KR100827784B1 - Poly(caprolactone-co-methylmethacrylate), method for preparing the same using super critical fluid, and method for preparing therapeutic agent for skin diseases such as acne, atopy and athlete's foot comprising the same - Google Patents

Poly(caprolactone-co-methylmethacrylate), method for preparing the same using super critical fluid, and method for preparing therapeutic agent for skin diseases such as acne, atopy and athlete's foot comprising the same Download PDF

Info

Publication number
KR100827784B1
KR100827784B1 KR1020070018328A KR20070018328A KR100827784B1 KR 100827784 B1 KR100827784 B1 KR 100827784B1 KR 1020070018328 A KR1020070018328 A KR 1020070018328A KR 20070018328 A KR20070018328 A KR 20070018328A KR 100827784 B1 KR100827784 B1 KR 100827784B1
Authority
KR
South Korea
Prior art keywords
caprolactone
poly
reactor
methyl methacrylate
mixed solution
Prior art date
Application number
KR1020070018328A
Other languages
Korean (ko)
Inventor
신문삼
김화용
Original Assignee
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단 filed Critical 재단법인서울대학교산학협력재단
Priority to KR1020070018328A priority Critical patent/KR100827784B1/en
Application granted granted Critical
Publication of KR100827784B1 publication Critical patent/KR100827784B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/765Polymers containing oxygen
    • A61K31/78Polymers containing oxygen of acrylic acid or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/141Polyesters; Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/095Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Preparation (AREA)

Abstract

A novel poly(caprolactone-methyl methacrylate) copolymer, a method for preparing the copolymer, and a method for preparing an agent for treating the skin disease such as acne, atopy, athlete's foot, etc. by using the copolymer are provided to control the drug delivery velocity and to improve skin disease treatment efficiency by increasing effective crosssectional area. A poly(caprolactone-methyl methacrylate) copolymer comprises the repeating unit represented by the formula and has a number average molecular weight of 5,000-50,000, wherein m and n are 10-1,000, respectively. The copolymer is prepared by injecting caprolactone and methyl methacrylate into a reactor in a ratio of 1:1 TO 1:1.5 by weight; injecting a 2,2-azobisisobutyronitrile initiator in a ratio of 0.1-1.0 by weight to the total amount of the monomers; and polymerizing them at a temperature of 283.15-353.15 K and at a pressure of 50-300 atm for 1-168 hours.

Description

폴리-카프로락톤-메틸메타아크릴레이트 공중합체, 초임계 유체를 이용한 이의 제조방법 및 이를 함유하는 여드름, 아토피, 무좀 피부질환치료제의 제조방법{POLY(CAPROLACTONE-CO-METHYLMETHACRYLATE), METHOD FOR PREPARING THE SAME USING SUPER CRITICAL FLUID, AND METHOD FOR PREPARING THERAPEUTIC AGENT FOR SKIN DISEASES SUCH AS ACNE, ATOPY AND ATHLETE'S FOOT COMPRISING THE SAME}Poly-caprolactone-methyl methacrylate copolymer, preparation method thereof using supercritical fluid and preparation method for treating acne, atopy, and athlete's foot skin disease containing same {POLY (CAPROLACTONE-CO-METHYLMETHACRYLATE), METHOD FOR PREPARING THE SAME USING SUPER CRITICAL FLUID, AND METHOD FOR PREPARING THERAPEUTIC AGENT FOR SKIN DISEASES SUCH AS ACNE, ATOPY AND ATHLETE'S FOOT COMPRISING THE SAME}

도 1은 본 발명에 의한 폴리-카프로락톤-메틸메타아크릴레이트 공중합체의 주사전자현미경(Scanning Electron Microscopy) 사진이다.1 is a scanning electron micrograph (Scanning Electron Microscopy) of the poly-caprolactone-methyl methacrylate copolymer according to the present invention.

본 발명은 폴리-카프로락톤-메틸메타아크릴레이트 공중합체, 초임계 유체를 이용한 이의 제조방법 및 이를 함유하는 피부질환치료제의 제조방법에 관한 것으로서, 상세하게는 신규한 폴리-카프로락톤-메틸메타아크릴레이트 공중합체, 초임계유체를 이용한 이의 제조방법 및 상기된 폴리-카프로락톤-메틸메타아크릴레이트 공중합체와 살리실산을 유효성분으로 하는 여드름, 아토피, 무좀 등 피부질환치료제의 제조방법에 관한 것이다.The present invention relates to a poly-caprolactone-methyl methacrylate copolymer, a method for preparing the same using a supercritical fluid, and a method for preparing a skin disease treatment agent containing the same, in detail, a novel poly-caprolactone-methylmethacryl The present invention relates to a method for preparing a skin disease treatment agent such as acne, atopy, athlete's foot, etc., using the above-mentioned copolymer, a supercritical fluid, and a poly-caprolactone-methyl methacrylate copolymer and salicylic acid as an active ingredient.

살리실산은 무좀, 아토피, 여드름 등의 피부질환에 효과가 있는 것으로 널리 알려져 있어서, 이를 피부질환 치료제로 사용하려는 시도가 있지만, 잔존 유기용매로 인한 부작용 때문에 아직까지 피부질환 치료제로 사용되지 못하고 있다. 본 발명에서는 잔존 유기용매의 문제를 해결하기 위해 대체용매로 초임계 유체를 사용하려고 한다. Salicylic acid is widely known to be effective for skin diseases such as athlete's foot, atopic dermatitis, acne, and attempts to use it as a skin disease treatment, but has not been used as a skin disease treatment yet due to side effects due to the remaining organic solvent. In the present invention, in order to solve the problem of the residual organic solvent, it is intended to use a supercritical fluid as an alternative solvent.

이러한 초임계 유체는 용매로 사용하거나 역용매(Anti-solvent)로 사용하여 재결정 또는 미세입자를 얻는 방법에 관한 연구가 활발히 이루어지고 있다. 초임계 유체란 임계점이상의 온도와 압력하에 있는 비압축성 유체로서, 기존의 유기용매에서는 나타나지 않는 독특한 특징을 나타낸다. 특히 초임계 유체는 임계점부근 이상에서 밀도요동(Density Fluctuation)현상으로 인한 분자회합(Molecular Associaton)이 일어나기 때문에, 액체에 가까운 큰 밀도, 기체에 가까운 낮은 점도와 높은 확산계수, 매우 낮은 표면장력 등의 우수한 물성을 동시에 가지고 있다. 초임계 유체는 밀도를 이상기체에 가까운 희박 상태에서부터 액체 밀도에 가까운 고밀도 상태까지 연속적으로 변화시킬 수 있기 때문에 유체의 평형물성(용해도, 반출[entrainer]효과), 전달 물성(점도, 확산계수, 열전도도), 분자 뭉침 (clustering) 상태 등을 조절할 수 있다. Such supercritical fluids have been actively studied for obtaining recrystallized particles or microparticles by using them as solvents or anti-solvents. Supercritical fluids are incompressible fluids at temperatures and pressures above the critical point and exhibit unique characteristics not found in conventional organic solvents. In particular, supercritical fluids have molecular associaton due to density fluctuations near the critical point, so they have a high density close to liquid, low viscosity close to gas and high diffusion coefficient, and very low surface tension. Has excellent physical properties at the same time. Supercritical fluids can continuously change their density from lean to near ideal gas to high density near liquid density, so that the fluid's equilibrium properties (solubility, entrainer effect) and transfer properties (viscosity, diffusion coefficient, and thermal conductivity). Fig. 2), molecular clustering (clustering) state can be adjusted.

최근에 초임계 유체를 이용한 기술은 중합용매로의 사용을 비롯하여 여러 분야의 고분자 산업에서도 널리 사용되고 있다. 특히 이산화탄소는 임계점이 비교적 낮고 독성이 없으며, 불연성이고 각종 화학반응에서 부산물로 얻어지고 있어 가격이 저렴하다. 또한 감압을 하면 초임계 상태에서 기체 상태로 변화시킬 수 있어서 고분자와 이산화탄소를 쉽게 분리할 수 있는 장점을 지니고 있다. 그 결과 분리공정 측면에서 에너지를 절감할 수 있고, 화학적 측면에서 이산화탄소는 더 이상 산화할 수 없는 상태로써 매우 안정한 물질이며, 구조 내에 수소를 포함하지 않아 사슬전이(Chain Transfer) 반응에 참여하지 않는다. 그러므로 다양한 합성방법 및 합성 경로에 따른 중합반응이 가능한 장점을 지니고 있다. 이러한 장점을 이용하여 초임계 유체를 이용하여 생분해성 고분자들을 합성하는 발명들이 진행되어 왔다.Recently, the technique using the supercritical fluid has been widely used in the polymer industry in various fields, including the use as a polymerization solvent. In particular, carbon dioxide has a relatively low critical point, nontoxicity, nonflammability, and is obtained as a by-product in various chemical reactions, and thus is inexpensive. In addition, the reduced pressure can be changed from a supercritical state to a gaseous state, which has the advantage of easily separating the polymer and carbon dioxide. As a result, energy can be saved in terms of separation process, and in terms of chemistry, carbon dioxide can no longer be oxidized and is a very stable material, and does not include hydrogen in the structure and does not participate in a chain transfer reaction. Therefore, it has the advantage that the polymerization reaction according to various synthesis methods and synthesis routes. Taking advantage of these advantages, the invention of synthesizing biodegradable polymers using a supercritical fluid has been in progress.

또한, 피부질환치료제의 피부침투력의 향상을 위해서는 치료제의 입자가 50-100 나노미터 크기의 입자를 가져야 한다. 이는 입자크기가 100 nm이상은 피부침투량이 적어질 수 있고, 입자크기가 50 nm이하는 약물이 피부 진피층까지 침투하여 오히려 독성이 증가할 수 있기 때문이다. 그러나 기존의 초임계 공법으로 만들어진 약물의 크기는 1 - 10 마이크론 크기를 가지므로, 피부 침투력이 좋지 않은 문제가 있었다.In addition, in order to improve the skin penetration of the skin disease treatment agent particles of the therapeutic agent should have a particle size of 50-100 nanometers. This is because the penetration of the skin may be less than 100 nm in particle size, and the drug having a particle size of 50 nm or less may penetrate into the dermal layer of the skin, thereby increasing toxicity. However, since the size of the drug produced by the conventional supercritical method has a size of 1-10 microns, there is a problem that the skin penetration is poor.

한편 피부질환치료제에는 약물의 전달속도를 제어하기 위하여 생분해성고분자가 사용되는데, 이러한 생분해성고분자는 구형입자로 형성되어야만 표면적이 최대화되어 피부흡착량이 가장 켜질 수 있다. 현재 생분해성 고분자로는 폴리카프로락톤이 널리 사용되고 있다. 그러나 폴리카프로락톤은 2-메틸렌-1,3-디옥사펜(2- methylene-1,3 dioxepane, MDOP)의 자유라디칼 중합에 의해 형성되는데, 이것은 낮은 유리전이온도, 213.15 K (Glass Transition Temperature)때문에 상온에서 구형입자를 형성하기 어려워 표면적이 작아지므로 피부흡착량이 많지 않은 문제점이 있었다.Biodegradable polymers are used in the treatment of skin diseases to control the rate of drug delivery. Such biodegradable polymers must be formed into spherical particles to maximize the surface area so that the amount of skin adsorption can be turned on. Currently, polycaprolactone is widely used as a biodegradable polymer. However, polycaprolactone is formed by free radical polymerization of 2-methylene-1,3-dioxaphene (MDOP), which is a low glass transition temperature, 213.15 K (Glass Transition Temperature). Because of the difficulty in forming the spherical particles at room temperature, the surface area is small, there was a problem that the amount of skin adsorption is not much.

본 발명은 상기된 문제점을 해결하기 위하여 피부질환치료제에 사용되는 생분해성고분자로서 구형의 신규한 폴리-카프로락톤-메틸메타아크릴레이트 공중합체와 이의 제조방법을 제공하고, 아울러 상기 방법으로 제조된 폴리-카프로락톤-메틸메타아크릴레이트 공중합체를 살리실산과 함께 초임계유체를 이용하여 50 내지 100 nm의 크기를 가지면서도 구형인 피부질환치료제를 제조하는 방법을 제공함에 그 목적이 있다.The present invention provides a spherical novel poly-caprolactone-methyl methacrylate copolymer as a biodegradable polymer used in the treatment of skin diseases to solve the above problems and a method for producing the same. It is an object of the present invention to provide a method for preparing a spherical skin disease therapeutic agent having a size of 50 to 100 nm using a supercritical fluid with a caprolactone-methyl methacrylate copolymer together with salicylic acid.

본 발명에 의한 폴리-카프로락톤-메틸메타아크릴레이트 공중합체는 카프로락톤과 메틸메타아클레이트 단량체가 공중합체 형태로 다음과 같은 구조를 지니고 있다.The poly-caprolactone-methyl methacrylate copolymer according to the present invention has a structure in which a caprolactone and a methyl methacrylate monomer are in the form of a copolymer.

카프로락톤 단량체는

Figure 112007016006082-pat00001
이고, 메틸메타아클레이트 단량 체는
Figure 112007016006082-pat00002
이며, 본 발명에 따른 폴리-카프로락톤-메틸메타아크릴레이트 공중합체는
Figure 112007016006082-pat00003
이다.Caprolactone monomers
Figure 112007016006082-pat00001
And methyl methacrylate monomer is
Figure 112007016006082-pat00002
The poly-caprolactone-methyl methacrylate copolymer according to the present invention is
Figure 112007016006082-pat00003
to be.

여기서 m은 카프로락톤의 단위체 수를 나타내고, n은 메틸메타아크릴레이트 단위체 수이다. 통상적으로 m과 n은 각각 10-1000 정도의 범위를 가지고 있다.M represents the number of units of caprolactone, and n is the number of methylmethacrylate units. Typically m and n range from 10 to 1000, respectively.

본 발명에 의한 구형의 폴리-카프로락톤-메틸메타아크릴레이트 공중합체는 단량체인 카프로락톤과 메틸메타아크릴레이트를 1:1 내지 1:1.5의 중량비로 반응기에 주입하고 상기 단량체 전체에 대하여 0.1 내지 1.0 중량비로 개시제인 2,2-아조비스이소부티로니트릴(2,2-azobisisobutyronitrile, 일명 아이비엔(AIBN))을 반응기에 주입시킨 후, 50 내지 300 기압, 온도는 283.15 K 내지 353.15 K 조건하에서 1 내지 168시간 중합시켜서 제조한다.The spherical poly-caprolactone-methyl methacrylate copolymer according to the present invention is injected into the reactor by weight ratio of monomers caprolactone and methyl methacrylate 1: 1 to 1: 1.5 and 0.1 to 1.0 with respect to the entire monomer 2,2-azobisisobutyronitrile, also known as ivyene (AIBN), which is an initiator by weight, was injected into the reactor, and then 50 to 300 atm and a temperature of 283.15 K to 353.15 K. It is prepared by polymerizing for 168 hours.

폴리-카프로락톤-메틸메타아크릴레이트 공중합체의 제조방법에 대하여 자세히 설명하면 아래와 같다.Hereinafter, the method for preparing the poly-caprolactone-methyl methacrylate copolymer will be described in detail.

먼저 단량체인 카프로락톤과 메틸메타아크릴레이트를 1:1 내지 1:1.5의 중량비로 반응기에 주입하고, 여기에 개시제인 2,2-아조비스이소부티로니트릴을 상기 단량체 전체에 대하여 0.1 내지 1.0 중량비로 주입한다. First, the monomer caprolactone and methyl methacrylate are injected into the reactor at a weight ratio of 1: 1 to 1: 1.5, and the initiator 2,2-azobisisobutyronitrile is added at 0.1 to 1.0 weight ratio based on the whole monomer. Inject into.

단량체인 카프로락톤과 메틸메타아크릴레이트의 중량비율이 1:1 미만에서는 상대적으로 카프로락톤 비율이 많아 낮은 유리전이온도로 인해 구형의 생분해성 고분자가 생성되지 않고, 1:1.5 중량비율을 초과하면 메틸메타아크릴레이트의 비율이 많아 초임계유체와 친화성이 떨어져 뭉침현상이 일어나 중합이 제대로 이루어지지 않는다. 또한 개시제인 2,2-아조비스이소부티로니트릴의 함량이 상기 단량체 전체를 기준으로 0.1 중량비율 미만에서는 중합이 개시되지 않고, 개시제 함량이 1.0 중량비율을 초과하면 반응속도가 너무 빨라져 분자량이 큰 공중합체를 얻을 수 없게 된다.When the weight ratio of the monomers caprolactone and methyl methacrylate is less than 1: 1, the proportion of caprolactone is relatively high, and thus, spherical biodegradable polymers are not produced due to the low glass transition temperature. Due to the high proportion of methacrylates, the affinity with the supercritical fluid is reduced, resulting in agglomeration, and polymerization is not properly performed. In addition, when the content of the initiator 2,2-azobisisobutyronitrile is less than 0.1 weight ratio based on the entire monomer, polymerization does not start, and when the initiator content exceeds 1.0 weight ratio, the reaction rate is too fast and the molecular weight is large. Copolymer cannot be obtained.

다음으로 반응기내에서 중합반응이 일어날 수 있는 반응조건을 만들기 위하여 2 기압 정도의 질소를 이용하여 반응기 내부에 남아있는 산소를 제거한 후 다시 2 기압 정도의 이산화탄소를 이용하여 질소를 제거한다. 투시용 윈도우를 이용하여 액위를 관찰하며 상온에서 50 기압이 될 때까지 이산화탄소를 가스 부스터 펌프(Gas booster Pump)를 이용하여 투입한 후, 항온 수조를 이용하여 반응기의 온도를 상승시켜서 온도가 283.15 K 내지 353.15 K 이 되도록 하며 아울러 이산화탄소 를 반응기 내에 추가로 투입하여 50 내지 300 기압의 조건이 되도록 반응기를 조작하여, 단량체인 카프로락톤과 메틸메타아크릴레이트의 중합반응을 일으켜서 폴리-카프로락톤-메틸메타아크릴레이트 공중합체를 제조한다. 중합시간은 각각의 정해진 온도에 도달한 시점을 기준으로 1시간에서 최고 168 시간까지 수행하였다. Next, in order to make the reaction conditions in which the polymerization reaction can occur in the reactor, the oxygen remaining in the reactor is removed by using about 2 atm of nitrogen, and then the nitrogen is removed by using about 2 atm of carbon dioxide. Observe the liquid level using the see-through window and inject carbon dioxide into the gas booster pump until it reaches 50 atm. At room temperature, increase the temperature of the reactor using a constant temperature water bath to raise the temperature to 283.15 K. To 353.15 K and additionally add carbon dioxide into the reactor to operate the reactor at a condition of 50 to 300 atmospheres, thereby causing a polymerization reaction of the monomer caprolactone and methyl methacrylate to poly-caprolactone-methylmethacryl Prepare a latex copolymer. The polymerization time was carried out from 1 hour up to 168 hours based on the time at which each of the predetermined temperatures were reached.

50 기압 미만의 압력에서는 혼합물이 단일상으로 존재하지 않고, 상분리가 일어나 균일한 반응을 진행할 수 없고, 300 기압 초과하면 고압 장치의 장치비가 높아 작업공정의 경제성이 떨어진다. 온도는 283.15 K 미만에서는 혼합물의 상태가 임계점이하로 단일상이 되지 않아 균일한 반응을 진행할 수 없고, 353.15 K 이상에서는 온도가 너무 높아 생분해성 고분자가 분해될 가능성이 존재한다. 중합시간은 1시간 이하에서는 중합이 제대로 되지 않아 분자량이 높은 공중합체를 얻을 수 없고, 중합시간이 168시간 이상에서는 너무 높은 분자량에 의해 점도가 높아져서 혼합이 제대로 되지 않아 균일한 중합반응이 일어날 수 없다.If the pressure is less than 50 atm, the mixture does not exist as a single phase, phase separation occurs, and the reaction cannot proceed uniformly. If the temperature is less than 283.15 K, the state of the mixture does not become a single phase below the critical point, so that the uniform reaction cannot proceed, and if the temperature is higher than 353.15 K, the biodegradable polymer may be decomposed. The polymerization time is not properly polymerized at less than 1 hour to obtain a high molecular weight copolymer. If the polymerization time is 168 hours or more, the viscosity is increased due to the high molecular weight, so that the mixing is not performed properly and a uniform polymerization reaction cannot occur. .

정해진 시간 동안 중합이 모두 종료된 후에는 반응기를 얼음물을 이용하여 급격히 냉각하였다. 반응기의 온도가 283.15 K 이하로 내려가면 기체/액체 상분리가 일어나고 기상에서는 고분자의 용해도가 매우 낮아지므로 기상에서부터 천천히 이산화탄소를 분리할 수 있다. 이산화탄소가 모두 매출 되고 나면 발포된 형태의 고체 고분자 생성물을 얻게 되고 이를 메탄올에 세척한 후에 진공 건조시키면 매우 미세한 흰색 분말의 고체상태인 구형 생분해성 고분자 폴리-카프로락톤-메틸메타아 크릴레이트 공중합체를 얻을 수 있다(도 1참조).After all polymerization was completed for a predetermined time, the reactor was cooled rapidly using ice water. When the temperature of the reactor falls below 283.15 K, gas / liquid phase separation occurs and the solubility of the polymer is very low in the gas phase, so that carbon dioxide can be slowly separated from the gas phase. Once all of the carbon dioxide has been sold, a solid polymer product in the foamed form is obtained, which is washed in methanol and dried in vacuo to obtain a spherical biodegradable polymer poly-caprolactone-methylmethacrylate copolymer which is a very fine white powder. It can be obtained (see Fig. 1).

본 발명에 의한 폴리-카프로락톤-메틸메타아크릴레이트 공중합체는 생분해성 고분자로서 시차주사 열량측정법(Differential Scanning Calorimeter, 출처 : B. Wunderich, Thermal Analysis of Polymeric Materials, Springer, 2004)으로 유리전이온도를 측정한 결과 303.15 K 내지 313.15 K를 나타내어 폴리카프로락톤의 전이온도보다 높다. 그리고 겔크로마토그래피(Gel Permeation Chromatography, 출처 : J.F. Johnson; R. S. Porter, Analytical gel permeation chromatography, Interscience Publishers,1968)로 측정한 결과 수평균분자량은 5,000 내지 50,000을 나타내었다.Poly-caprolactone-methyl methacrylate copolymer according to the present invention is a biodegradable polymer, and the glass transition temperature is measured by differential scanning calorimeter (Source: B. Wunderich, Thermal Analysis of Polymeric Materials, Springer, 2004). The measured result is 303.15 K to 313.15 K, which is higher than the transition temperature of polycaprolactone. And the number average molecular weight was 5,000 to 50,000 as measured by gel chromatography (Gel Permeation Chromatography, Source: J.F. Johnson; R. S. Porter, Analytical gel permeation chromatography, Interscience Publishers, 1968).

본 발명에 의한 폴리-카프로락톤-메틸메타아크릴레이트 공중합체는 살리실산과 함께 무좀, 아토피, 여드름 피부질환치료제의 원료로서 사용될 수 있는데, 특히 그 치료효과를 극대화시키기 위해서는 입자의 크기가 50 내지 100nm이고, 그 형태가 구형이어야 한다. 이러한 피부질환치료제를 제조하는 방법은 Poly-caprolactone-methyl methacrylate copolymer according to the present invention can be used as a raw material for treating athlete's foot, atopy, acne skin disease with salicylic acid, especially in order to maximize the therapeutic effect, the particle size is 50 to 100nm The shape must be spherical. The method for producing such a skin disease treatment

전체 혼합용액에 대하여 0.0013 내지 0.0015 중량비의 폴리-카프로락톤-메틸메타아크릴레이트와 전체 혼합용액에 대하여 0.0015 내지 0.0018 중량비의 살리실산을 유기용매인 에탄올에 혼합시켜서 혼합용액을 제조하는 혼합용액 제조단계; A mixed solution preparation step of preparing a mixed solution by mixing poly-caprolactone-methylmethacrylate in an amount of 0.0013 to 0.0015 weight ratio with respect to the total mixed solution and salicylic acid in an amount of 0.0015 to 0.0018 weight ratio with respect to the total mixed solution in ethanol which is an organic solvent;

상기 혼합용액 제조단계에서의 혼합용액을 온도 313.0 내지 313.4K, 압력 149.5 내지 151.3 bar의 반응기에 0.47 내지 0.50 ml/분의 속도로 분무하면서, 동 시에 상기 반응기에 이산화탄소를 2.5 내지 2.7kg/hr로 주입하여 초임계상태로 만들어서 구형 구조체 입자를 생성시키는 구형 구조체 생성 단계;While spraying the mixed solution in the mixed solution preparation step at a temperature of 313.0 to 313.4K, pressure 149.5 to 151.3 bar at a rate of 0.47 to 0.50 ml / min, at the same time 2.5 to 2.7 kg / hr carbon dioxide in the reactor Spherical structure generation step of producing a spherical structure particles by injection into a supercritical state;

상기 반응기 배출구의 압력을 150bar로 유지하면서 상기 반응기에 새로운 이산화탄소를 도입하여 유기용매인 에탄올을 제거하는 유기용매 제거단계;An organic solvent removing step of removing ethanol which is an organic solvent by introducing new carbon dioxide into the reactor while maintaining the pressure of the reactor outlet at 150 bar;

상기 유기용매 제거단계에서 상기 유기용매가 제거된 구형의 구조체 입자를 회수하는 회수단계를 포함한다.And a recovery step of recovering spherical structure particles from which the organic solvent has been removed in the organic solvent removal step.

이하 이에 대하여 자세히 살펴본다.This will be described in detail below.

1) 혼합용액 제조단계1) Mixed Solution Manufacturing Step

먼저 살리실산과 생분해성 고분자인 폴리-카프로락톤-메틸메타아크릴레이트 공중합체를 유기용매에 녹여 혼합용액을 제조한다.First, a mixed solution is prepared by dissolving salicylic acid and a poly-caprolactone-methyl methacrylate copolymer which is a biodegradable polymer in an organic solvent.

살리실산은 전체 혼합용액을 기준으로 그 함량이 0.0015 - 0.0018 중량분율을 사용한다. 살리실산 함량이 0.0015 중량분율 미만의 경우 핵생성속도가 너무 빨라 입자크기가 마이크론 수준이상으로 커지고, 0.0018 중량분율을 초과하면 핵성장속도가 너무 빨라 구형이 아닌 판상형태의 입자가 얻어지기 때문이다.Salicylic acid is used in an amount of 0.0015 to 0.0018 parts by weight based on the total mixed solution. If the salicylic acid content is less than 0.0015% by weight, the nucleation rate is too fast, the particle size is larger than the micron level, and if the salicylic acid content is more than 0.0018% by weight, the nuclear growth rate is too fast to obtain a non-spherical plate-shaped particles.

생분해성 고분자는 약물의 전달속도 조절하기 위해 사용되었는데, 본 발명에서 제조된 구형의 생분해성 고분자 폴리-카프로락톤-메틸메타아크릴레이트 공중합 체를 사용하는 것이 바람직하다. 이는 폴리-카프로락톤-메틸메타아크릴레이트 공중합체의 경우에는 분자 내에 친수성 부분(Hydrophilic Part)인 카프로락톤과 친유성 부분(Hydrophobic Part)인 메틸메타아크릴레이트를 동시에 함유하고 있어 계면활성제와 같은 작용으로 약물의 핵 생성과 성장시 입자의 뭉침 현상을 막을 수 있어서 더 작은 나노입자크기의 약물구조체를 얻을 수 있다. Biodegradable polymer was used to control the delivery rate of the drug, it is preferable to use the spherical biodegradable polymer poly-caprolactone-methyl methacrylate copolymer prepared in the present invention. In the case of the poly-caprolactone-methyl methacrylate copolymer, it contains a hydrophilic part caprolactone and a hydrophilic part methyl methacrylate at the same time. The nucleation and growth of drugs can be prevented from agglomeration of particles, resulting in smaller nanoparticle size drug structures.

그 함량은 전체 혼합용액을 기준으로 0.0013 내지 0.0015 중량비율로 사용한다. 생분해성 고분자의 경우에도 0.0013 중량분율 미만의 경우에는 핵생성속도가 너무 빨라 입자크기가 마이크론 수준이상으로 커지고, 0.0015 중량분율을 초과하면 핵성장속도가 너무 빨라 구형이 아닌 판상형태의 입자가 얻어지기 때문이다. 생분해성 고분자로서 폴리-카프로락톤-메틸메타아크릴레이트 공중합체를 사용하는 또 다른 이유는 폴리-카프로락톤과 같은 다른 생분해성 고분자의 경우에는 구형의 입자가 형성되지 않기 때문이다.The content is used in 0.0013 to 0.0015 weight ratio based on the total mixed solution. In the case of biodegradable polymers, the rate of nucleation is too fast when the fraction is less than 0.0013 parts by weight, and the particle size becomes larger than the micron level. When the fraction is more than 0.0015 parts by weight, the nuclear growth rate is too fast to obtain non-spherical plate-shaped particles. Because. Another reason for using poly-caprolactone-methylmethacrylate copolymers as biodegradable polymers is that spherical particles do not form with other biodegradable polymers such as poly-caprolactone.

유기용매로는 메탄올이나 에탄올 등이 사용되지만, 본 발명에서는 인체에 독성이 적은 에탄올을 사용한다.Although methanol, ethanol, etc. are used as an organic solvent, in this invention, ethanol which is less toxic to a human body is used.

2) 구형구조체 형성단계2) Spherical Structure Formation Step

초임계 유체로는 초임계 이산화탄소, 초임계 일산화이질소, 초임계 삼불화메 탄, 초임계 프로판, 초임계 에틸렌 또는 초임계 제논 등이 있으며, 본 발명에서는 바람직한 실시예로서 초임계 이산화탄소를 사용하였다.Supercritical fluids include supercritical carbon dioxide, supercritical dinitrogen monoxide, supercritical methane trifluoride, supercritical propane, supercritical ethylene or supercritical xenon, and the like.

스테인레스스틸로 만들어진 반응구가 온도 313.0K 내지 313.4K와 압력 149.5 내지 151.3 bar의 상태가 되도록 이산화탄소를 반응구에 주입하고, 가압, 가온한다. 이렇게 하면 이산화탄소의 임계온도 304.2K, 임계압력 73.8bar 이상이 되어 반응구 내의 이산화탄소는 초임계 상태를 유지하게 된다. 반응구가 초임계 상태로 평형을 이룰 때까지 기다려, 평형에 도달하면, 이산화탄소를 2.5 내지 2.7kg/hr의 속도로 주입하며, 아울러 상기 혼합용액 제조단계에서의 혼합용액을 0.47 내지 0.50 ml/분의 속도로 분무한다. 위의 작업조건의 온도와 압력보다 낮은 조건에서는 임계온도이하로 떨어져 균일한 상이 얻어지지 않고, 위의 작업조건의 온도와 압력보다 높은 조건에서는 유효성분의 변성될 가능성이 존재한다. 또한 이산화탄소 유량과 용액유량이 각각 위에서 제시한 영역보다 커지면 100 nm이상의 원하지 않는 입자크기를 얻고, 이산화탄소 유량과 용액유량이 위에서 제시한 영역보다 적으면 판상형태의 입자가 얻어져 원하는 구형입자가 얻어지지 않는다.The carbon dioxide is injected into the reaction port so that the reaction port made of stainless steel is at a temperature of 313.0K to 313.4K and a pressure of 149.5 to 151.3 bar, and pressurized and warmed. In this case, the critical temperature of the carbon dioxide is 304.2K and the critical pressure of 73.8 bar or more, and the carbon dioxide in the reaction port is maintained in the supercritical state. Wait until the reaction equilibrium is achieved in a supercritical state, and when equilibrium is reached, carbon dioxide is injected at a rate of 2.5 to 2.7 kg / hr, and 0.47 to 0.50 ml / min of the mixed solution in the mixed solution preparation step. Spray at a rate of. In a condition lower than the temperature and pressure of the above operating conditions, it is less than a critical temperature and a uniform phase is not obtained, and there is a possibility that the active ingredient may be denatured in a condition higher than the temperature and the pressure of the above operating conditions. In addition, when the carbon dioxide flow rate and the solution flow rate are larger than the above-mentioned areas, unwanted particle sizes of 100 nm or more are obtained. If the carbon dioxide flow rate and the solution flow rate are smaller than the above-mentioned areas, plate-shaped particles are obtained, and thus the desired spherical particles are not obtained. Do not.

반응구로 주입되는 이산화탄소의 유량과 정확한 주입량을 알기 위하여 주사 펌프(syringe pump)를 사용한다. 주입되는 이산화탄소로 인해 변할 수 있는 압력은 역압조절기(back pressure regulator)에 의해 일정하게 압력을 유지시키고, 또한 항온을 유지하기 위해 순환식 항온조나 자동온도조절기를 사용하는 것이 바람직하 다. In order to know the flow rate and exact amount of carbon dioxide injected into the reaction port, a syringe pump is used. It is preferable to use a circulating thermostat or a thermostat to maintain a constant pressure by a back pressure regulator, and to change the pressure due to the injected carbon dioxide.

한편 혼합용액제조단계에서 제조된 혼합용액은 정확한 속도 조절이 가능한 소형 액체펌프(liquid pump)를 사용하여 반응구 내로 일정한 속도로 주입한다. 이때, 노즐의 막힘 현상을 방지하기 위해 혼합용액의 주입 전 공(空)용매를 소량, 예를들면 3-4ml정도 주입하는 것이 바람직하고, 주입되는 공용매의 양이 많아질수록 이후의 초임계유체에 의한 세척시간이 더 길어지게 된다. Meanwhile, the mixed solution prepared in the mixed solution preparation step is injected into the reaction port at a constant speed using a small liquid pump capable of precise speed control. At this time, in order to prevent clogging of the nozzle, it is preferable to inject a small amount of empty solvent, for example, 3-4 ml, into the mixed solution.The higher the amount of the cosolvent to be injected, the more supercritical thereafter. The cleaning time by the fluid will be longer.

주입된 혼합용액은 노즐을 통해 분사되며 분사된 혼합용액 중 유기용매는 빠른 속도로 초임계 이산화탄소에 섞여 들어가며 입자를 생성하게 된다. 상기 혼합용액의 주입과 동시에 반응구 내의 포화하는 것을 방지하기 위하여 초임계유체를 추가로 주입할 수 있다.The injected mixed solution is sprayed through the nozzle, and the organic solvent in the injected mixed solution is rapidly mixed into the supercritical carbon dioxide to generate particles. A supercritical fluid may be further injected to prevent the mixture from being saturated at the same time as the injection of the mixed solution.

3) 유기용매 제거단계3) Organic Solvent Removal Step

혼합용액의 분무가 끝나면 생성 입자 중의 유기용매를 제거하기 위해 초임계 유체인 이산화탄소를 도입하는 입자 세척과정이 필요하다. 상기 과정에서는 초임계 유체를 일정한 속도로 반응기 내로 주입하되, 상기 반응구를 입자가 100nm 이하의 크기가 될 수 있는 압력인 150bar로 유기하기 위해 주입속도와 동일한 속도로 배출구를 통해 배출시킨다. 이때, 배출속도를 조절하여 반응구에서 일정한 압력을 유지 하기 위해 배출구에 역압조절기(back pressure regulator)를 연결한다. After the spraying of the mixed solution, a particle washing process for introducing carbon dioxide, a supercritical fluid, is required to remove the organic solvent in the produced particles. In the process, the supercritical fluid is injected into the reactor at a constant rate, but the reaction port is discharged through the outlet at the same rate as the injection rate to induce the pressure to 150 bar, the particle size can be 100nm or less. At this time, the back pressure regulator is connected to the outlet to maintain a constant pressure in the reaction port by adjusting the discharge rate.

배출구의 구멍크기가 0.45μm인 막 필터를 이중으로 사용하여 입자가 빠져나가는 것을 방지한다. 용매가 잔존하게 되면 입자를 수거하기 위해 온도와 압력을 낮추었을 때 용매가 재석출 되어 만들어진 입자를 다시 녹여 응집을 형성하게 되므로 세척과정은 용매가 모두 제거될 때까지 충분히 계속 수행해야 한다. 세척을 위한 초임계 유체의 양은 사용된 용매의 양 및 반응구의 크기에 따라 달라지며, 약 2,000-3,000ml 정도가 바람직하다.A double membrane filter with an aperture size of 0.45 μm is used to prevent particles from escaping. If the solvent remains, the solvent is reprecipitated when the temperature and pressure are lowered to collect the particles, so that the particles are re-dissolved to form agglomerates. Therefore, the washing process should be sufficiently performed until all of the solvent is removed. The amount of supercritical fluid for washing depends on the amount of solvent used and the size of the reaction port, preferably about 2,000-3,000 ml.

4) 회수단계4) Recovery stage

세척과정이 끝나면 반응구로의 초임계유체 공급을 중단하고 초임계유체를 배출시킨다. 이때, 배출이 너무 급속하게 이루어지면 생성된 입자가 손상될 수 있으므로 서서히 배출시키는 것이 바람직하다. 반응구 내의 초임계 유체를 모두 제거한 후 반응구 내의 기벽이나 바닥으로부터 입자를 수거한다.At the end of the cleaning process, the supercritical fluid supply to the reactor is stopped and the supercritical fluid is discharged. At this time, if the discharge is made too fast, the produced particles may be damaged, so it is preferable to discharge slowly. After removing all of the supercritical fluid in the reactor, the particles are collected from the base wall or bottom of the reactor.

실시예Example

(1) 폴리-카프로락톤-메틸메타아크릴레이트 공중합체의 합성(1) Synthesis of Poly-caprolactone-methylmethacrylate Copolymer

단량체인 카프로락톤과 메틸메타아크릴레이트를 2g씩 혼합한 4g과 개시제인 2,2-아조비스이소부티로니트릴( 2,2-azobisisobutyronitrile, AIBN) 2g을 30mL 고압 반응기에 주입한다. 2 기압 정도의 질소를 이용하여 내부에 남아있는 산소를 제거한 후 다시 2 기압 정도의 이산화탄소를 이용하여 질소를 제거한다. 투시용 윈도우를 이용하여 액위를 관찰하며 상온에서 50 기압이 될 때까지 이산화탄소를 가스 부스터 펌프(Gas booster Pump)를 이용하여 투입한다. 항온 수조를 이용하여 정해진 중합온도까지 상승시키면 압력도 상승하게 되는데, 여기에 온도 333.15 K에서는 압력은 255 기압이 되도록 이산화탄소를 추가 투입하여 조절하였다. 이때 투입된 이산화탄소의 질량을 측정해보면 27.5 g이다. 중합시간은 각각의 정해진 온도에 도달한 시점을 기준으로 70시간까지 수행하였다. 정해진 시간 동안 중합이 모두 종료된 후에는 반응기를 얼음물을 이용하여 급격히 냉각하였다. 반응기의 온도가 283.15 K 이하로 내려가면 기체/액체 상분리가 일어나고 기상에서는 고분자의 용해도가 매우 낮을 것이라는 가정하에서 기상에서부터 천천히 이산화탄소를 분리하였다. 이때 고분자가 같이 배출되었는가를 확인하기 위하여 트렙에 담겨있는 메탄올에 침전물이 생성되었는가를 관찰하였다. 이산화탄소가 모두 매출 되고 나면 발포된 형태의 고체 고분자 생성물을 얻게 되고 이를 메탄올에 세척한 후에 진공 건조시키면 매우 미세한 흰색 분말의 고체상태인 구형 생분해성 고분자 폴리-카프로락톤-메틸메타아크릴레이트 공중합체를 얻었다.4 g of a mixture of 2 g of monomers caprolactone and methyl methacrylate and 2 g of initiator 2,2-azobisisobutyronitrile (AIBN) are injected into a 30 mL high pressure reactor. Remove oxygen remaining inside by using 2 atm of nitrogen and then remove nitrogen using 2 atm of carbon dioxide. Observe the liquid level using the see-through window and inject carbon dioxide into the gas booster pump until it reaches 50 atm. When the temperature rises to a predetermined polymerization temperature using a constant temperature bath, the pressure also increases. Here, the temperature was adjusted by adding carbon dioxide at 333.15 K so that the pressure was 255 atm. At this time, the mass of carbon dioxide injected is 27.5 g. The polymerization time was carried out up to 70 hours on the basis of the time when the respective temperature reached. After all polymerization was completed for a predetermined time, the reactor was cooled rapidly using ice water. Carbon dioxide was slowly separated from the gas phase on the assumption that gas / liquid phase separation would occur when the temperature of the reactor was lowered below 283.15 K and that the polymer had very low solubility in the gas phase. At this time, it was observed whether the precipitate was formed in the methanol contained in the trep to confirm whether the polymer was discharged together. Once all of the carbon dioxide has been sold, a solid polymer product in a foamed form is obtained, which is washed in methanol and dried in vacuo to give a spherical biodegradable polymer poly-caprolactone-methylmethacrylate copolymer in the form of a very fine white powder. .

(2) 피부질환 치료제의 제조(2) Preparation of skin disease treatment

먼저 전처리 살리실산은 50-100 마이크론 입자크기를 나타내며, 실시 예는 아래의 조건으로 생성된 살리실산 구조체 입자를 입도분석기로 입자크기를 측정하고, 생분해성 고분자로 폴리-카프로락톤-메틸메타아크릴레이트 공중합체의 존재 유무와 반응구에서의 반응조건에 따라 50에서 300 nm의 구형 미세입자크기를 얻을 수 있었다. First, the pre-treated salicylic acid shows a particle size of 50-100 microns, and the embodiment measures the particle size of the salicylic acid structure particles produced under the following conditions, and the poly-caprolactone-methyl methacrylate copolymer as a biodegradable polymer. The spherical microparticle size of 50 to 300 nm was obtained depending on the presence of and reaction conditions in the reaction zone.

하기 표 1에서 보는 바와 같이, 본 실시 예는 구형 구조체 형성 단계에서의 반응기의 운전조건에 관한 것으로서, 반응 구의 온도와 압력은 이산화탄소의 임계온도 304.2 K, 임계압력 72.8 기압이상이어야 한다. 상기 반응기에서의 조작변수로는 반응기 온도와 압력, 초임계유체인 이산화탄소 유량, 혼합용액 제조단계에서 제조된 혼합용액유량이고, 실시 예1은 혼합용액이 생분해성 고분자 없이 약물인 살리실산만 0.0016 중량비율을 함유한 것이고, 실시 예2-8은 약물인 살리실산 0.0016 중량비율로 함유함과 동시에, 생분해성 고분자인 폴리-카프로락톤-메틸메타아크릴레이트 공중합체를 0.0014 중량비율을 함유한 경우이다. 생분해성 고분자인 폴리-카프로락톤-메틸메타아크릴레이트 공중합체를 함유한 경우 입자크기가 100nm 내외로 감소하는 것을 알 수 있다. 실시 예1,3은 반응기 온도를 조절하여 313, 323K의 변화를 알아보았는데, 온도를 올리면 입자크기가 커지는 경향을 보였다. 실시 예1,4,5에서는 반응기 압력을 130 - 170 바(bar) 조절하였을 때 150 바(bar)에서 가장 최적의 입자크기를 얻을 수 있었다. 실시 예1,6,7에서는 이산화탄소 유량을 2.5 - 3.0 kg/hr의 변화시켰을 때, 2.5 - 2.7 kg/hr에서 최적의 입자크기를 얻을 수 있었으며, 실시 예1,8에서는 혼합 용액유량 0.5 - 1.0 ㎖/min 을 변화시켰는데, 혼합 용액의 유량을 증가시키면 입자크기가 커짐을 알 수 있었다.As shown in Table 1, the present embodiment relates to the operating conditions of the reactor in the step of forming a spherical structure, the temperature and pressure of the reaction sphere should be more than the critical temperature of 304.2 K, critical pressure of 72.8 atm. Operational variables in the reactor are the reactor temperature and pressure, the flow rate of carbon dioxide which is a supercritical fluid, the mixed solution flow rate prepared in the step of preparing a mixed solution, and Example 1 shows a 0.0016 weight ratio of salicylic acid, which is a drug without a biodegradable polymer. Example 2-8 is a case in which the salicylic acid as a drug is contained in a 0.0016 weight ratio, and the biodegradable polymer poly-caprolactone-methyl methacrylate copolymer contains a 0.0014 weight ratio. It can be seen that the particle size decreases to about 100 nm when the poly-caprolactone-methylmethacrylate copolymer is included as a biodegradable polymer. In Examples 1 and 3, the reactor temperature was adjusted to determine the change of 313 and 323 K. When the temperature was increased, the particle size tended to increase. In Examples 1, 4 and 5, the optimum particle size was obtained at 150 bar when the reactor pressure was adjusted to 130-170 bar. In Examples 1, 6 and 7, when the carbon dioxide flow rate was changed from 2.5 to 3.0 kg / hr, the optimum particle size was obtained at 2.5 to 2.7 kg / hr. In Examples 1 and 8, the mixed solution flow rate was 0.5 to 1.0. The ml / min was changed, and it was found that the particle size was increased by increasing the flow rate of the mixed solution.

(표 1) 실시 예1-8에서의 4가지 조작변수에 의한 작업조건 및 입자크기Table 1 Working conditions and particle size by four operating variables in Example 1-8

실시 예 Example 반응기온도 (K)Reactor temperature (K) 반응기 압력(bar)Reactor pressure (bar) 이산화탄소유량 (kg/hr)CO2 flow rate (kg / hr) 혼합용액유량 (ml/min)Mixed solution flow rate (ml / min) 입자크기 (nm)Particle Size (nm) 실시 예1 Example 1 313 313 150  150 2.5  2.5 0.5  0.5 589  589 실시 예2 Example 2 313 313 150  150 2.5  2.5 0.5  0.5 86   86 실시 예3 Example 3 323 323 150  150 2.5  2.5 0.5  0.5 135  135 실시 예4 Example 4 313 313 130  130 2.5  2.5 0.5  0.5 120  120 실시 예5 Example 5 313 313 170  170 2.5  2.5 0.5  0.5 103  103 실시 예6 Example 6 313 313 150  150 2.7  2.7 0.5  0.5 73   73 실시 예7 Example 7 313 313 150  150 3.0  3.0 0.5  0.5 149  149 실시 예8 Example 8 313 313 150  150 2.5  2.5 1.0  1.0 200  200

본 발명에서 원하는 입자크기인 50에서 100 nm의 나노입자 영역의 크기를 얻기는 작업조건은 실시 예2 와 실시 예 6의 경우이다. 즉 생분해성 고분자인 폴리-카프로락톤-메틸메타아크릴레이트 공중합체를 함유로써 입자크기를 많이 감소시킬 수 있었고, 온도는 313 K이고 압력은 150 바(bar), 이산화탄소 유량은 2.5 - 2.7 kg/hr, 용액유량은 0.5 ml/min이 최적조건이다.Working conditions for obtaining the size of the nanoparticle region of 50 to 100 nm, which is the desired particle size in the present invention, are the case of Example 2 and Example 6. In other words, the biodegradable polymer, poly-caprolactone-methyl methacrylate copolymer, was able to reduce the particle size significantly, the temperature was 313 K, the pressure was 150 bar, and the carbon dioxide flow rate was 2.5-2.7 kg / hr. The optimum solution flow rate is 0.5 ml / min.

좀더 상세한 간격으로 실험한 결과, 50에서 100nm의 초임계 나노구조체를 얻기 위한 약물함량과 생분해성 함량은 약물인 살리실산 0.0016 중량비율, 생분해성 고분자인 폴리-카프로락톤-메틸메타아크릴레이트 공중합체를 0.0014 중량비율을 함유하며, 작업조건은 온도는 313.0 - 313.4 K, 압력은 149.5 - 151.3 바(bar), 이산화탄소 유량은 2.5 - 2.7 kg/hr, 용액유량은 0.47- 0.50 ml/min 의 조건에서만 원하는 영역의 입자크기를 얻을 수 있었다. 위의 작업조건의 온도와 압력, 이산화탄 소 유량과 용액유량을 벗어나게 되면 100 nm이상의 원하지 않는 입자크기를 얻는다.As a result of experiments at more detailed intervals, the drug content and biodegradable content to obtain supercritical nanostructures of 50 to 100 nm was 0.0016 weight ratio of the salicylic acid drug, and 0.0014 to the poly-caprolactone-methylmethacrylate copolymer of biodegradable polymer. It contains the weight ratio, and the working condition is the desired area only under the conditions of temperature of 313.0-313.4 K, pressure of 149.5-151.3 bar, carbon dioxide flow rate of 2.5-2.7 kg / hr, solution flow rate of 0.47-0.50 ml / min. Particle size was obtained. Any deviation from the temperature and pressure, carbon dioxide flow rate and solution flow rate of the above operating conditions will result in unwanted particle sizes above 100 nm.

본 발명에 의하여 구형 생분해성 고분자인 폴리-카프로락톤-메틸메타아크릴레이트 공중합체를 제조하였고, 여드름치료효과에 사용되는 살리실산을 생분해성 고분자인 폴리-카프로락톤-메틸메타아크릴레이트 공중합체를 함께 함유시켜서 약물전달속도를 제어할 수 있으며, 공정조건을 조절함으로써 초임계 나노구조체 (실시예 2,6)는 50에서 100 nm의 나노입자 영역을 얻을 수 있어, 유효 단면적 증가로 인해 피부효능이 증진된다.Poly-caprolactone-methyl methacrylate copolymer of spherical biodegradable polymer was prepared according to the present invention, and salicylic acid used for acne treatment effect was contained together with poly-caprolactone-methyl methacrylate copolymer of biodegradable polymer. The drug delivery rate can be controlled, and by controlling the process conditions, the supercritical nanostructures (Examples 2 and 6) can obtain a nanoparticle region of 50 to 100 nm, thereby improving skin efficacy due to an increase in effective cross-sectional area. .

