KR20060116608A - Advanced nutrient removal system; anr - Google Patents

Advanced nutrient removal system; anr Download PDF

Info

Publication number
KR20060116608A
KR20060116608A KR1020050039090A KR20050039090A KR20060116608A KR 20060116608 A KR20060116608 A KR 20060116608A KR 1020050039090 A KR1020050039090 A KR 1020050039090A KR 20050039090 A KR20050039090 A KR 20050039090A KR 20060116608 A KR20060116608 A KR 20060116608A
Authority
KR
South Korea
Prior art keywords
tank
aerobic
water
treated water
activated sludge
Prior art date
Application number
KR1020050039090A
Other languages
Korean (ko)
Inventor
이성유
황용우
우희준
Original Assignee
주식회사 화인프로텍
우희준
황용우
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 화인프로텍, 우희준, 황용우 filed Critical 주식회사 화인프로텍
Priority to KR1020050039090A priority Critical patent/KR20060116608A/en
Publication of KR20060116608A publication Critical patent/KR20060116608A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1215Combinations of activated sludge treatment with precipitation, flocculation, coagulation and separation of phosphates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage

Abstract

A method and an apparatus for advanced treatment of wastewater by improving the activated sludge process are provided to remove residual suspended solids and dissolved organic matters by installing an aerobic biofilm filter tank, improve nitrification efficiency of the aerobic tank by supplying a portion of nitrifying microorganisms cultured in the aerobic biofilm filter tank using backwashing water, and control concentration of total nitrogen of final effluent by returning treated water of the aerobic biofilm filter tank to an anoxic tank. A method for advanced treatment of wastewater by improving the activated sludge process comprises the processes of: (i) installing an internal partition wall in an aerobic tank to divide the aerobic tank into an anoxic tank(101) and an aerobic tank(102); (ii) passing treated water of the aerobic tank through a secondary settling basin(103) and an aerobic biofilm filter tank(104) in which hydrophilic filter media are filled; (iii) discharging treated water of the aerobic biofilm filter tank through a treated water tank(105); (iv) injecting an inorganic coagulant into the front of the secondary settling basin to remove phosphorous from wastewater; and (v) supplying a portion of backwashing water(109) containing high concentration nitrifying microorganisms of the aerobic biofilm filter tank, and transferring the rest of the backwashing water to the front of a primary settling basin(111) in order to improve nitrification efficiency of the aerobic tank.

Description

활성슬러지법을 개선한 고도처리 방법 및 장치 {Advanced Nutrient Removal System; ANR}Advanced treatment method and apparatus for improving activated sludge method [Advanced Nutrient Removal System; ANR}

도1은 본 발명에서 사용된 반응조의 수처리 계통도이며,1 is a water treatment system diagram of a reactor used in the present invention,

도2는 본 발명의 비교예로 사용된 활성슬러지법의 수처리 계통도이며,2 is a water treatment system diagram of an activated sludge method used as a comparative example of the present invention.

도3은 본 발명의 비교예로 사용된 순환식 질산화탈질법의 수처리 계통도이다.3 is a water treatment system diagram of a cyclic nitric oxide denitrification method used as a comparative example of the present invention.

《도면의 주요한 부분에 대한 부호의 설명》`` Explanation of symbols for major parts of drawings ''

100, 20, 30 : 하수유입(일차침전지 월류수) 101, 31: 무산소조,100, 20, 30: sewage inflow (primary sediment overflow) 101, 31: anaerobic tank,

102, 21, 32 : 호기조, 103, 22, 33 : 이차침전지 104 : 호기성 생물막여과조,102, 21, 32: aerobic tank, 103, 22, 33: secondary secondary battery 104: aerobic biofilm filtration tank,

105 : 처리수조, 106, 23, 34 : 방류, 107, 24, 35 : 반송슬러지,105: treated water tank, 106, 23, 34: discharge, 107, 24, 35: conveying sludge,

108, 36 : 내부반송, 109 : 역세수, 110 : 호기조 유입 역세수,108, 36: internal return, 109: backwash, 110: backwash inflow,

111 : 일차침전지 전단계, 112 : 반송II, 113 : 역세수 유입111: preliminary primary battery, 112: return II, 113: backwash water inflow

본 발명은 활성슬러지법을 개선한 고도처리 방법 및 장치에 관한 것이다. 도2와 연계하여 설명하면 활성슬러지법 수처리 계통도로서 하수가 유입되어 일차침전 지에서 부유물질 등이 일부 제거된 후 호기조(21)에서 유기물 등이 제거되며, 이차침전지(22)에서 고액분리후 방류(23)되며, 침전된 슬러지는 반송에 의해 호기조(21)로 유입된다. 활성슬러지법의 경우 유기물 제거가 주목적으로 질소 및 인 등 영양염류 제거에는 한계성이 있어 이를 개선한 것으로 순환식 질산화탈질법이 도3과 같이 적용되고 있다. 도3의 공정을 설명하면, 하수가 유입(30)되어 무산소조(31)에서 탈질이 일어나며, 호기조(32)에서 암모니아성 질소 산화와 동시에 유기물 성분이 일부 제거되고, 암모니아성 질소가 질산성 질소로 산화되며, 이차침전지(33)에서 고액분리후 방류(34)된다. 이때 반송슬러지(35)는 무산소조(31)로 유입되고, 탈질을 위해 호기조의 질산화액의 내부반송(36)을 실시하며, 인 성분은 호기조(32)에서 세포합성되어 생물학적으로 일부가 제거된다. 그러나, 고도처리로 개조시 종래의 순환식 질산화탈질법만을 적용할 경우 생물반응조를 증대시키지 않으면 질산화 및 탈질의 고도처리에 필요한 호기조(32)의 체류시간이 부족한 경우가 많아 유기물의 제거율이 낮고, 질산화 미생물의 농도가 낮아 하수내의 암모니아성 질소를 질산성 질소로 산화하는데 효율이 낮고 슬러지침강성이 불량하여 최종처리수가 악화되는 등 적용에 한계가 있다. 또한, 종래의 기술로 기존하수처리장을 개조하고 후단에 사여과지 등을 설치하여도 여전히 상기의 문제가 남게 된다. 즉, 미산화된 암모니아성 질소와 높은 농도의 유기물을 포함한 처리수를 그대로 방류할 경우 방류수역의 산소를 고갈시켜 물고기 폐사 등의 문제를 야기시킬 수 있다.The present invention relates to an advanced treatment method and apparatus for improved activated sludge method. Referring to FIG. 2, as the activated sludge water treatment system flows, sewage flows in and some of the suspended solids are removed from the primary settler, and organic matter is removed from the aerobic tank 21, and discharged after separation of the solid solution from the secondary settler 22. 23, the precipitated sludge flows into the aeration tank 21 by conveyance. In the case of activated sludge method, the removal of nutrients such as nitrogen and phosphorus is mainly limited because the removal of organic matter is improved. The cyclic nitrification and denitrification method is applied as shown in FIG. 3. Referring to the process of Figure 3, the sewage flows in 30, denitrification occurs in the anoxic tank 31, the organic components are partially removed at the same time as the ammonia nitrogen oxidation in the aerobic tank 32, ammonia nitrogen is nitrate nitrogen It is oxidized and discharged after solid-liquid separation from the secondary needle battery 33. At this time, the conveying sludge 35 is introduced into the oxygen-free tank 31, and performs the internal transport 36 of the nitrifying liquid of the aerobic tank for denitrification, and the phosphorus component is cell-synthesized in the aerobic tank 32 to remove some biologically. However, if the conventional cyclic nitrification and denitrification method is applied only when the conversion to the advanced treatment does not increase the bioreactor, the residence time of the aerobic tank 32 necessary for the advanced treatment of nitrification and denitrification is often insufficient, and thus the removal rate of organic matter is low. Due to the low concentration of nitrifying microorganisms, there are limitations in application such as low efficiency in oxidizing ammonia nitrogen in sewage to nitrate nitrogen and poor sludge sedimentation, resulting in deterioration of final treated water. In addition, the above problems still remain even if the existing sewage treatment plant is retrofitted with a conventional technique and a filter paper is installed at the rear stage. In other words, if the treated water containing unoxidized ammonia nitrogen and high concentrations of organic matter is discharged as it is, it may cause problems such as fish death by depleting oxygen in the discharge water.

따라서, 본 발명은 종래의 활성슬러지법의 생물반응조를 증대시키지 않고 순 환식 질산화탈질법으로 개조하며, 상기의 단점을 보완하고자 한다. 즉, 활성슬러지법의 호기조(21)에 내부격벽을 설치하여 무산소조(101)와 호기조(102)로 분할하고, 순환식 질산화탈질법에서 미산화된 암모니아성 질소의 산화와 이차침전지(33)에서 월류되는 플럭(FLOC)이 다량함유된 처리수의 방류를 방지하기 위해 이차침전지(103) 후단에 호기성 생물막여과조(104)를 설치하여 종래 기술의 문제점을 해결하였다. 즉, 호기성 생물막여과조(104)를 설치하여 잔존하는 부유물질(SS) 및 용존 유기물을 제거하고, 호기조(102)의 질산화 효율 제고를 위해 호기성 생물막여과조(104)에서 배양된 질산화 미생물의 일부를 역세척수를 이용하여 호기조(102)로 공급(110)하는 방안을 고안하였다. 또한, 호기성 생물막여과조(104) 처리수를 무산소조(101)로 반송II(112)할 수 있는 기능을 추가하여 반송량을 조절함으로써 필요시 최종방류수의 총질소(T-N) 농도를 제어할 수 있도록 고안하였다.Therefore, the present invention is to be converted to the cyclic nitrification denitrification without increasing the bioreactor of the conventional activated sludge method, to compensate for the above disadvantages. That is, the inner bulkhead is installed in the aerobic tank 21 of the activated sludge method and divided into the anoxic tank 101 and the aerobic tank 102, and oxidation of unoxidized ammonia nitrogen and secondary secondary battery 33 in the cyclic nitric oxide denitrification method. In order to prevent the discharge of treated water containing a large amount of overflowed floc (FLOC), the aerobic biofilm filtration tank 104 is installed at the rear end of the secondary sedimentation battery 103 to solve the problems of the prior art. That is, the aerobic biofilm filtration tank 104 is installed to remove residual suspended matter (SS) and dissolved organic matter, and to reverse the part of the nitrification microorganisms cultured in the aerobic biofilm filtration tank 104 to improve the nitrification efficiency of the aerobic tank 102. A method of supplying 110 to the aerobic tank 102 using the wash water was devised. In addition, it is designed to control the total nitrogen (TN) concentration of the final discharged water if necessary by adjusting the amount of return by adding a function to return the treated aerobic biofilm filtration tank 104 to the anaerobic tank 101 (112). It was.

상기 기술한 목적을 달성하기 위해 도1과 연계하여 설명하면, 활성슬러지법의 호기조(21)의 경우 수리학적체류시간(HRT)이 통상 6시간으로 이를 내부격벽을 설치하여 2시간의 수리학적체류시간(HRT)을 갖는 무산소조(101)와 나머지 약 4시간의 수리학적체류시간(HRT)을 갖는 호기조(102)로 나누고, 기존 이차침전지(103) 후단에 호기성 생물막여과조(104)를 설치한다. 본 발명에서 호기성 생물막여과조(104)를 설치하는 이유는 두가지로 설명할 수 있다. 첫째, 전단에 설치한 순환식 질산화탈질공정에서 처리효율이 악화되는 경우 유출된 잔존 유기물과 부유물질(SS)을 제거하면서 킬달성 질소성분중 암모니아성 질소를 질산성 질소로 산화시키는 것 이다. 둘째, 본 반응조(104)의 질산화미생물을 역세척수를 이용하여 호기조(102)로 공급(110)하며 동절기등 질소제거 조건이 악화되는 경우 질소 제거효율을 획기적으로 향상시킨 점이 본 발명의 핵심기술이다. 또한 질산화 미생물을 호기조(102)로 적정량 공급하기 위해 질산화 미생물의 저장조 및 정량 주입장치를 둘 수 있으며, 방류목표수질에 따라 질소 제거효율을 제어할 수 있도록 반송II 라인(112)을 설치하였다.Referring to FIG. 1 to achieve the above-described purpose, in the case of the aerobic tank 21 of the activated sludge method, the hydraulic stay time (HRT) is usually 6 hours. The anaerobic tank 101 having the time HRT and the aerobic tank 102 having the hydraulic stay time HRT of about 4 hours are divided, and an aerobic biofilm filtration tank 104 is installed at the rear end of the existing secondary sedimentation cell 103. The reason for installing the aerobic biofilm filtration tank 104 in the present invention can be described in two ways. First, when treatment efficiency deteriorates in the circulating nitric oxide denitrification process installed at the front end, it is to oxidize ammonia nitrogen in the Kjeldahl nitrogen component to nitrate nitrogen while removing the remaining organic matter and suspended solids (SS). Second, the supply of the nitrifying microorganisms of the reaction tank (104) to the aerobic tank (102) using a backwash water (110), and the nitrogen removal efficiency is dramatically improved when nitrogen removal conditions, such as winter, is a key technology of the present invention. . In addition, a storage tank and a quantitative injection device for nitrifying microorganisms may be provided to supply an appropriate amount of nitrifying microorganisms to the aerobic tank 102, and a return II line 112 is installed to control nitrogen removal efficiency according to the discharge target water quality.

이하 비교예 및 실시예를 통해 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Comparative Examples and Examples.

《비교예 1》`` Comparative Example 1 ''

도2와 같은 활성슬러지법 공정을 구성하기 위해 PVC로 호기조(21)(용량: 0.6㎥), 공기를 공급하기 위한 산기장치, 이차침전지(22)(용량: 0.48㎥)로 구성되는 모형을 제작하였다. 이차침전지(22)의 침전슬러지는 정량펌프를 이용하여 1Q(유량, 단위 : ㎥/day로 이하 Q로 표시함)로 반송을 실시하고, 3일에 1회씩 폐슬러지를 인발하여 호기조내 미생물 농도를 조절하였다. 처리대상수는 분류식 하수처리장의 일차침전지의 월류수 수질을 기준으로 경기도 소재지 ○○하수처리장(활성슬러지법)의 하수를 사용하였다. 유입수(20)는 정량펌프로 호기조(21)에 유입하였으며, 호기조(21)에 미생물을 식종, 7일간 미생물을 활성화 시키고 이후 70일간 실험을 실시하였다. 실험결과의 재현성을 위해 17℃의 온도를 유지하였으며, 유입수질 및 운전에 대한 결과는 <표 1>에 요약하였다. (단위 : mg/ℓ, data는 평균치임) 본 발명에서 비교한 모든 실시예에서 수온을 17℃로 선정한 이유는 추,동절기 저수온시 질산화 반응이 저하될 경우에 본 발명의 효과를 비교 부각하기 위함이다.In order to construct an activated sludge method as shown in FIG. 2, a model is constructed of an aerobic tank 21 (capacity: 0.6 m 3), an air diffuser for supplying air, and a secondary sedimentation battery 22 (capacity: 0.48 m 3). It was. The sedimentation sludge of the secondary sedimentation cell 22 is returned to 1Q (flow rate, unit: m 3 / day, denoted as Q below) by using a metering pump, and the waste sludge is drawn out once every three days, and the concentration of microorganisms in the aerobic tank is Was adjusted. For the treatment water, sewage from the ○ ○ sewage treatment plant (Active Sludge) located in Gyeonggi-do was used based on the monthly water quality of the primary sedimentation wastewater at the sewage treatment plant. The inflow water 20 was introduced into the aerobic tank 21 as a metering pump, and the microorganisms were planted in the aerobic tank 21, the microorganisms were activated for 7 days, and then the experiment was performed for 70 days. A temperature of 17 ° C. was maintained for reproducibility of the test results, and the results of influent quality and operation are summarized in Table 1. (Unit: mg / ℓ, data is an average value) The reason why the water temperature was selected as 17 ℃ in all the examples compared in the present invention in order to highlight the effect of the present invention when the nitrification decreases during the autumn and winter low water temperature. to be.

<표 1> 비교예 1의 결과 요약<Table 1> Result summary of Comparative Example 1

Figure 112005505782040-PAT00001
Figure 112005505782040-PAT00001

《비교예 2》`` Comparative Example 2 ''

도3과 같이 순환식 질산화탈질법을 구성하기 위해 비교예1과 동일한 규모의 모형 설비를 제작, 같은 방법으로 실험을 실시하였다. 이때, 호기조(21)(용량: 0.6㎥)를 무산소조(31)(용량: 0.2㎥), 호기조(32)(용량: 0.4㎥)로 내부격벽을 설치하여 구분하였다. 또한, 호기조(32)의 혼합액을 2Q(여기서 Q는 일하수량) 조건(0.5∼4Q)으로 무산소조(31)로 내부반송(36)을 실시하고, 슬러지 반송율 1Q로 실험하였다. 운전기간은 《비교예 1》과 동일한 조건으로 모형설비를 운전하였다. 세부적인 운전 조건 및 실험결과를 <표 2>에 요약하였다.(단위 : mg/ℓ, data는 평균치임)In order to configure the circulatory nitrification and denitrification method as shown in FIG. At this time, the aerobic tank 21 (capacity: 0.6 m 3) was divided into an anaerobic tank 31 (capacity: 0.2 m 3) and an aerobic tank 32 (capacity: 0.4 m 3) by installing an internal partition. In addition, the mixed liquid of the aerobic tank 32 was subjected to the internal conveyance 36 to the anoxic tank 31 under 2Q (where Q is the amount of work sewage) conditions (0.5 to 4Q), and was tested at a sludge conveyance rate of 1Q. The operating period was operated under the same conditions as in <Comparative Example 1>. Detailed operating conditions and experimental results are summarized in <Table 2>. (Unit: mg / l, data is average)

<표 2> 비교예 2의 결과 요약<Table 2> Summary of results of Comparative Example 2

Figure 112005505782040-PAT00002
Figure 112005505782040-PAT00002

실험결과 BOD, COD, SS는 비교예 1(활성슬러지법)과 거의 동등하며, 질소제거에 있어서 처리효율이 향상되었다.As a result of the experiment, BOD, COD, and SS were almost equivalent to Comparative Example 1 (activated sludge method), and the treatment efficiency was improved in nitrogen removal.

《실시예 1》<< Example 1 >>

본 발명에 따른 수처리시스템과 처리 성능을 비교하기 위해 비교예2와 동일한 규모의 모형설비를 사용하였다. 또한, 이차침전지(103) 후단에 호기성 생물막여과조(104)(용량: 0.1㎥), 처리수조(105)를 각각 설치하였다. 또한, 호기성 생물막여과조(104)의 하부에는 산기장치가 설치되고 그 위에 자갈과 친수성 여재를 충전하였다. 운전 초기 호기성 생물막여과조(104) 의 미생물은 《비교예 1》의 호기조(21)에 식종한 동일 미생물을 주입하여 활성화시켰다. 호기성 생물막여과조(104)의 경우 미생물의 과도한 성장이나 부유물질이 축적되면 여과저항이 발생되며, 이때는 역세척으로 여과 저항을 해소시켜 정상적인 운전이 되도록 한다. 역세척은 처리수조(105)의 처리수를 정량펌프로 주입하고, 공기를 이용한 공세를 병행하여 2일에 1회주기로 수행하였다. 인 성분 제거와 관련하여 생물학적인 인 제거외에 이차침전지(103) 전단에 무기응집제를 20mg/ℓ의 농도로 주입하였다. 본 발명의 핵심기술인 호기조(102)의 질산화 효율 제고를 위해 역세척시 배출되는 호기성 생물막여과조(104)의 질산화 미생물 일부를 호기조(102)로 공급하였다. 실험온도(17℃) 및 운전조건은 《비교예 2》와 동일하고 결과는 <표 3>에 요약하였다.(단위 : mg/ℓ, data는 평균치임) 그 결과 각 수질의 처리효율이 안정되어 향상되었고, 특히, 질소의 제거효율이 저수온임에도 불구하고 비교예에 비해 월등히 향상되었다.In order to compare the treatment performance with the water treatment system according to the present invention, a model facility having the same scale as that of Comparative Example 2 was used. In addition, an aerobic biofilm filtration tank 104 (capacity: 0.1 m 3) and a treatment water tank 105 were provided at the rear end of the secondary needle battery 103. In addition, an aerobic device is installed in the lower portion of the aerobic biofilm filtration tank 104 and filled with gravel and a hydrophilic filter medium. The microorganisms of the initial aerobic biofilm filtration tank 104 in operation were injected and activated by injecting the same microorganisms planted in the aerobic tank 21 of Comparative Example 1. In the case of the aerobic biofilm filtration tank 104, filtration resistance is generated when excessive growth of microorganisms or suspended matter is accumulated, and in this case, the filtration resistance is released by backwashing to normal operation. The backwashing was performed in a cycle of once every two days in combination with the treatment water of the treatment tank 105 in a metering pump, and offensive using air. In addition to the removal of biological phosphorus, inorganic coagulant was injected at the concentration of 20 mg / L in front of the secondary precipitator 103. In order to improve the nitrification efficiency of the aerobic tank 102, which is the core technology of the present invention, some nitrified microorganisms of the aerobic biofilm filtration tank 104 discharged during backwashing were supplied to the aerobic tank 102. Experimental temperature (17 ℃) and operating conditions are the same as in <Comparative Example 2> and the results are summarized in <Table 3>. (Unit: mg / l, data is average value) As a result, the treatment efficiency of each water quality is stable. In particular, despite the low water temperature of nitrogen removal efficiency is significantly improved compared to the comparative example.

<표 3> 실시예 1의 결과 요약<Table 3> Summary of results of Example 1

Figure 112005505782040-PAT00008
Figure 112005505782040-PAT00008

《실시예 2》<< Example 2 >>

실시예 1과 동일한 방법으로 실험을 실시하였으며, 호기성 생물막여과조(104)의 처리수에서 무산소조(101)로 정량펌프를 이용하여 반송II(112) 량을 최대 1.0Q 주입하였다. 단, 실험 기간은 각 반송량별 10일 동안 실시하였다. 본 실시예는 본 발명의 최종 방류수내의 질소관련 성분외 기타 수질이 양호하고, 질소성분의 제거 효율이 저하된 비상시나 질소에 대한 방류수질이 극히 강화되었을 경우 처리공정의 개조없이 처리를 안정적으로 수행하기 위하여 사용할 공정에 대한 실험으로 그 결과는 <표 4>에 요약하였다.(단위 : mg/ℓ, data는 평균치임)The experiment was carried out in the same manner as in Example 1, the amount of conveying II (112) was injected into the oxygen-free tank 101 from the treated water of the aerobic biofilm filtration tank 104 using a metering pump up to 1.0Q. However, the experiment period was carried out for 10 days for each conveyed amount. In this embodiment, the water quality other than the nitrogen-related components in the final effluent of the present invention is good, and the treatment is stably performed without modification of the treatment process in the event of an emergency or when the discharge quality of nitrogen is extremely enhanced. The results are summarized in <Table 4>. (Unit: mg / l, data is average)

<표 4> 실시예 2의 결과 요약<Table 4> Summary of results of Example 2

Figure 112005505782040-PAT00004
Figure 112005505782040-PAT00004

※ 주) 유입수 수질 : 반송 II의 유량 증가에 따른 수질의 결과임.※ Note) Influent Water Quality: It is the result of the water quality due to the increase of the flow rate of the conveying II

본 발명은 활성슬러지법의 호기조(21)를 용량증가 없이 내부격벽만 설치하여 무산소조(101), 호기조(102)로 개조하고 후단에 호기성 생물막여과조(104)를 설치하여 생물막여과조의 질산화미생물을 호기조(102)로 공급(110)하는 고도처리공정으로서 종래의 순환식 질산화탈질법의 단점을 대폭 개선하였다. 일반적으로 알려진 수많은 A2O 계열의 고도처리공정(BNR)보다 처리수질이 우수하고, 기존 처리장의 시설을 최대한 활용할 수 있어 개조비용이 절감된다. 따라서, 본 발명 공정은 하수처리장의 개조 및 신설시 적용성이 뛰어나다. 결국 본 발명으로 처리된 처리수는 공업용수, 조경용수, 화장실 용수 등 중수도용으로 이용이 가능하며, 아울러 도시의 개발로 인해 건천화된 하천에 물고기와 수생식물이 서식할 수 있는 깨끗한 처리수 를 공급함으로써 수자원의 가치 상승과 친환경적인 생태공간을 조성하는 데에 이바지 할 것이다.According to the present invention, the aerobic tank 21 of the activated sludge method is installed without an increase in capacity, and only the inner bulkhead is converted into an anaerobic tank 101 and an aerobic tank 102, and an aerobic biofilm filtration tank 104 is installed at the rear end to install the aerobic tank of the biofilm filtration tank. As a high treatment process to supply 110 to 102, the disadvantages of the conventional circulating nitric oxide denitrification method have been greatly improved. The water quality is better than that of many A 2 O series advanced treatment processes (BNRs), and the cost of retrofits can be reduced by making full use of existing plant facilities. Therefore, the process of the present invention is excellent in applicability in the retrofit and construction of sewage treatment plants. Eventually, the treated water treated with the present invention can be used for heavy water such as industrial water, landscaping water and toilet water, and also provides clean treated water that can inhabit fish and aquatic plants in dry streams due to urban development. By doing so, it will contribute to raising the value of water resources and creating eco-friendly ecological space.

Claims (2)

활성슬러지법의 고도처리에 있어서,In the advanced processing of the activated sludge method, (i) 호기조(21)를 무산소조(101)와 호기조(102)로 내부격벽을 설치하여 분할하는 공정과,(i) dividing the aerobic tank 21 into an anaerobic tank 101 and an aerobic tank 102 by installing an inner partition; (ii) 상기 호기조(102)로부터 유입된 처리수가 이차침전지(103)와 친수성 여재가 충전된 호기성 생물막여과조(104)를 통과하는 공정과,(ii) a process in which the treated water introduced from the aerobic tank 102 passes through the aerobic biofilm filtration tank 104 filled with the secondary needle battery 103 and a hydrophilic filter medium; (iii) 상기 친수성 여재가 충전된 호기성 생물막여과조(104)로부터 유입된 처리수가 처리수조(105)를 거쳐 방류(106)되는 공정과,(iii) a process in which the treated water introduced from the aerobic biofilm filtration tank 104 filled with the hydrophilic media is discharged 106 through the treatment water tank 105; (iv) 인성분 제거를 위해 이차침전지(103) 전단에 무기응집제가 투입되는 공정과,(iv) a process in which an inorganic coagulant is added to the front end of the secondary sedimentation battery 103 to remove the phosphorus component, (v) 호기조(102)의 질산화 효율을 제고하기 위해 친수성 여재가 충전된 호기성 생물막여과조(104)의 고농도 질산화미생물을 포함한 역세척수(109) 일부를 호기조(102)로 공급(110)시키고, 나머지를 일차침전지 전단계(111)로 이송하는 공정,(v) a portion of the backwash water 109 including the high concentration of nitrification microorganisms of the aerobic biofilm filtration tank 104 filled with a hydrophilic filter to increase the nitrification efficiency of the aerobic tank 102 is supplied to the aerobic tank 102 (110), and the rest To transfer the primary precipitator to the previous step (111), 으로 구성되는 것을 특징으로 하는 활성슬러지법을 개선한 고도처리 장치.Advanced processing apparatus improved activated sludge method, characterized in that consisting of. 제 1항에 있어서,The method of claim 1, 친수성 여재가 충전된 호기성 생물막여과조(104)의 처리수를 무산소조(101)로 반송(반송II, 112)하여 추가적으로 탈질시켜 질소 제거효율을 증대시키는 수처리 방법.A water treatment method of increasing the nitrogen removal efficiency by further denitrification by returning the treated water of the aerobic biofilm filtration tank (104) filled with a hydrophilic filter to the anoxic tank (101).
KR1020050039090A 2005-05-11 2005-05-11 Advanced nutrient removal system; anr KR20060116608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050039090A KR20060116608A (en) 2005-05-11 2005-05-11 Advanced nutrient removal system; anr

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050039090A KR20060116608A (en) 2005-05-11 2005-05-11 Advanced nutrient removal system; anr

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR20-2005-0013163U Division KR200395017Y1 (en) 2005-05-11 2005-05-11 Advanced Nutrient Removal System; ANR

Publications (1)

Publication Number Publication Date
KR20060116608A true KR20060116608A (en) 2006-11-15

Family

ID=37653542

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050039090A KR20060116608A (en) 2005-05-11 2005-05-11 Advanced nutrient removal system; anr

Country Status (1)

Country Link
KR (1) KR20060116608A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108101218A (en) * 2018-02-02 2018-06-01 天津壹新环保工程有限公司 The method and apparatus of total nitrogen in a kind of removal sewage
CN110835207A (en) * 2019-12-05 2020-02-25 吉康宁 Small-sized integrated domestic sewage treatment device and sewage treatment method
CN116606035A (en) * 2023-06-30 2023-08-18 广西建工科净源生态环保产业投资有限公司 Sewage treatment system and treatment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108101218A (en) * 2018-02-02 2018-06-01 天津壹新环保工程有限公司 The method and apparatus of total nitrogen in a kind of removal sewage
CN110835207A (en) * 2019-12-05 2020-02-25 吉康宁 Small-sized integrated domestic sewage treatment device and sewage treatment method
CN116606035A (en) * 2023-06-30 2023-08-18 广西建工科净源生态环保产业投资有限公司 Sewage treatment system and treatment method
CN116606035B (en) * 2023-06-30 2023-12-29 广西建工科净源生态环保产业投资有限公司 Sewage treatment system and treatment method

Similar Documents

Publication Publication Date Title
US11319230B2 (en) Method and apparatus for treating municipal sewage by AOA process via endogenous partial denitrification coupled with anammox in anoxic zone
RU2584574C1 (en) Method of using anammox-bacteria on biofilm carriers to remove ammonia from the stream of waste water
KR101828212B1 (en) Wastewater treatment system using anaerobic ammonium oxidation in mainstream
CN101857337B (en) Treatment method for biological nitrogen removal of reinforced sewage
CN103819049B (en) A kind of sewage water treatment method and system
CN108046518B (en) Enhanced nitrogen and phosphorus removal device and method for low-carbon source sewage
CN103030250B (en) Reinforced-denitrification MBR (membrane bioreactor) sewage treatment method
CN102515446B (en) BCM (Biology Cilium Magnetic) biological sewage treatment system and BCM biological sewage treatment process
CN104163551A (en) MUCT-MBR (Modified University of Cape Town-membrane bioreactor) combination technique for sewage treatment
CN104193090A (en) Sludge drying sewage treatment system and method
CN207877509U (en) A kind of device of the intensified denitrification and dephosphorization of low-carbon-source sewage
CN113845218A (en) Multistage AO sewage treatment system and process thereof
KR100489728B1 (en) Wastewater treatment system by multiple sequencing batch reactor and its operation methods
CN110217939B (en) Improved AAO-based sewage nitrogen and phosphorus removal device and process
KR20060116608A (en) Advanced nutrient removal system; anr
KR100705541B1 (en) A configuration of process and system for bnr/cpr with a filamentous bio-solids bulking control
KR20210040632A (en) Wastewater treatment system using anaerobic ammonium oxidation system in mainstream of mwtp by nitrification reaction of various high concentration waste liquid and microorganism culture reinforcement
KR100632487B1 (en) Gradually operated sequencing batch reactor and method thereof
KR100817041B1 (en) Wastewater processing apparatus employing a deposition device and a biological filtering device
CN100460341C (en) Biological sewage-treating process
KR200395017Y1 (en) Advanced Nutrient Removal System; ANR
CN205501069U (en) Electroplate organic waste water&#39;s many first biochemical system of catalytic oxidation combination
KR20180130425A (en) Wastewater treatment system based on anaerobic ammonium oxidation in mainstream for improving efficiency of removal of nitrogen and phosphorus
CN110697991B (en) Garbage leachate biological treatment process and system
KR100742395B1 (en) An apparatus for purifying the polluted water

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination