-B-based magnet.                     

이후, 증발물질인 구리를 그것의 증발원(16)에 장입하고 알루미늄을 그것의 증발원(18)에 각각 장입한 후 진공 도금 장치의 본체(10)의 문을 닫고 유회전 펌프나 부스터 펌프 등을 사용하여 진공조내의 진공도가 약 10-3Torr 이하가 되도록 배기한 후, 유확산 펌프나 터보 분자펌프 또는 크라이오 펌프 등을 이용하여 진공조내의 진공도를 약 10 -5Torr 이하로 낮춘다. Then, the copper evaporation material is charged to its evaporation source 16 and aluminum is charged to its evaporation source 18, and then the door of the main body 10 of the vacuum plating apparatus is closed and a flow pump or a booster pump is used. After exhausting the vacuum in the vacuum chamber to about 10 -3 Torr or less, the vacuum in the vacuum chamber is lowered to about 10 -5 Torr or less by using a diffusion pump, a turbo molecular pump or a cryo pump.

다음으로, 시료인 Nd-Fe-B 계 자석을 시료 가열 장치(14)로 가열하여 그 온도가 약120 - 300 oC 사이의 적정 온도에 달하면, 구리 증발원(16)에 전류를 가하여 구리을 증발시킨다. 이후, 셔터(22)를 열고 구리 증발원(16)으로부터 증발된 구리가 약 10 nm 정도 시료에 증착된 후 셔터를 닫는다. 동일한 방식으로, 알루미늄 증발원(18)을 이용하여 알루미늄을 증발시켜 시료에 원하는 두께로 알루미늄을 증착시킨다. 이때의, 각각의 증착 두께는 도금 두께 측정기(20)를 사용하거나, 저항 가열 증발원의 전력을 환산한 증착률에 증착 시간을 곱하여 측정할 수 있다. 이후, 알루미늄의 증착이 완료되면, 셔터(22)를 닫고 시료의 온도가 적정 수준으로 강하되면 진공 용기의 문을 열고 도금된 Nd-Fe-B 계 자석을 회수함으로써, Nd-Fe-B계자석의 제조가 완료되는 것이다. Next, when the Nd-Fe-B magnet, which is a sample, is heated by the sample heating device 14 and its temperature reaches an appropriate temperature of about 120 to 300 ° C., a current is applied to the copper evaporation source 16 to evaporate copper. . Thereafter, the shutter 22 is opened and the copper evaporated from the copper evaporation source 16 is deposited on the sample about 10 nm, and then the shutter is closed. In the same way, aluminum is evaporated using the aluminum evaporation source 18 to deposit aluminum to the sample in the desired thickness. At this time, each deposition thickness can be measured by using the plating thickness meter 20 or multiplying the deposition rate by the deposition rate converted from the power of the resistance heating evaporation source. After the deposition of aluminum is completed, the shutter 22 is closed, and when the temperature of the sample drops to an appropriate level, the door of the vacuum container is opened and the plated Nd-Fe-B magnet is recovered, thereby recovering the Nd-Fe-B magnet. The manufacture of is complete.

이상과 같은 방법으로 Nd-Fe-B 계 자석을 제조하면, 구리의 전착에 의해 알루미늄 도금층의 밀착력을 현저하게 증가시킬 수 있을 뿐만 아니라 내식성도 우수한 Nd-Fe-B 계 자석을 제조할 수 있다.If the Nd-Fe-B-based magnet is manufactured in the above manner, the adhesion of the aluminum plating layer can be significantly increased by electrodeposition of copper, and an Nd-Fe-B-based magnet having excellent corrosion resistance can be manufactured.

이하, 본 발명에 따라 제조된 Nd-Fe-B계 자석을 아래와 같은 실시예를 통하 여 그 성능 및 작용모드를 구체적으로 설명한다. Hereinafter, the performance and mode of operation of the Nd-Fe-B-based magnet manufactured according to the present invention will be described in detail through the following examples.

실시예Example

전술된 바와 같은 방식으로 상용의 Nd-Fe-B 계 자석에 구리를 먼저 증착한 후 알루미늄을 진공 증착 하였다. 즉, 저항 가열식 구리 증발원을 사용하여 구리를 1 내지 120nm 두께 범위로 증착한 후 알루미늄을 증착하였다. 이와 같이 제조된 Nd-Fe-B 계 자석의 밀착성을 테스트하기 위하여 테이프를 붙여 떼어낸 후 테이프에 도금층이 얼마나 부착되어 나오는지의 여부로 밀착력을 평가하였는 바, 그 결과가 도 2의 그래프에 나타나 있다. In the same manner as described above, copper was first deposited on a commercially available Nd-Fe-B magnet, and then aluminum was vacuum deposited. That is, aluminum was deposited after copper was deposited in a thickness range of 1 to 120 nm using a resistance heating copper evaporation source. In order to test the adhesion of the Nd-Fe-B magnets manufactured as described above, the adhesive force was evaluated by how much the plating layer adhered to the tape after peeling off the tape. The results are shown in the graph of FIG. 2. .

도 2의 그래프에 의하면, 본 발명의 방법으로 도금한 경우에는 우수한 밀착성을 나타내었으며, 표면 형상이 우수하고 색상도 은백색의 금속광을 나타내었다. According to the graph of Figure 2, when the plating by the method of the present invention showed an excellent adhesion, the surface shape is excellent and the color of the silver-white metal light.

또한, 내식성을 평가하기 위하여 도금된 Nd-Fe-B 계 자석을 염수에 담근 상태에서 녹이 발생하는지의 여부를 판단한 결과가 도 3에서 그래프로 나타나 있다. 도 3의 그래프에 나타난 바와 같이 본 발명의 방법으로 도금한 경우에는 염수 분위기에서도 양호한 내식성을 나타내었다.In addition, in order to evaluate corrosion resistance, a result of determining whether rust occurs in a state in which a plated Nd-Fe-B magnet is immersed in saline is shown as a graph in FIG. 3. As shown in the graph of Fig. 3, the plating of the present invention showed good corrosion resistance even in a salt water atmosphere.

비교예 Comparative example

한편, 전자선 증발원과 저항 가열 증발원을 사용하여 구리를 미리 도금하지 않고 알루미늄을 직접 Nd-Fe-B계 자석에 도금한 경우에는, 두 가지 경우 모두 테이프 테스트 결과 알루미늄 도금층이 뭍어 나와 밀착성이 나쁘고, 염수 분위기내에서도 녹이 발생하여 내식성이 떨어지는 것으로 나타났다. On the other hand, when the aluminum was directly plated on the Nd-Fe-B magnet without using copper in advance by using an electron beam evaporation source and a resistive heating evaporation source, in both cases, the aluminum plated layer appeared as a result of a tape test, resulting in poor adhesion and brine. Rust also occurred in the atmosphere, indicating poor corrosion resistance.

결과적으로, 본 발명에 따른 Nd-Fe-B계 자석의 제조방법에 의하면, 구리를 적정 두께로 우선 진공 증착하여 Nd-Fe-B계 자석과 알루미늄층간의 결합 매개층으로 사용함으로써, 알루미늄 도금층의 밀착성이 향상되고 내식성도 향상되어 제품성이 향상되는 효과가 있다. As a result, according to the manufacturing method of the Nd-Fe-B magnet according to the present invention, copper is first vacuum-deposited to an appropriate thickness and used as a bonding medium layer between the Nd-Fe-B magnet and the aluminum layer, The adhesiveness is improved and the corrosion resistance is also improved, thereby improving the productability.

또한, 제조된 Nd-Fe-B계자석의 표면 형상도 우수할 뿐 아니라 Nd-Fe-B 계 자석의 표면 상태가 균일하지 않은 경우에도 그 표면 형상과 색상이 우수한 장점이 있다. In addition, the surface shape of the manufactured Nd-Fe-B-based magnet is not only excellent, but even when the surface state of the Nd-Fe-B-based magnet is not uniform, the surface shape and color are excellent.

이상에서 본 발명에 따른 바람직한 실시예에 대해 설명하였으나, 본 기술분야의 당업자라면 첨부된 특허청구범위를 벗어남이 없이 다양한 변형예 및 수정예를 실시할 수 있을 것으로 이해된다. While a preferred embodiment according to the present invention has been described above, it will be understood by those skilled in the art that various modifications and changes can be made without departing from the scope of the appended claims.

Claims (3)

Nd-Fe-B계 자석 제조방법에 있어서,In the Nd-Fe-B-based magnet manufacturing method, 일정 형태의 Nd-Fe-B계 시료를 탈지 처리하여 준비하는 단계;Degreasing the Nd-Fe-B-based sample of a certain type to prepare 상기 시료에, 진공상태에서 구리를 10nm 내지 120nm의 두께로 저항 가열 증발시켜 진공 증착하는 단계; 및Vacuum depositing copper on the sample by resistive heat evaporation to a thickness of 10 nm to 120 nm in a vacuum state; And 상기 구리가 진공증착된 시료에, 진공상태에서 알루미늄을 구리층 표면 전체에 약 5 내지 900g/㎡의 도금양으로 저항 가열 증발시켜 진공 증착하는 단계를 포함하는 을 특징으로 하는 Nd-Fe-B계 자석 제조방법. Nd-Fe-B system comprising the step of vacuum evaporation to the copper-vapor-deposited sample, in a vacuum state, aluminum by resistance heat evaporation in the plating amount of about 5 to 900g / ㎡ over the entire surface of the copper layer Magnet manufacturing method. 삭제delete 삭제delete
KR1020010048566A 2001-08-11 2001-08-11 Method for manufacturing aluminium coated Nd-Fe-B magnet KR100831401B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010048566A KR100831401B1 (en) 2001-08-11 2001-08-11 Method for manufacturing aluminium coated Nd-Fe-B magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010048566A KR100831401B1 (en) 2001-08-11 2001-08-11 Method for manufacturing aluminium coated Nd-Fe-B magnet

Publications (2)

Publication Number Publication Date
KR20030014536A KR20030014536A (en) 2003-02-19
KR100831401B1 true KR100831401B1 (en) 2008-05-21

Family

ID=27718882

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010048566A KR100831401B1 (en) 2001-08-11 2001-08-11 Method for manufacturing aluminium coated Nd-Fe-B magnet

Country Status (1)

Country Link
KR (1) KR100831401B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102040947A (en) * 2009-10-13 2011-05-04 北京中科三环高技术股份有限公司 Biological oil removing agent for permanent-magnet materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910013315A (en) * 1989-12-29 1991-08-08 서주인 Manufacturing method of rare earth permanent magnet
JPH0529119A (en) * 1991-07-18 1993-02-05 Kobe Steel Ltd High corrosion-resistant rare earth magnet
JP2001176709A (en) * 1999-12-16 2001-06-29 Hitachi Metals Ltd High anticorrosion magnet superior in magnetic characteristics and manufacturing method therefor
JP2001196215A (en) * 2000-01-07 2001-07-19 Tokin Corp Rare earth permanent magnet having good corrosion resistance and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910013315A (en) * 1989-12-29 1991-08-08 서주인 Manufacturing method of rare earth permanent magnet
JPH0529119A (en) * 1991-07-18 1993-02-05 Kobe Steel Ltd High corrosion-resistant rare earth magnet
JP2001176709A (en) * 1999-12-16 2001-06-29 Hitachi Metals Ltd High anticorrosion magnet superior in magnetic characteristics and manufacturing method therefor
JP2001196215A (en) * 2000-01-07 2001-07-19 Tokin Corp Rare earth permanent magnet having good corrosion resistance and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102040947A (en) * 2009-10-13 2011-05-04 北京中科三环高技术股份有限公司 Biological oil removing agent for permanent-magnet materials
CN102040947B (en) * 2009-10-13 2014-03-26 北京中科三环高技术股份有限公司 Biological oil removing agent for permanent-magnet materials

Also Published As

Publication number Publication date
KR20030014536A (en) 2003-02-19

Similar Documents

Publication Publication Date Title
JPS61153272A (en) Surface treatment of nylon filled with mineral
US20160230267A1 (en) Apparatus and a method for plating an nd-fe-b magnet
KR100831401B1 (en) Method for manufacturing aluminium coated Nd-Fe-B magnet
JPS5812728B2 (en) Jikikirokubaitaino Seihou
CN113278931A (en) Method for thickening magnetron sputtering coating on surface of composite material
JPS62188856A (en) Piston ring
JP2007297712A (en) Metallization through thin seed layer deposited using plasma
US8512859B2 (en) Housing and method for making the same
JP2001170460A (en) Hydrogen separating material and producing method therefor
KR19990016244A (en) Method of forming aluminum plating layer of neodymium-iron-boron magnet
Swaroop et al. Ion-Plated Copper—Steel Graded Interface
KR100504049B1 (en) Metal thin film and its deposition method for electro-magnetic shielding in the plastic objects using sputter and vaccum evaporation
KR19990016346A (en) Method for forming nickel deposition layer of neodymium-iron-boron magnet
KR19990053896A (en) Manufacturing Method of Titanium Plating Neodymium-Iron-Boron Magnet
US4089990A (en) Battery plate and method of making
JP3775273B2 (en) Electromagnetic shielding film
KR20020050829A (en) Ni multilayer plated Nd-Fe-B magnet and its manufacturing method
US8568905B2 (en) Housing and method for making the same
US8568904B2 (en) Housing and method for making the same
US8597782B2 (en) Housing and method for making the same
TWI472637B (en) Surface treatment for aluminum alloy and housing manufactured by the aluminum alloy
JPS5813622B2 (en) Magnetron type sputtering equipment
KR100998731B1 (en) Method for Metal Deposition on the Surface of Polymer
JP3291566B2 (en) Transparent stable film forming method
TWI476283B (en) Surface treatment for aluminum or aluminum alloy and housing manufactured by the aluminum or aluminum alloy

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120404

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130422

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee