KR100795171B1 - Manufacturing methods of conductine mc nylon and conductine mc nylon thereof - Google Patents

Manufacturing methods of conductine mc nylon and conductine mc nylon thereof Download PDF

Info

Publication number
KR100795171B1
KR100795171B1 KR1020070035181A KR20070035181A KR100795171B1 KR 100795171 B1 KR100795171 B1 KR 100795171B1 KR 1020070035181 A KR1020070035181 A KR 1020070035181A KR 20070035181 A KR20070035181 A KR 20070035181A KR 100795171 B1 KR100795171 B1 KR 100795171B1
Authority
KR
South Korea
Prior art keywords
monomer
nylon
catalyst
lactam
conductive
Prior art date
Application number
KR1020070035181A
Other languages
Korean (ko)
Inventor
박준서
김태규
정옥희
Original Assignee
주식회사 에스앤엠
정해서
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스앤엠, 정해서 filed Critical 주식회사 에스앤엠
Priority to KR1020070035181A priority Critical patent/KR100795171B1/en
Application granted granted Critical
Publication of KR100795171B1 publication Critical patent/KR100795171B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams
    • C08G69/16Preparatory processes
    • C08G69/18Anionic polymerisation
    • C08G69/20Anionic polymerisation characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams
    • C08G69/16Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyamides (AREA)

Abstract

A method for preparing conductive monomer casting nylons is provided to impart high electroconductivity and good mechanical strength to monomer casting nylons by adding carbon fiber powder having good electroconductivity and excellent dispersibility during an initial polymerization step. A method for preparing conductive monomer casting nylons includes the steps of: preparing a catalyst bath and a co-catalyst bath having the same volume; vacuum-drying a monomer(lactam) to a moisture content of 0.01wt% or less; charging 60-95wt% of the vacuum-dried monomer(lactam) and 5-40wt% of carbon fiber powder into the catalyst bath, thereto adding a catalyst, and stirring the admixture at a revolution speed of 500-5000 rpm for 3 minutes or more; putting the vacuum-dried monomer(lactam) having the same amount as the monomer(lactam) charged into the catalyst bath, a co-catalyst, and a dispersant/antifoaming agent into the co-catalyst bath, and mechanically mixing the admixture; heating a mixing bath to 100-120 °C; charging the monomer(lactam) mixed with a catalyst, and the monomer(lactam) mixed with a co-catalyst into the heated mixing bath, and stirring the mixture homogeneously for 4-7 minutes; heating a mold to 140-180 °C; and putting the homogenized mixture into the heated mold, and polymerizing the mixture.

Description

전도성 MC나일론의 제조방법 및 상기 방법으로 제조된 전도성 MC나일론{Manufacturing Methods of Conductine MC Nylon and Conductine MC Nylon Thereof} Manufacturing Method of Conducting MC Nylon and Conducting MC Nylon Prepared by the Method {Manufacturing Methods of Conductine MC Nylon and Conductine MC Nylon Thereof}

본 발명은 전도성을 갖는 단량체 주조나일론(monomer casting nylon, MC nylon) 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 대전방지 기능을 부여하는 고가의 전도성 물질의 첨가량을 줄이면서도 동등 이상의 대전방지에 필요한 전기전도성을 부여할 수 있는 단량체 주조나일론 및 그 제조방법에 관한 것이다. The present invention relates to a monomer casting nylon (MC nylon) having a conductivity and a method for manufacturing the same, and more particularly, to reduce the amount of expensive conductive materials that impart an antistatic function and to provide an antistatic or equivalent antistatic agent. The present invention relates to a monomer cast nylon capable of imparting electrical conductivity and a method of manufacturing the same.

단량체 주조나일론은 분자구조가 나일론에 속하는 것으로, 염기성 촉매의 존재 하에서 성형 몰드 내에서 음이온 중합이 일어난다는 점에 있어서 일반적인 성형용 나일론과는 큰 차이가 있다. The monomer cast nylon has a molecular structure belonging to nylon, and is different from general molding nylon in that anion polymerization occurs in the molding mold in the presence of a basic catalyst.

MC나일론은 음이온중합기구를 통해서 합성을 하면 축합중합에 비해서 낮은 온도에서 짧은 시간 내에 나일론을 합성을 할 수 있다. 이 나일론은 단량체(monomer)에서부터 주조방법(casting)으로 합성을 한다고 하여서 단량체 주조나일론(monomer casting nylon, 약하여 MC nylon)이라고 부르며, 이 때 합성된 나일론은 축합나일론에 비하여 분자량은 10배 이상 그리고 합성된 나일론은 좁은 분자량분포를 가지 며 높은 결정성을 갖는다는 특징이 있다. MC나일론은 우수한 기계강도와 내열성을 갖고 있어서 제철산업, 자동차·조선산업, 자동화부문 그리고 금속산업 등에 많이 활용되어 왔다. 그러나 다른 플라스틱과 마찬가지로 부도체이므로 전기·전자산업과 운반기계부문에서 사용에 제한이 되어 왔다. 따라서 특히 정전기방지가 요구되는 부문에 MC나일론이 사용이 될 수 있도록 MC나일론에 전기전도성의 부여가 필요하다. When MC nylon is synthesized through an anion polymerization mechanism, nylon can be synthesized in a short time at a lower temperature than condensation polymerization. This nylon is called monomer casting nylon (weak MC nylon) because it is synthesized from monomer to casting method. Nylon has a narrow molecular weight distribution and is characterized by high crystallinity. MC nylon has excellent mechanical strength and heat resistance, and has been widely used in steel industry, automobile and shipbuilding industry, automation sector, and metal industry. However, as with other plastics, it is a nonconductor, so its use has been limited in the electrical and electronics industry and in the transportation machinery sector. Therefore, MC nylon needs to be electrically conductive so that MC nylon can be used in areas where antistatic properties are required.

그러므로, MC 나일론 기존의 물성을 크게 손상시키지 않으면서, 대전방지기능을 위하여 반도체 정도의 전기전도성을 동시에 지닌 MC 나일론의 개발이 끊임없이 요구되고 있다.Therefore, there is a continuous demand for the development of MC nylon having electrical conductivity at the same time as a semiconductor for antistatic function without significantly damaging the existing properties of MC nylon.

이와 같은 요구에 부응하여 그간 여러 가지 방법이 시행되어 왔다. 즉, 전도성MC나일론을 합성하기 위해서 전도성 무기물입자인 전도성카본블랙이나 흑연(graphite)을 첨가하는 방법이 많이 사용되어왔다. In response to these demands, various methods have been implemented. That is, a method of adding conductive carbon black or graphite, which is a conductive inorganic particle, has been used to synthesize conductive MC nylon.

그러나 단량체에 전도성 카본블랙을 혼합시키면 전도성카본이 갖는 특징에 의하여 낮은 함량에도 불구하고 높은 점성을 가진 젤이나 슬러리 상태로 되고 반응에 나쁜 영향을 주어서 적합하지 않았다. However, when the conductive carbon black is mixed with the monomer, the conductive carbon black has a high viscosity in the form of a gel or slurry despite the low content, and adversely affects the reaction.

한편, 미국특허 USP 6,265,529에서는 흑연입자(graphite powder)를 사용을 하는 경우에는 카본블랙과는 달리 소량의 흑연을 단량체와 혼합하였음에도 낮은 점도를 유지하고 합성된 정전기 고분자를 합성을 할 수 있음을 보고하고 있다. 그러나 구상상태(powder shape)의 전도성의 입자를 사용하여 전도성플라스틱을 합성하는 경우에는 플라스틱수지 대비하여 높은 함량(higher loading)을 첨가하여야만 부도체 인 고분자 매트릭스(polymer matrix)에서 전도성 네트워크(conductive network)가 형성이 되어서 전도성이 부여된다. 또 입자상태의 카본블랙이나 흑연입자는 반도체공정 등에서 동작부문에 사용이 되는 경우 마모되는 플라스틱과 함께 입자들이 방출이 되어서 크린룸을 오염시키는 문제가 발생이 되어서 사용을 할 수 없게 된다. 그리고 구상상태의 입자는 제조된 복합재료의 충격강도를 낮게 한다. 이러한 단점을 보완하기 위하여 섬유(fiber)상태의 전도성재료를 사용하는 것이 필요하다. 그러나 탄소섬유에서 섬유의 길이가 길수록 용융락탐과 같은 저점도의 단량체와 혼합을 시키는 경우 엉김(agglomeration) 등으로 분산이 불량하게 되어서 높은 전도성 플라스틱의 합성을 어렵게 한다.Meanwhile, US Pat. No. 6,265,529 reports that when graphite powder is used, unlike carbon black, a small amount of graphite is mixed with a monomer to maintain a low viscosity and synthesize the synthesized electrostatic polymer. have. However, in the case of synthesizing conductive plastic using particles of conductive shape, it is necessary to add higher loading in comparison with plastic resin, so that the conductive network is not formed in the polymer matrix. Formed to impart conductivity. In addition, when the carbon black or graphite particles in the particulate state are used in the operation section in the semiconductor process, the particles are released together with the worn plastics, which causes contamination of the clean room, and thus cannot be used. And the spherical particles lower the impact strength of the manufactured composite material. In order to make up for this drawback, it is necessary to use a conductive material in a fiber state. However, the longer the length of the fiber in the carbon fiber, when it is mixed with a low viscosity monomer such as molten lactam, poor dispersion due to agglomeration (agglomeration), etc. makes it difficult to synthesize a high conductive plastic.

이에, 본 발명에서는 MC나일론 합성시 중합초기단계에 전기전도성이 우수하고 분산성이 매우 좋은 분쇄된 탄소섬유를 첨가시킴으로써 부도체의 MC나이론에 높은 전기전도성과 우수한 기계강도를 갖도록 하였다. Thus, in the present invention, the pulverized carbon fiber having excellent electrical conductivity and very good dispersibility is added to the initial stage of polymerization when the MC nylon is synthesized to have high electrical conductivity and excellent mechanical strength in the MC nylon of the insulator.

본 발명에서는 전도성부여제로 분산성이 우수한 가루형태의 탄소섬유를 사용하였고, 이 탄소섬유의 아스펙트비(aspect ratio, 섬유길이/섬유직경)은 50이하이다. In the present invention, a powdery carbon fiber having excellent dispersibility is used as a conductive imparting agent, and the aspect ratio (fiber length / fiber diameter) of the carbon fiber is 50 or less.

이와 같은 본 발명을 상세하게 설명하면 다음과 같다.The present invention will be described in detail as follows.

본 발명에서는 건조 질소기류 하에서 잘 건조된 단량체를 사용하여 중합을 시켰다. 본 발명에서 MC나일론의 원료인 단량체는 카프로락탐(caprolactam) 또는 라우릴락탐(laurylolactam)을 진공건조 하여서 수분 함량이 0.01중량% 이하가 되도록 한 후에 사용하였다. MC나일론의 제조 공정은 다음과 같다. In the present invention, polymerization was carried out using a monomer well dried under a dry nitrogen stream. In the present invention, the monomer which is a raw material of MC nylon was used after the caprolactam or lauryllacactam was vacuum-dried so that the water content was 0.01 wt% or less. The manufacturing process of MC nylon is as follows.

우선 촉매조와 조촉매조에는 건조된 락탐을 동일한 양을 각각 이송을 시킨다.First, the same amount of dried lactam is transferred to the catalyst tank and the promoter tank, respectively.

촉매조에는 진공 건조된 락탐 60∼95 중량%에 분쇄된 탄소섬유를 5∼40 중량% 투입하고 촉매를 첨가한 후 3분 이상 교반시킨다. 촉매로는 고체 나트륨(Na)을 사용하였으며, 분쇄된 탄소섬유의 입자는 직경이 10∼20㎛이고 아스펙트비가 50 이하이고, 첨가 전에 100℃이상에서 2시간이상 건조하여 수분을 제거한 후 사용하였다. 이때 교반기의 회전속도는 500rpm에서 5000rpm사이로 하고 교반시간은 3분 이상을 하여야 하며 모든 작업은 건조 질소기류 하에서 한다. 만일, 교반시 교반속도가 500rpm 미만이면 분산상태의 변화가 충분하지 않으므로 충분히 빠른 속도로 교반하고 최소 3분 이상 교반을 하여 탄소섬유가 단량체 혼합물 내에 고루 분산이 되도록 한다.In the catalyst tank, 5 to 40% by weight of pulverized carbon fiber is added to 60 to 95% by weight of vacuum-dried lactam, and the catalyst is added, followed by stirring for 3 minutes or more. Solid sodium (Na) was used as a catalyst, and the pulverized carbon fiber particles had a diameter of 10 to 20 µm and an aspect ratio of 50 or less, and were dried at 100 ° C. or more for 2 hours to remove moisture before addition. . At this time, the rotation speed of the stirrer should be between 500rpm and 5000rpm and the stirring time should be more than 3 minutes and all the work should be done under dry nitrogen stream. If the stirring speed is less than 500rpm, the dispersion state is not sufficiently changed, so the stirring is performed at a sufficiently high speed and the stirring is performed for at least 3 minutes so that the carbon fibers are uniformly dispersed in the monomer mixture.

조촉매조에 진공 건조된 락탐에 조촉매와 소포제를 넣고 기계적으로 혼합을 하였다. 이 때 조촉매로는 메틸렌디이소시아네이트(MDI)를 사용하였으며, 분산제와 소포제는 왁스와 실리콘오일(신에츠 실리콘주식회사, KS-603)을 사용하였다.The cocatalyst and the antifoam were put in a vacuum-dried lactam in the cocatalyst tank and mechanically mixed. At this time, methylene diisocyanate (MDI) was used as a promoter, and a dispersant and an antifoaming agent were wax and silicone oil (Shin-Etsu Silicone Co., Ltd., KS-603).

이어 촉매조와 조촉매조에 있는 혼합된 락탐들을 80∼120℃로 가열된 혼합조에 투입하여 4∼7분간 잘 혼합되도록 교반한 후 미리 140∼180℃로 가열된 금형에 투입하여 중합을 시켰다, 이와 같이 140∼180℃로 미리 가열된 금형에 투입하면 수십분 이내에 액상에서 고체상으로 전환이 되면서 중합이 된다. Subsequently, the mixed lactams in the catalyst tank and the co-catalyst tank were added to a mixing tank heated to 80 to 120 ° C., stirred to mix well for 4 to 7 minutes, and then put into a mold heated to 140 to 180 ° C. before polymerization. When it is put into a mold heated to 140 to 180 ℃ in advance, the polymerization is performed while converting from a liquid phase to a solid phase within several ten minutes.

이와 같이 제조된 전도성 MC나일론은 분쇄된 탄소섬유가 MC나일론 내에 균일하게 분산되어서 전도성네트워크를 형성하여 전기전도성을 갖는다. 즉, 전도성 MC 나일론의 전기저항은 부피저항으로 4점 저항측정법(4-point resistivity measurement)으로 측정하면 전기전도도는 10-5에서 101 S/cm에 이른다.The conductive MC nylon prepared as described above has electrical conductivity by forming a conductive network by pulverizing carbon fibers uniformly dispersed in MC nylon. In other words, the electrical resistance of the conductive MC nylon is measured by the four-point resistivity measurement (volume resistance), the electrical conductivity is 10 -5 to 10 1 S / cm.

본 발명에서는 높은 전기전도도를 갖는 MC나이론의 제조를 위하여 분산성이 뛰어난 분쇄된 탄소섬유를 중합과정에서 투입을 함으로 기존의 구상형태의 카본블랙이나 흑연에 비해서 전기전도도와 충격강도가 개선된 전도성 MC나이론을 합성을 할 수 있었다. In the present invention, the conductive MC with improved electrical conductivity and impact strength compared to the conventional spherical carbon black or graphite by the injection of pulverized carbon fiber having excellent dispersibility in the polymerization process for the production of MC nylon having a high electrical conductivity. I could synthesize nylon.

이하, 실시예에 의하여 본 발명을 더욱 상세히 설명하기로 한다. 본 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 본 실시예에 국한되지 않는다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples. This embodiment is only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited to this embodiment.

[실시예] EXAMPLE

120oC로 온도가 조절된 각각 용량 100ℓ의 촉매조와 조촉매조에 잘 건조된 락탐을 30g씩 넣고 각각 질소를 연속적으로 투입하면서 교반시킨다. 촉매조에는 고체 Na 0.06g과 가루 탄소섬유(직경 14 μm, 길이 0.6 mm, aspect ratio 43) 10g을 투입하고 조촉매조에는 메틸렌디이소시아네이트(MDI) 2 ㎖와 실리콘오일 0.5㎖를 넣고 질소분위기에서 잘 교반시킨다. 촉매조와 조촉매조에 있는 혼합된 락탐을 110oC로 유지된 혼합조에 넣고 5분 이하로 교반 혼합을 시킨 후 160℃로 예열이 되어 있는 금형에 넣고 10분간 중합반응을 시켰다. 이와 같이 하여 중합된 전도성 MC나일론의 물성을 평가하는 한편, 다른 일반 MC나일론의 물성과 비교하였다(표 1).30 g of well-dried lactam was added to a catalyst tank and a co-catalyst tank each having a temperature of 120 ° C., and the mixture was stirred while continuously adding nitrogen. Into the catalyst tank, 0.06g of solid Na and 10g of powdered carbon fiber (14 μm in diameter, 0.6mm in length, aspect ratio 43) were added. In the catalyst tank, 2ml of methylene diisocyanate (MDI) and 0.5ml of silicon oil were added. Stir well. The mixed lactam in the catalyst tank and the co-catalyst tank was put in a mixing tank maintained at 110 ° C., stirred and mixed for 5 minutes or less, and then placed in a mold preheated to 160 ° C. for 10 minutes to perform a polymerization reaction. The physical properties of the conductive MC nylon polymerized in this way were evaluated and compared with those of other general MC nylon (Table 1).

표 1 물성치의 비교Table 1 Comparison of Properties

여기서, 인장강도는 만능시험기(Lloyd instruments, LR 50K)를 사용하여, 충격강도는 노치드 아이조드 방법으로 TMI Co.(Model : 43-02, pendulum : 75kg·cm)를 이용하여, ASTM 방법에 준하여 수행하였다. 실험은 최소 10회 이상 반복한 후 최대값과 최소값을 제외하고 평균값을 구하였다. Here, the tensile strength is a universal testing machine (Lloyd instruments, LR 50K), the impact strength is notched Izod method using TMI Co. (Model: 43-02, pendulum: 75kgcm), according to the ASTM method Was performed. After the experiment was repeated at least 10 times, the average value was obtained except the maximum and minimum values.

특성characteristic 측정방법How to measure 단위unit MC나일론MC nylon 카본블랙첨가(7%)MC나일론Carbon black additive (7%) MC nylon 가루탄소섬유첨가(14%) MC나일론Powdered Carbon Fiber (14%) MC Nylon 용융점Melting point ASTM D696ASTM D696 220220 220220 220220 열변형온도 (18.5kg/cm2)Heat Deflection Temperature (18.5kg / cm 2 ) ASTM D648ASTM D648 150150 180180 200200 인장강도The tensile strength ASTM D638MASTM D638M kg/cm2 kg / cm 2 850850 800800 950950 신율Elongation ASTM D638MASTM D638M %% 3030 55 1010 충격강도Impact strength ASTM D256ASTM D256 kgcm/cmkgcm / cm 5.55.5 3.53.5 8.08.0 부피저항Volume resistance ASTM D257ASTM D257 ΩcmΩcm 1014 10 14 107 10 7 102 10 2

상기 비교표에서 보는 바와 같이 본 발명의 MC나일론은 열 변형온도, 인장강도, 신율, 충격강도 및 부피저항 등 모든 부문에서 다른 일반 MC나일론 및 카본블랙첨가(7%) MC나일론보다 우수함을 알 수 있다.As shown in the comparison table, the MC nylon of the present invention can be seen that it is superior to other general MC nylon and carbon black addition (7%) MC nylon in all fields, such as heat deformation temperature, tensile strength, elongation, impact strength and volume resistance. .

그러므로 본 발명은,Therefore, the present invention,

동일한 용적의 촉매조와 조촉매조를 준비하는 단계;Preparing an equal volume of catalyst and promoter tanks;

단량체(락탐)를 수분 함량이 0.01중량% 이하가 되도록 진공건조를 하는 단계;Vacuum drying the monomer (lactam) so that the water content is 0.01% by weight or less;

상기 촉매조에 진공 건조된 단량체(락탐) 60∼95중량%에 분쇄된 탄소섬유를 5∼40 중량% 투입하고 촉매를 첨가한 후 3분 이상 500rpm∼5000rpm의 회전속도로 교반시키는 단계;5 to 40% by weight of the pulverized carbon fiber in 60 to 95% by weight of the vacuum-dried monomer (lactam) in the catalyst tank and adding a catalyst, followed by stirring at a rotational speed of 500 rpm to 5000 rpm for at least 3 minutes;

상기 조촉매조에 촉매조에 투입된 단량체와 동일한 용량의 진공 건조된 단량체, 조촉매 및 분산제·소포제를 넣고 기계적으로 혼합을 하는 단계;Mechanically mixing a vacuum-dried monomer, a promoter, and a dispersant and an antifoaming agent having the same capacity as the monomer introduced into the catalyst tank into the promoter tank;

혼합조를 80∼120℃로 가열하는 단계;Heating the mixing bath at 80 to 120 ° C;

촉매와 혼합된 단량체(락탐)와 조촉매와 혼합된 단량체(락탐)를 상기와 같이 가열된 상기 혼합조에 투입하여 4∼7분간 잘 혼합되도록 교반하는 단계;Adding a monomer (lactam) mixed with a catalyst and a monomer (lactam) mixed with a cocatalyst to the mixed mixing tank heated as described above, and stirring the mixture for 4 to 7 minutes;

금형을 140∼180℃로 가열하는 단계; 및 Heating the mold to 140-180 ° C .; And

상기와 같이 가열된 상기 금형에 잘 교반된 상기 혼합물을 투입하여 중합을 시키는 단계;를 거쳐 이루어지는 것을 특징으로 하는 MC나일론의 제조방법 및 상기 방법으로 제조된 MC나일론을 제공한다. It provides a method of producing MC nylon and MC nylon prepared by the method characterized in that it comprises a; through the step of polymerization by putting the mixture stirred well to the heated mold as described above.

이상에서 상세히 설명한 바와 같이, 본 발명에서는 MC나일론 합성시 중합초기단계에 전기전도성이 높고 분산성이 우수한 가루형태의 탄소섬유(아스펙트비, 50이하) 를 첨가시킴으로써 전도성을 갖도록 하였다. 이와 같이 하면 점도가 매우 높은 고분자 용융물에 전도성 첨가제를 혼합시키는 것에 비해서 효율적이고 경제적인 방법이다.As described in detail above, in the present invention, in the initial stage of the polymerization of MC nylon, high conductivity and dispersibility of powdery carbon fibers (aspect ratio, 50 or less) were added to the conductivity to add conductivity. This is an efficient and economical method compared to mixing conductive additives in a polymer melt having a very high viscosity.

Claims (5)

동일한 용적의 촉매조와 조촉매조를 준비하는 단계;Preparing an equal volume of catalyst and promoter tanks; 단량체(락탐)를 수분 함량이 0.01중량% 이하가 되도록 진공건조를 하는 단계;Vacuum drying the monomer (lactam) so that the water content is 0.01% by weight or less; 상기 촉매조에 진공 건조된 단량체(락탐) 60∼95 중량%에 분쇄된 탄소섬유를 5∼40 중량% 투입하고 촉매를 첨가한 후 3분 이상 500rpm∼5000rpm의 회전속도로 교반시키는 단계;Adding 5-40% by weight of pulverized carbon fibers to 60-95% by weight of the vacuum-dried monomer (lactam) in the catalyst tank, and adding the catalyst and stirring at a rotational speed of 500 rpm to 5000 rpm for at least 3 minutes; 상기 조촉매조에 촉매조에 투입된 단량체(락탐)와 동일한 양의 진공 건조된 단량체(락탐)와 조촉매 및 분산제·소포제를 넣고 기계적으로 혼합을 하는 단계;Mechanically mixing a vacuum-dried monomer (lactam), a promoter, a dispersant, and an antifoaming agent in an amount equal to that of the monomer (lactam) introduced into the catalyst tank; 혼합조를 100∼120℃로 가열하는 단계;Heating the mixing bath to 100 to 120 ° C; 촉매와 혼합된 단량체(락탐)와 조촉매와 혼합된 단량체(락탐)를 상기와 같이 가열된 상기 혼합조에 투입하여 4∼7분간 잘 혼합되도록 교반하는 단계;Adding a monomer (lactam) mixed with a catalyst and a monomer (lactam) mixed with a cocatalyst to the mixed mixing tank heated as described above, and stirring the mixture for 4 to 7 minutes; 금형을 140∼180℃로 가열하는 단계; 및 Heating the mold to 140-180 ° C .; And 상기와 같이 가열된 상기 금형에 잘 교반된 상기 혼합물을 투입하여 중합을 시키는 단계;를 거쳐 이루어지는 것을 특징으로 하는 전도성 MC나일론의 제조방법Method of producing a conductive MC nylon, characterized in that through; the step of polymerization by putting the mixture stirred well to the heated mold as described above 제 1 항에 있어서, The method of claim 1, 상기 단량체는 카프로락탐 또는 라우릴락탐인 것을 특징으로 하는 전도성 MC나일론 의 제조방법The monomer is a method for producing a conductive MC nylon, characterized in that the caprolactam or lauryl lactam 제 1 항에 있어서,The method of claim 1, 상기 분쇄된 탄소섬유의 입자는 직경이 10∼20㎛이고 길이는 아스펙트비(aspect ratio)가 50이하이고 100 ℃이상에서 2시간이상 건조된 것을 특징으로 하는 전도성 MC나일론의 제조방법 Particles of the pulverized carbon fiber has a diameter of 10 ~ 20㎛, the length is an aspect ratio of 50 or less and a method for producing a conductive MC nylon, characterized in that dried for 2 hours at 100 ℃ or more 제 1 항의 방법에 의하여 제조된 것을 특징으로 하는 전도성 MC나일론.Conducting MC nylon, characterized in that produced by the method of claim 1. 제4항에 있어서The method of claim 4 상기 전도성 MC나일론은 단량체 60∼95 중량%와 분쇄된 탄소섬유 5∼40 중량%로 이루어진 것을 특징으로 하는 전도성 MC나일론. The conductive MC nylon is a conductive MC nylon, characterized in that consisting of 60 to 95% by weight monomer and 5 to 40% by weight of pulverized carbon fiber.
KR1020070035181A 2007-04-10 2007-04-10 Manufacturing methods of conductine mc nylon and conductine mc nylon thereof KR100795171B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070035181A KR100795171B1 (en) 2007-04-10 2007-04-10 Manufacturing methods of conductine mc nylon and conductine mc nylon thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070035181A KR100795171B1 (en) 2007-04-10 2007-04-10 Manufacturing methods of conductine mc nylon and conductine mc nylon thereof

Publications (1)

Publication Number Publication Date
KR100795171B1 true KR100795171B1 (en) 2008-01-16

Family

ID=39218247

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070035181A KR100795171B1 (en) 2007-04-10 2007-04-10 Manufacturing methods of conductine mc nylon and conductine mc nylon thereof

Country Status (1)

Country Link
KR (1) KR100795171B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102273847B1 (en) * 2020-11-03 2021-07-07 도우전선 (주) Polymer Composite with Superior Mechanical Strength and Electrical Conductivity, Preparing Method Thereof and Agitator Used for Preparing the Same
WO2022057127A1 (en) * 2020-09-15 2022-03-24 马仁顺 Blank of automobile leaf spring cushion block or pressing block, and manufacturing method for finished product thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2624483B2 (en) 1987-07-24 1997-06-25 日本ポリペンコ株式会社 Antistatic nylon molded product
KR100315148B1 (en) 1999-05-27 2001-11-30 오재동 preparing method of antistatic monomer-cast nylon
JP3419975B2 (en) 1995-10-24 2003-06-23 日本ポリペンコ株式会社 Monomer cast nylon molded from polyamide composition
JP2004182809A (en) 2002-12-02 2004-07-02 Nippon Polypenco Ltd Antistatic monomer-cast nylon molded article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2624483B2 (en) 1987-07-24 1997-06-25 日本ポリペンコ株式会社 Antistatic nylon molded product
JP3419975B2 (en) 1995-10-24 2003-06-23 日本ポリペンコ株式会社 Monomer cast nylon molded from polyamide composition
KR100315148B1 (en) 1999-05-27 2001-11-30 오재동 preparing method of antistatic monomer-cast nylon
JP2004182809A (en) 2002-12-02 2004-07-02 Nippon Polypenco Ltd Antistatic monomer-cast nylon molded article

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022057127A1 (en) * 2020-09-15 2022-03-24 马仁顺 Blank of automobile leaf spring cushion block or pressing block, and manufacturing method for finished product thereof
KR102273847B1 (en) * 2020-11-03 2021-07-07 도우전선 (주) Polymer Composite with Superior Mechanical Strength and Electrical Conductivity, Preparing Method Thereof and Agitator Used for Preparing the Same
WO2022098081A1 (en) * 2020-11-03 2022-05-12 도우전선(주) Polymer composite material having excellent mechanical strength and electrical conductivity, method for manufacturing same, and stirrer used for manufacturing same

Similar Documents

Publication Publication Date Title
EP2520607B1 (en) Method for manufacturing a wholly aromatic polyimide powder having an antistatic or conductive property
US3652409A (en) Bearing compositions
US4755585A (en) Injection moldable polyamide imide from trimellitic anhydride end capped with aniline
CN103012794B (en) Preparation method of polyamide-imide copolymer
EP1699610B1 (en) Blends of high temperature resins molded by compression molding
JPS6322224B2 (en)
CN103788654A (en) Enhanced heat-resisting and antistatic polyphenylene sulfite/poly-p-phenylene oxide (PPS/PPO) alloy material and preparation method thereof
KR100795171B1 (en) Manufacturing methods of conductine mc nylon and conductine mc nylon thereof
KR100315148B1 (en) preparing method of antistatic monomer-cast nylon
EP0325022A2 (en) Rubber-modified phenolic resin composition and method of manufacturing the same
Dou et al. Preparation of carbon black/silicone rubber composites with large-area-homogeneous-low electrical-resistance used as electroplating matrix
CN109627762A (en) A kind of non-dusting brush nanometer conductive powder and preparation method thereof
JPH0251459B2 (en)
CN115433458A (en) Graphene/carbon fiber reinforced nylon 66 composition and preparation method thereof
CN115558236A (en) Antistatic polyether-ether-ketone composite material and preparation method thereof
CN108822489B (en) PEEK conductive material and preparation method thereof
CN115260751A (en) Preparation method of extrusion-grade super-tough nylon
CN109206895B (en) Preparation method of heat-conducting and insulating aromatic nylon alloy material
CN100513120C (en) Blends of high temperature resins suitable for fabrication using powdered metal or compression molding techniques
CN111349331A (en) Mineral-filled PC alloy material with high impact resistance and low warpage and preparation method thereof
CN106928703A (en) Coaseries kaolin/PA66T composites and preparation method thereof
CN110684313A (en) ceramic/ABS super-strong and super-tough composite material and application thereof in electric field
JPS62185748A (en) Wear-resistant molding for use as sliding material
JPH01236270A (en) Resin composition
CN112778757B (en) High-density nylon composite material and preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
A302 Request for accelerated examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130107

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140109

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150108

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160111

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170106

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180108

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190109

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20200108

Year of fee payment: 13