KR100809661B1 - A catalyst for inhibiting the no2 generation - Google Patents

A catalyst for inhibiting the no2 generation Download PDF

Info

Publication number
KR100809661B1
KR100809661B1 KR1020060097585A KR20060097585A KR100809661B1 KR 100809661 B1 KR100809661 B1 KR 100809661B1 KR 1020060097585 A KR1020060097585 A KR 1020060097585A KR 20060097585 A KR20060097585 A KR 20060097585A KR 100809661 B1 KR100809661 B1 KR 100809661B1
Authority
KR
South Korea
Prior art keywords
catalyst
generation
noble metal
component
catalyst composition
Prior art date
Application number
KR1020060097585A
Other languages
Korean (ko)
Inventor
한현식
이태우
Original Assignee
희성촉매 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 희성촉매 주식회사 filed Critical 희성촉매 주식회사
Priority to KR1020060097585A priority Critical patent/KR100809661B1/en
Priority to EP07808305A priority patent/EP2073929A4/en
Priority to PCT/KR2007/004515 priority patent/WO2008041801A1/en
Application granted granted Critical
Publication of KR100809661B1 publication Critical patent/KR100809661B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • B01D2255/502Beta zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7415Zeolite Beta
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

An apparatus for post-treating exhaust gas of a vehicle is provided to suppress the generation of NO2, by using a catalyst, which contains noble metal oxide and inhibits the generation of NO2. An apparatus for post-treating exhaust gas of a vehicle has a DOC(Diesel Oxidation Catalyst) and a CSF(Catalyzed Soot Filter) disposed in a line. A catalyst for inhibiting the generation of NO2 is disposed at the rear of the CSF. The catalyst contains a basic metal oxide catalyst composition where ceria-cobalt oxide, activated alumina, zeolite are combined, a noble metal component consisting of platinum and palladium formed on the basic metal oxide catalyst composition, and a non-noble metal component such as barium or strontium.

Description

NO2 생성 억제 촉매{A catalyst for inhibiting the NO2 generation}A catalyst for inhibiting the NO2 generation

도 1, 도 2는 본 발명에 있어서 비귀금속 성분을 선택하게 되는 예비적 실험 결과 (HC, NO/NOx 전환율)를 도시한 것이며,1 and 2 show the results of preliminary experiments (HC, NO / NOx conversion rate) to select a non-noble metal component in the present invention,

도 3, 도 4는 본 발명에 따른 실시예 1 및 비교예 1 촉매조성물에 대한 HC, NO/NOx 전환율을 도시한 것이다.3 and 4 show the conversion rate of HC and NO / NOx for the catalyst composition of Example 1 and Comparative Example 1 according to the present invention.

최근 디젤엔진 차량에는 환경 규제를 만족시키기 위하여 DOC (diesel oxidation catalyst, 디젤산화촉매)가 코팅된 산화촉매모듈 및 DPF (Diesel Particulate Filter, 매연여과장치)를 촉매화한 Catalized Soot Filter (CSF, 촉매화 입자필터)가 탑재되어, HC, CO 및 NOx 정화에 활용되고 있으며, 특히, 광화학 스모그의 발생요인으로 되는 HC 및 NOx에 관해서는 한층 까다롭게 배출이 규제되고 있는 실정이므로 이를 실현하기 위한 다양한 촉매적 또는 기계적 방안이 구현되고 있다.Recently, diesel engine vehicles have catalized soot filters (CSF, catalyzed by oxidation catalyst module coated with DOC (diesel oxidation catalyst) and DPF (Diesel Particulate Filter) to satisfy environmental regulations. Particle filter), which is used to purify HC, CO and NOx, and in particular, HC and NOx, which are the causes of photochemical smog, are more difficult to be discharged. Therefore, various catalytic or Mechanical schemes are being implemented.

광화학 스모그의 발생 원인은 주로 HC와 NOx이며, ULEV까지는 HC 배출 규제 치를 중심으로 강화되어 왔다. 주로 미연소 가솔린에서 유래하는 HC는 냉간 시동 시에 그 대부분이 배출되므로, HC의 배출량을 절감하기 위해서는 엔진 시동 직후의 배출을 줄이는 것이 불가결하다. 그러나, 촉매 (DOC : 디젤산화촉매)가 그 기능을 발휘하기 위해서는 어느 온도 이상으로 가열될 필요가 있으며, 엔진 시동 직후에 배출이 많은 것도 촉매가 기능을 발휘하기까지 가열되지 않는 점이 원인이다. 따라서, 히터에 의해 촉매를 가열하게 하는 전기가열 촉매 등도 활발하게 검토되었으나, 배터리에 걸리는 부하와 부품 점수(点數)가 많아지는 문제가 있어, 아주 한정된 범위에서의 실용화에 그치고 있다. 현재는 엔진 제어에 의한 조기 온도의 상승과 배기관 구조 개량에 의한 보온, 촉매성분을 도포 하는 세라믹 담체(擔體)의 경량화 등, 촉매의 온도 상승을 촉진하는 방법이 주로 검토되고 있다. 또한, 촉매가 기능하지 않는 냉간 시에 배출되는 HC를 제올라이트 등의 다공성 재료에서 일시적으로 포집해, 데워져 이탈하기 시작한 HC를 활성화한 촉매에서 정화한다고 하는 HC 트랩 촉매도 실용화되고 있다. 이들 신규 기술의 조합으로 HC 및 CO에 대하여는 일정 수준의 정화가 달성되고 있다.The causes of photochemical smog are mainly HC and NOx, and ULEV has been strengthened around HC emission regulations. Since HC, which is mainly derived from unburned gasoline, is mostly discharged during cold start, it is indispensable to reduce the emission immediately after starting the engine in order to reduce the emission of HC. However, the catalyst (DOC: diesel oxidation catalyst) needs to be heated above a certain temperature in order to exhibit its function, and a large amount of emissions immediately after starting the engine is caused by the fact that the catalyst is not heated until it functions. Therefore, the electric heating catalyst for heating the catalyst by the heater has been actively studied, but there is a problem that the load on the battery and the number of parts are increased, and the practical use is limited in a very limited range. Currently, methods for accelerating the temperature rise of the catalyst, such as premature rise of the temperature by engine control, thermal insulation by improving the exhaust pipe structure, and weight reduction of the ceramic carrier to which the catalyst component is applied, are mainly studied. In addition, HC trap catalysts have also been put into practice, in which HC discharged during cold operation when a catalyst does not function is temporarily trapped in a porous material such as zeolite and purified from a catalyst that has activated HC, which has warmed up and begins to escape. The combination of these new techniques achieves a certain level of purification for HC and CO.

스모그의 또 한가지 원인인 NOx는 연소에 의한 고온조건 하에서 흡입된 공기 중의 질소와 산소가 반응함으로써 생성된다. 따라서 고속 주행과 같은 엔진 부하가 증대하는 영역에서 NOx 배출이 증가하는 경향이다. NOx는 스모그뿐만 아니라, 산성비 등 광범위한 환경 피해를 초래하기 때문에, ULEV 이후에서는 NOx의 배출 기준이 크게 강화되고 있다. NOx의 정화에는 로듐의 사용이 매우 유효한 것으로 알려져 있 으나, 로듐의 산출량은 매우 적으며, 가격도 백금이나 팔라듐과 비교하면 상당히 높다. 따라서 적은 로듐의 사용량, 혹은 로듐을 사용하지 않고 NOx를 효율적으로 정화하는 방법이 요구되어 왔다. 고 부하 영역에서는 촉매가 처리해야만 할 배기 가스량이 증대하고 있어, NOx의 정화 성능은 가스가 어느 정도 귀금속과 접촉하는가가 중요하다. 이 때문에 귀금속의 높은 분산 상태를 어느 정도 유지하는가가 촉매조성 이외의 면에서도 검토되어 왔다. Another source of smog, NOx, is produced by the reaction of nitrogen and oxygen in air drawn under high temperature conditions by combustion. Therefore, NOx emission tends to increase in areas where engine load increases such as high speed travel. Since NOx causes not only smog but also a wide range of environmental damage such as acid rain, NOx emission standards have been greatly strengthened since ULEV. The use of rhodium is known to be very effective for the purification of NOx, but the output of rhodium is very low and the price is considerably higher than that of platinum or palladium. Therefore, there has been a demand for a method of efficiently purifying NOx without using a small amount of rhodium or rhodium. In the high load region, the amount of exhaust gas to be treated by the catalyst is increasing, and the purification performance of NOx is important to how much gas is in contact with the precious metal. For this reason, the extent to which the high dispersion state of a noble metal is maintained was examined also from the viewpoint of catalyst composition.

한편, 디젤 엔진은 가솔린 엔진에 비해 열효율이 높고 연비가 뛰어나, 특히 유럽에서는 CO2의 배출 절감에 있어 기대가 되고 있다. 그러나 디젤엔진 차량에 특유의 흑연, 즉 입자상 물질(PM)과, 환원 정화가 필요한 NOx의 배출 절감이 과제로 되고 있다. 이러한 PM은 고체이며 종래와 같은 flow through 타입의 촉매에서는 충분히 제거할 수 없다. 따라서 PM을 제거하기 위해 디젤 퍼티큘레이트 필터(Diesel Particulate Filter:DPF)가 적용된다. DPF에서는 PM을 물리적으로 포집하기 때문에 높은 제거율을 얻을 수 있으나 DPF가 항상 PM을 위해 작동될 수는 없으며, 어느 점에서 DPF 상에 포집된 PM을 연소 제거해 줄 필요가 있다. PM을 연소 제거하기 위해서는 배기온도를 상승시킬 필요가 있으나, 이는 디젤차의 매력인 뛰어난 연비 특성을 악화하게 하는 요인으로 된다. 따라서 집적된 PM을 보다 낮은 온도에서 연소시키기 위해 DPF를 촉매화한 Catalized Soot Filter (CSF)가 장착되어, 디젤차량에서는 DOC (diesel oxidation catalyst)가 코팅된 산화촉매하우징 및 DPF를 촉매화한 Catalized Soot Filter (CSF)가 장착되어 운행되고 있다.On the other hand, diesel engines have higher thermal efficiency and higher fuel economy than gasoline engines, and are expected to reduce CO2 emissions, particularly in Europe. However, emission reduction of graphite, that is, particulate matter (PM) peculiar to diesel engine vehicles and NOx requiring reduction and purification has become a problem. Such PM is a solid and cannot be sufficiently removed in a conventional flow through catalyst. Therefore, Diesel Particulate Filter (DPF) is applied to remove PM. In the DPF, high removal rate can be obtained because the PM is physically collected, but the DPF cannot always be operated for the PM, and at some point, the PM trapped on the DPF needs to be burned out. It is necessary to raise the exhaust temperature in order to burn off PM, but this causes a deterioration in the excellent fuel efficiency characteristics that are attractive to diesel cars. Thus, the Catalized Soot Filter (CSF), which catalyzes the DPF to burn the integrated PM at a lower temperature, is equipped with an oxidation catalyst housing coated with a diesel oxidation catalyst (DOC) and a Catalized Soot that catalyzes the DPF in diesel vehicles. It operates with a filter (CSF).

본 출원인은 DOC 및 CSF가 일렬 장착된 디젤엔진 차량에서 노란연무가 발생되는 심각한 문제점을 인식하고 이를 조사한 결과 상기 노란연무는 NO2 가스에 원인이 있는 것을 확인하였다. 즉, DOC 및 CSF를 거치는 동안 산화 생성물인 NO2 가스가 복합적인 원인으로 노란색 연무로써 배기구(tailpipe)로 분출되는 것을 확인하고 이를 처리하기 위하여 NO2 발생에 따른 메카니즘을 연구한 결과 본 발명에 이르게 되었다.Applicant has recognized a serious problem that yellow mist is generated in diesel engine vehicles equipped with DOC and CSF in a line and found that the yellow mist is the cause of NO2 gas. That is, it was confirmed that the NO2 gas, which is an oxidation product during the DOC and CSF, is ejected to the tailpipe as a yellow mist due to a complex cause, and the mechanism according to the generation of NO2 has been studied in order to deal with it.

본 발명은 질소산화물 변환에 미치는 비귀금속 산화물의 영향에 관한 것이며, 산업적으로는 DOC 및 CSF가 장착된 배기가스 후처리기술에서, NO2 형성을 억제하는 비귀금속 산화물이 포함된 촉매를 내화물 캐리어에 코팅한 NO2 형성 억제모듈을 장착하여, 노란연무로 가시화되는 NO2 형성을 억제하는 장치에 관한 것이다.The present invention relates to the effect of non-noble metal oxides on the conversion of nitrogen oxides, industrially in the exhaust gas aftertreatment technology equipped with DOC and CSF, coating a refractory carrier with a catalyst containing a non-noble metal oxide that inhibits NO 2 formation A device for suppressing NO 2 formation, which is visualized by yellow mist, by mounting a NO 2 formation suppressing module.

따라서, 본 발명의 목적은 NO2 형성을 억제하는 방법을 제안하는 것이며, 또 다른 목적은 NO2 형성을 억제하는 장치를 제공하는 것이다. 아울러, 본 발명은 노란연무 형성을 억제하여 시각적인 혐오 오염원 생성을 방지하는 장치 및 방법에 관한 것이다.Accordingly, it is an object of the present invention to propose a method of suppressing NO 2 formation, and another object is to provide an apparatus for suppressing NO 2 formation. In addition, the present invention relates to an apparatus and method for inhibiting the formation of yellow haze to prevent the formation of visual aversive pollutants.

상기 목적을 달성하기 위하여 본 발명은, 세리아-코발트산화물, 활성알루미나 및 제오라이트의 결합인 기본금속산화물 촉매조성물; 상기 기본금속산화물 촉매조성물상에 백금 및/또는 팔라듐으로 구성된 귀금속성분 및 바륨 또는 스트론튬의 비귀금속성분이 로딩된 NO2 생성 억제 촉매조성물로 구성되며, 또한 상기 NO2 생성 억제 촉매조성물이 내화물 캐리어상에 코팅된 NO2 생성 억제 모듈로 구성되며, 또한 상기 NO2 생성 억제 모듈이 DOC 및/또는 CSF 후단에 연속되어 장착되는 NO2 생성 억제를 위한 후처리장치에 의해 구현된다.In order to achieve the above object, the present invention is a base metal oxide catalyst composition which is a combination of ceria-cobalt oxide, activated alumina and zeolite; A catalyst composition comprising a catalyst for inhibiting NO 2 production, loaded with a noble metal component composed of platinum and / or palladium and a non-noble metal component of barium or strontium on the basic metal oxide catalyst composition, and the NO 2 production inhibiting catalyst composition is coated on a refractory carrier. And a NO2 generation suppression module, and the NO2 generation suppression module is implemented by a post-treatment apparatus for NO2 generation suppression, which is mounted continuously at the rear end of the DOC and / or CSF.

본 명세서에서 "활성 알루미나"라는 용어는 고 BET 표면적 알루미나를 의미하는 것이고 단일 또는 복수의 감마-, 세타- 및 알파-알루미나로 구성된다. 상기 "결합"은 각 입자들의 블랜딩 또는 혼합에 의해 달성된다. 본 발명에 의한 NO2 생성 억제 촉매모듈은 본 발명에 의한 촉매조성물이 내화물 캐리어 상에 코팅된 형태이며, 본 발명에 의한 촉매조성물은 NO2 생성 억제 촉매물질로써 코발트가 함침된 산화세륨입자와 활성알루미나입자와 Fe/제오라이트입자들의 혼합물과 귀금속성분인 백금 또는 팔라듐와 비귀금속성분인 바륨 또는 스트론튬이 분산되어 코팅된 것이다.The term "active alumina" as used herein refers to high BET surface area alumina and consists of a single or a plurality of gamma-, theta- and alpha-aluminas. Said "bonding" is achieved by blending or mixing the individual particles. In the catalyst module according to the present invention, the catalyst composition according to the present invention is a form in which the catalyst composition according to the present invention is coated on a refractory carrier, and the catalyst composition according to the present invention is a cerium oxide particle and activated alumina particles impregnated with cobalt as a catalyst for inhibiting NO2 production. And a mixture of Fe / zeolite particles and platinum or palladium, a precious metal component, and barium or strontium, a non-noble metal component, are dispersed and coated.

본 발명에 따른 바람직한 캐리어는 코오디어라이트(cordierite), 알파-알루미나(α-alumina), 뮤라이트(mullite)와 같은 세라믹계통 물질로 구성되며, 모노리스 하니콤 구조(monolithic honeycomb structure) 형태이다. 본 발명에 따른 세리 아-코발트산화물 촉매물질은 세리아입자와 코발트염의 슬러리를 건조, 소성하여 제조되며, 통상 세리아입자와 코발트염을 물 그리고 아세트산, 질산 등의 산성화제 (acidifer)와 함께 혼합하여 원하는 입자 사이즈까지 밀링하여 제조된다. 세리아-코발트산화물, 활성 알루미나 및 Fe/제오라이트로 이루어진 기본금속산화물 촉매조성물은 본 발명에 따른 촉매물질중의 구성요소일 뿐 아니라 또 다른 구성요소인 촉매귀금속 Pt 또는 Pd, 및 비귀금속 Ba 또는 Sr에 대하여 지지체(support)로 기능한다. 이때 상기 기본 금속산화물 촉매조성물은 적당한 캐리어에 코팅되고 ("washcoated") 이것을 귀금속화합물 및 비귀금속화화물 용액으로 함침시켜 건조 소성하여 NO2 생성억제촉매조성물을 제조한다. 건조후 고정화시킬 때, 고정화(fixation)은 소성(calcination) 또는 H2S로 처리 또는 다른 공지된 방법으로 수행될 수 있으며 촉매성분에 불용성을 부여하는 것이다.Preferred carriers according to the invention consist of ceramic based materials such as cordierite, alpha-alumina, mulite, and in the form of a monolithic honeycomb structure. The ceria-cobalt oxide catalyst material according to the present invention is prepared by drying and calcining a slurry of ceria particles and cobalt salt, and is usually prepared by mixing ceria particles and cobalt salt with water and an acidifer such as acetic acid and nitric acid. It is made by milling to particle size. The basic metal oxide catalyst composition consisting of ceria-cobalt oxide, activated alumina and Fe / zeolite is not only a component in the catalyst material according to the present invention but also a catalyst noble metal Pt or Pd, and a non-noble metal Ba or Sr. It acts as a support. The basic metal oxide catalyst composition is then coated on a suitable carrier (" washcoated ") and impregnated with a noble metal compound and a non-noble metal sulfide solution to dry firing to produce a NO 2 production inhibitor catalyst composition. When immobilized after drying, the fixation may be carried out by calcining or by treatment with H2S or by other known methods and imparts insolubility to the catalyst component.

적당한 Pt 화합물은 포타슘 플라티늄 클로라이드(potassium platinum chloride), 암모늄 플라티늄 티오시아네이트(ammonium platinum thiocyanate), 아민-수용성 플라티늄 하이드록사이드(amine-solubolized platinum hydroxide), 클로로플라티닉산(chloroplatinic acid)이 사용될 수 있다. 또한, Pd 화합물로는 팔라듐 질산염(palladium nitrate) 또는 팔라듐 염화물(palladium chloride)등 통상 이 분야에서 사용되는 화합물 등이 사용될 수 있다.Suitable Pt compounds may be potassium platinum chloride, ammonium platinum thiocyanate, amine-solubolized platinum hydroxide, chloroplatinic acid. have. In addition, as the Pd compound, compounds commonly used in the art such as palladium nitrate or palladium chloride may be used.

아울러, Ba 화합물로는 수산화바륨, 질산바륨, 초산바륨, 또한 Sr 화합물로 는 수산화스트론듐, 질산스트론듐, 초산스트론듐 등이 사용될 수 있다.In addition, as the Ba compound, barium hydroxide, barium nitrate, barium acetate, and as the Sr compound, strontium hydroxide, strontium nitrate, strontium acetate, or the like may be used.

촉매귀금속성분 또는 비귀금속성분은 통상 촉매부피당 성분중량(g/ℓ)으로 표기된다.The catalyst noble metal component or non-noble metal component is usually expressed in terms of the component weight (g / L) per catalyst volume.

실시예 1 본 발명에 따른 Pt/Ba/세리아-코발트산화물/Υ-알루미나/제오라이트촉매는 다음과 같은 방법에 의해 제조되었다. Example 1 The Pt / Ba / Ceria-cobalt oxide / VIII-alumina / zeolite catalyst according to the present invention was prepared by the following method.

A. Υ-알루미나 파우더 205.1g에 상기 Υ-알루미나중량에 대하여 약 1.5%의 아세트산을 가하여 혼합한 후, H2O 300g을 가하고 충분히 혼합하여 슬러 리를 제조하였고, 상기 슬러리를 대상으로 입자들 중량에 대하여 약 90% 정도가 입자크기 8∼10㎛가 되도록 볼밀링하였다. 이것을 슬러리 A라 한다.A. About 20% g of a-alumina powder was added by mixing about 1.5% acetic acid with respect to the weight of the a-alumina, and then 300 g of H 2 O was added thereto, followed by sufficient mixing to prepare a slurry. About 90% was ball milled so that the particle size might be 8-10 micrometers. This is called slurry A.

B. 세리아-코발트산화물제조: 세륨산화물 981.1g에 코발트질화물 149.8g과 약 H2O 170g을 가한 후 충분히 혼합하여 슬러리를 제조하였다. 상기 슬러리를 약 2시간동안 120 ℃에서 건조한 후 약 2시간동안 500℃에서 소성하여 세리아-코발트산 화물을 제조하였다.B. Preparation of ceria-cobalt oxide: 149.8 g of cobalt nitride and 170 g of H 2 O were added to 981.1 g of cerium oxide, followed by sufficient mixing to prepare a slurry. The slurry was dried at 120 ° C. for about 2 hours and calcined at 500 ° C. for about 2 hours to prepare ceria-cobalt acid.

C. 슬러리 A에 세리아-코발트산화물 101.5g을 혼합하여 입자중량 90% 정도가 입자크기 6∼8㎛이 되도록 볼밀링한 후 (슬러리 B) Fe/β-제오라이트 444g을 가하여, 약 30분간 분산시켰다 (슬러리 C). C. Slurry A was mixed with 101.5 g of ceria-cobalt oxide, ball milled to have a particle weight of about 90% to a particle size of 6 to 8 μm (Slurry B), and 444 g of Fe / β-zeolite was added and dispersed for about 30 minutes. (Slurry C).

D. 상기 슬러리 C를 코오디어라이트 하니콤 코어(cordierite honeycomb core)에 코팅하여 약 20분간 120℃ 내지 150℃에서 건조한 후 약 5시간 동안 500℃ 에서 소성하였다.D. The slurry C was coated on a cordierite honeycomb core, dried at 120 ° C. to 150 ° C. for about 20 minutes, and calcined at 500 ° C. for about 5 hours.

F. 코오디어라이트에 코팅된 기본 금속산화물 촉매조성물상에 클로로플라 티닉산(chloroplatinic acid) 및 (Ba 화합물)를 이용하여 공지된 방법으로 0.2g Pt 및 5g Ba를 함침하여 본 발명인 NO2 생성 억제 촉매조성물을 완성하였다. F. Inhibiting the NO 2 Formation Catalyst of the Present Invention by Impregnating 0.2 g Pt and 5 g Ba by a Known Method on Chloroplatinic Acid and (Ba Compound) on a Basic Metal Oxide Catalyst Composition Coated with Cordierite The composition was completed.

본 실시예에서는 활성알루미나로써 Υ-알루미나를 이용하였으나, 세타- 및 알파-알루미나 단독 또는 복수로 구성된 알루미나 파우더가 이용될 수 있다. 상술한 바와 같이, 캐리어로는 코오디어라이트뿐 아니라 α-알루미나 또는 뮤라이트 (mullite)가 이용될 수도 있다. 또한 Pt를 대산하여 Pd를 함침하거나, Ba을 대신하여 Sr을 함침하여 본 발명에 따른 촉매조성물을 완성할 수도 있다. 또한, F단계에서 로딩되는 Pt량을 각각 1.6, 3.2g/ℓ로 조절하거나, Ba 량을 각각 2, 20g/ℓ로 조절하여 제조하여도 본 발명의 NO2 생성 억제 효과를 반감하지 않는다.In the present embodiment, X-alumina was used as the activated alumina, but theta- and alpha-alumina alone or a plurality of alumina powders may be used. As described above, not only cordierite but also α-alumina or mullite may be used as the carrier. In addition, Pt may be impregnated with Pd, or Sr may be impregnated with Ba to complete the catalyst composition according to the present invention. In addition, even if the amount of Pt loaded in step F is adjusted to 1.6 and 3.2 g / l, respectively, or the amount of Ba is adjusted to 2 and 20g / l, respectively, the effect of inhibiting NO 2 production is not halved.

비교예 1. 본 발명에 따른 비귀금속성분의 효과를 설명하기 위하여 Pt/세리아-코발트산화물/Υ-알루미나/제오라이트촉매는 Ba 함침의 과정을 제외하고는 실시예 1과 동일하게 제조하였다.Comparative Example 1. In order to explain the effect of the non-noble metal component according to the present invention, Pt / ceria-cobalt oxide / Υ-alumina / zeolite catalyst was prepared in the same manner as in Example 1 except for the process of Ba impregnation.

이하, 본 발명자들이 가장 바람직한 실시예 1를 제안하게 된 촉매 설계과정을 언급하고자 한다.Hereinafter, the present inventors will be referred to the catalyst design process to propose the most preferred Example 1.

먼저, 다양한 후보 물질 중 Ba 및 Sr 성분을 NO2 생성 억제 성분으로 선택한 것은 도 1 및 도 2의 실험에 기초하였다. 즉, Fresh (Ba, Sr 성분이 없는 촉매) 또는 Ba 또는 Sr이 함침된 촉매의 경우에 대하여 HC 전환율은 거의 유사한 패턴을 보였으나, NO/NO2 전환율, 즉 NO2 형성 속도를 지시하는 인자(index)는 Fresh 경우는 폭이 매우 넓게 나타나고, 그 다음으로 Sr 성분이 함침된 촉매의 경우이며, Ba 성분이 함침된 촉매는 해당 폭이 좁게 측정되어, Ba 및 Sr성분, 바람직하게는 Ba 성분이 NO2 형성을 억제하는 후보 성분으로 선정되었다.First, Ba and Sr components among various candidate substances were selected as the NO 2 generation inhibitory components based on the experiments of FIGS. 1 and 2. That is, for HC (catalyst without Ba, Sr component) or catalyst impregnated with Ba or Sr, the HC conversion showed a similar pattern, but the index indicating the NO / NO 2 conversion, that is, the rate of NO 2 formation. The fresh case is very wide, followed by the catalyst impregnated with the Sr component, and the catalyst impregnated with the Ba component is narrowly measured, so that the Ba and Sr components, preferably the Ba component, form NO 2. It was selected as a candidate component which suppresses.

NOx는 NO와 NO2로 구성되며, NOx 전환율은 NO와 NO2가 아닌 다른 분자들로 전환된 것을 의미하므로, 즉 N2와 N2O로의 전환율을 의미하고, 한편, NO 전환율은 단지 NOx중에 NO (NO2는 분석하지 않음)만 분석하므로, NO conversion - NOx conversion = NO2 formation rate가 되므로, 이들의 폭 차이는 NO2 형성률을 의미하는 것으로 해석될 수 있다.NOx consists of NO and NO2, and the NOx conversion rate means that it is converted to molecules other than NO and NO2, that is, the conversion rate to N2 and N2O, while the NO conversion rate is just NO (NO2 is analyzed in NOx). Not only), so that NO conversion-NOx conversion = NO2 formation rate, the width difference can be interpreted to mean the NO2 formation rate.

본 발명자는 상기 예비적인 테스트를 바탕으로 실시예 1의 촉매 및 비교예 1의 촉매를 제조하여 HC 전환율 및 NO/NOx 전환율을 측정한 결과를 도 3 및 도 4에 도시하였다. 예측되는 바와 같이, 실시예 1의 촉매는 HC 전환율을 변경시키지 아니하면서 (도 3), NO2 형성을 상당하게 억제하는 효과를 보이고 있어 (도 4), 본 발명에 의한 촉매조성물은 NO2 형성을 억제하여 궁극적으로 노란연무 발생을 감소시키는 효과가 있음을 확인할 수 있다.The inventors prepared the catalyst of Example 1 and the catalyst of Comparative Example 1 based on the preliminary test, and the results of measuring HC conversion and NO / NOx conversion were shown in FIGS. 3 and 4. As expected, the catalyst of Example 1 exhibited an effect of significantly suppressing NO 2 formation without changing the HC conversion rate (FIG. 3), and the catalyst composition according to the present invention suppressed NO 2 formation. Ultimately, it can be confirmed that there is an effect of reducing the occurrence of yellow haze.

본 발명에 의한 촉매조성물은 공지된 방법에 의하여 내화물 캐리어에 담지되어 NO2 억제 생성 모듈로 배기가스 후처리장치에 적용될 수 있으며, 바람직하게는 DOC 또는 CSF 후단에 배치되어 NO2 형성을 억제할 수 있는 것이다. 더욱 바람직하게는 DOC 및 CSF가 연속하여 일렬로 배치되는 후처리장치에 있어서, CSF 후단에 적용되어 NO2 형성 억제를 방지하여 시각적 혐오 배기가스를 억제하여 환경 정화에 기여할 수 있다.The catalyst composition according to the present invention is supported on the refractory carrier by a known method and can be applied to the exhaust gas aftertreatment apparatus as a NO2 suppression generating module, and is preferably disposed at the rear end of DOC or CSF to suppress NO2 formation. . More preferably, in a post-treatment apparatus in which DOCs and CSFs are arranged in a row in series, it may be applied to the rear end of the CSF to prevent NO 2 formation and to suppress visual aversive exhaust gas, thereby contributing to environmental cleanup.

Claims (3)

삭제delete 삭제delete 디젤산화촉매(DOC) 및 촉매화 입자필터(CSF)가 일렬로 배치된 자동차 배기가스 후처리장치에 있어서, 노란색 연무 성분인 NO2 생성 억제 촉매가 상기 촉매화 입자필터 후단에 더욱 배치되며, 상기 노란색 연무 성분인 NO2 생성 억제 촉매는, 세리아-코발트산화물, 활성알루미나 및 제오라이트의 결합인 기본금속산화물 촉매조성물; 상기 기본금속산화물 촉매조성물상에 백금 및 팔라듐으로 구성된 귀금속성분; 및 바륨 또는 스트론튬의 비귀금속성분이 로딩된 것을 특징으로 하는, 노란색 연무 성분인 NO2 생성 억제 기능을 가지는 자동차 배기가스 후처리장치.In a vehicle exhaust gas aftertreatment apparatus in which a diesel oxidation catalyst (DOC) and a catalyzed particle filter (CSF) are arranged in a line, a NO 2 generation suppression catalyst, which is a yellow mist component, is further disposed at a rear end of the catalyzed particle filter, and the yellow The NO 2 production inhibiting catalyst, which is a mist component, includes a basic metal oxide catalyst composition which is a combination of ceria-cobalt oxide, activated alumina and zeolite; Precious metal components composed of platinum and palladium on the basic metal oxide catalyst composition; And a non-noble metal component of barium or strontium, wherein the exhaust gas after-treatment apparatus having a function of suppressing NO 2 generation, which is a yellow haze component.
KR1020060097585A 2006-10-04 2006-10-04 A catalyst for inhibiting the no2 generation KR100809661B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020060097585A KR100809661B1 (en) 2006-10-04 2006-10-04 A catalyst for inhibiting the no2 generation
EP07808305A EP2073929A4 (en) 2006-10-04 2007-09-18 A catalyst for inhibiting the no2 generation
PCT/KR2007/004515 WO2008041801A1 (en) 2006-10-04 2007-09-18 A catalyst for inhibiting the no2 generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060097585A KR100809661B1 (en) 2006-10-04 2006-10-04 A catalyst for inhibiting the no2 generation

Publications (1)

Publication Number Publication Date
KR100809661B1 true KR100809661B1 (en) 2008-03-05

Family

ID=39268639

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060097585A KR100809661B1 (en) 2006-10-04 2006-10-04 A catalyst for inhibiting the no2 generation

Country Status (3)

Country Link
EP (1) EP2073929A4 (en)
KR (1) KR100809661B1 (en)
WO (1) WO2008041801A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200150138Y1 (en) 1994-02-23 1999-07-01 Cataler Ind Co Catalyst for purifying exhaust gases
KR100279938B1 (en) 1998-09-11 2001-03-02 임의신 NO Oxidation Catalyst Composition
KR100416735B1 (en) 1995-10-09 2004-03-26 삼성전기주식회사 Catalyst for purifying exhaust gas from car and method for preparing thereof
KR20040044947A (en) * 2001-09-19 2004-05-31 존슨 맛쎄이 퍼블릭 리미티드 컴파니 LEAN NOx TRAP/CONVERSION CATALYST
KR20050118762A (en) * 2004-06-15 2005-12-20 현대자동차주식회사 Exhaust gas purifying system using diesel reformer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2064977C (en) * 1991-04-05 1998-09-22 Eiichi Shiraishi Catalyst for purifying exhaust gas
DE69427932T2 (en) * 1993-05-10 2002-04-04 Sakai Chemical Industry Co Catalyst for the catalytic reduction of nitrogen oxides
FR2730175B1 (en) * 1995-02-03 1997-04-04 Inst Francais Du Petrole CATALYSTS FOR REDUCING NITROGEN OXIDES TO MOLECULAR NITROGEN IN A SURSTOECHIOMETRIC MEDIUM OF OXIDIZING COMPOUNDS, METHOD OF PREPARATION AND USES
JP3799651B2 (en) * 1995-04-28 2006-07-19 マツダ株式会社 Exhaust gas purification catalyst
US6221804B1 (en) * 1998-01-27 2001-04-24 Mazda Motor Corporation Catalyst for purifying exhaust gas and manufacturing method thereof
US7030055B2 (en) * 2003-08-18 2006-04-18 W.R. Grace & Co.-Conn. NOx reduction compositions for use in FCC processes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200150138Y1 (en) 1994-02-23 1999-07-01 Cataler Ind Co Catalyst for purifying exhaust gases
KR100416735B1 (en) 1995-10-09 2004-03-26 삼성전기주식회사 Catalyst for purifying exhaust gas from car and method for preparing thereof
KR100279938B1 (en) 1998-09-11 2001-03-02 임의신 NO Oxidation Catalyst Composition
KR20040044947A (en) * 2001-09-19 2004-05-31 존슨 맛쎄이 퍼블릭 리미티드 컴파니 LEAN NOx TRAP/CONVERSION CATALYST
KR20050118762A (en) * 2004-06-15 2005-12-20 현대자동차주식회사 Exhaust gas purifying system using diesel reformer

Also Published As

Publication number Publication date
EP2073929A1 (en) 2009-07-01
EP2073929A4 (en) 2011-10-05
WO2008041801A1 (en) 2008-04-10

Similar Documents

Publication Publication Date Title
KR101849342B1 (en) Oxidation catalyst and exhaust-gas purification system using the same
US8858904B2 (en) Catalyzed soot filter
KR101172020B1 (en) Method of purifying exhaust gas from internal combustion engine
EP1309775B1 (en) Exhaust system for enhanced reduction of nitrogen oxides and particulates from diesel engines
JP5959530B2 (en) Structural diesel oxidation catalyst for NO2 generator enhancement
US8057768B2 (en) Device for the purification of diesel exhaust gases
EP1985353B1 (en) Exhaust gas purification catalyst for automobile, exhaust gas purification catalyst system and purifying process of exhaust gas
JP4681922B2 (en) Oxidation catalyst for exhaust gas purification, and exhaust gas purification system using the same
CZ2005148A3 (en) Compression ignition engine, motor vehicle, method for operating such a compression ignition engine and method for increasing rate of catalyzed reaction
JP4012320B2 (en) Exhaust gas purification catalyst for lean combustion engine
WO2012128297A1 (en) Catalyst for exhaust gas purification, method for producing same, and exhaust gas purification method using same
JP2020179348A (en) Exhaust gas purifying catalyst
CN112808279B (en) Exhaust gas purifying catalyst
JPH0884911A (en) Catalyst for decomposing nitrogen oxide and method for purifying diesel engine exhaust using the same
KR101382686B1 (en) Non-PGM catalyst for combustion soot, filtration filter and exhaust gas after-treatment apparatus having the same
KR100892534B1 (en) Partial oxidation promoted Diesel Oxidation Catalyst and Method for manufacturing the same
JP3267862B2 (en) Diesel engine exhaust gas purification catalyst and exhaust gas purification method using the same
KR100809661B1 (en) A catalyst for inhibiting the no2 generation
KR100648594B1 (en) Catalytic compositions for oxidizing particular matters and Catalytic soot filters employing the compositions
KR100405470B1 (en) A composition of diesel oxidation catalyst
JPH0857318A (en) Catalyst and method for purifying exhaust gas from lean burnengine
KR100435365B1 (en) A de-NOx catalyst for diesel engine and its constitution
WO2024115792A1 (en) Catalyst for the treatment of an exhaust gas stream containing one or more of formaldehyde, nitrogen oxide (no), and hydrocarbons having a specific mn loading
WO2024115789A1 (en) A copper- and and manganese-containing catalyst for the treatment of an exhaust gas stream containing one or more of formaldehyde, nitrogen oxide (no), and hydrocarbons
CN114269472A (en) Diesel oxidation catalyst

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20130226

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140226

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150226

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160226

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180226

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190226

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20200226

Year of fee payment: 13