KR100823691B1 - Advanced waste-water treatment system for decreasing sludge and erasing nitrogen and phosphorus - Google Patents

Advanced waste-water treatment system for decreasing sludge and erasing nitrogen and phosphorus Download PDF

Info

Publication number
KR100823691B1
KR100823691B1 KR20070035289A KR20070035289A KR100823691B1 KR 100823691 B1 KR100823691 B1 KR 100823691B1 KR 20070035289 A KR20070035289 A KR 20070035289A KR 20070035289 A KR20070035289 A KR 20070035289A KR 100823691 B1 KR100823691 B1 KR 100823691B1
Authority
KR
South Korea
Prior art keywords
tank
sludge
aerobic
supernatant
filtration
Prior art date
Application number
KR20070035289A
Other languages
Korean (ko)
Inventor
류수룡
이웅영
김재기
Original Assignee
유림엔마텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유림엔마텍(주) filed Critical 유림엔마텍(주)
Priority to KR20070035289A priority Critical patent/KR100823691B1/en
Application granted granted Critical
Publication of KR100823691B1 publication Critical patent/KR100823691B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/308Biological phosphorus removal
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1215Combinations of activated sludge treatment with precipitation, flocculation, coagulation and separation of phosphates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

An advanced wastewater treatment method for suppressing the generation of sludge and removing nitrogen and phosphorus is provided to primarily remove solids, degrade organic matters and remove phosphorous, to simultaneously increase the nitrogen removal effect and suppress the generation of sludge consistently, and to secondly treat the organic matters and reduce sludge at the same time. An advanced wastewater treatment method comprises the steps of: carrying out a upflow filtration by a upflow filter tank(10) in which suspended solids are settled by a filtration layer, which easily releases phosphorous from a lower part thereof by anaerobic reaction, and which biodegrades organic matters and removes nitrogen in an upper part thereof; transferring a supernatant to an aerobic tank(20) and biologically treating wastewater flown into the aerobic tank using oxygen continuously supplied through an air diffuser from an air supply device; flowing wastewater that has passed through the aerobic tank into a settling tank(30), and gravitationally separating wastewater, a microorganism-containing sludge, and a supernatant from influent that has been received from the aerobic tank within the settling tank to transfer the supernatant to an anoxic tank(40), transfer the settled sludge to a sludge thickener(50) or return the settled sludge to the aerobic tank, and discharge excessive sludge to the outside; simultaneously remove nitrogen from sludge flown in and consistently suppressing the generation of sludge at the same time by the anoxic tank installed in rear of the settling tank, and discharging the supernatant or returning the supernatant to the aerobic tank in accordance with a discharge standard; and retreating thickened sludge that has been transferred to a thermophilic aerobic reactor(60) through the sludge thickener, and returning the retreated thickened sludge to the aerobic tank.

Description

질소와 인을 제거시킴과 동시에 발생 슬러지량을 저감시키기 위한 고도처리공법{Advanced waste-water treatment system for decreasing sludge and erasing nitrogen and phosphorus}Advanced waste-water treatment system for decreasing sludge and erasing nitrogen and phosphorus

도 1 : ATAD 기본공정도1: ATAD basic process chart

도 2 : OSA 기본공정도2: OSA basic process diagram

도 3 : 본원의 기본공정도3: Basic process diagram of the present application

도 4 : 본원 시스템을 적용하는 경우의 물질수지도4: Material balance map when applying the present system

도 5 : 본원의 기본공정을 변형 적용한 예시도5 is an exemplary view of a modified application of the basic process of the present application

도 6 : 본원의 기본공정을 변형 적용한 또 다른 예시도6 is another illustration of the modification of the basic process of the present application

※ 도면의 주요부분에 대한 부호의 설명※ Explanation of code for main part of drawing

10 : 상향류 여과조 20 : 호기조 10 upflow filtration tank 20 aerobic tank

30 : 침전조 40 : 무산소조30: sedimentation tank 40: anoxic tank

50 : 슬러지 농축조 60 : 고온 호기반응조50: sludge thickening tank 60: high temperature aerobic reaction tank

100 : 하향유입 101 : 상향유출100: downward flow 101: upward flow

102 : 내부반송라인 103 : 잉여슬러지 배출라인102: internal conveying line 103: excess sludge discharge line

104 : 슬러지 반송라인 105 : 고온 호기반응조 유입라인104: sludge conveying line 105: high temperature aerobic reactor inlet line

106 : 고온 호기반응조 유출라인 107 : 농축조에서의 반송라인106: high temperature aerobic reactor outlet line 107: conveying line from the concentration tank

일반적으로 유기성 오염물질과 질소, 인을 함유한 오 폐수는 수중의 용존산소를 고갈시켜 수중 생태계를 파괴시키고 호수와 저수지의 물을 부영양화시켜 수자원의 이용을 저해시키는 요인으로 작용하고 있다.In general, wastewater containing organic pollutants, nitrogen, and phosphorus depletes dissolved oxygen in water, destroying aquatic ecosystems, and eutrophicating water in lakes and reservoirs.

따라서, 하천의 수질오염을 방지하기 위하여 오. 폐수 내에 함유된 오염물질 및 유기영양염류 성분이 하천 등의 수역으로 유입되기 전에 제거되어야 한다.Therefore, to prevent water pollution of rivers. Pollutants and organonutrients contained in the wastewater should be removed before they enter the body of water, such as rivers.

이를 제거하기 위한 오. 폐수 처리시설의 처리공법으로 경제성 면에서 우수한 생물학적 처리방법이 많이 적용되는데, 생물학적 처리방법 중에서 활성슬러지법과 고도처리와 같은 미생물을 이용한 유기물의 제거가 이루어지고 있으나, 유기물 제거과정에서 증식된 미생물들이 폐 슬러지로 발생하게 된다.O to remove it. As a treatment method of wastewater treatment facilities, many biological treatment methods that are excellent in economics are applied. Among the biological treatment methods, organic matters using microorganisms such as activated sludge method and advanced treatment are removed, but microorganisms grown during organic matter removal process Sludge is generated.

대표적인 생물학적 처리방법으로 활성슬러지법은 폐수가 폭기조(aeration tank)로 계속 주입됨에 따라 미생물이 폐수 중의 유기물을 섭취, 분해하여 질산화를 진행하면서 성장하게 되는데, 이렇게 성장된 미생물은 응집되어 종말 침전조에서 침전되어 침전물의 일부는 활성 슬러지의 형태로 다시 폭기조로 반송되고 일부 잉여슬러지는 폐기됨으로써 폭기조 내의 미생물량이 적절한 수준으로 유지되어 폐수 중의 유기물 분해와 함께 질소, 인 등의 제거가 이루어진다.As a representative biological treatment method, activated sludge method grows as the microorganism ingests and decomposes organic matter in the wastewater and proceeds to nitrification as the waste water is continuously injected into the aeration tank. As a result, some of the precipitate is returned to the aeration tank in the form of activated sludge, and some excess sludge is discarded to maintain an appropriate level of microorganisms in the aeration tank to remove nitrogen, phosphorus, etc. together with organic matter decomposition in the wastewater.

이러한 활성슬러지법은 폐수 중 유기물을 처리하는데 우수한 효과가 있음이 오랫동안 인정되어 왔으나, 고농도의 유기물 및 질소 성분을 함유한 폐수로부터 유기물과 질소를 동시에 효과적으로 제거하기에는 부적합하고 잉여슬러지의 양도 증가하는 등 많은 문제점을 갖고 있다.This activated sludge method has long been recognized that it has an excellent effect on the treatment of organic matter in wastewater, but it is not suitable for the effective removal of organic matter and nitrogen from wastewater containing high concentrations of organic matter and nitrogen, and the amount of surplus sludge increases. I have a problem.

활성오니법과 같은 생물학적 수처리공정의 침전조에서 침전되는 활성슬러지 중 폭기조로 보내어 다시 이용하는 부분을 반송슬러지라고 하고, 이를 제외한 나머지 슬러지를 잉여활성슬러지라고 한다. The portion of activated sludge precipitated in the sedimentation tank of the biological water treatment process such as activated sludge method is sent to the aeration tank for reuse and the remaining sludge except the sludge is called surplus activated sludge.

폐수나 하수를 생물학적으로 처리할 때, 미생물은 현탁되어 있거나 용존형태의 고형물질을 분해하며, 일부는 이산화탄소(CO2)와 물(H20)로 산화되고 나머지는 합성과정을 거쳐 미생물 균체로 전환된다. 잉여슬러지의 발생량은 생화학적산소요구량(BOD)의 부하가 작을수록, 분기 시간이 갈수록 적어진다.In biological treatment of wastewater or sewage, microorganisms degrade suspended or dissolved solids, some are oxidized to carbon dioxide (CO2) and water (H20), and others are converted to microbial cells through synthesis. The amount of excess sludge generated decreases as the load of biochemical oxygen demand (BOD) decreases and the branching time decreases.

잉여슬러지를 처리하기 위한 비용은 전체 하수처리 비용의 40-60%에 이를 정도로 방대할 뿐만 아니라, 슬러지 처리로 인한 2차 오염은 새로운 환경문제로 대두되고 있는바 이에 슬러지 생성량을 저감시키기 위한 연구가 활발히 진행되고 있으나, 슬러지 저감과 동시에 고도처리를 수행해야 하는 어려움의 문제가 아직도 해결되지 않고 있는 실정이다.The cost of treating excess sludge is about 40-60% of the total sewage treatment costs, and secondary pollution from sludge treatment is emerging as a new environmental problem. Although actively progressing, the problem of the need to perform sludge reduction and advanced treatment at the same time has not been solved.

본원은 폐수처리에 있어 활성슬러지법이 갖고 있는 고질적 문제인 발생슬러지 문제를 해결하기 위하여, 슬러지 발생량을 줄이면서 폐수의 고도처리를 원활하게 수행하기 위하여, 슬러지 저감책으로는 60-70년대부터 많은 연구가 진행되어 온 ATAD공정을 고도처리에 도입하고자 하며, 탈질 및 유기물 분해가 탁월한 OSA공정의 장점을 접목시키기 위해 무산소조를 침전조 후단에 설치하며, 전 처리 단계에서 상 향류 여과조를 설치하는 새로운 공정을 개발하여 기존 공정의 단점을 보완하며, 현장 설비비용을 절약하고, 수처리 효율을 극대화 할 수 방법을 찾고자 하는 과정 중에 완성된 발명에 관한 것이다.In order to solve the sludge problem, which is a chronic problem of activated sludge method in wastewater treatment, the present study has conducted a lot of researches from the 60s and 1970s as a sludge reduction measure to reduce sludge generation and smoothly perform advanced treatment of wastewater. Introduces the advanced ATAD process to advanced treatments, installs an anoxic tank at the rear of the settling tank to combine the advantages of OSA process with excellent denitrification and organic decomposition, and develops a new process to install an upstream filter tank at the pretreatment stage. The present invention relates to a completed invention in the process of finding a way to supplement the shortcomings of the existing process, to save the cost of the field equipment, and maximize the water treatment efficiency.

본 발명은 질소와 인을 제거시킴과 동시에 발생 슬러지량을 작게하기 위한 고도처리공법을 수행하기 위해 유입수를 상향류식 여과조를 거치게 함으로서 1차적으로 고형물을 침적시키면서 생물막을 형성시켜 하부 혐기성 반응을 통한 인 용출을 보다 효과적으로 도모함과 동시에 유기물 제거를 수행하며, 호기조에서 유기물 제거와 인 제거 및 질산화 반응을 진행시키고, 침전조 후단 무산소조에서 안정적으로 탈질과 미생물 대사를 억제하여 슬러지 생성량을 감소시키고자 하는 기술사상을 갖는다. The present invention primarily forms a biofilm while depositing solids by performing an inflow of an upflow filtration tank to remove nitrogen and phosphorus and to perform an advanced treatment method to reduce the amount of sludge generated, thereby forming phosphorus through a lower anaerobic reaction. In addition to promoting elution more effectively, organic matters are removed, organic matters are removed, phosphorus and nitrification reactions are carried out in an aerobic tank, and in the anoxic tank at the end of the sedimentation tank, the technical idea of reducing sludge production by stably inhibiting denitrification and microbial metabolism Have

또한, 2차적으로 침전조에서 슬러지 반송과 잉여슬러지를 농축조를 거쳐 고온 호기반응조에서 반응 후 호기조로 재 반송시킴으로서 생성된 슬러지를 제거하고, 호기조의 안정적 미생물량을 유지시켜 줌으로서 안정적이며 효과적인 수 처리를 수행함과 동시에 슬러지 저감 효과를 얻도록 하여 결과적으로 질소와 인을 제거시킴과 동시에 발생 슬러지량을 저감시키기 위한 고도처리공법을 제공하고자 하는목적을 갖는다.In addition, the sludge is returned from the sedimentation tank and the excess sludge is concentrated through the concentration tank, and then the reaction is returned to the aerobic tank after the reaction in the high temperature aerobic reactor to remove the sludge and maintain a stable amount of microorganisms in the aerobic tank. The purpose of the present invention is to provide a sludge reduction effect at the same time as a result, to remove nitrogen and phosphorus and to provide an advanced treatment method for reducing the amount of sludge generated.

본 발명은 고농도 혹은 저농도의 페수를 처리함에 있어서 보다 효율적으로 질소와 인을 제거시킴과 동시에 발생되는 슬러지 양을 저감시키기 위한 고도처리기술을 제공하고자 하는 것이다.The present invention is to provide a high treatment technology for reducing the amount of sludge generated at the same time to remove nitrogen and phosphorus more efficiently in the treatment of high or low concentration of wastewater.

본원은 슬러지 발생을 억제하며 질소. 인을 제거시키기 위한 고도처리기술로서, 호기조의 전단계에서 상향류 여과조를 설치하고 유입 하수를 중력에 의해 상향류 여과조의 저부에서 유입시키게 되면 미생물과 접촉하여 폐수에 함유된 유기물질 및 영양소의 생물학적 분해가 시작되며, 상향류 여과조의 중간층에는 쇄석여과조 등이 설치되어 1차적으로 고형물 제거와 유기물 분해 및 인 제거 공정을 수행하면서 유입량에 상응하는 상징액은 상층부의 유출구를 통해 호기(Oxic)조로 이송시키는 구조를 이룬다.The present application inhibits sludge generation and nitrogen. As an advanced treatment technology to remove phosphorus, the upstream filtration tank is installed in the previous stage of the aerobic tank, and when the incoming sewage flows from the bottom of the upstream filtration tank by gravity, the biodegradation of organic substances and nutrients contained in the waste water is caused by contact with microorganisms. In the middle layer of the upflow filtration tank, a crushed stone filtration tank is installed, and the supernatant liquid corresponding to the inflow is transferred to the oxygen tank through the outlet of the upper layer while performing the solid removal, organic decomposition and phosphorus removal processes. To achieve.

호기(Oxic)조로 유입된 피 처리물은 공기 공급 장치로부터 산기관을 통하여 연속적으로 공급되는 산소를 사용하여 생물학적 처리되며,The treated materials introduced into the oxygen tank are biologically treated using oxygen continuously supplied from the air supply unit through the diffuser,

호기조를 거친 피 처리물은 침전조로 유입되고 침전조에서는 호기조로 부터의 유입수를 중력에 의해 피 처리물과 미생물을 포함하는 침전슬러지와 상징액으로 고액 분리시켜 상징액은 무산소조로 이송시키게 되고 침전슬러지는 슬러지농축조로 이송시키게 된다.Treated material through the aerobic tank flows into the sedimentation tank, and the sedimentation tank separates the inflow water from the aerobic tank into sediment sludge and supernatant containing the treated matter and microorganisms by gravity, and the supernatant is transferred to an anoxic tank, and the sludge sludge concentration tank is settled. Will be transferred to.

침전조 후단으로 무산소조가 설치되어 질소제거 효과를 높임과 동시에 슬러지 발생을 지속적으로 억제시키도록 하며, An anoxic tank is installed at the end of the settling tank to increase the nitrogen removal effect and to continuously suppress sludge generation.

침전조에서 침전된 슬러지는 호기조로 반송시키거나 고온 호기성 소화조에서 가용화시켜 호기조로 재 반송시키는 단계를 포함하여 제공됨으로 질소, 인 등의 유 기물의 처리와 동시에 슬러지를 저감시키는 구성을 이루는 폐수처리공정을 개시하는 기술사상을 갖는다.Sludge precipitated in the sedimentation tank is provided to the aerobic tank or solubilized in a high temperature aerobic digestion tank to be returned to the aerobic tank to provide a waste water treatment process to reduce the sludge at the same time as the treatment of organic matter, such as nitrogen and phosphorus. It has a technical idea to start.

따라서 본원은 상향류 여과조(10)와 호기조(20)와 침전조(30)와 무산소조(40)와 슬러지농축조(50) 및 고온 호기반응조(60)를 포함하여 제공되는 고도처리공법을 통하여 질소와 인을 제거시킴과 동시에 발생 슬러지량을 저감시키기 위한 고도처리공법에 관한 것으로,Therefore, the present application is nitrogen and phosphorus through the advanced treatment method provided, including upstream filtration tank (10), aerobic tank (20), sedimentation tank (30), anoxic tank (40), sludge concentration tank (50) and high temperature aerobic reaction tank (60). The present invention relates to an advanced treatment method for removing sludge and reducing the amount of sludge produced.

상향류 여과조(10)는 여과층을 갖고 여과층에 의해 부유성 고형물이 침적되고 생물막이 형성되어 하부에는 혐기성 반응으로 인 용출을 쉽게하고 상부에서는 미생물에 의한 유기물 분해와 질소 제거가 이루어지도록 제공되는 단계;The upflow filtration tank 10 has a filtration layer, in which floating solids are deposited by the filtration layer, and a biofilm is formed to facilitate phosphorous elution by anaerobic reaction at the lower part and to decompose organic matter and remove nitrogen by the microorganism at the upper part. step;

상기 상향류 여과조(10)에 피 처리물의 유입량에 상응하는 상징액이 상층부의 유출구를 통해 호기조(20)로 이송되고 호기조로 유입된 피 처리물은 공기 공급 장치로부터 산기관을 통하여 연속적으로 공급되는 산소를 이용하여 생물학적 처리가 이루어지도록 제공되는 단계;The supernatant liquid corresponding to the inflow of the object to be treated into the upflow filtration tank 10 is transferred to the aerobic tank 20 through the outlet of the upper layer, and the object to be introduced into the aerobic tank is continuously supplied from the air supply apparatus through the diffuser. Providing a biological treatment using;

호기조(20)를 거친 피 처리물은 침전조(30)로 유입되고 침전조(30)에서는 호기조(20)로 부터의 유입수를 중력에 의해 피 처리물과 미생물을 포함하는 침전슬러지와 상징액으로 고액 분리시켜 상징액은 무산소조(40)로 이송시키고 침전슬러지는 농축조(50)로 이송시키거나, 호기조(20)로 라싸이클시키거나, 잉여슬러지를 배출하는 단계;The treated material that passes through the aerobic tank 20 flows into the settling tank 30, and the sedimentation tank 30 separates the influent from the aerobic tank 20 into sediment sludge and supernatant containing the to-be-processed material and microorganisms by gravity. The supernatant is transferred to the anaerobic tank 40 and the settling sludge is transferred to the concentrating tank 50, cyclized to the aerobic tank 20, or the excess sludge is discharged.

침전조(30) 후단으로 무산소조(40)가 설치되어 유입된 슬러지의 질소를 제거 시킴과 동시에 슬러지 발생을 지속적으로 억제시키도록 작용하면서 상등수는 방류 기준에 따라 방류하거나 호기조(20)로 라싸이클시키는 단계;The anaerobic tank 40 is installed at the rear end of the settling tank 30 to remove nitrogen from the introduced sludge and act to continuously suppress sludge generation, while the supernatant is discharged according to the discharge standard or cyclized into the aerobic tank 20. ;

슬러지 농축조(50)를 거쳐 고온 호기반응조(60)로 이송된 농축슬러지는 재처리되어 호기조(20)로 리싸이클링 되는 단계;The concentrated sludge transferred to the high temperature aerobic reaction tank 60 through the sludge thickening tank 50 is reprocessed and recycled to the aerobic tank 20;

를 포함하여 제공되는 고도처리화 공법이 개시된다.Provided is an advanced treatment method provided.

이하, 본 발명을 이루는 배경기술을 살펴본다.Below, it looks at the background of the present invention.

슬러지 발생량을 저감시키기 위한 대표적 공정으로는 유럽에서 1960년대에 이미 자가 발열 고온 호기성 처리방법으로 개시된 일명 ATAD(Autothermal Thermophilic Aerobic Digestion) 공정이 개발되어 지금까지 연구를 통하여 다양하게 변형시켜 사용되고 왔는바, ATAD 공법은 간단하게 도 1로 나타내어 간단하게 언급하여 보면, 폭기조와 침전조와 가용화를 위한 ATAD반응조를 기본 구성으로 하여 가용화를 위한 ATAD 반응조에서 고온 호기반응을 위하여 고농도 유입이 필요하며 폭기조 MLSS의 과부하 문제 및 반송량 조절이 어려운 문제 등으로 슬러지 저감 만을 위한 공정으로서 수 처리에 있어서는 큰 의미를 찾지 못하는 상황이었다.As a representative process for reducing sludge generation, the ATAD (Autothermal Thermophilic Aerobic Digestion) process, which was started in Europe in the 1960s as a self-heating high temperature aerobic treatment method, was developed and has been used in various ways until now. The process is simply shown in Fig. 1 and briefly mentioned, the basic configuration of the aeration tank, the sedimentation tank and the ATAD reaction tank for solubilization requires a high concentration inflow for the high temperature aerobic reaction in the ATAD reactor for solubilization, and the overload problem of the aeration tank MLSS and It was a situation where water treatment could not be found as a process for reducing sludge only due to problems such as difficulty in controlling the conveyed amount.

그 이후, 고도처리를 효율적으로 수행하면서 슬러지를 저감시키기 위한 방법이 연구되어 오면서 1992년 P.Chudoba는 Energy-Uncoupling방식으로 OSA(Oxic-Settling-AnOxic)공정을 제시하였는데, OSA 공법은 미생물의 생체량을 줄이기 위한 대표적 방법으로 간단하게 도 2로 나타내어 간단하게 언급하여 보면, 호기조-침전조-무산소조로 구성되어 침전조에서 인출된 잉여슬러지의 미생물 생물대사를 억압하는 공정으로 약 44% 정도의 잉여슬러지 저감 효과가 있는 것으로 보고된 바 있다. Since then, a method for reducing sludge while efficiently carrying out advanced treatment has been studied. In 1992, P. Chudoba proposed an Oxa-Settling-AnOxic (Energy-Uncoupling) process. As a representative method for reducing the pressure simply shown in Figure 2 to refer briefly, it is composed of aerobic tank-sedimentation tank-anoxic tank to suppress the microbial biological metabolism of excess sludge withdrawn from the sedimentation tank to reduce the excess sludge by about 44% Has been reported.

그러나, 상기의 OSA공정은 무산소조를 침전조 후단에 설치하여 줌으로 효과적인 탈질과 생물 대사작용을 억압시켜 슬러지 생성량을 줄이고자 하는 방법이지만 인 제거를 위한 별도의 약품투입 및 설비 등이 필요하고 생물대사 억제로 인한 호기조 미생물의 활성력이 저해되어 수 처리의 효율을 저하시키고 슬러지의 유출이 발생 될 수 있는 문제점을 갖고 있었다.However, the OSA process is a method to reduce sludge production by suppressing effective denitrification and biological metabolism by installing an anaerobic tank at the end of the settling tank, but requires a separate chemical input and facility for phosphorus removal and suppresses metabolism. Due to the inhibition of the activity of the aerobic microorganism due to the degradation of the efficiency of water treatment and sludge outflow had a problem that can occur.

본원은 상기의 ATAD 공법과 OSA공법의 혼합공정을 이용하여 슬러지 저감 효과를 얻으면서 질소와 인도 만족하는 제거효과를 얻을 수 있는 것인지에 대한 발명의 착상을 갖고 기대하는 효과를 얻을 것인지 실험하고자 하였으며 이에 만족할 만한 효과를 얻을 수 있음을 확인하여 완성된 발명이다.The present application tried to experiment with the idea of the invention to obtain a sludge reduction effect by using the mixing process of the ATAD method and the OSA method with the idea of the invention to obtain a satisfactory removal effect of nitrogen and delivery. The present invention has been completed by confirming that a significant effect can be obtained.

본원의 발생 슬러지량을 저감시키기 위한 고도처리공정이 도 3에 개시되어 제공되는바, 특별히 호기조(20)의 전단계에서 상향류 여과조(10)를 설치하고 유입 하수를 중력에 의해 상향류 여과조의 저부에서 유입시키게 되면 미생물과 접촉하여 폐수에 함유된 유기물질 및 영양소의 생물학적 분해가 시작되며, 상향류 여과조의 중간층에는 쇄석여과조 등이 설치되어 1차적으로 고형물 제거와 유기물 분해 및 인 제거 공정을 수행하는 부분과, 침전조(30) 후단으로 무산소조(40)가 설치되어 질소제거 효과를 높임과 동시에 슬러지 발생을 지속적으로 억제시키도록 하는 부분에 발명의 특징부를 갖는다.An advanced treatment process for reducing the amount of sludge generated herein is disclosed and provided in FIG. 3, in particular, an upflow filtration tank 10 is installed in the previous stage of the aerobic tank 20, and the bottom of the upflow filtration tank is gravity-flowed. When it is introduced from, the biodegradation of organic substances and nutrients contained in the waste water starts in contact with microorganisms.The crushed stone filtration tank is installed in the middle layer of the upflow filtration tank to perform solids removal, organic matter decomposition and phosphorus removal process. The anoxic tank 40 is provided at the rear end of the settling tank 30 to enhance the nitrogen removal effect and at the same time to continuously suppress sludge generation.

본원의 고도처리 공정은 상향류 여과조(10)에 피 처리물의 유입량에 상응하는 상징액은 상층부의 유출구를 통해 호기조(20)로 이송되고, 호기(Oxic)조로 유입된 피 처리물은 공기 공급 장치로부터 산기관을 통하여 연속적으로 공급되는 산소 를 이용하여 생물학적 처리가 이루어지며, 호기조(20)를 거친 피 처리물은 침전조 (30)로 유입되고 침전조(30)에서는 호기조(20)로 부터의 유입수를 중력에 의해 피 처리물과 미생물을 포함하는 침전슬러지와 상징액으로 고액 분리시켜 상징액은 무산소조(40)로 이송시키게 되고 침전슬러지는 슬러지농축조(50)를 거쳐 고온 호기반응조(60)로 이송되며 리싸이클링 되는 구조를 갖는다.In the high-treatment process of the present application, the supernatant corresponding to the inflow of the water to be processed into the upflow filtration tank 10 is transferred to the aerobic tank 20 through the outlet of the upper layer, and the processing material introduced into the aerobic tank is transferred from the air supply device. The biological treatment is performed using oxygen continuously supplied through the diffuser, and the treated material passing through the aerobic tank 20 flows into the sedimentation tank 30, and the sedimentation tank 30 receives gravity from the aerobic tank 20. By the solid-liquid separation of the sludge and supernatant containing the to-be-processed matter and microorganism by the supernatant is transferred to the anaerobic tank 40, the precipitated sludge is transferred to the high temperature aerobic reaction tank (60) through the sludge concentration tank (50) and recycled Has

상향류 여과조(10)의 여과층은 쇄석을 이용하거나, 미생물 부착이 용이한 기타의 여재류를 이용하여 구성할 수 있으며 상기 여과층에 의해 1차적으로 부유성 고형물이 침적되고 생물막이 형성되어 하부에는 혐기성 반응으로 인 용출이 용이하고 상부에서는 미생물에 의한 유기물 분해와 질소 제거가 이루어지도록 제공되어 이 과정에서 BOD 30-40%, SS 40-50%, T-N 5%, T-P 25% 정도가 제거된다. The filtration layer of the upflow filtration tank 10 may be composed of crushed stone or other filter media that are easily adhered to microorganisms. The filtration layer primarily deposits floating solids and forms a biofilm. In the anaerobic reaction, phosphorous elution is easy and the upper part is provided to decompose organic matters and remove nitrogen by microorganisms. In this process, BOD 30-40%, SS 40-50%, TN 5%, and TP 25% are removed. .

호기조(20)에서는 상향류 여과조(10)에서 유입되는 피 처리물과 무산소조(40)에서 탈질 반응이 일어나 기아상태에 빠진 활성슬러지가 반송되어 합류되므로 미생물의 섭취를 도모하여 유기물의 분해를 보다 촉진시키게 되고, 또한 고온 호기반응조(60)에서 슬러지가 고온 호기 반응을 한 후 106 반송로를 통해 호기조(20)로 유입되어 슬러지의 재분해 및 미생물 보충이 이루어진다.In the aerobic tank 20, denitration reaction takes place in the upflow filtration tank 10 and activated sludge that is depleted due to the denitrification reaction is returned and joined. Therefore, the intake of microorganisms facilitates the decomposition of organic substances. In addition, the sludge in the high temperature aerobic reaction tank (60) after the high temperature aerobic reaction is introduced into the aerobic tank 20 through the 106 conveying path to re-decompose the sludge and microbial supplementation.

호기조(20)에서 대부분의 유기물 분해 및 질소, 인 분해가 이루어지는데, BOD 80-90%, SS 70-80%, T-N 57%, T-P 60-70%의 제거율을 갖는다.In the aerobic tank 20, most of organic matter decomposition, nitrogen, and phosphorus decomposition are performed, and BOD 80-90%, SS 70-80%, T-N 57%, and T-P 60-70% are removed.

침전조(30)에서는 호기조(20)에서 과잉섭취된 미생물이 스트레스를 받아 일부 용출이 일어나며 고액 분리되어 상징액은 무산소조(40)로 이동하고 침전된 슬러지는 호기조(20)로 반송하거나 슬러지농축조(50)로 이송되어 고온 호기반응조(60) 로 유입된다. 이 때 반송량은 침전조에서 방출되는 양을 100으로 기준하는 경우 104 반송로를 통해 호기조(20)로 반송하는 양은 10-50 정도이고, 105 이송로를 통해 고온 호기반응조(60)로이송되는 양은 에서는 20-50 정도가 적당하다. In the sedimentation tank 30, the microorganisms excessively ingested in the aerobic tank 20 are stressed, and some elution occurs, and the solid solution is separated and the supernatant is moved to the anaerobic tank 40, and the precipitated sludge is returned to the aerobic tank 20 or the sludge concentration tank 50. Is transferred to the high temperature aerobic reactor 60 is introduced. At this time, if the conveyed amount is based on the amount discharged from the settling tank as 100, the amount returned to the aerobic tank 20 through the 104 conveying path is about 10-50, and the amount conveyed to the high temperature aerobic reaction tank 60 through the 105 conveying path is In 20-50 is suitable.

무산소조(40)에서는 침전조(30)에서 유입된 슬러지 미생물이 탈질과 미생물 대사를 통하여 기아상태에 빠진 상태로 102 반송로를 통하여 호기조(20)로 반송된다.In the oxygen-free tank 40, sludge microorganisms introduced from the settling tank 30 is returned to the aerobic tank 20 through the 102 conveying path in a state of starvation through denitrification and microbial metabolism.

슬러지농축조(50)에서는 침전조(30)에서 유입된 슬러지를 보다 효율적으로 농축시키는 기능을 하며 슬러지농축조(50)에서의 상등수는 107 반송로를 통해 101공급라인에 합류되어 호기조(20)로 재반송된다. The sludge thickening tank 50 functions to more efficiently concentrate the sludge introduced from the settling tank 30, and the supernatant water from the sludge thickening tank 50 is joined to the 101 supply line through the 107 conveying path and returned to the aerobic tank 20. do.

슬러지농축조(50)에서 고온 호기반응조(60)로 유입되는 적정 농도는 TSS 2-4%정도이다. The optimum concentration flowing into the high temperature aerobic reactor 60 from the sludge concentration tank 50 is about 2-4% TSS.

본원의 기술사상이 구체적으로 구현되는 예는 아래의 실험자료를 근거로하여 산업적으로 유용하게 달성할 수 있음을 확인하여 완성된 발명이다.An example in which the technical idea of the present application is specifically implemented is an invention completed by confirming that it can be industrially usefully achieved based on the following experimental data.

[실험예 1] 일반 A/O, A2O 공정의 설계수질 및 제거율Experimental Example 1 Design Water Quality and Removal Rate of General A / O and A2O Processes

구 분division 유 입inflow 방 류Discharge 제거율Removal rate BODBOD 150 mg/l150 mg / l 10 mg/l10 mg / l 93%93% SSSS 170 mg/l170 mg / l 10 mg/l10 mg / l 94%94% T-NT-N 35 mg/l35 mg / l 20 mg/l20 mg / l 43%43% T-PT-P 5 mg/l5 mg / l 2 mg/l2 mg / l 60%60% 반 송 율Bounce rate 50%50% 잉여슬러지발생량Surplus Sludge Production 2.2 kg/d2.2 kg / d

[실험예 2] 본원 처리공정을 적용하는 경우의 수질 및 제거율Experimental Example 2 Water Quality and Removal Rate When Applying the Treatment Process

구 분division 유 입inflow 방 류Discharge 제거율Removal rate BODBOD 150 mg/l150 mg / l 10 mg/l10 mg / l 93%93% SSSS 170 mg/l170 mg / l 13 mg/l13 mg / l 92%92% T-NT-N 35 mg/l35 mg / l 21 mg/l21 mg / l 40%40% T-PT-P 5 mg/l5 mg / l 1 mg/l1 mg / l 80%80% 반 송 율Bounce rate 50%50% 잉여슬러지발생량Surplus Sludge Production 0.42 kg/d0.42 kg / d 슬러지가용화율Sludge Solubility Rate 40%40%

상기 실험결과 자료로부터 살펴 보면, 질소 및 인을 제거하는 고도처리 효율에서는 비슷한 결과를 나타내나, 발생 슬러지량의 비교에서는 약 81%의 슬러지발생 저감효과가 있음을 확인하여 완성된 발명이다.From the experimental data, similar results were obtained in the high treatment efficiency of removing nitrogen and phosphorus, but about 81% of sludge was generated in comparison of the amount of sludge generated. The invention was confirmed to have a reduction effect.

상기 실험예와 같은 방법으로 현장처리를 통하여 본원의 고도처리공정을 이용한 결과 도 4에 제시되는 물질수지 결과를 얻을 수 있었다.As a result of the high-treatment process of the present application through on-site treatment in the same manner as in the experimental example, the material resin results shown in FIG. 4 were obtained.

도 4의 자료로부터 상향류 여과조(10)에서 1차적으로 고형물 제거 및 유기물 제거가 이루어져 전체 반응에 있어서 전처리 역할을 수행하고 있음을 알 수 있으며, 이 과정은 A/O, A2O공정에서의 혐기조 역할을 수행함과 동시에 유기물 분해작용을 수행함을 확인할 수 있다.Also from the data of 4 in upflow filtration tank (10), firstly to remove the solids and organic removal is made can be seen that performing the pre-processing part in the overall reaction, in the process of A / O, A 2 O process It can be seen that while performing the role of anaerobic tank, the decomposition of organic matter.

또한, 폭기조(20)의 고형물 증가는 절대적으로 유입수의 고형물과 고온 호기반응조에서의 반송에 의존한다는 것을 알 수 있는데, 데이터 값을 살펴보면 슬러지 가용화율은 고온 호기반응조 유입슬러지량 40kg/d이고 고온 호기반응조 유출슬러지량 24kg/d로서 약40%이고, 슬러지 순환율은 고온 호기반응조 유입 슬러지농도 20000mg/l이고, 잉여 슬러지농도는 6000mg/l로서 약 3.3이다. In addition, it can be seen that the solids increase in the aeration tank 20 is absolutely dependent on the inflow of solids and the return from the high temperature aerobic reaction tank. The data values show that the sludge solubilization rate is 40 kg / d in the high temperature aerobic reactor. The reactor outflow sludge amount is 24 kg / d, about 40%, and the sludge circulation rate is 20000 mg / l for the high temperature aerobic reactor, and the excess sludge concentration is about 3.3 mg / l.

슬러지 감량화율은 슬러지 가용화율과 슬러지 순환율의 곱에 비례하고, 실제 운전에 있어서는 인위적인 조작이 용이한 슬러지 순환율이 가장 중요한 인자가 되어서, 고온 호기반응조에서는 슬러지 순환율이 2-3이고, 호기조 MLSS가 2000-5000mg/l일 때, 슬러지 감량화율이 46-92%로 최적을 나타내었다. The sludge reduction rate is proportional to the product of the sludge solubilization rate and the sludge circulation rate, and in the actual operation, the sludge circulation rate, which is easy to operate artificially, is the most important factor.In the high temperature aerobic reactor, the sludge circulation rate is 2-3, and the aerobic tank When the MLSS was 2000-5000 mg / l, the sludge reduction ratio was optimal with 46-92%.

슬러지 감량화율의 관계는 The relationship between sludge reduction rate

「슬러지 감량화율 = k * 슬러지 가용화율 * 슬러지 순환율Sludge Reduction Rate = k * Sludge Solubilization Rate * Sludge Circulation Rate

k = 1 - 호기조 내 세포생산계수 * 탈 산소계수 」식으로 표시할 수 있는바,k = 1-cell production coefficient in aerobic tank * deoxygenation coefficient can be expressed as

세포생산계수 = 미생물량/BOD량 식을 적용하는 경우,Cell Production Factor = Microbial Amount / BOD Amount

슬러지 감량화율 = 1 - 334.2kg/d / 98.85kg/d * 0.06 = 0.8Sludge Reduction Rate = 1-334.2kg / d / 98.85kg / d * 0.06 = 0.8

슬러지 가용화율(%) = [1 - (고온 호기반응조 유출슬러지량/고온 호기반응조 유입슬러지량)] * 100Sludge solubilization rate (%) = [1-(High temperature aeration tank discharge sludge / high temperature aerobic reactor sludge volume)] * 100

슬러지 순환율 = 고온 호기반응조 유입슬러지농도/ 잉여슬러지농도Sludge circulation rate = High temperature aerobic inlet sludge concentration / excess sludge concentration

따라서 실제 슬러지 감량화율(%)은 [1-본원의 처리공정 발생슬러지량/일반공정 발생슬러지량] * 100 의 등식으로 해석된다.Therefore, the actual sludge reduction rate (%) is interpreted as an equation of [1-treated process sludge amount / general process generated sludge amount] * 100.

상기 기재 내용은 정확한 이론적 근거에 의해 입증된 자료가 아니며, 슬러지 감량화를 위한 실제 운전에 있어서, 슬러지 순환율과 슬러지 가용화율이 중요한 인자라는 것을 설명하기 위하여 k 값을 사용한 식으로 표기한 것이며, k 값은 단지 실험상수 일 뿐이며, 슬러지 감량화율은 본래 발생되는 슬러지량에서 줄어든 발생 슬러지량의 비율을 나타낸 것으로, 실제 현장운전에 있어서는 잉여슬러지 인발량과 고온 호기조로 유입되는 슬러지량 만을 제어할 수 있기 때문에 운전조건을 찾고자 개략적인 관계를 설정 적용하여 사용하고자 한 것이다.The above descriptions are not data supported by accurate theoretical basis, and are expressed in terms of k value to explain that sludge circulation rate and sludge solubilization rate are important factors in actual operation for sludge reduction. The values are only experimental constants, and the sludge reduction rate represents the ratio of sludge generated from the amount of sludge generated. In actual field operation, it is possible to control only the amount of excess sludge and sludge flowing into the high temperature aerobic tank. Therefore, to find the driving conditions, the general relationship is set and used.

또한, 도 4의 자료로부터 고온 호기반응조에서의 물질수지 흐름을 보면, BOD는 약64%, SS는 약 40%, T-N은 약 20%, T-P는 약 50% 정도의 제거율을 갖는 것으로 확인됨으로부터 적정 가용화율과 외부반송량의 조절만으로 효율적 수처리와 동시에 슬러지가 거의 발생되지 않음을 알 수 있다. In addition, from the data of FIG. 4, the mass balance flow in the high-temperature aerobic reaction tank was found to have a removal rate of about 64% for BOD, about 40% for SS, about 20% for TN, and about 50% for TP. It can be seen that the sludge is hardly generated at the same time as the efficient water treatment only by adjusting the appropriate solubilization rate and the external transport amount.

본 발명에서는 처리 대상수가 고농도로 유입되는 경우에는 고온 호기반응조에서 발생슬러지를 조절해 줄 수 있으며, 처리 대상수가 저농도로 유입되는 경우에는 상향류 여과조와 외부 반송 만으로도 슬러지 조절이 가능하다. In the present invention, when the treated water is introduced at a high concentration, it is possible to adjust the sludge generated in the high temperature aerobic reaction tank, and when the treated water is introduced at a low concentration, the sludge can be adjusted only by the upflow filtration tank and external return.

본원의 고도처리공정은 상향류 여과조가 혐기조 역할을 수행하여 효과적인 인 용출을 도모하고, 무산소조를 침전조 후단에 설치함으로서 탁월한 탈질 효과와 폭기조로 반송 시 유기물을 과잉섭취하게 함으로서 고도처리를 효율적으로 수행할 수 있는 장점을 갖는다.In the advanced treatment process of the present application, the upflow filtration tank acts as an anaerobic tank to promote effective dissolution, and an anoxic tank is installed at the rear stage of the settling tank, so that an excellent denitrification effect and excessive intake of organic matter when returning to the aeration tank can be performed efficiently. Has the advantage.

또한 본원의 고도처리공정에 응용공정으로 분리막 생물반응기(MBR, Membrane Bio Reactor)를 결합시켜 처리효율을 높이는 것을 특징으로 한다.Also as an application process in the advanced treatment process The membrane bioreactor (MBR, Membrane Bio Reactor) is characterized in that to increase the treatment efficiency.

침지형 분리막은 공지의 기술로서, 등록특허 제0418859호에 상세히 개시되어 있는바, 본원의 고도처리공정에 상기 분리막 생물반응기를 접목시켜 침전지에서 발생할 수 있는 슬러지 팽화, 핀 플록 현상 등의 발생을 획기적으로 저감시킬 수 있으며, 무엇보다 호기조의 MLSS를 6000-15000mg/l 정도의 고농도로 유지시켜 충격부하에 강하며 반응속도를 향상시키고, 반응조의 용량을 줄일 수 있는 이점을 찾을 수 있음을 확인할 수 있었다. Immersion type separation membrane is a well-known technique, which is disclosed in detail in Korean Patent No. 0418859. By incorporating the membrane bioreactor in the advanced treatment process of the present application, the occurrence of sludge swelling and pin floc phenomena, which may occur in a sedimentation basin, is remarkable. It was confirmed that the MLSS of the aerobic tank was maintained at a high concentration of about 6000-15000mg / l, and thus, it was found to be resistant to impact load, improve the reaction speed, and reduce the capacity of the reactor.

기존 MBR공정에서는 높은 MLSS에 의한 슬러지 체류시간(SRT)이 증가하게 되 면 수리학적 체류시간(HRT)이 단축되어 부지면적을 줄일 수 있는 장점이 있으나 긴 SRT는 미생물의 활동성을 저하시켜 처리수질이 악화될 우려가 있고, 질산화에는 유리하지만 짧은 SRT를 요구하는 인 제거 관점에서는 불리한 결과를 가져오고, 또한 인 제거를 위한 별도의 처리공정이 필요하고, HRT가 짧아서 탈질이 잘 되지 않는 문제점을 갖는 단점이 있었으나, 본원에서 본원 고도처리공정의 적정위치에 MBR 공정을 도입 및 접목시킴으로 인하여 전처리 과정에서 상향류 여과조에서 인 제거를 수행할 수 있다.In the existing MBR process, when the sludge residence time (SRT) is increased due to high MLSS, the hydraulic retention time (HRT) is shortened and the land area can be reduced. There is a risk of deterioration, disadvantageous from the point of phosphorus removal which is advantageous for nitrification but requires a short SRT, and also requires a separate treatment process for phosphorus removal, and a problem that the denitrification is not easy due to the short HRT. There was, but by the introduction and grafting of the MBR process in the proper position of the high-treatment process of the present application, it is possible to perform the phosphorus removal in the upstream filtration tank during the pretreatment process.

또한, 도 5와 같이 호기조 후단에 MBR조를 설치하고 그 후단으로 무산소조를 설치하여 탈질반응을 효과적으로 수행하며, 고온 호기반응조를 이용하여 슬러지 체류시간 및 MBR반응조의 미생물 농도를 조절할 수 있도록 제공될 수 있도록 적용할 수 있다.In addition, the MBR tank is installed at the rear end of the aerobic tank and anoxic tank is installed at the rear stage to effectively perform denitrification, and the sludge residence time and the microbial concentration of the MBR reaction tank can be controlled by using a high temperature aerobic tank. Can be applied.

또한, 도 6과 같이 본원의 고도처리공정의 기능저하나 예측불능의 비상사태를 대비하여 무산소조 후단에 MBR조를 설치하여 본원의 고도처리공정을 보완하는 구조를 제공하여 수처리에 만전을 기할 수도 있다. In addition, in preparation for an emergency of an advanced or unpredictable emergency of the advanced treatment process as shown in FIG. 6, an MBR tank may be installed at the rear of the anoxic tank to provide a structure that complements the advanced treatment process of the present application, thereby ensuring perfect water treatment. .

본 발명은 폐수처리에 있어 활성슬러지 공법이 안고 있는 발생슬러지 처리 문제를 해결하기 위하여, 슬러지 발생량을 줄이면서 폐수의 고도처리를 원활하게 수행하기 위하여, 슬러지 저감에는 60-70년대부터 많은 연구가 진행되어 온 ATAD공정을 고도처리에 있어서는 무산소조를 침전조 후단에 설치하여 탈질 및 유기물 분 해가 탁월한 OSA공정의 장점을 접목시켜 전단에 상향류 여과조를 설치하고 새로운 공정을 개발하여 기존 공정에서의 단점을 보완하며, 추가 설비비용을 절약하고, 전처리를 함으로서 효과를 극대화 시킨 방법에 관한 것이다. 이를 통하여 운전이 용이하고, 슬러지 저감효과를 가지면서 안정적으로 수 처리를 행할 수 있는 효과를 갖는다.The present invention, in order to solve the problem of the sludge generated by the activated sludge method in the wastewater treatment, in order to smoothly perform the advanced treatment of wastewater while reducing the amount of sludge, a lot of research has been carried out from the 60-70s In the advanced treatment of ATAD process, an oxygen-free tank is installed at the rear stage of sedimentation tank to combine the advantages of OSA process with excellent denitrification and organic decomposition. It also relates to a method that maximizes the effect by saving additional equipment costs and pretreatment. This makes it easy to operate and has the effect of reducing sludge and having a stable water treatment.

Claims (5)

여과조(10)와 호기조(20)와 침전조(30)와 무산소조(40)와 슬러지농축조(50) 및 고온 호기반응조(60)를 포함하여 제공되는 고도처리공법을 통하여 질소와 인을 제거시킴과 동시에 발생 슬러지량을 저감시키기 위한 고도처리공법에 있어서,Nitrogen and phosphorus are removed at the same time through the advanced treatment method, which includes a filtration tank 10, an aerobic tank 20, a precipitation tank 30, an anoxic tank 40, a sludge concentration tank 50, and a high temperature aerobic reaction tank 60. In the advanced treatment method for reducing the amount of sludge generated, 여과조(10)는 상향류로 제공되며, 상향류 여과조 내부에는 여과층을 갖고 여과층에 의해 부유성 고형물이 침적되고 생물막이 형성되어 하부에는 혐기성 반응으로 인 용출을 쉽도록 하고 상부에서는 미생물에 의한 유기물 분해와 질소 제거가 이루어지도록 상향류 여과가 제공되는 단계;The filtration tank 10 is provided in an upflow, has a filtration layer inside the upflow filtration tank, suspended solids are deposited by the filtration layer, and a biofilm is formed, so that it is easy to elute the phosphorus by anaerobic reaction at the bottom and the microorganism at the top. Upflow filtration is provided to effect organic decomposition and nitrogen removal; 상기 상향류 여과조(10)에 피 처리물의 유입량에 상응하는 상징액이 상층부의 유출구를 통해 호기조(20)로 이송되고 호기조로 유입된 피 처리물은 공기 공급장치로부터 산기관을 통하여 연속적으로 공급되는 산소를 이용하여 생물학적 처리가 이루어지도록 제공되는 단계;The supernatant liquid corresponding to the inflow of the object to be treated into the upflow filtration tank 10 is transferred to the aerobic tank 20 through the outlet of the upper layer, and the object to be introduced into the aerobic tank is continuously supplied from the air supply unit through the diffuser. Providing a biological treatment using; 호기조(20)를 거친 피 처리물은 침전조(30)로 유입되고 침전조(30)에서는 호기조(20)로 부터의 유입수를 중력에 의해 피 처리물과 미생물을 포함하는 침전슬러지와 상징액으로 고액 분리시켜 상징액은 무산소조(40)로 이송시키고 침전슬러지는 농축조(50)로 이송시키거나, 호기조(20)로 리싸이클시키거나, 잉여슬러지를 배출하는 단계;The treated material that passes through the aerobic tank 20 flows into the settling tank 30, and the sedimentation tank 30 separates the influent from the aerobic tank 20 into sediment sludge and supernatant containing the to-be-processed material and microorganisms by gravity. The supernatant is transferred to the anaerobic tank 40 and the settling sludge is transferred to the concentration tank 50, recycled to the aerobic tank 20, or discharged excess sludge; 침전조(30) 후단으로 무산소조(40)가 설치되어 유입된 슬러지의 질소를 제거시킴과 동시에 슬러지 발생을 지속적으로 억제시키도록 작용하면서 상등수는 방류기준에 따라 방류하거나 호기조(20)로 리싸이클시키는 단계;Anoxic tank 40 is installed at the rear end of the settling tank 30 to remove nitrogen of the introduced sludge and act to continuously suppress sludge generation, while the supernatant is discharged according to the discharge standard or recycled to the aerobic tank 20; 슬러지 농축조(50)를 거쳐 고온 호기반응조(60)로 이송된 농축슬러지는 재처리되어 호기조(20)로 리싸이클링 되는 단계;The concentrated sludge transferred to the high temperature aerobic reaction tank 60 through the sludge thickening tank 50 is reprocessed and recycled to the aerobic tank 20; 를 포함하여 제공되는 것을 특징으로 하는 고도처리화 공법.Advanced processing method characterized in that it is provided, including. 제1항에 있어서,The method of claim 1, 상기 상향류 여과조(10)의 여과층에는 쇄석을 이용하거나, 미생물 부착이 용이한 여재 중에서 선택되어 제공되는 것을 특징으로 하는 고도처리화 공법.The filtration layer of the upflow filtration tank 10, using a crushed stone, or selected from among the media that is easy to attach microorganisms, characterized in that the high treatment method. 제1항에 있어서,The method of claim 1, 상기 상향류 여과조(10)와 호기조(20)와 침전조(30)와 무산소조(40)와 슬러지농축조(50) 및 고온 호기반응조(60)를 포함하여 제공되는 고도처리공법에서 임의 의 위치에 MBR조를 추가 설치하여 처리효율을 높이도록 제공되는 것을 특징으로 하는 고도처리화 공법. MBR tank at any position in the advanced treatment method, including the upflow filtration tank 10, the aerobic tank 20, the settling tank 30, an anoxic tank 40, the sludge concentration tank 50, and a high temperature aerobic reaction tank (60). Advanced processing method, characterized in that provided to increase the processing efficiency by additional installation. 제1항에 있어서,The method of claim 1, 상기 상향류 여과조(10)와 호기조(20)와 침전조(30)와 무산소조(40)와 슬러 지농축조(50) 및 고온 호기반응조(60)를 포함하여 제공되는 고도처리공법에서 무산소조 후단에 MBR조를 추가 설치하여 운전하도록 제공되는 것을 특징으로 하는 고도처리화 공법. The MBR tank at the rear end of the anoxic tank in the advanced treatment method, including the upflow filtration tank 10, the aerobic tank 20, the settling tank 30, the anoxic tank 40, the sludge concentration tank 50 and the high temperature aerobic reaction tank (60). Advanced processing method, characterized in that provided to drive the installation. 제4항에 있어서,The method of claim 4, wherein 고도처리공법의 무산소조 후단에 MBR조를 추가 설치하여 운전할 때 호기조의 MLSS를 6000-15000mg/l 범위 농도로 유지시켜 운전하는 것을 특징으로 하는 고도처리화 공법. Advanced processing method characterized in that to operate by maintaining the MLSS of the aerobic tank in the concentration range of 6000-15000mg / l when installing and operating the MBR tank at the rear end of the anoxic tank of the advanced processing method.
KR20070035289A 2007-04-10 2007-04-10 Advanced waste-water treatment system for decreasing sludge and erasing nitrogen and phosphorus KR100823691B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20070035289A KR100823691B1 (en) 2007-04-10 2007-04-10 Advanced waste-water treatment system for decreasing sludge and erasing nitrogen and phosphorus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20070035289A KR100823691B1 (en) 2007-04-10 2007-04-10 Advanced waste-water treatment system for decreasing sludge and erasing nitrogen and phosphorus

Publications (1)

Publication Number Publication Date
KR100823691B1 true KR100823691B1 (en) 2008-04-21

Family

ID=39572049

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20070035289A KR100823691B1 (en) 2007-04-10 2007-04-10 Advanced waste-water treatment system for decreasing sludge and erasing nitrogen and phosphorus

Country Status (1)

Country Link
KR (1) KR100823691B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100911443B1 (en) 2008-11-07 2009-08-11 주식회사 부강테크 System for treatment of wastewater and method for treatment of wastewater using the same
KR102561763B1 (en) 2023-02-20 2023-07-31 주식회사 인터퓨어 Manufacturing method of composition for removing sludge

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970042329A (en) * 1997-04-21 1997-07-24 이상을 Combined wastewater treatment system with high temperature aerobic digestion and anaerobic digestion
KR970069904A (en) * 1996-04-01 1997-11-07 정충혁 Method and apparatus for simultaneous removal of biological nitrogen, phosphorus from sewage and waste water
KR20000033408A (en) * 1998-11-23 2000-06-15 이규철 Method for degrading organic matters using autothemal thermophilic aerobic digestion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970069904A (en) * 1996-04-01 1997-11-07 정충혁 Method and apparatus for simultaneous removal of biological nitrogen, phosphorus from sewage and waste water
KR970042329A (en) * 1997-04-21 1997-07-24 이상을 Combined wastewater treatment system with high temperature aerobic digestion and anaerobic digestion
KR20000033408A (en) * 1998-11-23 2000-06-15 이규철 Method for degrading organic matters using autothemal thermophilic aerobic digestion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100911443B1 (en) 2008-11-07 2009-08-11 주식회사 부강테크 System for treatment of wastewater and method for treatment of wastewater using the same
KR102561763B1 (en) 2023-02-20 2023-07-31 주식회사 인터퓨어 Manufacturing method of composition for removing sludge

Similar Documents

Publication Publication Date Title
CN109592785B (en) Anaerobic membrane reactor-partial nitrosation-anaerobic ammonia oxidation combined device and method
RU2584574C1 (en) Method of using anammox-bacteria on biofilm carriers to remove ammonia from the stream of waste water
EP2603464B1 (en) Treatment of municipal wastewater with anaerobic digestion
CN108373238A (en) A kind of landfill leachate concentration liquid zero-discharge treatment system and technique
CN104944689A (en) Device for treating high ammonia-nitrogen wastewater and method thereof
CN103068748A (en) Contact-stabilization/prime-float hybrid
CN111704323A (en) High-efficient sewage treatment system of modularization integrated form
KR100422211B1 (en) Management Unit and Method of Foul and Waste Water
KR20160099976A (en) SBR Process coupled with Membrane Process
KR100459950B1 (en) Apparatus and mode of transformed sequential batch reactor with separating nitrification basin for purifying sewage and wastewater
CN114269695B (en) System and method for removing ammonium from a wastewater stream
CN213171940U (en) High-efficient sewage treatment system of modularization integrated form
KR100823691B1 (en) Advanced waste-water treatment system for decreasing sludge and erasing nitrogen and phosphorus
KR100817041B1 (en) Wastewater processing apparatus employing a deposition device and a biological filtering device
KR100839035B1 (en) Biological wastewater treatment apparatus using diffuser-mediated sludge flotation and treatment method using the same
KR100632487B1 (en) Gradually operated sequencing batch reactor and method thereof
KR20110023436A (en) Advanced sewage treatment system by mbr using snd
JP7488130B2 (en) Sewage treatment device and sewage treatment method
KR100709456B1 (en) Waste water disposal plant and waste water disposal method
KR100993482B1 (en) Apparatus for biological treatment of wastewater including sequencing batch reactor linked with air-flotation process, and method for wastewater treatment using the same
KR20020083978A (en) CPA(Continuity inflow Periodic Activated-sludge System)PROCESS
KR100457698B1 (en) Livestock wastewater treatment method and equipment using STP waste excess sludge
CN207891216U (en) A kind of processing system of high-concentration hardly-degradable pharmacy waste water
KR20120008209A (en) Advanced sewage treatment system by party wall in mbr using snd
KR20060116608A (en) Advanced nutrient removal system; anr

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120413

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee