KR100810120B1 - Catalytic combustion type flammable gas sensor using uv led and uv-catalyst - Google Patents

Catalytic combustion type flammable gas sensor using uv led and uv-catalyst Download PDF

Info

Publication number
KR100810120B1
KR100810120B1 KR1020060118351A KR20060118351A KR100810120B1 KR 100810120 B1 KR100810120 B1 KR 100810120B1 KR 1020060118351 A KR1020060118351 A KR 1020060118351A KR 20060118351 A KR20060118351 A KR 20060118351A KR 100810120 B1 KR100810120 B1 KR 100810120B1
Authority
KR
South Korea
Prior art keywords
led
gas sensor
photocatalyst
tio
alumina substrate
Prior art date
Application number
KR1020060118351A
Other languages
Korean (ko)
Inventor
한치환
한상도
김정덕
곽지혜
김일진
홍대웅
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020060118351A priority Critical patent/KR100810120B1/en
Application granted granted Critical
Publication of KR100810120B1 publication Critical patent/KR100810120B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/16Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by burning or catalytic oxidation of surrounding material to be tested, e.g. of gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/128Microapparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

A catalytic combustion type flammable gas sensor using a UV LED and UV-catalyst is provided to obtain good flammable gas detection performance at a low voltage. A catalytic combustion type flammable gas sensor using a UV LED and UV-catalyst includes an alumina substrate(3), a platinum heater, a detection device(6), a compensation device, an LED(7), and a body(1). The platinum heater is formed on the alumina substrate. The detection device is formed by printing a mixture on the platinum heater, where the mixture comprises Al2O3 powder 70 to 80wt%, nano particles TiO2, photocatalyst 3 to 7wt%, and PdCl2 8 to 12wt%. The compensation device is formed by screen printing Al2O3 powder on the platinum heater. The LED is fixed to the body to emit ultraviolet rays to the detection device.

Description

자외선 발광소자와 자외선-촉매를 적용한 접촉연소식 가연성 가스센서{CATALYTIC COMBUSTION TYPE FLAMMABLE GAS SENSOR USING UV LED AND UV-CATALYST}Catalytic Combustion Gas Sensor with Ultraviolet Light Emitting Device and Ultraviolet-catalyst {CATALYTIC COMBUSTION TYPE FLAMMABLE GAS SENSOR USING UV LED AND UV-CATALYST}

도 1은 본 발명의 실시예에 의해 제작된 UV LED와 광촉매 적용 접촉연소식 가연성 가스센서의 사시도이다. 1 is a perspective view of a UV LED and a photocatalyst applied combustion type combustible gas sensor manufactured by an embodiment of the present invention.

도 2는 본 발명의 실시예에 의해 제작된 감지소자의 단면도이다. 2 is a cross-sectional view of a sensing device manufactured according to an embodiment of the present invention.

도 3은 본 발명의 실시예에 의해 제작된 적촉연소식 가연성 가스센서의 프로판 가스 감지 특성을 나타낸 그래프이다. Figure 3 is a graph showing the propane gas detection characteristics of the combustible combustion gas sensor produced by the embodiment of the present invention.

본 발명은 메탄계 가스와 프로판계 가스의 가스 누설 경보기에 사용되는 접촉연소식 가연성 가스센서에 관한 것으로, 특히 다양한 분야에서 많이 사용되고 있는 LNG가스, LPG 가스 및 미래 청정에너지로 관심을 받고 있는 수소가스 등의 누출을 단 시간 내에 정확히 감지할 수 있도록 UV LED와 광촉매(TiO2)를 적용한 접촉연 소식 가연성 가스센서에 관한 것이다. The present invention relates to a contact combustion flammable gas sensor used in the gas leakage alarm of methane gas and propane gas, and in particular, LNG gas, LPG gas and hydrogen gas, which are of interest for future clean energy. The present invention relates to a flammable gas sensor that uses UV LEDs and a photocatalyst (TiO 2 ) to accurately detect leaks in a short time.

종래의 가연성가스를 감지하기 위한 감지기 및 경보기에는 반도체식 가스센서와 접촉연소식 가스센서가 사용되어 오고 있지만, 반도체식 가스센서는 감도출력의 변화 ΔV/ΔC(여기서 ΔV는 센서 신호 출력변화량이며, ΔC는 가스의 농도변화량이다) 가 비례함수 적이 아니라 지수함수 적이기 때문에 고농도의 정확한 측정이 어렵고, 초기 안정성이 좋지 않을 뿐 아니라, 외부 온습도에 의해서 크게 영향을 받기 때문에 장기적이며 안정적인 가스의 감지에는 문제가 있다. 또한 반도체식 가스센서의 경우, 전류를 통하지 않은 상태로 방치하게 되면 감지 특성이 나빠지고, 영점선(base line)이 변하기 때문에 안정적인 감지가 가능한 접촉연소식 센서가 많이 쓰이게 되었다. Conventional sensors and alarms for detecting flammable gas have been used semiconductor gas sensor and contact combustion gas sensor, but semiconductor gas sensor has a change in sensitivity output ΔV / ΔC (where ΔV is the change in sensor signal output, ΔC is not a proportional function but an exponential function, so it is difficult to accurately measure high concentrations, not only have poor initial stability, but also be greatly influenced by external temperature and humidity, so there is no problem in detecting long-term and stable gases. have. In the case of a semiconductor gas sensor, when it is left without a current, the detection characteristics are deteriorated, and since the base line is changed, many contact combustion sensors capable of stable detection are used.

일반적으로 사용하는 접촉연소식 가스센서는 몸체에 형성된 지지대에 감지소자와 보상소자가 고정되어 있는 형태에 캡을 씌워서 사용한다. 감지소자와 보상소자는 히터의 역할을 하는 백금 코일에 알루미나 담체가 비드형으로 감싸고 있다. The commonly used contact combustion gas sensor is used by covering the cap in the form in which the sensing element and the compensating element are fixed to the support formed on the body. In the sensing element and the compensation element, an alumina carrier is bead-shaped wrapped in a platinum coil serving as a heater.

접촉연소식 가스센서의 일반적인 원리는 금속열선에 전원을 인가하여 담체를 가열하고 가스가 가열된 담체에 접촉하면 연소반응이 일어나는데 그러한 연소반응에 의한 반응열을 전기신호로 변환해서 검지하는 방식이다. 연소반응에 의하여 담체의 온도가 상승하고 담체내의 금속열선의 온도도 상승한다. 이에 따라 열선의 저항 값이 변화하는데 그 변화 값 ΔR은 온도변화ΔT에 비례하고, ΔT는 가연성가스의 농도와 반응열에 비례한다. 접촉연소식 센서를 열선이 내장되어 있어 열선식 센서라 부르기도 한다. 보통 접촉연소식 가스센서는 촉매가 적용된 감지소자와 촉매 가 없는 보상소자를 이용하여 브릿지 회로를 형성하고 가스가 감지될 경우 촉매가 적용된 감지소자의 저항증가가 브릿지 회로의 전압변화 형태로 나타나게 되어 센서 출력은 ΔV형태로 나타나게 된다.The general principle of a contact combustion gas sensor is to heat a carrier by applying power to a metal heating wire, and a combustion reaction occurs when the gas is in contact with a heated carrier. The reaction heat is converted into an electrical signal and detected by the combustion reaction. By the combustion reaction, the temperature of the carrier increases and the temperature of the metal heating wire in the carrier also increases. Accordingly, the resistance value of the hot wire changes, and the change value ΔR is proportional to the temperature change ΔT, and ΔT is proportional to the concentration of the combustible gas and the heat of reaction. Contact-combustion sensors are also called thermal sensors because they have a built-in heating wire. In general, a catalytic combustion gas sensor forms a bridge circuit using a sensing device with a catalyst and a compensation device without a catalyst, and when a gas is detected, an increase in resistance of the sensing device with a catalyst appears as a voltage change in the bridge circuit. The output is shown in the form of ΔV.

접촉연소식 가스센서는 감지소자에서 감지되는 가스농도 변화에 따르는 감도출력의 변화 ΔV/ΔC가 넓은 농도 범위에서 직선이기 때문에 정확한 농도의 측정이 가능하고, 촉매의 종류, 농도, 혼합비율 등으로 가스의 선택이 가능하며, 초기 안정성이 좋음은 물론 재현성도 좋다. 또한 보상소자를 사용하고 브릿지 회로를 이용하기 때문에 외부 온습도에 의한 영향이 적다.The contact combustion gas sensor can measure the exact concentration because the change of sensitivity output ΔV / ΔC is a straight line over a wide range of concentration, and the type of catalyst, concentration, mixing ratio, etc. The initial stability is good and the reproducibility is good. In addition, since the compensation element is used and the bridge circuit is used, the influence of external temperature and humidity is small.

하지만 접촉연소식 가스센서는 알루미나 담체가 보상소자나 감지소자를 비드형으로 감싸고 있기 때문에 가스 접촉 면적이 작아 작동온도가 높고, 피독에 약한 단점을 가지고 있다. 특히 PdO 촉매는 Pb, P, S, Cl, 합성고무 등에 약하여 수명이 단축되기도 한다.However, the contact combustion gas sensor has a disadvantage in that the alumina carrier wraps the compensating element or the sensing element in a bead type so that the gas contact area is small and the operating temperature is high. In particular, PdO catalysts are weak in Pb, P, S, Cl, synthetic rubber, etc. and may shorten their lifespan.

상기와 같은 문제점을 해결하기 위한 본 발명의 목적은, 광촉매인 나노입자 TiO2와 광분해 촉진을 위한 UV LED 및 평판형 알루미나 기판의 사용으로 광촉매에 의해 가연성가스의 분해가 쉽게 일어나 상대적 저온 동작이 가능하고, P, S 등에 의한 피독 현상을 방지 할 수 있으며, 나노입자 TiO2가 센서의 접촉면적을 넓혀 감도를 좋게 하도록 하는데 있다. An object of the present invention for solving the above problems, the use of a photocatalyst nanoparticles TiO 2 and UV LED for promoting photolysis and a flat plate type alumina substrate is easy to decompose flammable gas by the photocatalyst, so that relatively low temperature operation is possible. In addition, the poisoning phenomenon caused by P, S, etc. can be prevented, and the nanoparticle TiO 2 increases the contact area of the sensor to improve the sensitivity.

본 발명의 다른 목적은 낮은 제조 단가 및 간단한 공정에 의해서 낮은 전압에서 우수한 가연성 가스 감지 성능을 제공할 수 있는 UV LED, TiO2, 평판형 알루미나 기판 적용 접촉연소식 가스센서의 제조방법을 제공하는 데 있다. It is another object of the present invention to provide a method of manufacturing a touch-emitting gas sensor applied to a UV LED, TiO 2 , flat plate alumina substrate which can provide excellent flammable gas detection performance at low voltage by low manufacturing cost and simple process. have.

상기한 바와 같은 목적을 달성하고 종래의 결점을 제거하기 위한 본 발명은 광촉매인 나노입자 TiO2가 코팅되어 있는 평판형 알루미나 기판과 가연성 가스의 광분해를 촉진하기 위한 UV LED로 구성된다. The present invention for achieving the object as described above and to remove the conventional defects is composed of a flat alumina substrate coated with a photocatalyst nanoparticle TiO 2 and a UV LED for promoting photolysis of the combustible gas.

이와 같은 본 발명의 UV LED와 광촉매(TiO2)를 적용한 접촉연소식 가연성 가스 센서는, 기존의 접촉연소식 가스센서 형태인 비드형 접촉연소식 가스센서와는 달리 평판형 알루미나를 사용하고 그 위에 백금 히터선을 스크린 프린팅법을 이용하여 형성한 뒤 광촉매인 나노 입자 TiO2와 기존 촉매 PdCl2, PtCl2의 혼합물을 역시 스크린 프린팅법을 이용하여 후막형태로 코팅한 접촉연소식 센서에, 광촉매 효과를 높이기 위해 UV LED를 결합한 것을 특징으로 한다. As described above, the contact combustion type flammable gas sensor using the UV LED and the photocatalyst (TiO 2 ) of the present invention, unlike the bead type contact combustion type gas sensor, which is in the form of a conventional contact combustion type gas sensor, uses a flat alumina and The photocatalytic effect is applied to a contact combustion sensor in which a platinum heater wire is formed by screen printing and a mixture of nanoparticles TiO 2 , which is a photocatalyst, and a conventional catalyst PdCl 2 , PtCl 2 , is also coated in a thick film form by screen printing. It is characterized by combining the UV LED to increase the.

바람직하게는, 본 발명에서는 Al2O3 분말 70~80wt%, 나노입자 TiO2 광촉매 3~7wt%, PdCl2 8~12wt%, PtCl2 8~12wt%를 혼합하여 혼합물을 준비하고, 알루미나 기판(3)위에 형성된 하나의 백금 히터(9)위에 상기 혼합물을 스크린 프린팅하여 감지소자(6)를 형성시키고, 별도의 백금 히터 위에 Al2O3 분말을 스크린 프린팅하여 보상소자를 형성시키고, 보상소자와 감지소자가 형성된 알루미나 기판을 접촉연소식 센서 지지대에 스팟 웰딩 머신과 백금선을 이용하여 고정시키고, LED(7)를 감지소자에 자외선을 비출 수 있도록 몸체(1)에 고정함을 포함하여 UV LED와 광촉매(TiO2)를 적용한 접촉연소식 가연성 가스센서를 제작하는 방법을 제공하고 있다. Preferably, in the present invention, a mixture of 70 to 80 wt% of Al 2 O 3 powder, 3 to 7 wt% of nanoparticle TiO 2 photocatalyst, 8 to 12 wt% of PdCl 2, and 8 to 12 wt% of PtCl 2 is prepared, and the alumina substrate (3) forming a sensing element 6 by screen printing the mixture on one platinum heater 9 formed thereon, and forming a compensation element by screen printing Al 2 O 3 powder on a separate platinum heater, and compensating element And the alumina substrate on which the sensing element is formed is fixed to the contact combustion sensor supporter using a spot welding machine and a platinum wire, and the LED 7 is fixed to the body 1 so as to emit ultraviolet rays to the sensing element. The present invention provides a method of manufacturing a flammable gas sensor with a contact combustion method using a photocatalyst (TiO 2 ).

Al2O3의 경우에 70wt% 이하에서는 지지역할을 잘 하지 못하며 80wt%를 넘어서면 촉매의 양이 모자라게 되어 70~80wt% 사이 범위가 바람직하며, TiO2의 경우 광촉매로서 7wt%이상은 넣어도 효율이 증가하지 않으며, 3wt%이하로 넣으면 양이 적어서 광촉매 역할을 잘 하지 못하여 3~7wt% 사이 범위가 바람직하며, PdCl2와 PtCl2의 경우 연소 반응을 돕는 촉매로서 8wt% 이하에서는 양이 적어서 촉매 역할을 잘 하지 못하고, 12wt% 이상 들어가게 되면 별 효능의 증가가 없어서 8~12wt% 사이의 범위가 바람직하다. In case of Al 2 O 3 , the area is less than 70wt%, and if it exceeds 80wt%, the amount of catalyst is insufficient, so the range between 70 ~ 80wt% is preferable, and in case of TiO 2 , it is effective even if 7wt% is added as a photocatalyst. If the amount is less than 3wt%, the amount is less than 3wt%, so it does not play a good role as a photocatalyst. The range between 3 ~ 7wt% is preferable, and in the case of PdCl 2 and PtCl 2 , the amount is less than 8wt%, which is a catalyst to assist the combustion reaction. It does not play a role well, and if more than 12wt% is not increased the effect of 8 to 12wt% is preferred.

이와 같이 구성된 본 발명의 작용을 첨부된 도면에 의거하여 상세히 설명하면 다음과 같다. The operation of the present invention configured as described above will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 의해 제작된 UV LED 및 광촉매(TiO2) 적용 접촉연소식 가연성 가스 센서의 사시도를 나타낸 것이다. 도 1에서 나타낸 바와 같이 몸체(1)에 형성된 센서 지지대(2)에 알루미나 기판(3)이 백금선(4)을 통하여 고정되어 있고, 알루미나 기판위에 보상소자(5)와 감지소자(6)가 형성되어 있으며, 감지소자에 UV를 비추기 위한 UV LED(7)이 몸체(1)에 리드선(8)으로 고정되어 있는 형태로 구성된다.1 is a perspective view of a UV LED and a photocatalyst (TiO 2 ) applied contact combustion combustible gas sensor manufactured by the present invention. As shown in FIG. 1, the alumina substrate 3 is fixed to the sensor support 2 formed in the body 1 through the platinum wire 4, and the compensating element 5 and the sensing element 6 are formed on the alumina substrate. It is composed of a form in which the UV LED (7) for shining the UV on the sensing element is fixed to the body (1) by the lead wire (8).

도 2는 보상소자와 감지소자가 형성되어 있는 알루미나 기판을 나타낸 것이다. 도 2에서 나타낸 바와 같이 알루미나 평판위에 두개의 백금히터(9)를 스크린 프린팅한 후, 하나의 백금 히터 위에 Al2O3 분말을 코팅한 보상소자(5)와 다른 하나의 백금히터 위에 Al2O3 분말과 광촉매인 나노 TiO2 분말, PdCl2 및 PtCl2 촉매를 섞어 코팅한 감지소자(6)로 구성된다.2 shows an alumina substrate on which a compensation element and a sensing element are formed. As shown in FIG. 2, after screen printing two platinum heaters 9 on the alumina plate, a compensation element 5 coated with Al 2 O 3 powder on one platinum heater and Al 2 O on the other platinum heater It consists of a sensing element 6 coated with a mixture of 3 powder and a photocatalyst nano TiO 2 powder, PdCl 2 and PtCl 2 catalyst.

이하, 본 발명의 제조방법에 따라 리튬 UV LED와 광촉매(TiO2)를 적용한 접촉연소식 가연성 가스 센서 제조의 구체적인 실시예에 대해서 설명한다.Hereinafter, a specific embodiment of the production of a contact combustion type combustible gas sensor using a lithium UV LED and a photocatalyst (TiO 2 ) according to the manufacturing method of the present invention will be described.

실시예 1Example 1

Al2O3 분말 75g, 나노입자 TiO2 광촉매 5g, PdCl2 10g, 및 PtCl2 10g를 잘 혼합하여 준비하였다. 도 2의 알루미나 기판 위에 형성된 하나의 백금 히터(9) 위에 상기 혼합물을 스크린 프린팅하여 감지소자(6)를 형성하고, 나머지 하나의 백금 히터 위에 Al2O3 분말을 스크린 프린팅하여 보상소자를 형성하였다. 보상소자와 감지소자가 형성된 알루미나 기판을 도 1과 같이 접촉연소식 센서 지지대에 스팟 웰딩 머신과 백금선을 이용하여 고정시켰다. 380nm의 빛을 발광하는 상용화된 LED(7)를 몸체(1)에 고정하고 감지소자에 자외선을 비출 수 있도록 도 1과 같이 잘 위치시켜 UV LED와 광촉매(TiO2)를 적용한 접촉연소식 가연성 가스 센서를 제작하였다.75 g of Al 2 O 3 powder, 5 g of nanoparticle TiO 2 photocatalyst, 10 g of PdCl 2 , and 10 g of PtCl 2 were prepared by mixing well. The sensing element 6 was formed by screen printing the mixture on one platinum heater 9 formed on the alumina substrate of FIG. 2, and a compensation element was formed by screen printing Al 2 O 3 powder on the other platinum heater. . The alumina substrate on which the compensation element and the sensing element were formed was fixed to the contact combustion sensor support as shown in FIG. 1 using a spot welding machine and a platinum wire. Contact combustion type combustible gas applying UV LED and photocatalyst (TiO 2 ) to fix commercially available LED (7) emitting 380nm light on the body (1) and well positioned as shown in Figure 1 so as to emit ultraviolet light to the sensing element The sensor was produced.

실시예 2Example 2

Al2O3 분말 77g, 나노입자 TiO2 광촉매 3g, PdCl2 10g, 및 PtCl2 10g를 잘 혼합하여 준비하였다. 도 2의 알루미나 기판 위에 형성된 하나의 백금 히터(9) 위에 상기 혼합물을 스크린 프린팅하여 감지소자(6)를 형성하고, 나머지 하나의 백금 히터 위에 Al2O3 분말을 스크린 프린팅하여 보상소자를 형성하였다. 보상소자와 감지소자가 형성된 알루미나 기판을 도 1과 같이 접촉연소식 센서 지지대에 스팟 웰딩 머신과 백금선을 이용하여 고정시켰다. 380nm의 빛을 발광하는 상용화된 LED(7)를 몸체(1)에 고정하고 감지소자에 자외선을 비출 수 있도록 도 1과 같이 잘 위치시켜 UV LED와 광촉매(TiO2)를 적용한 접촉연소식 가연성 가스 센서를 제작하였다.77 g of Al 2 O 3 powder, 3 g of nanoparticle TiO 2 photocatalyst, 10 g of PdCl 2 , and 10 g of PtCl 2 were mixed well. The sensing element 6 was formed by screen printing the mixture on one platinum heater 9 formed on the alumina substrate of FIG. 2, and a compensation element was formed by screen printing Al 2 O 3 powder on the other platinum heater. . The alumina substrate on which the compensation element and the sensing element were formed was fixed to the contact combustion sensor support as shown in FIG. 1 using a spot welding machine and a platinum wire. Contact combustion type combustible gas applying UV LED and photocatalyst (TiO 2 ) to fix commercially available LED (7) emitting 380nm light on the body (1) and well positioned as shown in Figure 1 so as to emit ultraviolet light to the sensing element The sensor was produced.

실시예 3Example 3

Al2O3 분말 73g, 나노입자 TiO2 광촉매 7g, PdCl2 10g, 및 PtCl2 10g를 잘 혼합하여 준비하였다. 도 2의 알루미나 기판 위에 형성된 하나의 백금 히터(9) 위에 상기 혼합물을 스크린 프린팅하여 감지소자(6)를 형성하고, 나머지 하나의 백금 히터 위에 Al2O3 분말을 스크린 프린팅하여 보상소자를 형성하였다. 보상소자와 감지소자가 형성된 알루미나 기판을 도 1과 같이 접촉연소식 센서 지지대에 스팟 웰딩 머신과 백금선을 이용하여 고정시켰다. 380nm의 빛을 발광하는 상용화된 LED(7)를 몸체(1)에 고정하고 감지소자에 자외선을 비출 수 있도록 도 1과 같이 잘 위치시켜 UV LED와 광촉매(TiO2)를 적용한 접촉연소식 가연성 가스 센서를 제작하였다.73 g of Al 2 O 3 powder, 7 g of nanoparticle TiO 2 photocatalyst, 10 g of PdCl 2 , and 10 g of PtCl 2 were mixed well. The sensing element 6 was formed by screen printing the mixture on one platinum heater 9 formed on the alumina substrate of FIG. 2, and a compensation element was formed by screen printing Al 2 O 3 powder on the other platinum heater. . The alumina substrate on which the compensation element and the sensing element were formed was fixed to the contact combustion sensor support as shown in FIG. 1 using a spot welding machine and a platinum wire. Contact combustion type combustible gas applying UV LED and photocatalyst (TiO 2 ) to fix commercially available LED (7) emitting 380nm light on the body (1) and well positioned as shown in Figure 1 so as to emit ultraviolet light to the sensing element The sensor was produced.

시험예Test Example

본 발명의 방법에 의해서 제작된 UV LED와 광촉매(TiO2)를 적용한 접촉연소식 가연성 가스 센서의 효율을 검증하기 위하여, 프로판가스 감지 특성을 측정하였다. 도 3에서 1% 수소 가스를 테스트 챔버 내에 주입하였을 때 UV LED와 5g의 광촉매(TiO2)를 적용한 상기 실시예 1에 따른 센서는 히터 온도가 118℃에서 63mV의 최대전압변화를 나타내었다. 반면에 UV LED와 광촉매를 적용하지 않은 센서의 경우에는 히터온도가 254℃를 넘어야 65mV의 최대전압변화를 나타내었다. 3g의 광촉매와 7g의 광촉매를 적용한 각각 실시예 2 및 3에 따른 경우에도 작동온도가 낮아짐을 확인할 수 있었다. In order to verify the efficiency of the contact combustion type flammable gas sensor applying UV LED and photocatalyst (TiO 2 ) manufactured by the method of the present invention, propane gas detection characteristics were measured. In FIG. 3, when the 1% hydrogen gas was injected into the test chamber, the sensor according to Example 1, which applied the UV LED and 5 g of the photocatalyst (TiO 2 ), showed a maximum voltage change of 63 mV at a heater temperature of 118 ° C. FIG. On the other hand, in the case of sensors without UV LED and photocatalyst, the maximum voltage change of 65mV was shown only when the heater temperature exceeded 254 ℃. In the case of Examples 2 and 3 to which 3g photocatalyst and 7g photocatalyst were applied, it was confirmed that the operating temperature was lowered.

본 발명은 상술한 특정의 바람직한 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다. The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.

상기와 같이 본 발명은 UV LED와 광촉매(TiO2)를 이용한 평판형 접촉연소식 가연성 가스 센서로 나노입자 TiO2와 380nm UV LED를 적용하여 제조할 수 있는데, 이러한 본 발명에서 제안한 방법으로는 현재 상용화된 접촉연소식 가스센서와 비교할 때, 상대적으로 낮은 온도에서 감지가 가능하며, 여러 가스에 의한 피독 현상을 줄일 수 있다는 장점을 가진다.As described above, the present invention can be prepared by applying nanoparticles TiO 2 and 380nm UV LED as a flat plate flammable gas sensor using a UV LED and a photocatalyst (TiO 2 ). Compared with the commercially available contact combustion gas sensor, it is possible to detect at a relatively low temperature and reduce the poisoning phenomenon caused by various gases.

Claims (6)

접촉연소식 가연성 가스센서의 제작 방법으로서, Al2O3 분말 70~80wt%, 나노입자 TiO2 광촉매 3~7wt%, PdCl2 8~12wt%, PtCl2 8~12wt%를 혼합하여 혼합물을 준비하고, 알루미나 기판(3) 위에 형성된 하나의 백금 히터(9) 위에 상기 혼합물을 스크린 프린팅하여 감지소자(6)를 형성시키고, 별도의 백금 히터 위에 Al2O3 분말을 스크린 프린팅하여 보상소자를 형성시키고, 보상소자와 감지소자가 형성된 알루미나 기판을 접촉연소식 센서 지지대에 스팟 웰딩 머신과 백금선을 이용하여 고정시키고, UV LED(7)를 감지소자에 자외선을 비출 수 있도록 몸체(1)에 고정함을 포함하는, UV LED와 광촉매(TiO2)를 적용한 평판형 접촉연소식 가연성 가스센서의 제작 방법.As a method of manufacturing a catalytically flammable gas sensor, a mixture is prepared by mixing 70 to 80 wt% of Al 2 O 3 powder, 3 to 7 wt% of nanoparticle TiO 2 photocatalyst, 8 to 12 wt% of PdCl 2, and 8 to 12 wt% of PtCl 2. In addition, the sensing element 6 is formed by screen printing the mixture on one platinum heater 9 formed on the alumina substrate 3, and screening Al 2 O 3 powder on a separate platinum heater to form a compensation element. The alumina substrate on which the compensation element and the sensing element are formed is fixed to the contact combustion sensor supporter using a spot welding machine and a platinum wire, and the UV LED 7 is fixed to the body 1 so that ultraviolet rays can be emitted to the sensing element. UV light and a photocatalyst (TiO 2 ) comprising a flat contact type combustible gas sensor manufacturing method comprising a. 제 1항에 있어서, 혼합물이 Al2O3 분말 75wt%, 나노입자 TiO2 광촉매 5wt%, PdCl2 10wt%, 및 PtCl2 10wt%로 이루어짐을 특징으로 하는 평판형 접촉연소식 가연성 가스센서의 제작 방법.The method of claim 1, wherein the mixture comprises 75 wt% of Al 2 O 3 powder, 5 wt% of nanoparticle TiO 2 photocatalyst, 10 wt% of PdCl 2 , and 10 wt% of PtCl 2. Way. 제 1항에 있어서, UV LED가 380nm의 UV를 발광함을 특징으로 하는 평판형 접촉연소식 가연성 가스센서의 제작 방법.The method of claim 1, wherein the UV LED emits UV of 380 nm. 제 1항의 방법에 따라서 제작되어서, 몸체(1)에 형성된 센서 지지대(2)에 알루미나 기판(3)이 백금선(4)을 통하여 고정되어 있고, 알루미나 기판위에 보상소자(5)와 감지소자(6)가 형성되어 있으며, 감지소자에 UV를 비추기 위한 UV LED(7)이 몸체(1)에 리드선(8)으로 고정되어 있는 형태로 구성된 UV LED와 광촉매(TiO2)를 이용한 평판형 접촉연소식 가연성 가스 센서.Made according to the method of claim 1, the alumina substrate 3 is fixed to the sensor support 2 formed in the body 1 via a platinum wire 4, and the compensating element 5 and the sensing element 6 on the alumina substrate. ) it is formed, and detecting UV LED (7), the plate-like contact combustion type using a UV LED and the photocatalyst (TiO 2) consisting of a shape which is fixed to the lead wire (8) to the body (1) for illuminating the UV to the device Combustible Gas Sensor. 제 4항에 있어서, 혼합물이 Al2O3 분말 75wt%, 나노입자 TiO2 광촉매 5wt%, PdCl2 10wt%, 및 PtCl2 10wt%로 이루어짐을 특징으로 하는 평판형 접촉연소식 가연성 가스 센서.The flammable gaseous flammable gas sensor according to claim 4, wherein the mixture is made of 75 wt% of Al 2 O 3 powder, 5 wt% of nanoparticle TiO 2 photocatalyst, 10 wt% of PdCl 2 , and 10 wt% of PtCl 2 . 제 4항에 있어서, UV LED가 380nm의 UV를 발광함을 특징으로 하는 평판형 접촉연소식 가연성 가스센서.5. The flat panel flammable gas sensor according to claim 4, wherein the UV LED emits UV of 380 nm.
KR1020060118351A 2006-11-28 2006-11-28 Catalytic combustion type flammable gas sensor using uv led and uv-catalyst KR100810120B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060118351A KR100810120B1 (en) 2006-11-28 2006-11-28 Catalytic combustion type flammable gas sensor using uv led and uv-catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060118351A KR100810120B1 (en) 2006-11-28 2006-11-28 Catalytic combustion type flammable gas sensor using uv led and uv-catalyst

Publications (1)

Publication Number Publication Date
KR100810120B1 true KR100810120B1 (en) 2008-03-06

Family

ID=39397677

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060118351A KR100810120B1 (en) 2006-11-28 2006-11-28 Catalytic combustion type flammable gas sensor using uv led and uv-catalyst

Country Status (1)

Country Link
KR (1) KR100810120B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100929027B1 (en) 2008-01-03 2009-11-26 한국에너지기술연구원 Detecting Substances and Manufacturing Method of Plate Type Contact Combustion Gas Sensor for Hydrogen Detection
KR20160109024A (en) * 2015-03-09 2016-09-21 한국에너지기술연구원 Device for preventing gas leak fire / explosion incident using gas sensor and method for controling the apparatus
KR20200049148A (en) 2018-10-31 2020-05-08 (주)에스팩솔루션 Assebmly of gas sensor
KR20220049800A (en) * 2020-10-15 2022-04-22 홍익대학교 산학협력단 Hydrogen sensor package comprising a hydrogen sensor with a double catalyst layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171656A (en) 1982-04-01 1983-10-08 Tokyo Kasoode Kenkyusho:Kk Detecting element of combustible gas
KR20030095264A (en) * 2002-06-04 2003-12-18 재단법인 한국화학시험연구원 Apparatus for estimating the performance of photocatalytic material for removing volatile organic compound
JP2006003153A (en) 2004-06-16 2006-01-05 Saginomiya Seisakusho Inc Hydrogen gas sensing element, hydrogen gas sensor and hydrogen gas sensing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171656A (en) 1982-04-01 1983-10-08 Tokyo Kasoode Kenkyusho:Kk Detecting element of combustible gas
KR20030095264A (en) * 2002-06-04 2003-12-18 재단법인 한국화학시험연구원 Apparatus for estimating the performance of photocatalytic material for removing volatile organic compound
JP2006003153A (en) 2004-06-16 2006-01-05 Saginomiya Seisakusho Inc Hydrogen gas sensing element, hydrogen gas sensor and hydrogen gas sensing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100929027B1 (en) 2008-01-03 2009-11-26 한국에너지기술연구원 Detecting Substances and Manufacturing Method of Plate Type Contact Combustion Gas Sensor for Hydrogen Detection
KR20160109024A (en) * 2015-03-09 2016-09-21 한국에너지기술연구원 Device for preventing gas leak fire / explosion incident using gas sensor and method for controling the apparatus
KR101705542B1 (en) * 2015-03-09 2017-02-10 한국에너지기술연구원 Device for preventing gas leak fire / explosion incident using gas sensor and method for controling the apparatus
KR20200049148A (en) 2018-10-31 2020-05-08 (주)에스팩솔루션 Assebmly of gas sensor
KR20220049800A (en) * 2020-10-15 2022-04-22 홍익대학교 산학협력단 Hydrogen sensor package comprising a hydrogen sensor with a double catalyst layer
KR102468507B1 (en) 2020-10-15 2022-11-17 홍익대학교 산학협력단 Hydrogen sensor package comprising a hydrogen sensor with a double catalyst layer

Similar Documents

Publication Publication Date Title
Han et al. Catalytic combustion type hydrogen gas sensor using TiO2 and UV-LED
US8033159B2 (en) Sensor and operating method for detecting soot
US10302611B2 (en) Hydrogen-selective porous composite
JP4833717B2 (en) Contact combustion type gas sensor and its sensing element and compensating element
US6165336A (en) Gas sensor
KR100810120B1 (en) Catalytic combustion type flammable gas sensor using uv led and uv-catalyst
CN105301064B (en) In with environment epidemic disaster self compensation ability2O3Base hot wire type semiconductor gas sensor
JP2009540334A (en) Ammonia sensor with heterogeneous electrodes
KR20070027701A (en) Gas sensor for determining ammonia
KR102204974B1 (en) Micro gas sensor and micro gas sensor module
CN114858868A (en) Semiconductor combustible gas sensor with quick response and recovery
KR20240006000A (en) Gas detection device
US11609201B2 (en) Method for measuring combustible gas concentration, combustible gas sensor, and combustible gas sensor production process
Ivanov et al. Development of an Approach to Increase Hydrogen Measurement Selectivity.
JPH10115597A (en) Gas sensor
KR100814459B1 (en) Sensor device and method of manufacturing the same
CN101329294B (en) Gas sensor with strong interference immunity
Wiegleb Physical-Chemical Gas Sensors
JPH02263145A (en) Semiconductor type gas sensor
JP2003344342A (en) Semiconductor hydrogen gas detecting element
Prabhu et al. Competitor Analysis of Hydrogen Sensing Systems
Lee et al. Fabrication of Flexible Micro CO Sensor for Proton Exchange Membrane Fuel Cell Applications
KR960010688B1 (en) Gas sensor and its manufacturing method
JP2003085674A (en) Gas alarm
JP2002243686A (en) Measuring instrument for combustible gas concentration

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130228

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140217

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee