KR100829472B1 - Aluminum compound for forming aluminum films by chemical vapor deposition and their synthesis - Google Patents
Aluminum compound for forming aluminum films by chemical vapor deposition and their synthesis Download PDFInfo
- Publication number
- KR100829472B1 KR100829472B1 KR20060044864A KR20060044864A KR100829472B1 KR 100829472 B1 KR100829472 B1 KR 100829472B1 KR 20060044864 A KR20060044864 A KR 20060044864A KR 20060044864 A KR20060044864 A KR 20060044864A KR 100829472 B1 KR100829472 B1 KR 100829472B1
- Authority
- KR
- South Korea
- Prior art keywords
- compound
- formula
- amine
- aluminum
- colorless
- Prior art date
Links
- -1 Aluminum compound Chemical class 0.000 title claims abstract description 32
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 24
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 22
- 238000005229 chemical vapour deposition Methods 0.000 title claims abstract description 16
- 230000015572 biosynthetic process Effects 0.000 title description 2
- 238000003786 synthesis reaction Methods 0.000 title description 2
- 150000001875 compounds Chemical class 0.000 claims abstract description 91
- 238000000034 method Methods 0.000 claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 claims abstract description 14
- 239000010409 thin film Substances 0.000 claims abstract description 14
- 239000000126 substance Substances 0.000 claims abstract description 13
- 150000001412 amines Chemical class 0.000 claims abstract description 11
- 239000002879 Lewis base Substances 0.000 claims abstract description 4
- 150000007527 lewis bases Chemical class 0.000 claims abstract description 4
- 239000000758 substrate Substances 0.000 claims abstract description 4
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 3
- 125000002524 organometallic group Chemical group 0.000 claims abstract 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 35
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 33
- 238000006243 chemical reaction Methods 0.000 claims description 30
- 229910010082 LiAlH Inorganic materials 0.000 claims description 19
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 12
- 238000000151 deposition Methods 0.000 claims description 12
- 239000012280 lithium aluminium hydride Substances 0.000 claims description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 9
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 8
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- 125000004432 carbon atom Chemical group C* 0.000 claims description 6
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 6
- 150000002431 hydrogen Chemical class 0.000 claims description 6
- PPTSBERGOGHCHC-UHFFFAOYSA-N boron lithium Chemical compound [Li].[B] PPTSBERGOGHCHC-UHFFFAOYSA-N 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 239000012279 sodium borohydride Substances 0.000 claims description 4
- 229910000033 sodium borohydride Inorganic materials 0.000 claims description 4
- 229910052736 halogen Inorganic materials 0.000 claims description 3
- 150000002367 halogens Chemical group 0.000 claims description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 3
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 3
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 3
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims 1
- 239000012448 Lithium borohydride Substances 0.000 claims 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 claims 1
- 229910052796 boron Inorganic materials 0.000 claims 1
- 239000012312 sodium hydride Substances 0.000 claims 1
- 229910000104 sodium hydride Inorganic materials 0.000 claims 1
- 239000002243 precursor Substances 0.000 abstract description 26
- 150000003973 alkyl amines Chemical class 0.000 abstract description 3
- 239000000706 filtrate Substances 0.000 description 42
- 238000002360 preparation method Methods 0.000 description 40
- DAZXVJBJRMWXJP-UHFFFAOYSA-N n,n-dimethylethylamine Chemical compound CCN(C)C DAZXVJBJRMWXJP-UHFFFAOYSA-N 0.000 description 33
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 24
- DJEQZVQFEPKLOY-UHFFFAOYSA-N N,N-dimethylbutylamine Chemical compound CCCCN(C)C DJEQZVQFEPKLOY-UHFFFAOYSA-N 0.000 description 17
- 238000003756 stirring Methods 0.000 description 14
- AVFZOVWCLRSYKC-UHFFFAOYSA-N 1-methylpyrrolidine Chemical compound CN1CCCC1 AVFZOVWCLRSYKC-UHFFFAOYSA-N 0.000 description 13
- 239000007788 liquid Substances 0.000 description 12
- 239000011541 reaction mixture Substances 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- 230000008021 deposition Effects 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- AHVYPIQETPWLSZ-UHFFFAOYSA-N N-methyl-pyrrolidine Natural products CN1CC=CC1 AHVYPIQETPWLSZ-UHFFFAOYSA-N 0.000 description 8
- 239000006227 byproduct Substances 0.000 description 8
- 235000011089 carbon dioxide Nutrition 0.000 description 8
- 238000000746 purification Methods 0.000 description 8
- 0 CCCCCN(C)CCCCCC*C Chemical compound CCCCCN(C)CCCCCC*C 0.000 description 6
- RCTYPNKXASFOBE-UHFFFAOYSA-M chloromercury Chemical compound [Hg]Cl RCTYPNKXASFOBE-UHFFFAOYSA-M 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000005137 deposition process Methods 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- TUTOKIOKAWTABR-UHFFFAOYSA-N dimethylalumane Chemical compound C[AlH]C TUTOKIOKAWTABR-UHFFFAOYSA-N 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 150000007523 nucleic acids Chemical class 0.000 description 4
- 102000039446 nucleic acids Human genes 0.000 description 4
- 108020004707 nucleic acids Proteins 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 125000005234 alkyl aluminium group Chemical group 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000002360 explosive Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 238000000427 thin-film deposition Methods 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 229960002523 mercuric chloride Drugs 0.000 description 2
- LWJROJCJINYWOX-UHFFFAOYSA-L mercury dichloride Chemical compound Cl[Hg]Cl LWJROJCJINYWOX-UHFFFAOYSA-L 0.000 description 2
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 2
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- GVNVAWHJIKLAGL-UHFFFAOYSA-N 2-(cyclohexen-1-yl)cyclohexan-1-one Chemical compound O=C1CCCCC1C1=CCCCC1 GVNVAWHJIKLAGL-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 101150065749 Churc1 gene Proteins 0.000 description 1
- 102100038239 Protein Churchill Human genes 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 125000002009 alkene group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- MOOAHMCRPCTRLV-UHFFFAOYSA-N boron sodium Chemical compound [B].[Na] MOOAHMCRPCTRLV-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
- C07F5/06—Aluminium compounds
- C07F5/069—Aluminium compounds without C-aluminium linkages
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
Abstract
본 발명은 알루미늄 박막을 화학기상증착법에 의해 기판상에 증착시키는데 사용되는 전구체 화합물과 그 화합물의 제조방법에 관한 것으로, 본 발명은 하기 화학식 1로 정의되는 유기금속착물 및 그 제조방법을 제공한다.The present invention relates to a precursor compound used to deposit an aluminum thin film on a substrate by chemical vapor deposition, and a method for preparing the compound. The present invention provides an organometallic complex defined by the following Chemical Formula 1 and a method for producing the same.
[화학식 1][Formula 1]
H2AlBH4:Ln H 2 AlBH 4 : L n
[상기 화학식 1에서 L은 루이스 염기(Lewis base)로 비공유 전자쌍을 알루미늄 금속 중심에 제공 할 수 있는 아민계열 유기 화합물로서 헤테로사이클릭아민(heterocyclic amine) 또는 알킬아민(alkyl amine)으로, n은 1 또는 2의 정수이다.][In Formula 1, L is a Lewis base, an amine-based organic compound capable of providing a non-covalent electron pair to an aluminum metal center as a heterocyclic amine or an alkyl amine, where n is 1 Or an integer of 2.]
알루미늄, 아민, 알란, 전구체 Aluminum, amine, alan, precursor
Description
본 발명은 알루미늄 박막을 화학기상증착법에 의해 기판상에 증착시키는데 사용되는 전구체 화합물과 그 화합물의 제조방법에 관한 것으로, 좀 더 상세하게는 실리콘과 같은 기판상에 형성되어 있는 접착막 또는 확산 방지막 위에 알루미나 박막층을 형성시켜 주기 위한 화합물 및 그 화합물의 제조방법을 제공하고자 하는 것이다.The present invention relates to a precursor compound used to deposit an aluminum thin film on a substrate by chemical vapor deposition and a method for preparing the compound, and more particularly, to an adhesive film or a diffusion barrier formed on a substrate such as silicon. It is to provide a compound for forming the alumina thin film layer and a method for producing the compound.
반도체 산업에서의 신기술 및 재료의 개발은 반도체 집적회로와 같은 소자의 미세화, 고 신뢰화, 고속화, 고 기능화, 고 집적화 등을 실현 가능하게 하여 왔으며, 이러한 반도체 소자의 고집적화에 따라, 각 소자 간에 전기적 신호를 전달하는 금속 배선이 미세화 되어야 했고, 이러한 미세화에 의한 단면적 감소로 배선저항 증가 및 배선간격 축소에 의한 기생 캐퍼시터 증가가 문제점으로 대두되었다. 이러한 저항 및 캐퍼시터 증가는 RC 지연시간을 유발시켜 향후의 로직(logic) 공정이 추구하는 고속 반도체소자를 제조하는데 장벽요인이 되고 있다. 고속 반도체 소자를 제조하기 위해서는, 금속 배선간 기생 캐퍼시터를 줄여야 한다. 이를 위해, 저 유전률 절연막이나 저 저항 금속 배선의 사용이 필수적인데 특히, 저 저항 금속 배선 공정 기술은 아직 공정 및 장비상의 개선의 여지가 많아 고집적 고속 반도체 제조기술 수립에 중요한 과제로서 많은 연구가 진행되고 있다.The development of new technologies and materials in the semiconductor industry has made it possible to realize miniaturization, high reliability, high speed, high functionality, and high integration of devices such as semiconductor integrated circuits. The metal wirings that transmit signals had to be miniaturized, and the increase in parasitic capacitors due to the reduction in the cross-sectional area and the wire spacing caused by the reduction in the cross-sectional area caused by such miniaturization. This increase in resistance and capacitor causes RC delay, which is a barrier to manufacturing high-speed semiconductor devices pursued by future logic processes. In order to manufacture high-speed semiconductor devices, parasitic capacitors between metal wirings must be reduced. To this end, the use of a low dielectric constant insulating film or a low resistance metal wiring is essential. In particular, the low resistance metal wiring process technology still has a lot of room for improvement in process and equipment. have.
현재 64M DRAM 제조에 사용되는 알루미늄(Al) 금속배선은 원하는 알루미늄 금속 타겟(target)을 사용하여 알루미늄 배선을 증착하는 스퍼터링 방식에 절대적으로 의존하고 있으나, 회로 선폭 0.25 ㎛이하가 되는 금속배선 증착은 컨택(contact)이나 비아(via)의 단차비(aspect ratio : depth/diameter)가 크기 때문에 스퍼터링 방식을 증착 공정으로 사용하는 것이 부적합할 것으로 예상되고 있다.Currently, aluminum (Al) metal wiring used in 64M DRAM manufacturing is absolutely dependent on the sputtering method of depositing aluminum wiring using a desired aluminum metal target, but the deposition of metal wiring having a circuit line width of 0.25 μm or less is a contact. Due to the large aspect ratio (depth / diameter) of contacts or vias, it is expected to be inappropriate to use sputtering as a deposition process.
이를 극복하기 위해 높은 계단 피복성(step coverage)의 장점을 보여줌으로서 높은 단차비를 갖는 컨택-비아홀(contact/via hole)의 메꿈공정에 유리한 화학증착(CVD; Chemical Vapor Deposition)방식을 사용한 알루미늄 배선 공정이 오랫동안 연구되어 왔다.In order to overcome this problem, aluminum wiring using the Chemical Vapor Deposition (CVD) method is advantageous for the process of filling contact / via holes with high step ratio by showing the advantages of high step coverage. The process has been studied for a long time.
이와 같은 연구의 결실로서 알루미늄배선 증착공정은 알루미늄(Al)-CVD방식에 의해 이루어질 수 있는 기반이 마련되었으며, CVD법의 사용이 절대적으로 고려되고 있다.As a result of this research, the aluminum wire deposition process has been prepared based on the aluminum (Al) -CVD method, and the use of the CVD method is absolutely considered.
화학 기상 증착법을 이용한 Al 박막의 증착은 전구체(Precursor)라 칭하는 알루미늄 화합물을 사용하며, 이러한 금속 화합물을 사용하여 금속 박막을 증착하는 공정에서는 전구체 화합물의 특성 및 선정은 화학기상증착(CVD) 공정의 성패를 좌우하는 매우 중요한 요소로 공정의 투입에 앞서 전구체의 개발 및 선정은 첫 번째로 고려되는 사항 중 하나이다. Deposition of Al thin film using chemical vapor deposition method uses an aluminum compound called a precursor (Precursor), and in the process of depositing a metal thin film using such a metal compound, the characteristics and selection of the precursor compound is a chemical vapor deposition (CVD) process The development and selection of precursors prior to the introduction of a process is one of the first considerations.
Al 금속 화학 기상 증착법에 관한 초기 연구는 상업적으로 널리 사용되는 알킬알루미늄 화합물을 사용하여 1980년대에 미국 및 일본에서 진행되었으며, 대표적인 알킬알루미늄 화합물로는 트리메틸알루미늄(trimethyl aluminum; Al(CH3)3)과 트리이소부틸알루미늄(triisobutylaluminum; Al((CH3)2CHCH2)3) 화합물이 주로 사용되었다.Initial research on Al metal chemical vapor deposition has been conducted in the United States and Japan in the 1980s using commercially widely used alkylaluminum compounds. Representative alkylaluminum compounds include trimethyl aluminum (Al (CH 3 ) 3 ). And triisobutylaluminum (Al ((CH 3 ) 2 CHCH 2 ) 3 ) compounds were mainly used.
이후 90년대 알루미늄 박막의 화학증착용 전구체 화합물로 [(CH3)2AlH]3 로 표기되는 디메틸알루미늄하이드라이드(Dimethyl Aluminum Hydride)와 H3Al:N(CH3)2C2H5 로 표기되는 디메틸에틸아민알랜(Dimethylethylaminealane)이 Al-CVD용 전구체 화합물을 대변되어 왔다.Later, as a precursor compound for chemical vapor deposition of aluminum thin films in the 90's, dimethyl aluminum hydride represented by [(CH 3 ) 2 AlH] 3 and H 3 Al: N (CH 3 ) 2 C 2 H 5 . Dimethylethylaminealane has been represented as a precursor compound for Al-CVD.
상기에서 소개된 알킬알루미늄 화합물은 상온에서 높은 증기압을 갖는 액체로 존재하는 등의 CVD 전구체로서 장점을 갖추고 있으나, 박막의 증착온도가 300℃ 내지 400℃ 범위의 고온에서 이루어지기 때문에 증착공정이 어려워지고, 상기의 고온 증착으로 인하여 알루미늄 박막 내 전기 저항도를 높이는 원치 않은 불순물인 탄소가 알루미늄 박막 내에 포함되는 치명적인 단점과 미세한 공기와의 접촉에 의한 폭발적인 인화성이 있어 취급하는데 매우 세심한 주의가 필요한 위험성을 보이고 있다.The alkylaluminum compound introduced above has advantages as a CVD precursor, such as being present as a liquid having a high vapor pressure at room temperature, but the deposition process becomes difficult because the deposition temperature of the thin film is made at a high temperature in the range of 300 ° C to 400 ° C. Due to the high temperature deposition, it is a fatal drawback that carbon, which is an unwanted impurity to increase the electrical resistance in the aluminum thin film, and explosive flammability due to contact with minute air, shows the danger of requiring very careful handling. have.
이와 같은 문제 해결을 위하여 디메틸알루미늄하이드라이드 화합물을 전구체로 사용하는 Al-CVD 공법에 대한 공정 및 기술 개발이 1980년대 초반에 시작되었으며, 상기 디메틸알루미늄하이드라이드는 높은 증기압(25℃에서 2 torr)을 가지고 있어 증착속도가 높고, 상온에서 무색 액체인 화합물로 수소가스를 사용하는 증착조건에 따라 비교적 낮은 증착온도인 230℃ 근처에서 고순도의 알루미늄 박막을 증착할 수 있으나, 상기 디메틸알루미늄하이드라이드는 알킬 알루미늄 계열의 화합물로 공기와 접촉 시 폭발적 인화성을 가지므로 취급하기에 어려운 점이 있고, 화합물 제조 공정의 난이도가 높기 때문에 생산성의 저하로 인하여 높은 가격으로 인해 경제성이 취약하며, 점도가 높은 액체화합물이기 때문에 전구체 전달 속도의 조절이 용이하지 않은 단점도 함께 가지고 있다.In order to solve this problem, the development of process and technology for Al-CVD method using dimethyl aluminum hydride compound as a precursor began in the early 1980s, and the dimethyl aluminum hydride has a high vapor pressure (2 torr at 25 ° C.). It is a compound having a high deposition rate and a colorless liquid at room temperature, and according to the deposition conditions using hydrogen gas, it is possible to deposit a high purity aluminum thin film at a relatively low deposition temperature of around 230 ° C, but the dimethyl aluminum hydride is alkyl aluminum It is difficult to handle because it has explosive flammability when it is contacted with air as a compound of the series, and because of the difficulty of the compound manufacturing process, it is economically poor due to high productivity due to the decrease in productivity, and because it is a high viscosity liquid compound Disadvantages of Adjusting the Delivery Speed I also have it.
이에 대한 대안으로 알랜(AlH3)계열 화합물이 Al-CVD용 전구체 화합물로 사용되었으며 일반적인 알킬아민알랜은 저온인 100∼200℃에서 고순도 알루미늄 박막 을 증착하고, 높은 증기압(25℃에서 1.5torr)을 갖는 상온에서 무색 액체로 기존에 사용되던 디메틸알루미늄하이드라이드에 비해 인화성이 다소 적으며, 단순제조공정에 의하여 제조되는 관계로 경제성이 우수한 장점을 지니고 있다.As an alternative to this, alan (AlH 3 ) -based compound is used as a precursor compound for Al-CVD, and general alkylamine alan deposits a high purity aluminum thin film at a low temperature of 100 to 200 ° C. and a high vapor pressure (1.5 tor at 25 ° C.). It has a slightly less flammability compared to the dimethylaluminum hydride, which is used as a colorless liquid at room temperature, and has excellent economical efficiency because it is manufactured by a simple manufacturing process.
그러나 상기 알킬아민알랜은 상온에서 또는 증착 공정에 적용하기 위하여 30-40℃로 가열하는 경우 열적 불안정성 때문에 전구체를 보관하는 용기의 내부에서 서서히 분해되어 반도체 소자의 제조 공정에 적용 시 가장 중요시 여기며, 반드시 실현되어야 할 재현성이 있는 증착 공정의 개발이 어렵고 상온 보관이 용이하지 않다고 하는 치명적인 단점을 지니고 있다.However, the alkylaminealan is decomposed slowly in the container holding the precursor due to thermal instability when heated to 30-40 ° C. at room temperature or to be applied to the deposition process. It has a fatal disadvantage that it is difficult to develop a reproducible deposition process to be realized, and that it is not easy to store at room temperature.
따라서 본 발명에서는 Al-CVD용 전구체 화합물의 선행기술의 문제점들 즉, 열적 불안정성, 높은 점성도, 폭발적 인화성 등을 극복하고 전구체 화합물의 선택범위를 확장하기 위한 신규의 알루미늄 전구체 화합물 및 그 제조방법을 제공하는 것이다.Accordingly, the present invention provides a novel aluminum precursor compound and a method for producing the same to overcome the problems of the prior art of the precursor compound for Al-CVD, that is, thermal instability, high viscosity, explosive flammability, etc. and to expand the selection range of the precursor compound. It is.
본 발명은 상기 알루미늄(Al) 금속 박막 증착을 위한 기존 전구체들의 장점을 최대한 포괄하며 단점을 최대한 보완할 수 있도록 설계된 새로운 알루미늄 박막 증착을 위한 전구체 화합물로서 하기의 화학식 1로 정의되는 화합물을 제공한다.The present invention provides a compound defined by the following Chemical Formula 1 as a precursor compound for deposition of a new aluminum thin film designed to fully cover the advantages of the existing precursors for the aluminum (Al) metal thin film deposition and to maximize the disadvantages.
[화학식 1][Formula 1]
H2AlBH4:Ln H 2 AlBH 4 : L n
[상기 화학식 1에서 L은 루이스 염기(Lewis base)로 비공유 전자쌍을 알루미늄 금속 중심에 제공 할 수 있는 아민계열 유기 화합물로서 하기의 화학식 2의 구조를 갖는 헤테로사이클릭아민(heterocyclic amine) 또는 화학식 3의 구조를 갖는 알킬아민(alkyl amine)으로서, n은 1 또는 2의 정수이다.][In Formula 1, L is a Lewis base, and is an amine-based organic compound capable of providing a non-covalent electron pair to an aluminum metal center. The heterocyclic amine having the structure of Formula 2 or Formula 3 Alkyl amine having a structure, n is an integer of 1 or 2.]
[화학식 2][Formula 2]
[상기 화학식 2에서 R1 및 R2는 서로 독립적으로 수소 또는 탄소수 1 내지 2의 알킬기이고, R3는 할로겐이 치환되거나 치환되지 않은 직쇄 또는 분지쇄의 탄소수 1 내지 4의 알킬기이고, m은 2 내지 8의 정수이다.][In Formula 2, R 1 and R 2 are independently of each other hydrogen or an alkyl group having 1 to 2 carbon atoms, R 3 is a linear or branched alkyl group having 1 to 4 carbon atoms which is unsubstituted or substituted with halogen, and m is 2 To an integer of 8]
[화학식 3][Formula 3]
[상기 화학식 3에서 R4 내지 R6는 서로 독립적으로 수소, 할로겐이 치환되거나 치환되지 않은 직쇄 또는 분지쇄의 탄소수 1 내지 6의 알킬기 또는 탄소수 1 내지 6의 알켄기이며, 상기 R4, R5 및 R6는 동시에 메틸기가 아니다.][In Formula 3, R 4 to R 6 are independently a hydrogen or a halogen substituted or unsubstituted linear or branched alkyl group having 1 to 6 carbon atoms or alkene group having 1 to 6 carbon atoms, and R 4 and R 5 And R 6 are not methyl at the same time.]
상기 화학식 2로 표시되는 헤테로사이클릭아민은 알킬아지리딘(alkylaziridine), 알킬아제티딘(alkylazetidine), 알킬피롤리딘(alkylpyrrolidine), 알킬피페리딘(alkylpiperidine), 알킬헥사메틸렌이민(alkylhexamethyleneimine), 알킬헵타메틸렌이민(alkylheptamethyleneimine) 중에서 선택되며, 화학식 2 및 화학식 3의 치환기인 R1 및 R2는 서로 독립적으로 수소, 메틸, 에틸이고, R3는 수소, 메틸, 에틸, n-프로필, i-프로필, n-부틸, i-부틸, t-부틸, n-펜틸,n-헥실, 퍼플루오로메틸이고, R4 내지 R6는 서로 독립적으로 수소, 메틸, 에틸, n-프로필, i-프로필, n-부틸, i-부틸, t-부틸, n-펜틸,n-헥실, 퍼플루오로메틸로부터 선택되어진다.The heterocyclic amine represented by the formula (2) is alkylaziridine, alkylazetidine, alkylpyrrolidine, alkylpiperidine, alkylpiperidine, alkylhexamethyleneimine, alkyl Selected from alkylheptamethyleneimine, R 1 and R 2, which are substituents of Formula 2 and Formula 3, independently of one another, are hydrogen, methyl, ethyl, and R 3 is hydrogen, methyl, ethyl, n-propyl, i-propyl , n-butyl, i-butyl, t-butyl, n-pentyl, n-hexyl, perfluoromethyl, R 4 to R 6 are independently of each other hydrogen, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl, n-pentyl, n-hexyl, perfluoromethyl.
또한, 상기 화학식 2 또는 화학식 3의 화합물들 중에서 메틸피롤리딘, 디메틸에틸아민 및 디메틸부틸아민 중에서 선택되는 것이 바람직하다. In addition, the compound of Formula 2 or Formula 3 is preferably selected from methylpyrrolidine, dimethylethylamine and dimethylbutylamine.
상기 화학식 1로 정의되는 아민알란보란 화합물은 기존 알루미늄 박막 제조 용 전구체로 사용되던 일반적인 구조인 아민으로 안정화된 알란 화합물의 가장 취약한 단점인 열안정성을 양산 공정에서 안정성으로 기인한 문제가 발생되지 않기에 충분한 정도의 열 안정성을 가진다.The aminealanborane compound defined by Chemical Formula 1 does not cause problems due to stability in the mass production process, which is the weakest disadvantage of an amine stabilized with amine, which is a general structure used as a precursor for manufacturing an aluminum thin film. It has a sufficient degree of thermal stability.
상기 화학식 1로 정의되는 알루미늄 박막 증착을 위한 전구체 화합물은 하기 반응식 1 내지 4로부터 용이하게 제조될 수 있으며, 하기 반응식 1 내지 4에 따른 전구체 화합물의 합성은 반응용기에 디에틸에테르 또는 디에테르에테르와 헥산의 혼합용액을 용매로 하여 각 단계에 따른 혼합물의 부유물을 만든 다음 생성된 염을 제거하고 용매를 진공증류하여 본 발명에 따른 화학식 1의 전구체 화합물이 제조될 수 있다.The precursor compound for aluminum thin film deposition defined by Chemical Formula 1 may be easily prepared from Schemes 1 to 4, and the synthesis of the precursor compound according to Schemes 1 to 4 may be carried out using diethyl ether or diether ether in a reaction vessel. Using a mixed solution of hexane as a solvent to make a suspension of the mixture according to each step, the resulting salt is removed and the solvent is distilled under vacuum to prepare a precursor compound of Formula 1 according to the present invention.
[반응식 1]Scheme 1
LiAlH4+ AlCl3+ 2nL + 2MBH4→ 2H2AlBH4:Ln (1) LiAlH 4 + AlCl 3 + 2nL + 2MBH 4 → 2H 2 AlBH 4 : L n (1)
[반응식 2]Scheme 2
LiAlH4+ AlCl3+ 2nL → 2ClH2Al:Ln (4) LiAlH 4 + AlCl 3 + 2nL ¡Æ 2ClH 2 Al: L n (4)
ClH2Al:Ln (4) + MBH4 → H2AlBH4:Ln (1) ClH 2 Al: L n (4) + MBH 4 → H 2 AlBH 4 : L n (1)
[반응식 3]Scheme 3
LiAlH4+ AlCl3+ 2Et2O → 2ClH2Al:OEt2 LiAlH 4 + AlCl 3 + 2Et 2 O → 2ClH 2 Al: OEt 2
ClH2Al: OEt2 + nL → ClH2Al:Ln (4) + Et2OClH 2 Al: OEt 2 + nL → ClH 2 Al: L n (4) + Et 2 O
ClH2Al:Ln (4) + MBH4 → H2AlBH4:Ln (1) ClH 2 Al: L n (4) + MBH 4 ¡Æ H 2 AlBH 4 : L n (1)
[반응식 4]Scheme 4
AlCl3+ 3LiAlH4+ 4nL → 4H3Al:Ln (5) AlCl 3 + 3LiAlH 4 + 4nL → 4H 3 Al: L n (5)
2H3Al:Ln (5) + HgCl2 → 2ClH2Al:Ln (4) + Hg + H2 2H 3 Al: L n (5) + HgCl 2 → 2ClH 2 Al: L n (4) + Hg + H 2
ClH2Al:Ln (4) + MBH4 → H2AlBH4:Ln (1) ClH 2 Al: L n (4) + MBH 4 → H 2 AlBH 4 : L n (1)
[상기 반응식 1 내지 4에서, L은 루이스 염기를 의미하는 것으로 상기 화학식 1에서 정의한 바와 동일하며, n은 1 또는 2의 정수이고; M은 Na 또는 Li 이다.][In Reaction Schemes 1 to 4, L means a Lewis base is the same as defined in Formula 1, n is an integer of 1 or 2; M is Na or Li.]
상기 반응식 1에 나타난 바와 같이 화학식 1의 아민알란보란 화합물(1)은 수소화리튬알루미늄, 트리클로로알루미늄, 화학식 2 또는 3의 아민 화합물과 수소화알칼리금속붕소(MBH4; M = Na 또는 Li)를 반응시켜 1단계로 제조된다.As shown in Scheme 1, the aminealanborane compound of Formula 1 reacts lithium aluminum hydride, trichloroaluminum, an amine compound of Formula 2 or 3 with an alkali metal borohydride (MBH 4 ; M = Na or Li). It is prepared in one step.
또한 반응식 2 내지 4에 나타난 바와 같이, 상기 화학식 1의 아민알란보란 화합물(1)은 클로로알란 화합물(4)와 수소화알칼리금속붕소(MBH4; M = Na 또는 Li)를 반응시켜 얻어지며, 상기 클로로알란 화합물(4)는 아민알란 화합물(5)을 수소화리튬알루미늄, 트리클로로알루미늄 및 화학식 2 또는 3의 아민 화합물과 반응시켜 제조하거나 염화수은과 반응시켜 제조될 수 있다.In addition, as shown in Schemes 2 to 4, the aminealanborane compound of Formula 1 is obtained by reacting a chloroalanine compound (4) with an alkali metal borohydride (MBH 4 ; M = Na or Li). The chloroalan compound (4) may be prepared by reacting the aminealan compound (5) with lithium aluminum hydride, trichloroaluminum and an amine compound of the formula (2) or (3) or by mercury chloride.
이하, 본 발명의 알루미늄 화합물의 제조방법에 대하여 하기의 실시예를 통하여 좀더 상세하게 설명하기로 한다.Hereinafter, the method for preparing the aluminum compound of the present invention will be described in more detail with reference to the following examples.
[실시예 1] 디메틸에틸아민알란보란의 제조Example 1 Preparation of Dimethylethylamine Alanborane
트리클로로알루미늄 133.3g(1몰)과 핵산 1000ml 가 더하여진 부유용액에 질소 가스의 기류 하에서 디에틸에테르 용액 500ml 를 첨가하고 수소화리튬알루미늄 39.4g (1.04몰)을 적가한 후 24시간 동안 상온에서 교반시켰다. 교반이 완료된 후 저온(-10℃)에서 디메틸에틸아민 161g(2.2몰)을 첨가한 후 10분간 교반하였다. 교반이 완료된 후 수소화리튬붕소 47.8g(2.2몰)을 상기 반응혼합물에 적가하고 30℃ 에서 8시간 동안 교반시켰다. 여과기를 사용하여 질소 기류 하에서 상기 반응혼합물을 걸러 1차 여과액을 얻고 여과기에 걸러진 부산물은 충분한 양의 헥산을 사용하여 2회 헹구어 여과하여 2차 여과액을 얻은 후, 최초의 여과액과 합하였다. 여과액은 상온(20℃)에서 진공을 이용하여 휘발 가능한 모든 물질을 제거하여 무색의 액체를 얻었다. To a suspension solution containing 133.3 g (1 mol) of trichloroaluminum and 1000 ml of nucleic acid, 500 ml of diethyl ether solution was added under a stream of nitrogen gas, and 39.4 g (1.04 mol) of lithium aluminum hydride was added dropwise, followed by stirring at room temperature for 24 hours. I was. After stirring was complete, 161 g (2.2 mol) of dimethylethylamine was added at a low temperature (-10 ° C), followed by stirring for 10 minutes. After stirring was completed, 47.8 g (2.2 mol) of lithium boron hydride was added dropwise to the reaction mixture and stirred at 30 ° C. for 8 hours. The reaction mixture was filtered under a nitrogen stream using a filter to obtain a primary filtrate, and the by-product filtered was rinsed twice with a sufficient amount of hexane, filtered to obtain a secondary filtrate, and then combined with the first filtrate. . The filtrate was removed at room temperature (20 ℃) using a vacuum to remove all volatile substances to obtain a colorless liquid.
건조된 무색의 여과액을 45℃에서 진공(1.3 torr)상태를 유지하면서 증류하면, 드라이아이스로 냉각된 용기에 무색의 증류액이 응결되고, 얻어진 무색의 1차 증류액을 45℃ 에서 같은 방법으로 정제하여 표제 화합물인 무색의 고순도 디메틸에틸아민알란보란 화합물 149g(수율 64%)을 수득하였다.When the dried colorless filtrate is distilled while maintaining a vacuum (1.3 torr) at 45 ° C., the colorless distillate is condensed in a vessel cooled with dry ice, and the resulting colorless primary distillate is obtained at 45 ° C. in the same manner. Purification of the reaction product gave 149 g (yield 64%) of the title compound as a colorless high purity dimethylethylaminealanborane compound.
디메틸에틸아민알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for the preparation of dimethylethylaminealanborane are as follows.
LiAlH4+ AlCl3+ 2N(CH2CH3)(CH3)2 + 2LiBH4→ 2H2AlBH4:N(CH2CH3)(CH3)2 LiAlH 4 + AlCl 3 + 2N (CH 2 CH 3 ) (CH 3 ) 2 + 2LiBH 4 → 2H 2 AlBH 4 : N (CH 2 CH 3 ) (CH 3 ) 2
[실시예 2] 디메틸에틸아민알란보란의 제조Example 2 Preparation of Dimethylethylamine Alanborane
트리클로로알루미늄 133.3g(1몰) 과 수소화리튬알루미늄 39.4g (1.04몰)이 더하여진 핵산1000ml 부유용액에 질소 가스의 기류 하에서 생성된 디클로로알란 화합물에 디메틸에틸아민 161g(2.2몰)을 첨가하고 수소화리튬붕소 47.8g(2.2몰)을 적가한 후 30℃ 에서 약 8시간 동안 교반시켰다. 여과기를 사용하여 질소 기류 하에서 상기 반응혼합물을 걸러 1차 여과액을 얻고 여과기에 걸러진 부산물은 충분한 양의 헥산을 사용하여 2회 헹구어 여과하여 2차 여과액을 얻은 후, 최초의 여과액과 합하였다. 여과액은 상온(20℃)에서 진공을 이용하여 휘발 가능한 모든 물질을 제거하여 무색의 액체를 얻었다. 161 g (2.2 mole) of dimethylethylamine was added to a dichloroalan compound produced under a stream of nitrogen gas to a 1000 ml suspension of nucleic acid to which 133.3 g (1 mole) of trichloroaluminum and 39.4 g (1.04 mole) of lithium aluminum hydride were added. 47.8 g (2.2 mol) of lithium boron was added dropwise and stirred at 30 ° C. for about 8 hours. The reaction mixture was filtered under a nitrogen stream using a filter to obtain a primary filtrate, and the by-product filtered was rinsed twice with a sufficient amount of hexane, filtered to obtain a secondary filtrate, and then combined with the first filtrate. . The filtrate was removed at room temperature (20 ℃) using a vacuum to remove all volatile substances to obtain a colorless liquid.
건조된 무색의 여과액을 45℃에서 진공(1.3 torr)상태를 유지하면서 증류하면, 드라이아이스로 냉각된 용기에 무색의 증류액이 응결되고, 얻어진 무색의 1차 증류액을 45℃ 에서 같은 방법으로 정제하여 표제 화합물인 무색의 고순도 디메틸에틸아민알란보란 화합물 125g(수율 53%)을 수득하였다.When the dried colorless filtrate is distilled while maintaining a vacuum (1.3 torr) at 45 ° C., the colorless distillate is condensed in a vessel cooled with dry ice, and the resulting colorless primary distillate is obtained at 45 ° C. in the same manner. Purification was carried out to give 125 g (yield 53%) of the title compound as a colorless high purity dimethylethylaminealanborane compound.
디메틸에틸아민알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for the preparation of dimethylethylaminealanborane are as follows.
LiAlH4+ AlCl3+ 2N(CH2CH3)(CH3)2 → 2ClH2Al:N(CH2CH3)(CH3)2 LiAlH 4 + AlCl 3 + 2N (CH 2 CH 3 ) (CH 3 ) 2 → 2ClH 2 Al: N (CH 2 CH 3 ) (CH 3 ) 2
ClH2Al:N(CH2CH3)(CH3)2 + LiBH4 → H2AlBH4:N(CH2CH3)(CH3)2 ClH 2 Al: N (CH 2 CH 3 ) (CH 3 ) 2 + LiBH 4 → H 2 AlBH 4 : N (CH 2 CH 3 ) (CH 3 ) 2
[실시예 3] 디메틸에틸아민알란보란의 제조Example 3 Preparation of Dimethylethylamine Alanborane
트리클로로알루미늄 133.3g(1몰)과 수소화리튬알루미늄 39.4g (1.04몰)의 디에틸에테르 1000ml 부유용액에 질소 가스의 기류 하에서 -10℃로 냉각시키면서 한 시간 동안 교반시켜 생성된 클로로알란 화합물을 -10℃로 유지하면서 디메틸에틸아민 161g(2.2몰)을 첨가한 후 수소화리튬붕소 47.8g(2.2몰)을 적가하고 30℃ 에서 8시간 동안 교반하였다. 여과기를 사용하여 질소 기류 하에서 상기 반응혼합물을 걸러 1차 여과액을 얻고 여과기에 걸러진 부산물은 충분한 양의 헥산을 사용하여 2회 헹구어 여과하여 2차 여과액을 얻은 후, 최초의 여과액과 합하였다. 여과액은 상온(20℃)에서 진공을 이용하여 휘발 가능한 모든 물질을 제거하여 무색의 액체를 얻었다. To a chloroalan compound produced by stirring for 13 hours in an aqueous solution of 133.3 g (1 mol) of trichloroaluminum and 39.4 g (1.04 mol) of lithium aluminum hydride, cooled to -10 ° C under a stream of nitrogen gas- 161 g (2.2 mole) of dimethylethylamine was added while maintaining at 10 ° C., and 47.8 g (2.2 mole) of lithium boron hydride was added dropwise and stirred at 30 ° C. for 8 hours. The reaction mixture was filtered under a nitrogen stream using a filter to obtain a primary filtrate, and the by-product filtered was rinsed twice with a sufficient amount of hexane, filtered to obtain a secondary filtrate, and then combined with the first filtrate. . The filtrate was removed at room temperature (20 ℃) using a vacuum to remove all volatile substances to obtain a colorless liquid.
건조된 무색의 여과액을 45℃에서 진공(1.3 torr)상태를 유지하면서 증류하면, 드라이아이스로 냉각된 용기에 무색의 증류액이 응결되고, 얻어진 무색의 1차 증류액을 45℃ 에서 같은 방법으로 정제하여 표제 화합물인 무색의 고순도 디메틸에틸아민알란보란 화합물 135g(수율 58%)을 수득하였다.When the dried colorless filtrate is distilled while maintaining a vacuum (1.3 torr) at 45 ° C., the colorless distillate is condensed in a vessel cooled with dry ice, and the resulting colorless primary distillate is obtained at 45 ° C. in the same manner. Purification was carried out to give 135 g (yield 58%) of the title compound as a colorless high purity dimethylethylaminealanborane compound.
디메틸에틸아민알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for the preparation of dimethylethylaminealanborane are as follows.
LiAlH4+ AlCl3+ 2Et2O → 2ClH2Al:OEt2 LiAlH 4 + AlCl 3 + 2Et 2 O → 2ClH 2 Al: OEt 2
ClH2Al:OEt2 + N(CH2CH3)(CH3)2 → ClH2Al:N(CH2CH3)(CH3)2 + Et2OClH 2 Al: OEt 2 + N (CH 2 CH 3 ) (CH 3 ) 2 → ClH 2 Al: N (CH 2 CH 3 ) (CH 3 ) 2 + Et 2 O
ClH2Al:N(CH2CH3)(CH3)2 + LiBH4 → H2AlBH4:N(CH2CH3)(CH3)2 ClH 2 Al: N (CH 2 CH 3 ) (CH 3 ) 2 + LiBH 4 ¡Æ H 2 AlBH 4 : N (CH 2 CH 3 ) (CH 3 ) 2
[실시예 4] 디메틸에틸아민알란보란의 제조Example 4 Preparation of Dimethylethylamine Alanborane
트리클로로알루미늄 133.3g(1몰) 과 핵산 1000ml 가 더하여진 부유용액에 질소 가스의 기류 하에서 디에틸에테르 용액 500ml 를 하고 수소화리튬알루미늄 39.4g (1.04몰)을 적가 한 후 24시간 동안 상온에서 교반시켰다. 교반이 완료된 후 저온(-10℃)에서 디메틸에틸아민 161g(2.2몰)을 첨가한 후 10분간 교반시켰다. 교반이 완료된 후 수소화나트륨붕소 83.1g(2.2몰)을 적가하고 30℃ 에서 8시간 동안 교반시켰다. 여과기를 사용하여 질소 기류 하에서 상기 반응혼합물을 걸러 1차 여과액을 얻고 여과기에 걸러진 부산물은 충분한 양의 헥산을 사용하여 2회 헹구어 여과하여 2차 여과액을 얻은 후, 최초의 여과액과 합하였다. 여과액은 상온(20℃)에서 진공을 이용하여 휘발 가능한 모든 물질을 제거하여 무색의 액체를 얻었다. To a suspension solution containing 133.3 g (1 mol) of trichloroaluminum and 1000 ml of nucleic acid, 500 ml of diethyl ether solution was added dropwise under a stream of nitrogen gas, and 39.4 g (1.04 mol) of lithium aluminum hydride was added dropwise, followed by stirring at room temperature for 24 hours. . After stirring was complete, 161 g (2.2 mol) of dimethylethylamine was added at a low temperature (-10 ° C), followed by stirring for 10 minutes. After stirring was completed, 83.1 g (2.2 mol) of sodium borohydride was added dropwise and stirred at 30 ° C. for 8 hours. The reaction mixture was filtered under a nitrogen stream using a filter to obtain a primary filtrate, and the by-product filtered was rinsed twice with a sufficient amount of hexane, filtered to obtain a secondary filtrate, and then combined with the first filtrate. . The filtrate was removed at room temperature (20 ℃) using a vacuum to remove all volatile substances to obtain a colorless liquid.
건조된 무색의 여과액을 45℃에서 진공(1.3 torr)상태를 유지하면서 증류하면, 드라이아이스로 냉각된 용기에 무색의 증류액이 응결되고, 얻어진 무색의 1차 증류액을 45℃ 에서 같은 방법으로 정제하여 표제 화합물인 무색의 고순도 디메틸에틸아민알란보란 화합물 160g(수율 68%)을 수득하였다.When the dried colorless filtrate is distilled while maintaining a vacuum (1.3 torr) at 45 ° C., the colorless distillate is condensed in a vessel cooled with dry ice, and the resulting colorless primary distillate is obtained at 45 ° C. in the same manner. Purification was carried out to give 160g (yield 68%) of the title compound as a colorless high purity dimethylethylaminealanborane compound.
디메틸에틸아민알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for the preparation of dimethylethylaminealanborane are as follows.
LiAlH4+ AlCl3+ 2N(CH2CH3)(CH3)2 + 2NaBH4→ 2H2AlBH4:N(CH2CH3)(CH3)2 LiAlH 4 + AlCl 3 + 2N (CH 2 CH 3 ) (CH 3 ) 2 + 2NaBH 4 → 2H 2 AlBH 4 : N (CH 2 CH 3 ) (CH 3 ) 2
[실시예 5] 디메틸에틸아민알란보란의 제조Example 5 Preparation of Dimethylethylamine Alanborane
트리클로로알루미늄 133.3g(1몰)과 수소화리튬알루미늄 39.4g (1.04몰)이 더하여진 핵산 1000ml 부유용액에 질소 가스의 기류 하에서 생성된 디클로로알란 화합물에 디메틸에틸아민 161g(2.2몰)을 첨가하고 수소화나트륨붕소 83.1g(2.2몰)을 적가한 후 30℃ 에서 8시간 동안 교반시켰다. 여과기를 사용하여 질소 기류 하에서 상기 반응혼합물을 걸러 1차 여과액을 얻고 여과기에 걸러진 부산물은 충분한 양의 헥산을 사용하여 2회 헹구어 여과하여 2차 여과액을 얻은 후, 최초의 여과액과 합하였다. 여과액은 상온(20℃)에서 진공을 이용하여 휘발 가능한 모든 물질을 제거하여 무색의 액체를 얻었다. 161 g (2.2 mole) of dimethylethylamine was added to a dichloroalan compound produced under a stream of nitrogen gas to a 1000 ml suspension of nucleic acid added with 133.3 g (1 mole) of trichloroaluminum and 39.4 g (1.04 mole) of lithium aluminum hydride. 83.1 g (2.2 mol) of sodium boron was added dropwise and stirred at 30 ° C. for 8 hours. The reaction mixture was filtered under a nitrogen stream using a filter to obtain a primary filtrate, and the by-product filtered was rinsed twice with a sufficient amount of hexane, filtered to obtain a secondary filtrate, and then combined with the first filtrate. . The filtrate was removed at room temperature (20 ℃) using a vacuum to remove all volatile substances to obtain a colorless liquid.
건조된 무색의 여과액을 45℃에서 진공(1.3 torr)상태를 유지하면서 증류하면, 드라이아이스로 냉각된 용기에 무색의 증류액이 응결되고, 얻어진 무색의 1차 증류액을 45℃ 에서 같은 방법으로 정제하여 표제 화합물인 무색의 고순도 디메틸에틸아민알란보란 화합물 133g(수율 57%)을 수득하였다.When the dried colorless filtrate is distilled while maintaining a vacuum (1.3 torr) at 45 ° C., the colorless distillate is condensed in a vessel cooled with dry ice, and the resulting colorless primary distillate is obtained at 45 ° C. in the same manner. Purification of the reaction product gave 133 g (yield 57%) of the title compound as a colorless high purity dimethylethylaminealanborane compound.
디메틸에틸아민알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for the preparation of dimethylethylaminealanborane are as follows.
LiAlH4+ AlCl3+ 2N(CH2CH3)(CH3)2 → 2ClH2Al:N(CH2CH3)(CH3)2 LiAlH 4 + AlCl 3 + 2N (CH 2 CH 3 ) (CH 3 ) 2 → 2ClH 2 Al: N (CH 2 CH 3 ) (CH 3 ) 2
ClH2Al:N(CH2CH3)(CH3)2+ NaBH4 → H2AlBH4:N(CH2CH3)(CH3)2 ClH 2 Al: N (CH 2 CH 3 ) (CH 3 ) 2 + NaBH 4 → H 2 AlBH 4 : N (CH 2 CH 3 ) (CH 3 ) 2
[실시예 6] 디메틸에틸아민알란보란의 제조Example 6 Preparation of Dimethylethylamine Alanborane
트리클로로알루미늄 133.3g(1몰)과 수소화리튬알루미늄 39.4g (1.04몰)의 디에틸에테르 1000ml 부유용액에 질소 가스의 기류 하에서 -10℃로 냉각시키면서 한 시간 동안 교반시켜 생성된 클로로알란 화합물을 -10℃로 유지하면서 디메틸에틸아민 161g(2.2몰)을 첨가한 후 수소화나트륨붕소 83.1g(2.2몰)을 적가하고 30℃ 에서 8시간 동안 교반하였다. 여과기를 사용하여 질소 기류 하에서 상기 반응혼합물을 걸러 1차 여과액을 얻고 여과기에 걸러진 부산물은 충분한 양의 헥산을 사용하여 2회 헹구어 여과하여 2차 여과액을 얻은 후, 최초의 여과액과 합하였다. 여과액은 상온(20℃)에서 진공을 이용하여 휘발 가능한 모든 물질을 제거하여 무색의 액체를 얻었다. To a chloroalan compound produced by stirring for 13 hours in an aqueous solution of 133.3 g (1 mol) of trichloroaluminum and 39.4 g (1.04 mol) of lithium aluminum hydride, cooled to -10 ° C under a stream of nitrogen gas- 161 g (2.2 mole) of dimethylethylamine was added while maintaining at 10 ° C., and 83.1 g (2.2 mole) of sodium borohydride was added dropwise and stirred at 30 ° C. for 8 hours. The reaction mixture was filtered under a nitrogen stream using a filter to obtain a primary filtrate, and the by-product filtered was rinsed twice with a sufficient amount of hexane, filtered to obtain a secondary filtrate, and then combined with the first filtrate. . The filtrate was removed at room temperature (20 ℃) using a vacuum to remove all volatile substances to obtain a colorless liquid.
건조된 무색의 여과액을 45℃에서 진공(1.3 torr)상태를 유지하면서 증류하면, 드라이아이스로 냉각된 용기에 무색의 증류액이 응결되고, 얻어진 무색의 1차 증류액을 45℃ 에서 같은 방법으로 정제하여 표제 화합물인 무색의 고순도 디메틸에틸아민알란보란 화합물 120g(수율 51%)을 수득하였다.When the dried colorless filtrate is distilled while maintaining a vacuum (1.3 torr) at 45 ° C., the colorless distillate is condensed in a vessel cooled with dry ice, and the resulting colorless primary distillate is obtained at 45 ° C. in the same manner. Purification was carried out to give 120 g (yield 51%) of the title compound as a colorless high purity dimethylethylaminealanborane compound.
디메틸에틸알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for the preparation of dimethylethylalanborane are as follows.
LiAlH4+ AlCl3+ 2Et2O → 2ClH2Al:OEt2 LiAlH 4 + AlCl 3 + 2Et 2 O → 2ClH 2 Al: OEt 2
ClH2Al:OEt2 + N(CH2CH3)(CH3)2 → ClH2Al:N(CH2CH3)(CH3)2 + Et2OClH 2 Al: OEt 2 + N (CH 2 CH 3 ) (CH 3 ) 2 → ClH 2 Al: N (CH 2 CH 3 ) (CH 3 ) 2 + Et 2 O
ClH2Al:N(CH2CH3)(CH3)2 + NaBH4 → H2AlBH4:N(CH2CH3)(CH3)2 ClH 2 Al: N (CH 2 CH 3 ) (CH 3 ) 2 + NaBH 4 ¡Æ H 2 AlBH 4 : N (CH 2 CH 3 ) (CH 3 ) 2
[실시예 7] 디메틸에틸아민알란보란의 제조Example 7 Preparation of Dimethylethylamine Alanborane
트리클로로알루미늄 22.7g(0.17몰)이 적가된 디에틸에테르 부유용액 500ml 를 -10℃로 냉각시키면서 질소 가스의 기류 하에서 수소화리튬알루미늄 21.3g(0.56몰)를 30초에 걸쳐 적가한 뒤 디메틸에틸아민을 49.7g(0.68몰) 첨가하고 -10℃에서 5시간 교반시켰다. 교반이 완료된 후 상기 반응물을 여과한 후 여과액을 -25℃ 에서 24시간 동안 냉각시켜 석출된 고체를 여과하여 얻은 디메틸에틸아민알란 화합물을 디에틸에테르 용매 250ml 하에 염화수은 92g(0.34몰)을 첨가한 후 수소화나트륨붕소 28.3g(0.75몰)을 적가한 후 30℃ 에서 8시간 동안 교반시켰다. 여과기를 사용하여 질소 기류 하에서 상기 반응혼합물을 걸러 1차 여과액을 얻고 여과기에 걸러진 부산물은 충분한 양의 헥산을 사용하여 2회 헹구어 여과하여 2차 여과액을 얻은 후, 최초의 여과액과 합하였다. 여과액은 상온(20℃)에서 진공을 이용하여 휘발 가능한 모든 물질을 제거하여 무색의 액체를 얻었다. 21.3 g (0.56 mol) of lithium aluminum hydride was added dropwise over 30 seconds while cooling 500 ml of diethyl ether floating solution to which 22.7 g (0.17 mol) of trichloro aluminum was added dropwise at -10 ° C, followed by dimethylethylamine. 49.7 g (0.68 mol) was added and stirred at -10 ° C for 5 hours. After stirring was completed, the reaction mixture was filtered, and then the filtrate was cooled at −25 ° C. for 24 hours to add 92 g (0.34 mole) of mercuric chloride in 250 ml of a diethyl ether solvent. Then, 28.3 g (0.75 mol) of sodium borohydride was added dropwise, followed by stirring at 30 ° C. for 8 hours. The reaction mixture was filtered under a nitrogen stream using a filter to obtain a primary filtrate, and the by-product filtered was rinsed twice with a sufficient amount of hexane, filtered to obtain a secondary filtrate, and then combined with the first filtrate. . The filtrate was removed at room temperature (20 ℃) using a vacuum to remove all volatile substances to obtain a colorless liquid.
건조된 무색의 여과액을 45℃에서 진공(1.3 torr)상태를 유지하면서 증류하면, 드라이아이스로 냉각된 용기에 무색의 증류액이 응결되고, 얻어진 무색의 1차 증류액을 45℃ 에서 같은 방법으로 정제하여 표제 화합물인 무색의 고순도 디메틸에틸아민알란보란 화합물 44g(수율 56%)을 수득하였다.When the dried colorless filtrate is distilled while maintaining a vacuum (1.3 torr) at 45 ° C., the colorless distillate is condensed in a vessel cooled with dry ice, and the resulting colorless primary distillate is obtained at 45 ° C. in the same manner. Purification was carried out to give 44 g (56% yield) of the title compound as a colorless high purity dimethylethylaminealanborane compound.
디메틸에틸아민알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for the preparation of dimethylethylaminealanborane are as follows.
AlCl3+ 3LiAlH4+ 4N(CH2CH3)(CH3)2 → 4H3Al:N(CH2CH3)(CH3)2 AlCl 3 + 3LiAlH 4 + 4N (CH 2 CH 3 ) (CH 3 ) 2 → 4H 3 Al: N (CH 2 CH 3 ) (CH 3 ) 2
2H3Al:N(CH2CH3)(CH3)2 + HgCl2 → 2ClH2Al:N(CH2CH3)(CH3)2 + Hg + H2 2H 3 Al: N (CH 2 CH 3 ) (CH 3 ) 2 + HgCl 2 → 2ClH 2 Al: N (CH 2 CH 3 ) (CH 3 ) 2 + Hg + H 2
ClH2Al:N(CH2CH3)(CH3)2 + NaBH4 → H2AlBH4:N(CH2CH3)(CH3)2 ClH 2 Al: N (CH 2 CH 3 ) (CH 3 ) 2 + NaBH 4 → H 2 AlBH 4 : N (CH 2 CH 3 ) (CH 3 ) 2
[실시예 8] 디메틸에틸아민알란보란의 제조Example 8 Preparation of Dimethylethylamine Alanborane
트리클로로알루미늄 22.7g(0.17몰)이 적가된 디에틸에테르 부유용액 500ml 를 -10℃로 냉각시키면서 질소 가스의 기류 하에서 수소화리튬알루미늄 21.3g(0.56몰)를 30초에 걸쳐 적가한 뒤 디메틸에틸아민을 49.7g (0.68몰) 첨가하고 -10℃에서 5시간 교반시켰다. 교반이 완료된 후 상기 반응물을 여과한 후 여과액을 -25℃에서 24시간 동안 냉각시켜 석출된 고체를 여과하여 얻은 디메틸에틸아민알란 화합물을 디에틸에테르 용매 250ml 하에 염화수은 92g(0.34몰)을 첨가한 후 수소화리튬붕소 16.2g(0.75몰)을 적가한 후 30℃ 에서 8시간 동안 교반시켰다. 여과기를 사용하여 질소 기류 하에서 상기 반응혼합물을 걸러 1차 여과액을 얻고 여과기에 걸러진 부산물은 충분한 양의 헥산을 사용하여 2회 헹구어 여과하여 2차 여과액을 얻은 후, 최초의 여과액과 합하였다. 여과액은 상온(20℃)에서 진공을 이용하여 휘발 가능한 모든 물질을 제거하여 무색의 액체를 얻었다. 21.3 g (0.56 mol) of lithium aluminum hydride was added dropwise over 30 seconds while cooling 500 ml of diethyl ether floating solution to which 22.7 g (0.17 mol) of trichloro aluminum was added dropwise at -10 ° C, followed by dimethylethylamine. 49.7 g (0.68 mol) was added and stirred at -10 ° C for 5 hours. After stirring was completed, the reaction mixture was filtered, and then the filtrate was cooled at -25 ° C for 24 hours to add 92 g (0.34 mole) of mercuric chloride in 250 ml of a diethyl ether solvent. Then, 16.2 g (0.75 mol) of lithium boron hydride was added dropwise, followed by stirring at 30 ° C. for 8 hours. The reaction mixture was filtered under a nitrogen stream using a filter to obtain a primary filtrate, and the by-product filtered was rinsed twice with a sufficient amount of hexane, filtered to obtain a secondary filtrate, and then combined with the first filtrate. . The filtrate was removed at room temperature (20 ℃) using a vacuum to remove all volatile substances to obtain a colorless liquid.
건조된 무색의 여과액을 45℃에서 진공(1.3 torr)상태를 유지하면서 증류하면, 드라이아이스로 냉각된 용기에 무색의 증류액이 응결되고, 얻어진 무색의 1차 증류액을 45℃ 에서 같은 방법으로 정제하여 표제 화합물인 무색의 고순도 디메틸에틸아민알란보란 화합물 41g(수율 52%)을 수득하였다.When the dried colorless filtrate is distilled while maintaining a vacuum (1.3 torr) at 45 ° C., the colorless distillate is condensed in a vessel cooled with dry ice, and the resulting colorless primary distillate is obtained at 45 ° C. in the same manner. Purification was carried out to give 41 g (yield 52%) of colorless high purity dimethylethylaminealanborane compound as the title compound.
디메틸에틸아민알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for the preparation of dimethylethylaminealanborane are as follows.
AlCl3+ 3LiAlH4+ 4N(CH2CH3)(CH3)2 → 4H3Al:N(CH2CH3)(CH3)2 AlCl 3 + 3LiAlH 4 + 4N (CH 2 CH 3 ) (CH 3 ) 2 → 4H 3 Al: N (CH 2 CH 3 ) (CH 3 ) 2
2H3Al:N(CH2CH3)(CH3)2 + HgCl2 → 2ClH2Al:N(CH2CH3)(CH3)2 + Hg + H2 2H 3 Al: N (CH 2 CH 3 ) (CH 3 ) 2 + HgCl 2 → 2ClH 2 Al: N (CH 2 CH 3 ) (CH 3 ) 2 + Hg + H 2
ClH2Al:N(CH2CH3)(CH3)2 + LiBH4 → H2AlBH4:N(CH2CH3)(CH3)2 ClH 2 Al: N (CH 2 CH 3 ) (CH 3 ) 2 + LiBH 4 → H 2 AlBH 4 : N (CH 2 CH 3 ) (CH 3 ) 2
[실시예 9] 디메틸부틸아민알란보란의 제조Example 9 Preparation of Dimethyl Butylamine Alanborane
디메틸에틸아민 대신에 디메틸부틸아민 222g(2.2몰)을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 표제의 화합물인 무색의 고순도 디메틸부틸아민알란보란 화합물 143g(수율 50%)을 수득하였다.143 g (yield 50%) of colorless high purity dimethylbutylaminealanborane compound, the title compound, was obtained in the same manner as in Example 1, except that 222 g (2.2 mol) of dimethylbutylamine was used instead of dimethylethylamine. .
디메틸부틸아민알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for the preparation of dimethylbutylaminealanborane are as follows.
LiAlH4+AlCl3+2N(CH2CH2CH2CH3)(CH3)2+2LiBH4 → 2H2AlBH4:N(CH2CH2 CH2CH3)(CH3)2 LiAlH 4 + AlCl 3 + 2N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2 + 2LiBH 4 ¡Æ 2H 2 AlBH 4 : N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2
[실시예 10] 디메틸부틸아민알란보란의 제조Example 10 Preparation of Dimethylbutylamine Alanborane
디메틸에틸아민 대신에 디메틸부틸아민 222g(2.2몰)을 사용하는 것을 제외하고는 상기 실시예 2와 동일한 방법으로 표제 화합물인 무색의 고순도 디메틸부틸아 민알란보란 화합물 123g(수율 43%)을 수득하였다.123 g (yield 43%) of colorless high-purity dimethylbutylaminealanlanane compound, the title compound, was obtained in the same manner as in Example 2, except that 222 g (2.2 mol) of dimethylbutylamine was used instead of dimethylethylamine. .
디메틸부틸아민알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for the preparation of dimethylbutylaminealanborane are as follows.
LiAlH4+ AlCl3+ 2N(CH2CH2CH2CH3)(CH3)2 → 2ClH2Al:N(CH2CH2CH2CH3)(CH3)2 LiAlH 4 + AlCl 3 + 2N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2 → 2ClH 2 Al: N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2
ClH2Al:N(CH2CH2CH2CH3)(CH3)2 + LiBH4 → H2AlBH4:N(CH2CH2CH2CH3)(CH3)2 ClH 2 Al: N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2 + LiBH 4 → H 2 AlBH 4 : N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2
[실시예 11] 디메틸부틸아민알란보란의 제조Example 11 Preparation of Dimethyl Butylamine Alanborane
디메틸에틸아민 대신에 디메틸부틸아민 222g(2.2몰)을 사용하는 것을 제외하고는 상기 실시예 3과 동일한 방법으로 표제 화합물인 무색의 고순도 디메틸부틸아민알란보란 화합물 130g(수율 45%)을 수득하였다.130 g (yield 45%) of colorless high-purity dimethylbutylaminealanborane compound, the title compound, was obtained in the same manner as in Example 3, except that 222 g (2.2 mol) of dimethylbutylamine was used instead of dimethylethylamine.
디메틸부틸아민알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for the preparation of dimethylbutylaminealanborane are as follows.
LiAlH4+ AlCl3+ 2Et2O → 2ClH2Al:OEt2 LiAlH 4 + AlCl 3 + 2Et 2 O → 2ClH 2 Al: OEt 2
ClH2Al:OEt2 + N(CH2CH2CH2CH3)(CH3)2 → ClH2Al:N(CH2CH2CH2CH3)(CH3)2 + Et2OClH 2 Al: OEt 2 + N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2 → ClH 2 Al: N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2 + Et 2 O
ClH2Al:N(CH2CH2CH2CH3)(CH3)2 + LiBH4 → H2AlBH4:N(CH2CH2CH2CH3)(CH3)2 ClH 2 Al: N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2 + LiBH 4 ¡Æ H 2 AlBH 4 : N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2
[실시예 12] 디메틸부틸아민알란보란의 제조Example 12 Preparation of Dimethylbutylamine Alanborane
디메틸에틸아민 대신에 디메틸부틸아민 222g(2.2몰)을 사용하는 것을 제외하 고는 상기 실시예 4와 동일한 방법으로 표제 화합물인 무색의 고순도 디메틸부틸아민알란보란 화합물 159g(수율 55%)을 수득하였다.159 g (yield 55%) of colorless high-purity dimethylbutylaminealanborane compound, the title compound, was obtained in the same manner as in Example 4, except that 222 g (2.2 mol) of dimethylbutylamine was used instead of dimethylethylamine.
디메틸부틸아민알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for the preparation of dimethylbutylaminealanborane are as follows.
LiAlH4+AlCl3+2N(CH2CH2CH2CH3)(CH3)2+ 2NaBH4 → 2H2AlBH4:N(CH2CH2CH2CH3)(CH3)2 LiAlH 4 + AlCl 3 + 2N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2 + 2NaBH 4 ¡Æ 2H 2 AlBH 4 : N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2
[실시예 13] 디메틸부틸아민알란보란의 제조Example 13 Preparation of Dimethylbutylamine Alanborane
디메틸에틸아민 대신에 디메틸부틸아민 222g(2.2몰)을 사용하는 것을 제외하고는 상기 실시예 5와 동일한 방법으로 표제 화합물인 무색의 고순도 디메틸부틸아민알란보란 화합물 133g(수율 46%)을 수득하였다.133 g (yield 46%) of colorless high-purity dimethylbutylaminealanborane compound, the title compound, was obtained in the same manner as in Example 5, except that 222 g (2.2 mol) of dimethylbutylamine was used instead of dimethylethylamine.
디메틸부틸아민알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for the preparation of dimethylbutylaminealanborane are as follows.
LiAlH4+ AlCl3+ 2N(CH2CH2CH2CH3)(CH3)2 → 2ClH2Al:N(CH2CH2CH2CH3)(CH3)2 LiAlH 4 + AlCl 3 + 2N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2 → 2ClH 2 Al: N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2
ClH2Al:N(CH2CH2CH2CH3)(CH3)2+ NaBH4 → H2AlBH4:N(CH2CH2CH2CH3)(CH3)2 ClH 2 Al: N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2 + NaBH 4 → H 2 AlBH 4 : N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2
[실시예 14] 디메틸부틸아민알란보란의 제조Example 14 Preparation of Dimethylbutylamine Alanborane
디메틸에틸아민 대신에 디메틸부틸아민 222g(2.2몰)을 사용하는 것을 제외하고는 상기 실시예 6과 동일한 방법으로 표제 화합물인 무색의 고순도 디메틸부틸아민알란보란 화합물 127g(수율 44%)을 수득하였다.127 g (yield 44%) of colorless high-purity dimethylbutylaminealanborane compound, the title compound, was obtained in the same manner as in Example 6, except that 222 g (2.2 mol) of dimethylbutylamine was used instead of dimethylethylamine.
디메틸부틸아민알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for the preparation of dimethylbutylaminealanborane are as follows.
LiAlH4+ AlCl3+ 2Et2O → 2ClH2Al: OEt2 LiAlH 4 + AlCl 3 + 2Et 2 O → 2ClH 2 Al: OEt 2
ClH2Al:OEt2 + N(CH2CH2CH2CH3)(CH3)2 → ClH2Al:N(CH2CH2CH2CH3)(CH3)2 + Et2OClH 2 Al: OEt 2 + N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2 → ClH 2 Al: N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2 + Et 2 O
ClH2Al:N(CH2CH2CH2CH3)(CH3)2 + NaBH4 → H2AlBH4:N(CH2CH2CH2CH3)(CH3)2 ClH 2 Al: N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2 + NaBH 4 ¡Æ H 2 AlBH 4 : N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2
[실시예 15] 디메틸부틸아민알란보란의 제조Example 15 Preparation of Dimethylbutylamine Alanborane
디메틸에틸아민 대신에 디메틸부틸아민을 68.7g(0.68몰)을 사용하는 것을 제외하고는 상기 실시예 7과 동일한 방법으로 표제 화합물인 무색의 고순도 디메틸부틸아민알란보란 화합물 41g(수율 42%)을 수득하였다.41 g (yield 42%) of colorless, high-purity dimethylbutylaminealanborane compound, the title compound, was obtained in the same manner as in Example 7, except that 68.7 g (0.68 mol) of dimethylbutylamine was used instead of dimethylethylamine. It was.
디메틸부틸아민알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for the preparation of dimethylbutylaminealanborane are as follows.
AlCl3+ 3LiAlH4+ 4N(CH2CH2CH2CH3)(CH3)2 → 4H3Al:N(CH2CH2CH2CH3)(CH3)2 AlCl 3 + 3 LiAlH 4 + 4N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2 → 4H 3 Al: N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2
2H3Al:N(CH2CH2CH2CH3)(CH3)2+HgCl2 → 2ClH2Al:N(CH2CH2CH2CH3)(CH3)2 + Hg + H2 2H 3 Al: N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2 + HgCl 2 → 2ClH 2 Al: N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2 + Hg + H 2
ClH2Al:N(CH2CH2CH2CH3)(CH3)2 + NaBH4 → H2AlBH4:N(CH2CH2CH2CH3)(CH3)2 ClH 2 Al: N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2 + NaBH 4 → H 2 AlBH 4 : N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2
[실시예 16] 디메틸부틸아민알란보란의 제조Example 16 Preparation of Dimethylbutylamine Alanborane
디메틸에틸아민 대신에 디메틸부틸아민을 68.7g(0.68몰)을 사용하는 것을 제 외하고는 상기 실시예 8과 동일한 방법으로 표제 화합물인 무색의 고순도 디메틸부틸아민알란보란 화합물 43g(수율 44%)을 수득하였다.43 g (yield 44%) of colorless, high-purity dimethylbutylaminealanborane compound, the title compound, was obtained in the same manner as in Example 8, except that 68.7 g (0.68 mol) of dimethylbutylamine was used instead of dimethylethylamine. Obtained.
디메틸부틸아민알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for the preparation of dimethylbutylaminealanborane are as follows.
AlCl3+ 3LiAlH4+ 4N(CH2CH2CH2CH3)(CH3)2 → 4H3Al:N(CH2CH2CH2CH3)(CH3)2 AlCl 3 + 3 LiAlH 4 + 4N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2 → 4H 3 Al: N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2
2H3Al:N(CH2CH2CH2CH3)(CH3)2 + HgCl2 → 2ClH2Al:N(CH2CH2CH2CH3)(CH3)2+ Hg + H2 2H 3 Al: N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2 + HgCl 2 → 2ClH 2 Al: N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2 + Hg + H 2
ClH2Al:N(CH2CH2CH2CH3)(CH3)2 + LiBH4 → H2AlBH4:N(CH2CH2CH2CH3)(CH3)2 ClH 2 Al: N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2 + LiBH 4 → H 2 AlBH 4 : N (CH 2 CH 2 CH 2 CH 3 ) (CH 3 ) 2
[실시예 17] 1-메틸피롤리딘알란보란의 제조Example 17 Preparation of 1-methylpyrrolidinealanborane
디메틸에틸아민 대신에 1-메틸피롤리딘 187g(2.2몰)을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 표제의 화합물인 무색의 고순도 1-메틸피롤리딘알란보란 화합물 145g(수율 57%)을 수득하였다.145 g of a colorless high-purity 1-methylpyrrolidinealanborane compound, the title compound, in the same manner as in Example 1, except that 187 g (2.2 mol) of 1-methylpyrrolidine was used instead of dimethylethylamine. 57%) was obtained.
1-메틸피롤리딘알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for preparing 1-methylpyrrolidinealanborane are as follows.
[실시예 18] 1-메틸피롤리딘알란보란의 제조Example 18 Preparation of 1-methylpyrrolidinealanborane
디메틸에틸아민 대신에 1-메틸피롤리딘 187g(2.2몰)을 사용하는 것을 제외하 고는 상기 실시예 2와 동일한 방법으로 표제 화합물인 무색의 고순도 1-메틸피롤리딘알란보란 화합물 147g(수율 57%)을 수득하였다.147 g of a colorless, high-purity 1-methylpyrrolidinealanborane compound, the title compound, in the same manner as in Example 2, except that 187 g (2.2 mol) of 1-methylpyrrolidine was used instead of dimethylethylamine. %) Was obtained.
1-메틸피롤리딘알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for preparing 1-methylpyrrolidinealanborane are as follows.
[실시예 19] 1-메틸피롤리딘알란보란의 제조Example 19 Preparation of 1-methylpyrrolidinealanborane
디메틸에틸아민 대신에 1-메틸피롤리딘 187g(2.2몰)을 사용하는 것을 제외하고는 상기 실시예 3과 동일한 방법으로 표제 화합물인 무색의 고순도 1-메틸피롤리딘알란보란 화합물 129g(수율 50%)을 수득하였다.129 g (yield 50) of colorless, high-purity 1-methylpyrrolidinealanborane, the title compound, in the same manner as in Example 3, except that 187 g (2.2 mol) of 1-methylpyrrolidine was used instead of dimethylethylamine. %) Was obtained.
1-메틸피롤리딘알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for preparing 1-methylpyrrolidinealanborane are as follows.
[실시예 20] 1-메틸피롤리딘알란보란의 제조Example 20 Preparation of 1-methylpyrrolidinealanborane
디메틸에틸아민 대신에 1-메틸피롤리딘 187g(2.2몰)을 사용하는 것을 제외하 고는 상기 실시예 4와 동일한 방법으로 표제 화합물인 무색의 고순도 1-메틸피롤리딘알란보란 화합물 155g(수율60%)을 수득하였다.155 g of a colorless, high-purity 1-methylpyrrolidinealanborane compound, the title compound, in the same manner as in Example 4, except that 187 g (2.2 mol) of 1-methylpyrrolidine was used instead of dimethylethylamine. %) Was obtained.
1-메틸피롤리딘알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for preparing 1-methylpyrrolidinealanborane are as follows.
[실시예 21] 1-메틸피롤리딘알란보란의 제조Example 21 Preparation of 1-methylpyrrolidinealanborane
디메틸에틸아민 대신에 1-메틸피롤리딘 187g(2.2몰)을 사용하는 것을 제외하고는 상기 실시예 5와 동일한 방법으로 표제 화합물인 무색의 고순도 1-메틸피롤리딘알란보란 화합물 139g(수율 54%)을 수득하였다.139 g of a colorless high-purity 1-methylpyrrolidinealanborane compound, the title compound, in the same manner as in Example 5, except that 187 g (2.2 mol) of 1-methylpyrrolidine was used instead of dimethylethylamine. %) Was obtained.
1-메틸피롤리딘알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for preparing 1-methylpyrrolidinealanborane are as follows.
[실시예 22] 1-메틸피롤리딘알란보란의 제조Example 22 Preparation of 1-methylpyrrolidinealanborane
디메틸에틸아민 대신에 1-메틸피롤리딘 187g(2.2몰)을 사용하는 것을 제외하고는 상기 실시예 6과 동일한 방법으로 표제 화합물인 무색의 고순도 1-메틸피롤리딘알란보란 화합물 136g(수율 53%)을 수득하였다.136 g of a colorless high purity 1-methylpyrrolidinealanborane compound (yield 53) as the title compound in the same manner as in Example 6, except that 187 g (2.2 mol) of 1-methylpyrrolidine was used instead of dimethylethylamine. %) Was obtained.
1-메틸피롤리딘알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for preparing 1-methylpyrrolidinealanborane are as follows.
[실시예 23] 1-메틸피롤리딘알란보란의 제조Example 23 Preparation of 1-methylpyrrolidinealanborane
디메틸에틸아민 대신에 1-메틸피롤리딘 57.8g(0.68몰)을 사용하는 것을 제외하고는 상기 실시예 7과 동일한 방법으로 표제 화합물인 무색의 고순도 1-메틸피롤리딘알란보란 화합물 40g(수율 50%)을 수득하였다.40 g (yield) of colorless high purity 1-methylpyrrolidinealanborane which is the title compound, in the same manner as in Example 7, except that 57.8 g (0.68 mol) of 1-methylpyrrolidine was used instead of dimethylethylamine. 50%) was obtained.
1-메틸피롤리딘알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for preparing 1-methylpyrrolidinealanborane are as follows.
[실시예 24] 1-메틸피롤리딘알란보란의 제조Example 24 Preparation of 1-methylpyrrolidinealanborane
디메틸에틸아민 대신에 1-메틸피롤리딘 57.8g(0.68몰)을 사용하는 것을 제외하고는 상기 실시예 8과 동일한 방법으로 표제 화합물인 무색의 고순도 1-메틸피롤 리딘알란보란 화합물 41g(수율 52%)을 수득하였다.41 g (yield 52) of colorless, high-purity 1-methylpyrrolidinalanborane, the title compound, in the same manner as in Example 8, except that 57.8 g (0.68 mol) of 1-methylpyrrolidin was used instead of dimethylethylamine. %) Was obtained.
1-메틸피롤리딘알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for preparing 1-methylpyrrolidinealanborane are as follows.
[표 1]TABLE 1
상술한 바와 같이, 본 발명의 화합물은 우수한 휘발성과 기존의 아민으로 안정화된 알란과 비교하여 열적 안정성이 우수하면서 점도가 낮으며, 기존 전구체를 사용하는 공정조건과 매우 유사한 조건에서 공정이 가능하다. 또한, 상기 알루미늄화합물은 액체상으로 존재하는 전구체로 버블러를 사용하는 화학 증착법을 이용한 박막증착에 있어 전구체 화합물의 전달 속도 조절을 용이하게 하며, 새로운 알루미늄 박막 증착을 위한 전구체 화합물로 사용될 수 있다. As described above, the compound of the present invention has excellent thermal stability and low viscosity as compared to alan stabilized with good volatility and conventional amine, and can be processed under conditions very similar to those of using a conventional precursor. In addition, the aluminum compound facilitates the control of the transfer rate of the precursor compound in the deposition of a thin film using a chemical vapor deposition method using a bubbler as a precursor present in the liquid phase, it can be used as a precursor compound for new aluminum thin film deposition.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20060044864A KR100829472B1 (en) | 2006-05-18 | 2006-05-18 | Aluminum compound for forming aluminum films by chemical vapor deposition and their synthesis |
PCT/KR2007/002377 WO2007136184A1 (en) | 2006-05-18 | 2007-05-15 | Aluminum compound for forming aluminum films by chemical vapor deposition and their synthesis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20060044864A KR100829472B1 (en) | 2006-05-18 | 2006-05-18 | Aluminum compound for forming aluminum films by chemical vapor deposition and their synthesis |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070129936A Division KR20070122435A (en) | 2007-12-13 | 2007-12-13 | Aluminum compound for forming aluminum films by chemical vapor deposition and their synthesis |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20070111722A KR20070111722A (en) | 2007-11-22 |
KR100829472B1 true KR100829472B1 (en) | 2008-05-16 |
Family
ID=38723480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20060044864A KR100829472B1 (en) | 2006-05-18 | 2006-05-18 | Aluminum compound for forming aluminum films by chemical vapor deposition and their synthesis |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR100829472B1 (en) |
WO (1) | WO2007136184A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101367141B1 (en) * | 2007-08-03 | 2014-02-25 | 삼성전자주식회사 | Organometallic Precursor, Method of Forming a Thin Film using the Organometallic Precursor and Method of Manufacturing a Metal Wiring |
CN104557999B (en) * | 2015-02-09 | 2019-06-25 | 江南大学 | A kind of novel thin film deposition of aluminum presoma and preparation method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5277932A (en) * | 1991-07-29 | 1994-01-11 | Syracuse University | CVD method for forming metal boride films using metal borane cluster compounds |
KR100279067B1 (en) * | 1998-04-23 | 2001-01-15 | 신현국 | Aluminum complex derivative for chemical vapor deposition and production of the same derivative |
KR100289945B1 (en) * | 1998-09-15 | 2001-09-17 | 신현국 | Precursor for chemical vapor deposition of aluminum thin film and preparing the same |
-
2006
- 2006-05-18 KR KR20060044864A patent/KR100829472B1/en active IP Right Grant
-
2007
- 2007-05-15 WO PCT/KR2007/002377 patent/WO2007136184A1/en active Application Filing
Non-Patent Citations (2)
Title |
---|
Chem. Mater., 1992, 4, 530-538.* |
Inorg. Chem., 1963, 2(3), 515-519.* |
Also Published As
Publication number | Publication date |
---|---|
KR20070111722A (en) | 2007-11-22 |
WO2007136184A1 (en) | 2007-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101260858B1 (en) | Metal-containing compound process for producing the same metal-containing thin film and method of forming the same | |
CN108794521B (en) | Novel trisilylamine derivative, method for preparing same, and silicon-containing thin film using same | |
KR101369366B1 (en) | Imide complex, method for producing the same, metal-containing thin film and method for producing the same | |
KR100279067B1 (en) | Aluminum complex derivative for chemical vapor deposition and production of the same derivative | |
KR20120099577A (en) | Lithium precursors for lixmyoz materials for batteries | |
KR100289945B1 (en) | Precursor for chemical vapor deposition of aluminum thin film and preparing the same | |
US12065453B2 (en) | Lanthanoid compound, lanthanoid-containing thin film and formation of lanthanoid-containing thin film using the lanthanoid compound | |
KR100756403B1 (en) | Synthesis of aluminum compound for forming aluminum films by chemical vapor deposition | |
TW201738250A (en) | Transition metal compound, preparation method thereof, and composition for depositing transition metal-containing thin film comprising the same | |
KR100829472B1 (en) | Aluminum compound for forming aluminum films by chemical vapor deposition and their synthesis | |
CN112125931A (en) | Synthesis method of bis (tert-butylamine) bis (dimethylamine) tungsten (VI) | |
KR100298125B1 (en) | Organocuprous precursors for chemical deposition of copper | |
KR20070122435A (en) | Aluminum compound for forming aluminum films by chemical vapor deposition and their synthesis | |
KR20210058370A (en) | Tungsten Compound, Method for Preparation of the Same, and Tungsten-Containing Thin Film, Method of Manufacturing the Same | |
KR20210102110A (en) | Aluminum compound, composition for depositing thin film comprising the same, and a process for producing the thin film using the composition | |
KR101072002B1 (en) | Novel Aluminum alkoxide complexes and process for preparing thereof | |
KR100756388B1 (en) | Aluminium precursor for cvd and its preparation method thereof | |
KR102618936B1 (en) | New Ruthenium organometallic compound, and method for producing same | |
KR100954448B1 (en) | Manufacturing method of Hydrido aluminum borohydride trialkylamine complexes | |
KR20230050655A (en) | Halogen-free tungsten compounds, preparation method thereof and process for the formation of thin films using the same | |
KR20220166960A (en) | Fluorine-free tungsten compounds, preparation method thereof and process for the formation of thin films using the same | |
KR20230089234A (en) | Molybdenum compound, manufacturing method thereof, and composition for thin film containing the same | |
CN114957014A (en) | Preparation method of high-purity pentakis (dimethylamino) tantalum for chip film formation | |
KR20190046191A (en) | Silicone aminoamide imide compounds, preparation method thereof and process for the formation of thin film using the same | |
JP2017222612A (en) | Silyldiamine compound and organic metal compound having the same as ligand |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
A107 | Divisional application of patent | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
J201 | Request for trial against refusal decision | ||
B701 | Decision to grant | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130503 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20140418 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20160425 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20170427 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20180425 Year of fee payment: 11 |