Claims (3)

주쇄가 하기의 반복단위로 되어 있는 수평균분자량 5000 내지 50000의 폴리-카프로락톤-메틸메타아크릴레이트 공중합체.A poly-caprolactone-methyl methacrylate copolymer having a number average molecular weight of 5000 to 50000 having a main chain of the following repeating units.
Figure 112008002001713-pat00006
Figure 112008002001713-pat00006
여기서, m,n은 각각 10-1000.Where m and n are each 10-1000.
단량체인 카프로락톤과 메틸메타아크릴레이트를 1:1 내지 1:1.5의 중량비로 반응기에 주입하고 상기 단량체 전체에 대하여 0.1 내지 1.0 중량비로 개시제인 2,2-아조비스이소부티로니트릴을 반응기에 주입시킨 후, 50 내지 300 기압, 283.15 K 내지 353.15 K 조건하에서 1 내지 168시간 중합시키는 것을 특징으로 하는 수평균분자량 5,000 내지 50,000의 폴리-카프로락톤-메틸메타아크릴레이트 공중합체의 제조방법.Inject the monomer caprolactone and methyl methacrylate into the reactor in a weight ratio of 1: 1 to 1: 1.5 and inject the reactor 2,2-azobisisobutyronitrile into the reactor in a weight ratio of 0.1 to 1.0 based on the entire monomer. And a poly-caprolactone-methyl methacrylate copolymer having a number average molecular weight of 5,000 to 50,000 under a 50 to 300 atmosphere and 283.15 K to 353.15 K conditions. 전체 혼합용액에 대하여 0.0013 내지 0.0015 중량비의 제1항에서의 폴리-카프로락톤-메틸메타아크릴레이트 공중합체와 전체 혼합용액에 대하여 0.0015 내지 0.0018 중량비의 살리실산을 유기용매인 에탄올에 혼합시켜서 혼합용액을 제조하는 혼합용액 제조단계; A mixed solution was prepared by mixing the poly-caprolactone-methylmethacrylate copolymer of claim 1 in an amount of 0.0013 to 0.0015 weight ratio with respect to the total mixed solution and salicylic acid in an amount of 0.0015 to 0.0018 weight ratio with respect to the total mixed solution in ethanol which is an organic solvent. Mixed solution preparation step; 상기 혼합용액 제조단계에서의 혼합용액을 온도 313.0 내지 313.4K, 압력 149.5 내지 151.3 bar의 반응기에 0.47 내지 0.50 ml/분의 속도로 분무하면서, 동시에 상기 반응기에 이산화탄소를 2.5 내지 2.7kg/hr로 주입하여 초임계상태로 만들어서 구형 구조체 입자를 생성시키는 구형 구조체 생성 단계; While spraying the mixed solution in the mixed solution preparation step at a temperature of 313.0 to 313.4K and a pressure of 149.5 to 151.3 bar at a rate of 0.47 to 0.50 ml / min, while simultaneously injecting carbon dioxide into the reactor at 2.5 to 2.7 kg / hr Spherical structure generation step of making a spherical structure particles by making a supercritical state; 상기 반응기 배출구의 압력을 150bar로 유지하면서 상기 반응기에 새로운 이산화탄소를 도입하여 유기용매인 에탄올을 제거하는 유기용매 제거단계;An organic solvent removing step of removing ethanol which is an organic solvent by introducing new carbon dioxide into the reactor while maintaining the pressure of the reactor outlet at 150 bar; 상기 유기용매 제거단계에서 상기 유기용매가 제거된 구형의 구조체 입자를 회수하는 회수단계;를 포함하는 폴리-카프로락톤-메틸메타아크릴레이트 공중합체를 함유하는 여드름, 아토피, 무좀 피부질환치료제의 제조방법.A method for preparing acne, atopy, and athlete's foot disease treatment containing poly-caprolactone-methyl methacrylate copolymer comprising a recovery step of recovering spherical structure particles from which the organic solvent has been removed in the organic solvent removal step. .
KR1020070018328A 2007-02-23 2007-02-23 Poly(caprolactone-co-methylmethacrylate), method for preparing the same using super critical fluid, and method for preparing therapeutic agent for skin diseases such as acne, atopy and athlete's foot comprising the same KR100827784B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070018328A KR100827784B1 (en) 2007-02-23 2007-02-23 Poly(caprolactone-co-methylmethacrylate), method for preparing the same using super critical fluid, and method for preparing therapeutic agent for skin diseases such as acne, atopy and athlete's foot comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070018328A KR100827784B1 (en) 2007-02-23 2007-02-23 Poly(caprolactone-co-methylmethacrylate), method for preparing the same using super critical fluid, and method for preparing therapeutic agent for skin diseases such as acne, atopy and athlete's foot comprising the same

Publications (1)

Publication Number Publication Date
KR100827784B1 true KR100827784B1 (en) 2008-05-07

Family

ID=39649807

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070018328A KR100827784B1 (en) 2007-02-23 2007-02-23 Poly(caprolactone-co-methylmethacrylate), method for preparing the same using super critical fluid, and method for preparing therapeutic agent for skin diseases such as acne, atopy and athlete's foot comprising the same

Country Status (1)

Country Link
KR (1) KR100827784B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100994217B1 (en) 2008-09-26 2010-11-12 재단법인서울대학교산학협력재단 method of eliminated acrylic acid and moisture from super-absorbent polymer

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
J.Am.Chem.Soc. 2005
J.Applied.Polym. Science 1998
Macromol.Mater. Eng. 2002
Macromolecules 2006

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100994217B1 (en) 2008-09-26 2010-11-12 재단법인서울대학교산학협력재단 method of eliminated acrylic acid and moisture from super-absorbent polymer

Similar Documents

Publication Publication Date Title
US7708915B2 (en) Polymer microspheres/nanospheres and encapsulating therapeutic proteins therein
Tamada et al. The development of polyanhydrides for drug delivery applications
Ma et al. Phenylboronic acid-based glucose-responsive polymeric nanoparticles: synthesis and applications in drug delivery
US7147806B2 (en) Polymer microspheres/nanospheres and encapsulating therapeutic proteins therein
Tom et al. Formation of bioerodible polymeric microspheres and microparticles by rapid expansion of supercritical solutions
EP1971622B1 (en) A biocompatible, non-biodegradable, non-toxic polymer useful for nanoparticle pharmaceutical compositions
Wang et al. Acid degradable poly (vinylcaprolactam)-based nanogels with ketal linkages for drug delivery
CA2791559A1 (en) Micelle compositions and process for the preparation thereof
Kandadai et al. Comparison of surfactants used to prepare aqueous perfluoropentane emulsions for pharmaceutical applications
Salerno et al. Supercritical CO2 foamed polycaprolactone scaffolds for controlled delivery of 5-fluorouracil, nicotinamide and triflusal
Álvarez et al. Production of drug-releasing biodegradable microporous scaffold impregnated with gemcitabine using a CO2 foaming process
Reverchon et al. Pvdf− hfp membrane formation by supercritical CO2 processing: Elucidation of formation mechanisms
Bain et al. Solvent influence on spray-dried biodegradable microspheres
KR100802278B1 (en) A supercritical nanoparticle process with vitamin k using molecular association theory
Torres-Martínez et al. Preparation and characterization of electrospun fibrous scaffolds of either PVA or PVP for fast release of sildenafil citrate
KR100827784B1 (en) Poly(caprolactone-co-methylmethacrylate), method for preparing the same using super critical fluid, and method for preparing therapeutic agent for skin diseases such as acne, atopy and athlete's foot comprising the same
KR100867082B1 (en) Producting method of supercritical nanostructrue for skin remedy of acne and atopic dermatitits
CA2403343C (en) Process for the preparation of accelerated release formulations using compressed fluids
CN114601964A (en) Injectable PHA microsphere and preparation method and application thereof
US20080207752A1 (en) Poly (epsilon-caprolactone-co-methylmethacrylate), method for preparing the same using super critical fluid, and method for preparing therapeutic agent for skin diseases such as acne, atopy and athlete's foot comprising the same
KR20090070846A (en) A supercritical nanoparticle process with ceramide using molecular association theory
KR20090070755A (en) A supercritical nanoparticle process with triclosan using density fluction theory
KR100811447B1 (en) A nano-particle process of ceramide using supercritical fluid
KR20080044527A (en) A nano-particle process of piroctone olamine using supercritical fluid process and its application
KR100818685B1 (en) A nano-particle process of triclocarban

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130429

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140416

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150226

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160128

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee