KR100805390B1 - Depositing Method of Chamber - Google Patents

Depositing Method of Chamber Download PDF

Info

Publication number
KR100805390B1
KR100805390B1 KR1020010085337A KR20010085337A KR100805390B1 KR 100805390 B1 KR100805390 B1 KR 100805390B1 KR 1020010085337 A KR1020010085337 A KR 1020010085337A KR 20010085337 A KR20010085337 A KR 20010085337A KR 100805390 B1 KR100805390 B1 KR 100805390B1
Authority
KR
South Korea
Prior art keywords
deposition
chamber
gas
nitrogen
present
Prior art date
Application number
KR1020010085337A
Other languages
Korean (ko)
Other versions
KR20030054903A (en
Inventor
백영훈
Original Assignee
엘지.필립스 엘시디 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지.필립스 엘시디 주식회사 filed Critical 엘지.필립스 엘시디 주식회사
Priority to KR1020010085337A priority Critical patent/KR100805390B1/en
Publication of KR20030054903A publication Critical patent/KR20030054903A/en
Application granted granted Critical
Publication of KR100805390B1 publication Critical patent/KR100805390B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 증착장치 내의 증착챔버에서 증착전 질소가스 및 펌핑 동작으로 이물질을 제거시키기 위한 챔버의 증착방법에 관한 것이다.The present invention relates to a method of depositing a chamber for removing foreign matter by a nitrogen gas and a pumping operation before deposition in a deposition chamber in a deposition apparatus.

본 발명에 따른 챔버의 증착방법은 무기물질을 증착하기 위한 다수의 챔버들을 구비하는 증착장치를 이용한 증착방법에 있어서, 증착챔버 내에 질소(N2) 가스를 블로잉하는 단계와, 증착챔버로부터 질소(N2) 가스를 펌핑동작을 이용하여 배출시키는 단계와, 증착챔버 내에 주입된 소정의 혼합된 가스를 플라즈마로 여기시켜 성막하는 단계를 포함한다.The deposition method of a chamber according to the present invention is a deposition method using a deposition apparatus having a plurality of chambers for depositing an inorganic material, comprising the steps of: blowing nitrogen (N 2 ) gas in the deposition chamber, nitrogen ( N 2 ) exhausting the gas using a pumping operation, and exciting a predetermined mixed gas injected into the deposition chamber by plasma to form a film.

이러한 구성에 의하여, 본 발명에 따른 챔버의 증착방법은 본 발명에 따른 챔버의 증착방법은 성막후 증착막에 둘러쌓여 이후 공정에서 잘 제거되지 않는 이물질들을 질소가스 블로잉 및 펌핑 등의 기체의 압력차로 제거함으로써 이물질에 의한 제품의 불량을 줄일 수 있다.
By such a configuration, the chamber deposition method according to the present invention is the chamber deposition method according to the present invention is to remove the foreign matter that is not well removed in the process after the deposition film is deposited after deposition by the pressure difference of the gas such as nitrogen gas blowing and pumping By doing so, it is possible to reduce the defect of the product due to foreign substances.

Description

챔버의 증착 방법{Depositing Method of Chamber} Depositing Method of Chamber             

도 1은 통상적인 박막 트랙지스터를 나타내는 단면도. 1 is a cross-sectional view showing a conventional thin film track resistor.

도 2는 종래의 증착장치를 개략적으로 나타내는 도면.2 is a view schematically showing a conventional deposition apparatus.

도 3은 일반적인 화학 기상 증착 장치를 나타내는 도면.3 shows a typical chemical vapor deposition apparatus.

도 4는 도 3에 도시된 증착챔버를 나타내는 도면.4 is a view showing the deposition chamber shown in FIG.

도 5는 본 발명의 실시예에 따른 증착장치의 제어수순을 단계적으로 나타내는 흐름도.5 is a flow chart showing step by step the control procedure of the deposition apparatus according to the embodiment of the present invention.

도 6a 내지 도 6d는 본 발명의 실시예에 따른 증착방법을 설명하는 도면.
6A-6D illustrate a deposition method in accordance with an embodiment of the present invention.

< 도면의 주요 부분에 대한 부호의 설명 ><Description of Symbols for Main Parts of Drawings>

18,40,54 : 기판 20 : 게이트전극18,40,54 substrate 20 gate electrode

22 : 게이트절연막 24 : 반도체층22 gate insulating film 24 semiconductor layer

26 : 오믹접촉층 28 : 소오스전극26: ohmic contact layer 28: source electrode

30 : 드레인전극 32 : 보호막30: drain electrode 32: protective film

34 : 화소전극 36,44,44A,44B,44C,44D : 증착챔버34: pixel electrode 36,44,44A, 44B, 44C, 44D: deposition chamber

37a : 배출구 37b,64 : 펌프 37a: outlet 37b, 64: pump                 

38,56 : 지지대 39a,58 : 가스 확산기38,56 support 39a, 58 gas diffuser

39b : 가스 주입구 46 : 히팅챔버39b: gas inlet 46: heating chamber

48A,48B : 로드락 챔버 50 : 로봇48A, 48B: Load Lock Chamber 50: Robot

52 : 카세트로더 62 : 반송챔버
52: cassette loader 62: transfer chamber

본 발명은 액정 표시소자의 제조방법에 관한 것으로, 특히 증착장치 내의 증착챔버에서 증착전 질소가스 및 펌핑 동작으로 이물질을 제거시키기 위한 챔버의 증착방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a liquid crystal display device, and more particularly, to a method of depositing a chamber for removing foreign matter by a nitrogen gas and a pumping operation before deposition in a deposition chamber in a deposition apparatus.

액정 표시장치는 소형 및 박형화와 저전력 소모의 장점을 가지며, 노트북 PC, 사무 자동화 기기, 오디오/비디오 기기 등으로 이용되고 있다. 특히, 스위치 소자로서 박막 트랜지스터(Thin Film Transistor : 이하 "TFT"라 함)가 이용되는 액티브 매트릭스 타입의 액정표시장치는 동적인 이미지를 표시하기에 적합하다.Liquid crystal displays have advantages of small size, thinness, and low power consumption, and are used as notebook PCs, office automation devices, and audio / video devices. In particular, an active matrix liquid crystal display device using a thin film transistor (hereinafter referred to as "TFT") as a switch element is suitable for displaying a dynamic image.

액티브 매트릭스 타입의 액정표시장치는 화소들이 게이트라인들과 데이터라인들의 교차부들 각각에 배열되어진 화소매트릭스(Picture Element Matrix 또는 Pixel Matrix)에 텔레비전 신호와 같은 비디오신호에 해당하는 화상을 표시하게 된다. 화소들 각각은 데이터라인으로부터의 데이터신호의 전압레벨에 따라 투과 광량을 조절하는 액정셀을 포함한다. TFT는 게이트라인과 데이터라인들의 교차부에 설치되어 게이트라인으로부터의 스캔신호에 응답하여 액정셀쪽으로 전송될 데이터신호를 절환하게 된다.In an active matrix type liquid crystal display, an image corresponding to a video signal such as a television signal is displayed on a pixel matrix (Picture Element Matrix or Pixel Matrix) in which pixels are arranged at intersections of gate lines and data lines. Each of the pixels includes a liquid crystal cell that adjusts the amount of transmitted light according to the voltage level of the data signal from the data line. The TFT is provided at the intersection of the gate line and the data lines to switch the data signal to be transmitted to the liquid crystal cell in response to the scan signal from the gate line.

도 1을 참조하면, 기판(18) 위에 형성된 TFT가 도시되어 있다. TFT의 제조공정은 다음과 같다. 먼저, 게이트전극(20)과 게이트라인이 Al, Mo, Cr 등의 금속으로 기판(18) 상에 증착된 후, 사진식각법에 의해 패터닝된다. 게이트전극(20)이 형성된 기판(18) 상에는 SiNx 등의 무기막으로 된 게이트절연막(22)이 형성된다. 게이트절연막(22) 위에는 비정질 실리콘(amorphous-Si : 이하 "a-Si"이라 함)으로 된 반도체층(24)과 n+ 이온이 도핑된 a-Si으로 된 오믹접촉층(26)이 연속 증착된다. 오믹접촉층(26)과 게이트절연막(22) 위에는 Mo, Cr 등의 금속으로 된 소오스전극(28)과 드레인전극(30)이 형성된다. 이 소오스전극(28)은 데이터라인과 일체로 패터닝된다. 소오스전극(28)과 드레인전극(30) 사이의 개구부를 통하여 노출된 오믹접촉층(26)은 건식에칭 또는 습식에칭에 의해 제거된다. 그리고 기판(18) 상에 SiNx 또는 SiOx로 된 보호막(32)이 전면 증착되어 TFT를 덮게 된다. 이어서, 보호막(32) 위에는 콘택홀이 형성된다. 이 콘택홀을 통하여 드레인전극(30)에 접속되게끔 인듐-틴-옥사이드(Indium Tin Oxide)로 된 화소전극(34)이 증착된다.Referring to FIG. 1, a TFT formed over a substrate 18 is shown. The manufacturing process of the TFT is as follows. First, the gate electrode 20 and the gate line are deposited on the substrate 18 by a metal such as Al, Mo, Cr, and then patterned by photolithography. On the substrate 18 on which the gate electrode 20 is formed, a gate insulating film 22 made of an inorganic film such as SiNx is formed. On the gate insulating film 22, a semiconductor layer 24 made of amorphous silicon (hereinafter referred to as “a-Si”) and an ohmic contact layer 26 made of a-Si doped with n + ions are successively deposited. . On the ohmic contact layer 26 and the gate insulating film 22, a source electrode 28 and a drain electrode 30 made of metal such as Mo and Cr are formed. This source electrode 28 is patterned integrally with the data line. The ohmic contact layer 26 exposed through the opening between the source electrode 28 and the drain electrode 30 is removed by dry etching or wet etching. Then, a protective film 32 made of SiNx or SiOx is deposited on the substrate 18 to cover the TFT. Subsequently, a contact hole is formed on the protective film 32. The pixel electrode 34 made of indium tin oxide is deposited to be connected to the drain electrode 30 through the contact hole.

TFT 공정 중 게이트절연막(22), 보호막(32), 반도체층(24) 및 오믹접촉층(26) 등은 플라즈마 인핸스드 화학적 기상 증착(Plasma Enhanced Chemical Vapor Deposition : 이하 "PECVD"라 함) 장치를 이용하여 증착되고 있다.During the TFT process, the gate insulating film 22, the protective film 32, the semiconductor layer 24, and the ohmic contact layer 26 may use a plasma enhanced chemical vapor deposition (hereinafter referred to as “PECVD”) device. It is deposited using.

도 2a 및 도 2b는 PECVD 증착챔버를 이용한 종래기술에 따른 증착 공정을 나타내는 도면이다. 2A and 2B show a deposition process according to the prior art using a PECVD deposition chamber.                         

증착 챔버(36)는 인입된 유리기판(40)을 지지할 수 있는 지지대(38)와, 유리기판(40) 상에 혼합 가스를 골고루 확산시키기 위한 가스 확산기(Gas Diffuser, 39a), 가스 확산기(39a)에 가스를 공급하기 위한 가스 주입구(39b), 증착 후 가스 및 부산물을 외부로 배출하기 위한 배출구(37a) 및 펌프(37b)를 구비한다.The deposition chamber 36 includes a support 38 capable of supporting the drawn glass substrate 40, a gas diffuser 39a and a gas diffuser for evenly spreading the mixed gas on the glass substrate 40. And a gas inlet 39b for supplying gas to 39a, an outlet 37a and a pump 37b for discharging the gas and by-products after the deposition to the outside.

이의 구성요소를 통해 증착공정을 설명하면, 먼저 유리기판(40)은 챔버(36) 내로 진입된 후 지지대(38) 위에 놓여진다. 이후 도 2a에서와 같이 SiH4/NH3, SiH4/N2 및 SiH4/N2O 등의 혼합가스가 가스 주입구(39b)를 통하여 챔버(36) 내에 주입된다. 챔버(36) 내의 주입된 혼합 가스를 도 2b에서와 같이 고밀도 플라즈마로 여기시킴으로써 유리기판(40) 상에 SiNx 또는 SiOx로 된 게이트절연막(22), 보호막(32), 반도체층(24) 및 오믹접촉층(26) 등을 형성하게 된다.Referring to the deposition process through its components, the glass substrate 40 is first entered into the chamber 36 and then placed on the support 38. Thereafter, a mixed gas such as SiH 4 / NH 3, SiH 4 / N 2, and SiH 4 / N 2 O is injected into the chamber 36 through the gas inlet 39b as shown in FIG. 2A. By exciting the injected mixed gas in the chamber 36 with a high density plasma as shown in FIG. 2B, the gate insulating film 22, the protective film 32, the semiconductor layer 24 and the ohmic of SiNx or SiOx are formed on the glass substrate 40. The contact layer 26 and the like are formed.

그러나, 이전 공정에서 이물질이 부착된 상태의 유리기판(40)이 챔버(36) 내로 인입되어 증착 공정을 수행할 경우 이물질을 제거할 방법없이 그대로 성막된다. 이러할 경우 유리기판(40)을 세정한 후 건조할 경우 이물질에 의해 증착막이 쉽게 떨어져 제품의 불량율이 증가되고 생산성이 저하되는 문제점이 있다.
However, when the glass substrate 40 in which the foreign matter is attached in the previous process is introduced into the chamber 36 and the deposition process is performed, the glass substrate 40 is formed without any method of removing the foreign matter. In this case, when the glass substrate 40 is cleaned and dried, the deposition film is easily dropped by foreign matters, thereby increasing the defect rate of the product and lowering the productivity.

따라서, 본 발명의 목적은 증착 전 질소가스 및 펌핑 작용을 통하여 기판 상의 이물질을 제거할 수 있도록 한 챔버의 정제 방법을 제공하는 데 있다.
Accordingly, it is an object of the present invention to provide a method for purifying a chamber to remove foreign substances on a substrate through nitrogen gas and a pumping action before deposition.

상기 목적을 달성하기 위하여, 본 발명에 따른 챔버의 증착방법은 무기물질을 증착하기 위한 다수의 챔버들을 구비하는 증착장치를 이용한 증착방법에 있어서, 증착챔버 내에 질소(N2) 가스를 블로잉하는 단계와, 상기 증착챔버로부터 상기 질소(N2) 가스를 펌핑동작을 이용하여 배출시키는 단계와, 증착챔버 내에 주입된 소정의 혼합된 가스를 플라즈마로 여기시켜 성막하는 단계를 포함한다.In order to achieve the above object, the chamber deposition method according to the present invention is a deposition method using a deposition apparatus having a plurality of chambers for depositing an inorganic material, the step of blowing nitrogen (N 2 ) gas in the deposition chamber; And discharging the nitrogen (N 2 ) gas from the deposition chamber by a pumping operation, and exciting and depositing a predetermined mixed gas injected into the deposition chamber into a plasma.

본 발명에서의 챔버 내에 질소(N2) 가스를 블로잉하는 것에 의해 상기 증착챔버 내 이물질을 부유시키는 것을 특징으로 한다.The foreign matter in the deposition chamber is suspended by blowing nitrogen (N 2 ) gas into the chamber of the present invention.

본 발명에서의 질소 가스 블로잉은 3000 밀리토르(mT) 하에 500 밀스(mils) 간격을 두고 7000 sccm 만큼 약 5초동안 수행되는 것을 특징으로 한다.Nitrogen gas blowing in the present invention is characterized in that it is performed for about 5 seconds by 7000 sccm at intervals of 500 mills under 3000 millitorr (mT).

본 발명에서의 펌핑은 0 밀리토르(mT) 하에 1100 밀스(mils)의 간격을 두고 10초간 수행되는 것을 특징으로 한다.Pumping in the present invention is characterized in that it is carried out for 10 seconds at intervals of 1100 mils (mT) under 0 millitorr (mT).

본 발명에서의 질소 가스 블로잉 및 펌핑하는 단계는 1회 이상 수행되어지는 것을 특징으로 한다.Nitrogen gas blowing and pumping in the present invention is characterized in that it is carried out one or more times.

상기 목적 외에 본 발명의 다른 목적 및 특징들은 첨부한 도면들을 참조한 실시예에 대한 설명을 통하여 명백하게 드러나게 될 것이다.Other objects and features of the present invention in addition to the above object will become apparent from the description of the embodiments with reference to the accompanying drawings.

이하, 도 3 및 도 6d를 참조하여 본 발명의 바람직한 실시예에 대하여 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described with reference to FIGS. 3 and 6D.

도 3은 일반적인 PECVD 증착장치를 개략적으로 나타내는 도면이고, 도 4는 도 3의 증착챔버를 나타내는 도면이다.3 is a view schematically showing a general PECVD deposition apparatus, Figure 4 is a view showing the deposition chamber of FIG.

도 3 및 도 4를 참조하면, 증착장치는 기판(54) 상에 무기막 또는 a-Si을 증착시키는 증착챔버들(44A∼44D)과, 증착챔버들(44A∼44D)의 배기관에 직렬로 연결된 펌프들(64)과, 펌프들에 공통으로 연결된 가스세정기(Scrubber)들(도시하지 않음)을 구비한다. 각 챔버들(44A∼44D) 사이에는 반송챔버(62)가 설치되며, 반송챔버(62)의 상/하측에는 기판(54)이 소정 매씩 탑재되는 로드락챔버들(48A,48B)과 기판(54)을 예열시키기 위한 히팅챔버(46)가 설치된다. 로드락챔버들(48A,48B)과 카세트로더(52) 사이에는 로봇(50)이 설치된다. 펌프들(64)은 증착챔버들(44A∼44D)의 증착시 증착챔버들(44A∼44D)의 내부가스를 배기시킴으로써 증착챔버들(44A∼44D)의 내부를 소정 진공압으로 진공상태를 유지하게 된다. 증착시 펌프들(64)에 의해 배출되는 잔류가스는 가스세정기들에 의해 정제되어 옥외에 설치된 2차 세정기들(도시하지 않음)로 배출된다.3 and 4, the deposition apparatus is arranged in series with the deposition chambers 44A to 44D for depositing an inorganic film or a-Si on the substrate 54 and the exhaust pipes of the deposition chambers 44A to 44D. Connected pumps 64 and gas scrubbers (not shown) commonly connected to the pumps. The transfer chamber 62 is installed between the chambers 44A to 44D, and the load lock chambers 48A and 48B on which the substrates 54 are mounted, respectively, on the upper and lower sides of the transfer chamber 62. A heating chamber 46 for preheating 54 is provided. The robot 50 is installed between the load lock chambers 48A and 48B and the cassette loader 52. The pumps 64 maintain a vacuum at a predetermined vacuum pressure inside the deposition chambers 44A to 44D by evacuating the internal gas of the deposition chambers 44A to 44D during the deposition of the deposition chambers 44A to 44D. Done. Residual gas discharged by the pumps 64 during deposition is purified by gas cleaners and discharged to secondary scrubbers (not shown) installed outdoors.

도 5는 본 발명에 따른 PECVD을 이용한 증착방법을 순차적으로 설명하는 도면이다.5 is a view sequentially illustrating a deposition method using PECVD according to the present invention.

도 3 및 도 4와 결부하여 도 5의 증착방법을 설명하면, 먼저 기판(54)을 소정 매씩 탑재시킨다.(S10) 이는 카세트로더(52)에 의해 기판(54)이 투입되면, 기판(54)은 로봇(50)에 의해 제1 및 제2 로드락 챔버(48A,48B)로 이동하여 소정 매씩 탑재된다. 소정 매씩 탑재된 기판(54)들은 로드락 챔버(48A,48B) 내에서 펌핑에 의한 진공 상태로 된 후 반송챔버(62)에 의해 히팅챔버(46) 내로 이동된다.Referring to FIG. 3 and FIG. 4, the deposition method of FIG. 5 will be described. First, the substrate 54 is first mounted by a predetermined sheet. (S10) When the substrate 54 is inserted by the cassette loader 52, the substrate 54 is inserted. ) Moves to the first and second load lock chambers 48A and 48B by the robot 50 and is mounted one by one. Substrates 54 mounted on predetermined sheets are vacuumed by pumping in the load lock chambers 48A and 48B and then moved into the heating chamber 46 by the transfer chamber 62.

성막전 기판을 히팅한다.(S12) 히팅챔버(46) 내로 이동된 기판(54)들은 SiNx 또는 SiOx로 된 게이트절연막, 보호막, 반도체층 및 오믹접촉층 등의 증착막을 성막하기 전에 기판(54)을 가열시킨다.The substrate 54 is heated before the deposition (S12). The substrates 54 moved into the heating chamber 46 are formed before the deposition of a gate insulating film, a protective film, a semiconductor layer and an ohmic contact layer of SiNx or SiOx. Heat it.

기판(54) 상에 증착막을 성막한다.(S14) 증착막은 SiH4/NH3, SiH4/N2 및 SiH4/N2O 등의 혼합가스를 증착챔버(44) 내에 주입시킨 후 고밀도 플라즈마로 여기시킴으로써 형성된다. 증착막이 성막되면, 증착막 상의 정전기를 제거시킨다.A deposited film is formed on the substrate 54. (S14) The deposited film is injected with a mixed gas such as SiH 4 / NH 3, SiH 4 / N 2, and SiH 4 / N 2 O into the deposition chamber 44, and then dense plasma. It is formed by exciting with. When the deposited film is formed, static electricity on the deposited film is removed.

탑재된 기판을 분리한다.(S16) 이는 증착챔버(44) 내의 기판들(54)을 로드락(48A,48B)으로 이동되어 벤팅(Venting)된다. 벤팅은 초기 히팅챔버(46)로 이동하기 전에 진공상태(0 mT)를 대기상태(760 Torr)로 만드는 것이다. 대기상태의 기판들은 분리되어 카세트로더(52)에 의해 다음 공정으로 이동되어진다.The mounted substrate is separated (S16). The substrates 54 in the deposition chamber 44 are moved to the load locks 48A and 48B and vented. Venting is to bring the vacuum (0 mT) to standby (760 Torr) before moving to the initial heating chamber 46. The substrates in the standby state are separated and moved to the next process by the cassette loader 52.

도 6a 내지 도 6d는 본 발명의 실시예에 따른 챔버의 증착방법을 상세히 설명하는 도면이다.6A to 6D are diagrams illustrating a deposition method of a chamber according to an embodiment of the present invention in detail.

도 5와 결부하여 챔버의 증착방법을 설명하면, 먼저 기판(54)은 증착챔버(44) 내로 인입되어 지지대(56) 위에 놓여진다. 증착챔버(44) 내 기판(54)이 인입된 상태에서 가스확산기(58)를 이용하여 도 6a에서와 같이 증착챔버(44) 내에 질소(N2)를 블로잉한다.(S14a) 질소(N2)를 블로잉하면, 증착챔버(44) 내 이물질들은 부유 상태가 된다. 이 때 질소(N2)는 3000 밀리토르(mT)하에서 500 밀스(mils)의 간격을 두고 7000 sccm의 질소 가스를 약 5초동안 블로잉된다.Referring to FIG. 5, the deposition method of the chamber is described. First, the substrate 54 is drawn into the deposition chamber 44 and placed on the support 56. Nitrogen (N 2 ) is blown into the deposition chamber 44 as shown in FIG. 6A using the gas diffuser 58 while the substrate 54 in the deposition chamber 44 is retracted. (S14a) Nitrogen (N 2) B), foreign matters in the deposition chamber 44 are suspended. At this time, nitrogen (N 2 ) is blown at about 7000 sccm of nitrogen gas for about 5 seconds at an interval of 500 milliseconds under 3000 millitorr (mT).

질소(N2)를 블로잉한 후 도 6b에서와 같이 질소(N2) 가스를 펌핑한다.(S14b) 이는 질소(N2) 블로잉을 통해 부유된 이물질을 제거하기 위한 것으로, 펌프(64)에 의해 펌핑하면 배출구(62)를 통하여 질소(N2) 가스 및 이물질 등이 배출된다. 이 때 증착챔버(44) 내의 많은 부유성 이물질이 다 제거되지 않고 남을 수도 있다. 펌핑은 0 밀리토르(mT) 하에서 500 밀스(mils)의 간격을 두고 10초간 수행되어진다.After blowing a nitrogen (N 2) is pumped with nitrogen (N 2) gas as in Figure 6b. (S14b) which in that for removing floating debris through the nitrogen (N 2) blowing, pump 64 When pumped by, the nitrogen (N 2 ) gas and foreign matters are discharged through the discharge port 62. At this time, many floating foreign matters in the deposition chamber 44 may remain without being removed. Pumping is performed for 10 seconds at intervals of 500 milliseconds under 0 millitorr (mT).

이러한 질소(N2) 가스 블로잉과 펌핑은 1회 이상 수행되어 증착챔버(44) 내 이물질을 감소시키도록 한다.This nitrogen (N 2 ) gas blowing and pumping is performed one or more times to reduce the foreign matter in the deposition chamber (44).

진공챔버(44) 내 이물질을 제거한 후 도 6c에서와 같이 증착전 증착챔버(44)를 안정화시킨다.(S14c) 일정압력 하에서 SiH4/NH3, SiH4/N2 및 SiH4/N2O 등의 혼합가스를 가스 확산기(58)를 이용하여 주입시킨다. 이 때 주입된 혼합가스는 증착막을 형성하기 위한 가스로 사용되어진다.After removing the foreign matter in the vacuum chamber 44, the deposition chamber 44 is stabilized before deposition as shown in Fig. 6c. (S14c) SiH 4 / NH 3, SiH 4 / N 2 and SiH 4 / N 2 O under constant pressure. A mixed gas such as this is injected using the gas diffuser 58. The mixed gas injected at this time is used as a gas for forming a deposited film.

플라즈마를 여기하여 증착막(Si3N4)을 형성한다.(S14d) 혼합가스가 주입된 증착챔버(44)에 플라즈마를 여기시키면, 혼합가스는 화학 반응을 통해 기판(54) 상에 증착된다. 또한 잔여의 부유한 이물질이 증착막에 묻히게 된다. 이로써 많은 이물질이 증착막에 부착됨으로 야기되는 제품의 불량을 저감시킬 수 있다.
The plasma is excited to form a deposition film (Si 3 N 4 ). (S14d) When the plasma is excited to the deposition chamber 44 into which the mixed gas is injected, the mixed gas is deposited on the substrate 54 through a chemical reaction. Residual floating foreign matter is also buried in the deposited film. As a result, it is possible to reduce defects in products caused by adhesion of many foreign matters to the deposition film.

상술한 바와 같이, 본 발명에 따른 챔버의 증착방법은 성막후 증착막에 둘러 쌓여 이후 공정에서 잘 제거되지 않는 이물질들을 질소가스 블로잉 및 펌핑 등의 기체의 압력차로 제거함으로써 이물질에 의한 제품의 불량을 줄일 수 있다.As described above, the chamber deposition method according to the present invention is to reduce the defect of the product caused by the foreign matter by removing the foreign matter that is not removed in the subsequent process by enclosed in the deposition film after film formation by the pressure difference of the gas such as nitrogen gas blowing and pumping Can be.

이상 설명한 내용을 통해 당업자라면 본 발명의 기술사상을 일탈하지 아니하는 범위에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허 청구의 범위에 의해 정하여져야만 할 것이다.Those skilled in the art will appreciate that various changes and modifications can be made without departing from the technical spirit of the present invention. Therefore, the technical scope of the present invention should not be limited to the contents described in the detailed description of the specification but should be defined by the claims.

Claims (5)

무기물질을 증착하기 위한 다수의 챔버들을 구비하는 증착장치를 이용한 증착방법에 있어서,In the deposition method using a deposition apparatus having a plurality of chambers for depositing an inorganic material, 증착챔버 내에 질소(N2) 가스를 블로잉하는 단계와,Blowing nitrogen (N 2 ) gas into the deposition chamber; 상기 증착챔버로부터 상기 질소(N2) 가스를 펌핑동작을 이용하여 배출시키는 단계와,Discharging the nitrogen (N 2 ) gas from the deposition chamber by using a pumping operation; 증착챔버 내에 주입된 소정의 혼합된 가스를 플라즈마로 여기시켜 성막하는 단계를 포함하는 것을 특징으로 하는 챔버의 증착방법.And depositing a predetermined mixed gas injected into the deposition chamber by plasma. 제 1 항에 있어서,The method of claim 1, 상기 질소(N2) 가스를 블로잉하는 것에 의해 상기 증착챔버 내 이물질을 부유시키는 것을 특징으로 하는 챔버의 증착방법.And depositing foreign matter in the deposition chamber by blowing the nitrogen (N 2 ) gas. 제 1 항에 있어서,The method of claim 1, 상기 질소 가스의 블로잉은 3000 밀리토르(mT) 하에 500 밀스(mils) 간격을 두고 7000 sccm 만큼 약 5초동안 수행되는 것을 특징으로 하는 챔버의 증착방법.Blowing of the nitrogen gas is performed for about 5 seconds by 7000 sccm at a distance of 500 milliseconds under 3000 millitorr (mT). 제 1 항에 있어서,The method of claim 1, 상기 펌핑은 0 밀리토르(mT) 하에 1100 밀스(mils)의 간격을 두고 10초간 수행되는 것을 특징으로 하는 챔버의 증착방법.The pumping method of the chamber, characterized in that performed for 10 seconds at intervals of 1100 mils (mT) under 0 millitorr (mT). 제 3 항 또는 제 4 항에 있어서,The method according to claim 3 or 4, 상기 질소 가스 블로잉 및 펌핑하는 단계는 1회 이상 수행되어지는 것을 특징으로 하는 챔버의 증착방법.And nitrogen gas blowing and pumping are performed one or more times.
KR1020010085337A 2001-12-26 2001-12-26 Depositing Method of Chamber KR100805390B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010085337A KR100805390B1 (en) 2001-12-26 2001-12-26 Depositing Method of Chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010085337A KR100805390B1 (en) 2001-12-26 2001-12-26 Depositing Method of Chamber

Publications (2)

Publication Number Publication Date
KR20030054903A KR20030054903A (en) 2003-07-02
KR100805390B1 true KR100805390B1 (en) 2008-02-25

Family

ID=32213619

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010085337A KR100805390B1 (en) 2001-12-26 2001-12-26 Depositing Method of Chamber

Country Status (1)

Country Link
KR (1) KR100805390B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987849A (en) * 1995-09-29 1997-03-31 Fujitsu Ltd Production of conjugated polymer film and conjugated organic polymer film
JPH10245677A (en) * 1997-03-06 1998-09-14 Sony Corp Method for continuous deposition of metallic film and metal nitride film
JPH10284474A (en) * 1997-04-02 1998-10-23 Sony Corp Semiconductor manufacturing apparatus
JP2000265259A (en) * 1999-03-15 2000-09-26 Dainippon Printing Co Ltd Transparent conductive film and its production
JP2001068470A (en) * 1999-08-30 2001-03-16 Asm Japan Kk Method of forming silicon nitride film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987849A (en) * 1995-09-29 1997-03-31 Fujitsu Ltd Production of conjugated polymer film and conjugated organic polymer film
JPH10245677A (en) * 1997-03-06 1998-09-14 Sony Corp Method for continuous deposition of metallic film and metal nitride film
JPH10284474A (en) * 1997-04-02 1998-10-23 Sony Corp Semiconductor manufacturing apparatus
JP2000265259A (en) * 1999-03-15 2000-09-26 Dainippon Printing Co Ltd Transparent conductive film and its production
JP2001068470A (en) * 1999-08-30 2001-03-16 Asm Japan Kk Method of forming silicon nitride film

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
일본특개평09-087849호
일본특개평10-245677호
일본특개평10-284474호
일본특개평12-265259호
일본특개평13-068470호

Also Published As

Publication number Publication date
KR20030054903A (en) 2003-07-02

Similar Documents

Publication Publication Date Title
US5589233A (en) Single chamber CVD process for thin film transistors
US6926014B2 (en) Method for cleaning a plasma chamber
US8178398B2 (en) Manufacturing method of display device
US20080230007A1 (en) Method and apparatus for manufacturing active matrix device including top gate type tft
US20100075506A1 (en) Apparatus and method for manufacturing semiconductor element and semiconductor element manufactured by the method
KR100805390B1 (en) Depositing Method of Chamber
JPH0831752A (en) Cleaning and coating of reaction chamber of cvd system
KR100599960B1 (en) Method for manufacturing tft-lcd
JPH07283147A (en) Thin film forming method
CN108336024B (en) Manufacturing method of thin film transistor, manufacturing method of display substrate and display device
JP3471082B2 (en) Coating method for reaction chamber of CVD apparatus
US6860964B2 (en) Etch/strip apparatus integrated with cleaning equipment
KR100983584B1 (en) Method for Forming Pattern
KR100514256B1 (en) Method Of Preventing Particle In Chamber
JP3708940B2 (en) Coating method for reaction chamber of CVD apparatus
WO2022154240A1 (en) Method for cleaning deposition chamber for metal oxide semiconductor material
KR100807794B1 (en) Deposition Device
KR20070011761A (en) Apparatus for manufacturing semiconductor device
JP2002359250A (en) Method for forming thin-film transistor
KR100759213B1 (en) Etchant solvent exhaust apparatus and etchant equipment having thereof
KR100418087B1 (en) Method for deposition passivation of liquid crystal display
KR200266546Y1 (en) Photo apparatus
KR100972292B1 (en) Method for chemical vapor deposition
KR100831292B1 (en) Dry Etching Apparatus
KR20010110903A (en) Chemical vapor deposition equipment having a diffuser

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121228

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131227

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150127

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160128

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170116

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190114

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20200116

Year of fee payment: 13