KR100791518B1 - Production and potential of bioactive glass nanofibers as a next-generation biomaterial - Google Patents

Production and potential of bioactive glass nanofibers as a next-generation biomaterial Download PDF

Info

Publication number
KR100791518B1
KR100791518B1 KR1020060131749A KR20060131749A KR100791518B1 KR 100791518 B1 KR100791518 B1 KR 100791518B1 KR 1020060131749 A KR1020060131749 A KR 1020060131749A KR 20060131749 A KR20060131749 A KR 20060131749A KR 100791518 B1 KR100791518 B1 KR 100791518B1
Authority
KR
South Korea
Prior art keywords
bioactive glass
sol
nanofibers
bgnf
glass
Prior art date
Application number
KR1020060131749A
Other languages
Korean (ko)
Inventor
김해원
Original Assignee
단국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 단국대학교 산학협력단 filed Critical 단국대학교 산학협력단
Priority to KR1020060131749A priority Critical patent/KR100791518B1/en
Priority to PCT/KR2007/003453 priority patent/WO2008075824A1/en
Application granted granted Critical
Publication of KR100791518B1 publication Critical patent/KR100791518B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0007Compositions for glass with special properties for biologically-compatible glass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/011Manufacture of glass fibres or filaments starting from a liquid phase reaction process, e.g. through a gel phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30965Reinforcing the prosthesis by embedding particles or fibres during moulding or dipping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00329Glasses, e.g. bioglass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00796Coating or prosthesis-covering structure made of a phosphorus-containing compound, e.g. hydroxy(l)apatite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Vascular Medicine (AREA)
  • Transplantation (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Ceramic Engineering (AREA)
  • Cardiology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Materials For Medical Uses (AREA)
  • Glass Compositions (AREA)

Abstract

A preparation method of bioactive glass nanofiber excellent in bioactivity and osteocyte function is provided to utilize BGNF as a novel bioactive implant material in fields of dentistry and orthopaedic hospital. A preparation method of bioactive glass nanofiber includes the steps of: mixing TEOS, calcium nitrate, and triethyl phosphate with a water-ethanol containing 0.01-1g of 0.1NHCl or 0.1NHNO3 to obtain a sol mixture; and agitating and incubating the sol mixture, adding a mixture of PVB and the sol at a ratio of 1:2-2:1 by weight, injecting 1-10ml of the sol mixture into a syringe and a metal collector for electric radiation under 0.5-2kV/cm DC field strength at the speed of 0.01-1ml/h, and heating the resulting nanofiber non-woven fabric at 600-900deg.C for 1-6 hours.

Description

생체활성 유리 나노섬유(BGNF) 및 그 제조방법{Production and Potential of Bioactive Glass Nanofibers as a Next-generation Biomaterial}Bioactive glass nanofibers (WNF) and manufacturing method thereof {Production and Potential of Bioactive Glass Nanofibers as a Next-generation Biomaterial}

도1 본 발명의 생체활성 유리 나노섬유 제조공정의 도식화1 is a schematic diagram of a bioactive glass nanofiber manufacturing process of the present invention.

도2 본 발명의 전기방사법에 이어서 열 처리에 의하여 생성된 생체활성 유리 나노섬유 (BGNF)의 전자현미경 모폴로지2 Electron microscopy morphology of bioactive glass nanofibers (BGNF) produced by heat treatment following the electrospinning method of the present invention.

도3 본 발명의 생체활성 유리 나노섬유의 생체모방용액 내에서 3일 후 수산화아파타이트 결정이 표면에 침착된 것을 보여주는 전자현미경 모폴로지Figure 3 Electron microscopy morphology showing that the apatite hydroxide crystals deposited on the surface after 3 days in the biomimetic solution of the bioactive glass nanofibers of the present invention

도4 본 발명의 생체활성 유리 나노섬유 위에서의 성체줄기세포가 5일 동안 배양 후 자라는 모습Figure 4 Adult stem cells growing on the bioactive glass nanofibers of the present invention after incubation for 5 days

도5 본 발명의 생체활성 유리 나노섬유 위에서 자란 성체줄기 세포가 5일 및 10일 후 발현하는 Alkaline Phosphatase (ALP) 활성도 그래프로서 골세포로의 분화 능력을 보여줌. 대조군으로는 (comparison group) 같은 조성이지만 나노섬유형태가 아닌 생체활성유리와 나노섬유형태이지만 생체활성조성이 아닌 고분자 나노섬유인 polycaprolactone을 사용하여 비교도표5 is an Alkaline Phosphatase (ALP) activity graph of adult stem cells grown on bioactive glass nanofibers of the present invention after 5 and 10 days, showing their differentiation ability into bone cells. Comparative chart using the same composition (comparison group) but with bioactive glass, not nanofiber form, and polycaprolactone, a polymer nanofiber that is nanofiber but not bioactive composition

본 발명은 치과 및 정형외과 영역에서 새로운 이식용 생체재료로서 다양하게 응용될 수 있는 유리 나노섬유(BGNF) 및 그 제조방법에 관한 것으로 생체활성 유리 나노섬유는 크기가 수십에서 수백나노미터 정도로 이루어졌으며, 생체활성 조성의 솔-젤 유리를 전구체로 사용함으로써, 전기방사법(ES)을 사용하여 제조되는 생체활성 유리 나노섬유(BGNF) 및 그 제조방법에 관한 것이다. The present invention relates to glass nanofibers (BGNF) that can be applied to a variety of new implantable biomaterials in the dental and orthopedic field, and to a method of manufacturing the same, wherein the bioactive glass nanofibers are about tens to hundreds of nanometers in size. The present invention relates to a bioactive glass nanofiber (BGNF) produced by using an electrospinning method (ES) by using sol-gel glass of a bioactive composition as a precursor and a method of manufacturing the same.

지난 수십 년간, 인산칼슘 (수산화아파타이트 및 인산삼칼슘) 및 유리/유리 세라믹을 비롯한 생체활성 물질은 치과 및 정형외과 분야에서 폭 넓은 임상적 승인을 얻어 왔었다. 우선, 이들 중에서 실리카계 생체활성 유리는 생체활성도, 조직적합성 (경조직 및 연조직 모두), 골전도성 및 골유도성으로 인해 유망한 골조직 재생 물질로서 간주 되어 왔다.Over the past decades, bioactive materials, including calcium phosphate (apatite hydroxide and tricalcium phosphate) and glass / glass ceramics, have gained wide clinical approval in the dental and orthopedic fields. First of all, silica-based bioactive glass has been regarded as a promising bone tissue regeneration material due to its bioactivity, histocompatibility (both hard and soft tissue), osteoconductivity and osteoinduction.

그동안 대부분의 연구는 생체 내에서 생체활성 유리의 생체적합성 기전을 이해하고자 하는 것이었으며, 여기서 이들의 생체적합성은 조직과 직접 접촉하는 유리 계면에서 골조직과 비슷한 무기물인 수산화아파타이트 결정의 침착 때문인 것으로 밝혀졌다. 이와 같이 수산화아파타이트 결정이 표면에 침착 되는 데는 유리의 조성 및 그 형상이 매우 중요하다. 특히 나노 단위의 형상을 지닌 경우 매우 빠른 무기물의 침착 기전을 보일 것이며, 이로 인해 월등히 우수한 생체활성을 나타낼 것이다. Most studies have been aimed at understanding the biocompatibility mechanisms of bioactive glasses in vivo, where their biocompatibility is due to the deposition of apatite hydroxide crystals, bone-like minerals at the glass interface in direct contact with the tissue. . As such, the composition and shape of the glass are very important for the deposition of apatite hydroxide crystals on the surface. Particularly in the case of nano-shaped shape, it will show a very fast mechanism of depositing inorganic materials, which will result in excellent bioactivity.

전기방사법을 이용한 나노섬유에 관한 국내 특허로서 국내공개특허공보 공개번호제10-2005-40187호에는 생리활성고분자로부터 얻어진 나노섬유가 이차원구조 또는 삼차원 구조의 네트워크 형태로이루어지며, 생체조직이 삼차원으로 재생되며 동시에 나노섬유를 복원하여 공극률을 향상시켜 세포와 관계되는 표면적을 크게하여 세포가 잘 부착 및 증식되는 조직재생을 유도하기 위한 생체 모방형태의 나노섬유와 마이크로 섬유의 복합지지체 및 그의 제조방법이 기술되어 있으며,As a domestic patent on nanofibers using electrospinning method, Korean Laid-Open Patent Publication No. 10-2005-40187 discloses nanofibers obtained from physiologically active polymers in the form of a two-dimensional or three-dimensional network, and the biological tissue is three-dimensional. At the same time, the composite support of the biomimetic nanofibers and microfibers for regenerating the nanofibers and improving the porosity to increase the surface area related to the cells to induce tissue regeneration to which the cells adhere and proliferate, and a method of manufacturing the same Described,

동 공보 공개번호 제10-2006-38096호에는 전기방사로 제조된 견피브로인 나노섬유로 이루어진 부직포 형태의 골조직 유도 재생용 차폐막 및 그 제조방법이 기재되어 있고, Korean Patent Publication No. 10-2006-38096 discloses a nonwoven fabric-type bone tissue-induced regeneration shielding membrane made of silk fibroin nanofibers prepared by electrospinning, and a method of manufacturing the same.

국내등록특허공보 등록번호 제10-439871호에는 고분자매트릭스 10~90체적%와 직경 10~500나노미터인 생체 분해성 나노섬유 90~10체적%로 구성되며 굽ㅎ힘강력이 290MPa이상이고 굽힘 탄성율이 17GPa 이상인 나노섬유로 강화된 의료기구용 복합재료 및 그의 제조방법이 기술되어 있으며,Korean Patent Publication No. 10-439871 consists of a polymer matrix of 10 to 90% by volume and a biodegradable nanofiber of 90 to 10% by volume of 10 to 500 nanometers in diameter with a bending strength of 290 MPa or more and a bending elastic modulus of It describes a composite material for medical devices reinforced with nanofibers of 17 GPa or more and a manufacturing method thereof.

동 공보 등록번호 제10-564366호에는 나노섬유형 부직포를 이용한 조직재생용 차폐막 및 그의 제조방법이 공개되어 있으나,Korean Patent Publication No. 10-564366 discloses a tissue regeneration shielding membrane using a nanofiber nonwoven fabric and a method of manufacturing the same.

상기와 같은 종래의 기술은 전기방사법을 이용하여 나노섬유를 제조한 기술이지만 오직 고분자만으로 이루어진 조성을 사용함으로서 연조직 재생용도로 쓰일 수 있지만, 뼈나 치아와 같은 경조직 재생물질로는 물리화학적 특성과 생물학적 특성 등에서 생체활성유리와 같은 생체세라믹스에 비해 많은 뒤떨어진다. 특히 골 형성 능력이 탁월하다고 알려진 일반적 조성인 생체세라믹이나 생체활성유리를 이용하여 나노섬유를 제조한 보고는 현재까지 없다고 하겠다.The conventional technique as described above is a technique for producing nanofibers using the electrospinning method, but can be used for soft tissue regeneration by using only the composition of the polymer, but as a hard tissue regeneration material such as bone or tooth, It is much inferior to bioceramic such as bioactive glass. In particular, there have been no reports of producing nanofibers using bioceramic or bioactive glass, which are generally known to be excellent in bone formation ability.

여러 가지 유형의 생체활성 유리 중에서, 졸-겔 계통의 유리가 선진국에서 최근 개발이 되고 있는데, 이들은 용융 유리에 비하여, 일반적으로 용해도 및 생체 활성을 나타내는 범위가 넓을 뿐만 아니라 (더 높은 SiO2 함량까지 생체활성을 나타냄), 골 형성속도도 매우 빠른 것으로 알려져 있다. 많은 연구자들은 골 대체물을 위한 분말, 코팅 및 다공체의 형태로 이들 졸-겔 유리를 사용하여 왔으며, 이들의 우수한 생체 내 골 형성 능력뿐 아니라, 우수한 생체 활성 및 세포 반응에 대한 보고를 해 왔다. 그러나 아직까지 이들을 나노 단위로 형상화한 보고는 없다. 생체 재료를 나노 단위로 형상화함으로서 단백질 및 세포 반응을 포함한 다양한 생물학적 반응을 빠르게 유도할 수 있으며, 결국 조직을 형성하는 능력을 월등히 높일 수 있다고 알려져 있다. Among the various types of bioactive glasses, sol-gel based glass has recently been developed in developed countries, which, in comparison with molten glass, not only has a broad range of solubility and bioactivity, but also (higher SiO 2 content). Bioactivity), bone formation rate is also known to be very fast. Many researchers have used these sol-gel glasses in the form of powders, coatings and porous bodies for bone substitutes, and have reported on their good in vivo bone formation ability as well as their excellent bioactivity and cellular response. However, there are no reports of these in nano form. It is known that by shaping the biomaterial into nano units, it is possible to rapidly induce various biological reactions including protein and cellular reactions, and eventually increase the ability to form tissues.

상기와 같은 문제점을 해결하고자, 본 발명은 생체활성 유리의 졸-겔 전구체를 사용함으로써, 전기방사법(ES)을 사용하여 제조한 생체활성 유리 나노섬유(BGNF) 및 그 제조방법에 관한 것으로 생체활성 유리 나노섬유는 크기가 수십에서 수백나노미터 정도로 이루어졌으며, 뛰어난 생체활성 및 골세포작용이 있어 치과 및 정형외과 영역에서 새로운 이식용 생체재료로서 다양하게 응용될 수 있는 생체활성 유리 나노섬유(BGNF) 및 그 제조방법을 제공하는 것이 본 발명이 이루고자 하는 기술적 과제인 것이다.In order to solve the above problems, the present invention relates to a bioactive glass nanofibers (BGNF) prepared by using an electrospinning method (ES) by using a sol-gel precursor of bioactive glass, and a method of manufacturing the same Glass nanofibers range in size from tens to hundreds of nanometers, and have excellent bioactivity and osteocytic activity, which can be widely used as new biomaterials for implantation in the dental and orthopedic fields (BGNF). And it is a technical problem to be achieved by the present invention to provide a manufacturing method thereof.

상기 목적을 달성하기 위해 본 발명은 생체모방용액 (simulated body fluid: SBF) 내에서 수산화아파타이트를 침착시킬 수 있는 능력인 생체활성을 나타내도록 실리카계 유리로서, SiO2의 기본골격에 CaO (또는 P2O5가 동반될 수 있음)가 첨가되어 SiO2-CaO 또는 SiO2-CaO-P2O5의 기본적 유리 구조로 이루어져 있으며, 그 형태가 나노섬유형인 (통상 직경이 수십~수백 나노미터 크기) 부직포 (nanofiber nonwoven matrix)형상인 생체활성 유리 나노섬유(BGNF)를 제조하기 위하여 생체활성 조성의 유리를 졸(sol)로 만들고 이를 전기방사법을 이용하여 나노섬유의 부직포로 제조하는 생체활성 유리 나노섬유(BGNF) 및 그 제조방법에 관한 것이다. The present invention to attain the object is a biomimetic solution (simulated body fluid: SBF) in a silica based glass to indicate the bioactivity ability to deposit the hydroxide apatite, the basic skeleton of SiO 2 CaO (or P 2 O 5 may be added to form a basic glass structure of SiO 2 -CaO or SiO 2 -CaO-P 2 O 5 , which is nanofibrous (usually tens to hundreds of nanometers in diameter). Bioactive glass nano to make sol of bioactive composition and make it into non-woven fabric of nanofiber using electrospinning method to manufacture bioactive glass nanofiber (BGNF) in the form of nanofiber nonwoven matrix A fiber (BGNF) and a method for producing the same.

생체활성 유리 나노섬유(BGNF) 제조방법은 다음과 같다.Bioactive glass nanofibers (BGNF) manufacturing method is as follows.

유리 전구체로 테트라에틸 오르토실리케이트(TEOS), 질산칼슘, 그리고 트리에틸 포스페이트를 각각 0.7:0.25:0.05의 중량비율로 각각 1-100g 씩 HCl(1 N) 0.01~1g을 포함하는 물-에탄올 혼합물(몰 비 = 1:1) 10~1000ml 에 첨가하여 제조된 졸 혼합물 10~1000ml를 만든다. 이때, 유리전구체들의 물+에탄올에 대한 몰 비는 유리전구체/물+에탄올 = 1.00, 0.50, 0.25 로 다르게 조절하였으며, 이에 따라 최종 나노섬유의 직경을 조절할 수 있음을 보였다. Water-ethanol mixture containing 0.01-1 g of HCl (1 N) at 1-100 g of tetraethyl orthosilicate (TEOS), calcium nitrate, and triethyl phosphate, respectively, at a weight ratio of 0.7: 0.25: 0.05 Molar ratio = 1: 1) to 10-1000 ml to make 10-1000 ml of the prepared sol mixture. At this time, the molar ratio of the glass precursors to water + ethanol was differently adjusted to glass precursor / water + ethanol = 1.00, 0.50, 0.25, it was shown that the diameter of the final nanofibers can be adjusted.

또한 유리 전구체의 조성을 테트라에틸 오르토실리케이트(TEOS): 질산칼슘: 트리에틸 포스페이트 = 0.7:0.25:0.05라는 것은 생체활성을 나타내는 영역을 택한 것이며, 이 조성은 얼마든지 바뀔 수 있다. 단 실리케이트 원료, 칼슘 원료, 그리고 포스페이트 원료가 첨가된 조성을 사용한 것이다.The composition of the glass precursor is tetraethyl orthosilicate (TEOS): calcium nitrate: triethyl phosphate = 0.7: 0.25: 0.05, which is an area showing bioactivity, and the composition can be changed. However, silicate raw material, calcium raw material, and phosphate raw material were used.

본 발명의 또 다른 방법으로는 테트라에틸 오르토실리케이트(TEOS): 질산칼 슘: 트리에틸 포스페이트 = 0.58:0.37:0.05 로 한 조성을 사용하여서도 또한 제조를 하였다. Another method of the present invention was also prepared using a composition of tetraethyl orthosilicate (TEOS): calcium nitrate: triethyl phosphate = 0.58: 0.37: 0.05.

제조된 졸 혼합물 10~1000ml를 6~24 시간 교반한 후 25℃에서 6~24시간 및 추가로 40~70℃에서 12~48시간 동안 숙성한 다음, 숙성된 졸을 전기 방사중의 섬유 생성에 적합하도록 졸의 유동학적 성질을 조절하기 위하여, 10% 폴리비닐-부티랄 (PVB) 10~1000ml 와 졸:PVB = 1:2~2:1의 중량대비로 혼합한 후, 졸 혼합물 1~10ml를 취해 주사기에 넣고, 0.5~2 kV/㎝의 DC 전기장 강도 및 0.01~1 ㎖/h의 주입 속도하에서 금속컬렉터에 주입하여 전기방사시켜 형성된 나노섬유 부직포를 600~900 ℃에서 1~6시간 동안 공기중에서 열 처리하여 유기 공급원을 완전 제거된 생체활성 유리 나노섬유(BGNF)를 제조하였다. 10 to 1000 ml of the prepared sol mixture was stirred for 6 to 24 hours, and then aged at 25 ° C. for 6 to 24 hours and further at 40 to 70 ° C. for 12 to 48 hours, and then the aged sol was used to produce fibers during electrospinning. In order to adjust the rheological properties of the sol to suitably, 10 to 1000 ml of 10% polyvinyl-butyral (PVB) is mixed with the weight of sol: PVB = 1: 2 to 2: 1, and then 1 to 10 ml of the sol mixture. Take the sample into a syringe and inject into a metal collector under a DC electric field strength of 0.5 to 2 kV / cm and an injection rate of 0.01 to 1 ml / h and electrospin the formed nanofiber nonwoven fabric at 600 to 900 ° C. for 1 to 6 hours. Heat treatment in air produced bioactive glass nanofibers (BGNF) from which organic sources were completely removed.

이하 본 발명을 실시예를 참고하여 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to Examples.

실시예1Example 1

유리 전구체로 테트라에틸 오르토실리케이트(TEOS), 질산칼슘, 그리고 트리에틸 포스페이트를 각각 0.7:0.25:0.05의 몰비율로 각각 100g 씩 HCl (1N) 1g을 포함하는 물-에탄올 혼합물 (몰 비 = 1:1) 1000ml 에 첨가하여 제조된 졸 혼합물인 유리전구체를 물+에탄올에 대한 몰 비는 유리전구체/물+에탄올 = 1.00(중량대비)로 제조하고,A water-ethanol mixture comprising 1 g of HCl (1N) in 100 g each of tetraethyl orthosilicate (TEOS), calcium nitrate, and triethyl phosphate at a molar ratio of 0.7: 0.25: 0.05 as the glass precursor (molar ratio = 1: 1) The glass precursor, a sol mixture prepared by adding to 1000 ml, of the molar ratio of water + ethanol was prepared as glass precursor / water + ethanol = 1.00 (by weight),

제조된 유리전구체인 졸 혼합물 1000ml을 24시간 교반한 후 25℃에서 24시간 및 추가로 40~70℃에서 48시간 동안 숙성한 다음, 숙성된 졸을 전기 방사중의 섬유 생성에 적합하도록 졸의 유동학적 성질을 조절하기 위하여, 10 % 폴리비닐-부티랄 (PVB) 1000ml 와 졸혼합물:PVB = 1:2~2:1의 중량대비로 혼합한 후, 졸 혼합물 10ml를 취해 주사기에 넣고, 0.5~2 kV/㎝의 DC 전기장 강도 및 0.01~1 ㎖/h의 주입 속도하에서 금속컬렉터에 주입하여 전기방사시켜 형성된 나노섬유 부직포를 600~900 ℃에서 1~6 시간 동안 공기중에서 열 처리하여 유기 공급원을 완전 제거된 생체활성 유리 나노섬유(BGNF)를 제조하였다.After stirring 1000 ml of the prepared glass precursor sol mixture for 24 hours, the mixture was aged at 25 ° C. for 24 hours and further at 40 to 70 ° C. for 48 hours, and then the sol was flowed so as to be suitable for generating fibers during electrospinning. In order to control the chemical properties, 1000 ml of 10% polyvinyl-butyral (PVB) and a sol mixture: PVB = 1: 2 ~ 2: 1 were mixed by weight, and then 10 ml of the sol mixture was taken into a syringe, and 0.5 ~ The nanofiber nonwoven fabric formed by electrospinning by injection into a metal collector under a DC electric field strength of 2 kV / cm and an injection rate of 0.01-1 ml / h was heat treated in air at 600-900 ° C. for 1-6 hours to provide an organic source. Completely removed bioactive glass nanofibers (BGNF) were prepared.

실시예2Example 2

유리 전구체로 테트라에틸 오르토실리케이트(TEOS), 질산칼슘, 그리고 트리에틸 포스페이트를 각각 0.7:0.25:0.05의 몰비율로 각각 10g 씩 HCl (1N) 0.1g을 포함하는 물-에탄올 혼합물 (몰 비 = 1:1) 100ml 에 첨가하여 제조된 졸 혼합물인 유리전구체를 물+에탄올에 대한 몰 비는 유리전구체/물+에탄올 = 0.50(중량대비)로 제조하고,A water-ethanol mixture comprising 0.1 g of tetraethyl orthosilicate (TEOS), calcium nitrate, and triethyl phosphate at a molar ratio of 0.7: 0.25: 0.05 each of 10 g each of HCl (1N) (molar ratio = 1) : 1) The molar ratio of water precursor to ethanol is obtained by adding the glass precursor, which is a sol mixture added to 100 ml, to glass precursor / water + ethanol = 0.50 (by weight),

제조된 유리전구체인 졸 혼합물 100ml을 12시간 교반한 후 25℃에서 12시간 및 추가로 40~70℃에서 24시간 동안 숙성한 다음, 숙성된 졸을 전기 방사중의 섬유 생성에 적합하도록 졸의 유동학적 성질을 조절하기 위하여, 10% 폴리비닐-부티랄 (PVB) 100ml 와 졸혼합물:PVB = 1:2~2:1의 중량대비로 혼합한 후, 졸 혼합물 5ml를 취해 주사기에 넣고, 0.5~2 kV/㎝의 DC 전기장 강도 및 0.01~1 ㎖/h의 주입 속도하에서 금속컬렉터에 주입하여 전기방사시켜 형성된 나노섬유 부직포를 600~900 ℃에 서 1~6 시간 동안 공기중에서 열 처리하여 유기 공급원을 완전 제거된 생체활성 유리 나노섬유(BGNF)를 제조하였다.100 ml of the prepared glass precursor sol mixture was stirred for 12 hours, and then aged at 25 ° C. for 12 hours and further at 40 to 70 ° C. for 24 hours, and then the flow of the sol was adjusted so that the matured sol was suitable for generating fibers during electrospinning. In order to control the chemical properties, 100 ml of 10% polyvinyl-butyral (PVB) and a sol mixture: PVB = 1: 2 to 2: 1 were mixed by weight, 5 ml of the sol mixture was taken into a syringe, and 0.5 to An organic source was prepared by heat-treating nanofiber nonwoven fabric formed by injecting into a metal collector under a DC electric field strength of 2 kV / cm and an injection rate of 0.01 to 1 ml / h in air at 600 to 900 ° C for 1 to 6 hours. To completely remove the bioactive glass nanofibers (BGNF).

실시예3 Example 3

유리 전구체로 테트라에틸 오르토실리케이트(TEOS), 질산칼슘, 그리고 트리에틸 포스페이트를 각각 0.58:0.37:0.05의 몰비율로 각각 100g 씩 HCl (1N) 1g을 포함하는 물-에탄올 혼합물 (몰 비 = 1:1) 1000ml 에 첨가하여 제조된 졸 혼합물인 유리전구체를 물+에탄올에 대한 몰 비는 유리전구체/물+에탄올 = 1.00(중량대비)로 제조하고,Water-ethanol mixture comprising 1 g of HCl (1N) in 100 g each of tetraethyl orthosilicate (TEOS), calcium nitrate, and triethyl phosphate at a molar ratio of 0.58: 0.37: 0.05 as the glass precursor (molar ratio = 1: 1) The glass precursor, a sol mixture prepared by adding to 1000 ml, of the molar ratio of water + ethanol was prepared as glass precursor / water + ethanol = 1.00 (by weight),

제조된 유리전구체인 졸 혼합물 1000ml을 24 시간 교반한 후 25℃에서 24시간 및 추가로 40~70℃에서 48시간 동안 숙성한 다음, 숙성된 졸을 전기 방사중의 섬유 생성에 적합하도록 졸의 유동학적 성질을 조절하기 위하여, 10 % 폴리비닐-부티랄 (PVB) 1000ml 와 졸혼합물:PVB = 1:2~2:1의 중량대비로 혼합한 후, 졸 혼합물 10ml를 취해 주사기에 넣고, 0.5~2 kV/㎝의 DC 전기장 강도 및 0.01~1 ㎖/h의 주입 속도하에서 금속컬렉터에 주입하여 전기방사시켜 형성된 나노섬유 부직포를 600~900 ℃에서 1~6 시간 동안 공기중에서 열 처리하여 유기 공급원을 완전 제거된 생체활성 유리 나노섬유(BGNF)를 제조하였다.After stirring 1000 ml of the prepared glass precursor sol mixture for 24 hours, the mixture was aged at 25 ° C. for 24 hours and further at 40 to 70 ° C. for 48 hours. In order to control the chemical properties, 1000 ml of 10% polyvinyl-butyral (PVB) and a sol mixture: PVB = 1: 2 ~ 2: 1 were mixed by weight, and then 10 ml of the sol mixture was taken into a syringe, and 0.5 ~ The nanofiber nonwoven fabric formed by electrospinning by injection into a metal collector under a DC electric field strength of 2 kV / cm and an injection rate of 0.01-1 ml / h was heat treated in air at 600-900 ° C. for 1-6 hours to provide an organic source. Completely removed bioactive glass nanofibers (BGNF) were prepared.

실시예4Example 4

유리 전구체로 테트라에틸 오르토실리케이트(TEOS), 질산칼슘, 그리고 트리에틸 포스페이트를 각각 0.58:0.37:0.05의 몰 비율로 각각 10g 씩 HCl (1N) 0.1g을 포함하는 물-에탄올 혼합물 (몰 비 = 1:1) 100ml 에 첨가하여 제조된 졸화합물인 유리전구체를 물+에탄올에 대한 몰 비는 유리전구체/물+에탄올 = 0.50(중량대비)로 제조하고,Water-ethanol mixture comprising 0.1 g of tetraethyl orthosilicate (TEOS), calcium nitrate, and triethyl phosphate in a molar ratio of 0.58: 0.37: 0.05 each 10 g of HCl (1N) (molar ratio = 1) : 1) The molar ratio of water precursor to ethanol was prepared by adding 100 ml of glass compound, which was prepared as glass precursor / water + ethanol = 0.50 (by weight),

제조된 유리전구체인 졸 화합물 100ml을 12시간 교반한 후 25℃에서 12시간 및 추가로 40~70℃에서 24시간 동안 숙성한 다음, 숙성된 졸을 전기 방사중의 섬유 생성에 적합하도록 졸의 유동학적 성질을 조절하기 위하여, 10% 폴리비닐-부티랄 (PVB) 100ml 와 졸화합물:PVB = 1:2~2:1의 중량대비로 혼합한 후, 졸 혼합물 5ml를 취해 주사기에 넣고, 0.5~2 kV/㎝의 DC 전기장 강도 및 0.01~1 ㎖/h의 주입 속도하에서 금속컬렉터에 주입하여 전기방사시켜 형성된 나노섬유 부직포를 600~900℃에서 1~6 시간 동안 공기중에서 열 처리하여 유기 공급원을 완전 제거된 생체활성 유리 나노섬유(BGNF)를 제조하였다. 100 ml of the prepared glass precursor sol compound was stirred for 12 hours, and then aged at 25 ° C. for 12 hours and further at 40 to 70 ° C. for 24 hours, and then the sol was flowed so as to be suitable for producing fibers during electrospinning. To control the chemical properties, 100 ml of 10% polyvinyl-butyral (PVB) and a sol compound: PVB = 1: 2 to 2: 1 were mixed, and 5 ml of the sol mixture was taken into a syringe and 0.5 to The nanofiber nonwoven fabric formed by electrospinning by injecting into a metal collector under a DC electric field strength of 2 kV / cm and an injection rate of 0.01 to 1 ml / h was heat treated in air at 600 to 900 ° C for 1 to 6 hours to provide an organic source. Completely removed bioactive glass nanofibers (BGNF) were prepared.

상기와 같이 제조된 생체활성 유리 나노섬유(BGNF)는 생체모방용액 (simulated body fluid: SBF) 내에서 수산화아파타이트를 침착시킬 수 있는 능력인 생체활성을 나타내도록 실리카계 유리로서, SiO2의 기본골격에 CaO (또는 P2O5가 동반될 수 있음)가 첨가되어 SiO2-CaO 또는 SiO2-CaO-P2O5의 기본적 유리 구조로 이루 어져 있으며, 그 형태가 나노섬유형인 (통상 직경이 수십~수백 나노미터 크기) 부직포 (nanofiber nonwoven matrix)인 물리적 특성을 갖고 있다. Bioactive glass nanofibers (BGNF) prepared as described above is biomimetic solution (simulated body fluid: SBF) in a silica based glass to indicate the ability of biological activity which can be deposited hydroxide apatite, a basic skeleton of SiO 2 CaO (or P 2 O 5 , which may be accompanied) is added to form a basic glass structure of SiO 2 -CaO or SiO 2 -CaO-P 2 O 5 , which is nanofiber-shaped (usually a diameter It has physical properties of tens to hundreds of nanometers) nonfiber nonwoven matrix.

실험예Experimental Example

상기 실시예 1에서 제조된 나노섬유 유리의 모폴로지는 전계 방출 주사 전자 현미 분광법 (FESEM, JSM6330F, JEOL)을 사용하여 물성을 실험하였다. 또한 나노섬유 내부의 특성은 투과 전자 현미경 (TEM, CM20, 필립스)을 사용하여 관찰하였다. The morphology of the nanofiber glass prepared in Example 1 was tested for physical properties using field emission scanning electron microscopy (FESEM, JSM6330F, JEOL). In addition, the properties inside the nanofibers were observed using a transmission electron microscope (TEM, CM20, Philips).

나노복합체의 생체활성 특성은 생체모방용액 (Simulated body fluid:즉, 사람 체 혈장과 유사한 이온 농도를 포함하는 용액)중에서 샘플을 넣고 37℃ 항온수저에 보관 후 나노섬유 표면의 모폴로지 및 구조 변화를 각각 FESEM 및 TEM으로 분석하였다.The bioactive properties of the nanocomposites were measured by placing samples in a simulated body fluid (ie, solutions containing ionic concentrations similar to those of human plasma) and storing them in a 37 ° C thermostatic bath. Analysis was by FESEM and TEM.

부직포형태의 생체활성 유리 나노섬유에 대한 세포 반응을 알기 위해 쥐의 골수에서 추출한 성체줄기세포 (bone marrow stem cells) 세포를 사용하여 평가하였다. 세포를 부직포 위에 5일간 배양 후 부직포상에서 성장한 세포의 모폴로지를 세포 고정 및 탈수 처리후 FESEM를 사용하여 관찰하였다.In order to know the cellular response to non-woven bioactive glass nanofibers, bone marrow stem cells extracted from rat bone marrow were evaluated. After culturing the cells on the nonwoven fabric for 5 days, the morphology of the cells grown on the nonwoven fabric was observed using FESEM after cell fixation and dehydration.

성체줄기세포의 알칼리성 인산분해효소 (ALP) 활성을 측정함으로써 골세포로의 분화를 측정하였다. 5일 및 10일간 배양 후, 세포층을 모으고, 0.1 % Triton X-100로 처리하여 파열시키고, 추가의 냉동-해동 과정을 반복한 후 세포 용해질 분액을 DC 단백질 분석 키트로부터 얻은 총 단백질 함량으로 정량화한 후, ALP 활성은 p-니트로페닐 포스페이트 기질을 사용하여 분석함으로써 ALP 농도를 비색 측정하였 다. Differentiation into osteoblasts was measured by measuring alkaline phosphatase (ALP) activity of adult stem cells. After 5 and 10 days of incubation, the cell layers were collected, ruptured by treatment with 0.1% Triton X-100, and further freeze-thaw procedures were followed to quantify the cell lysate aliquots with the total protein content obtained from the DC protein assay kit. Afterwards, ALP activity was measured colorimetrically by analysis using p-nitrophenyl phosphate substrate.

ALP 분석을 4 개의 반복 샘플 (n = 4)에 실시하고, 데이터를 p < 0.05 및 p < 0.01에서의 통계적 유의성을 지닌 일방향 ANOVA 분석을 사용하여 데이터를 비교하였다. ALP analysis was performed on four replicate samples (n = 4) and data were compared using one-way ANOVA analysis with statistical significance at p <0.05 and p <0.01.

실험결과Experiment result

도 2에서, 전기방사법에 이어서 열 처리에 의하여 생성된 생체활성 유리 나노섬유 (테트라에틸 오르토실리케이트(TEOS): 질산칼슘: 트리에틸 포스페이트 = 0.7:0.25:0.05)(몰대비율)의 일반적인 모폴로지를 도시한다. 대표적으로 1몰의 농도의 유리전구체를 사용한 경우에 대해 나타내었다. 어떠한 비드(bead)도 형성하지 않고 나노 크기의 연속 섬유를 성공적으로 생성된 것을 알 수 있다. 섬유의 평균 직경은 630 ㎚ 로 측정되었다. 열 처리 중에, 나노섬유 모폴로지는 잘 유지되었다.In Figure 2, the general morphology of the bioactive glass nanofibers (tetraethyl orthosilicate (TEOS): calcium nitrate: triethyl phosphate = 0.7: 0.25: 0.05) (molar contrast ratio) produced by electrospinning followed by heat treatment is shown. do. The case where the glass precursor of 1 mol concentration is used typically is shown. It can be seen that nano sized continuous fibers were successfully produced without forming any beads. The average diameter of the fibers was measured at 630 nm. During the heat treatment, the nanofiber morphology was well maintained.

도3에서는 생체활성 유리 나노섬유 (테트라에틸 오르토실리케이트(TEOS): 질산칼슘: 트리에틸 포스페이트 = 0.7:0.25:0.05)(몰 대비율)의 생체모방용액 내에서 3일 후 수산화아파타이트 결정이 표면에 침착된 것을 보여주는 투과전자현미경 모폴로지이다. 나노섬유의 표면에 수나노미터 크기의 결정립들이 균일하게 침착된 것을 알 수 있다. In FIG. 3, apatite hydroxide crystals were formed on the surface after 3 days in a biomimetic solution of bioactive glass nanofibers (tetraethyl orthosilicate (TEOS): calcium nitrate: triethyl phosphate = 0.7: 0.25: 0.05) (molar contrast ratio). Transmission electron microscope morphology showing deposition. It can be seen that grains of nanometer size are uniformly deposited on the surface of the nanofibers.

도3의 내부 그림에서는 투과전자현미경의 회절분석을 한 것으로 이는 생성된 결정립들이 수산화아파타이트의 회절패턴을 나타냄을 잘 보여주고 있다. 즉, 생체활성 유리 나노섬유는 생체모방용액 내에서 매우 빠른 시간내에 골조직의 무기질 상을 형성하는 능력을 보여주었다. 이는 나노섬유의 구조가 나노단위로 이루어짐으로서 외부 용액과 빠른 반응을 하였기 때문이며, 이는 빠른 이온용출과 이들의 재석출로 인한 것이다. 3 shows the diffraction analysis of the transmission electron microscope, which shows that the resulting grains show the diffraction pattern of the apatite hydroxide. That is, the bioactive glass nanofibers showed the ability to form mineral phase of bone tissue in a very fast time in the biomimetic solution. This is because the structure of the nanofibers was made in nano units and reacted quickly with the external solution, which is due to the rapid ion dissolution and reprecipitation thereof.

본 실험결과는 생체활성 유리 나노섬유가 우수한 생체활성능력을 지닌 것을 말해주는 것으로, 일반적으로 골대체물로 쓰이는 생체재료의 생체활성 능력은 생체모방용액 내에서 수산화아파타이트결정을 얼마나 빨리 유도하는가에 달려있다고 알려져 있다. The results of this experiment indicate that the bioactive glass nanofibers have excellent bioactivity, and the bioactivity of biomaterials, which are commonly used as bone substitutes, depends on how quickly the apatite hydroxide crystals are induced in the biomimetic solution. Known.

도 4는 본 발명의 생체활성 유리 나노섬유(테트라에틸 오르토실리케이트(TEOS): 질산칼슘: 트리에틸 포스페이트 = 0.7:0.25:0.05)(몰 대비율) 위에서의 성체줄기세포가 5일 동안 배양 후 자라는 모습을 보여주는 전자현미경 사진이다.FIG. 4 shows adult stem cells growing on the bioactive glass nanofibers of the present invention (tetraethyl orthosilicate (TEOS): calcium nitrate: triethyl phosphate = 0.7: 0.25: 0.05) (molar ratio) after incubation for 5 days. An electron micrograph showing the appearance.

세포들은 나노섬유 가닥에 잘 부착되었으며, 세포질은 잘 퍼져 있으며, 많은 세포들이 증식되어 있음을 알 수 있기에, 생체활성 유리 나노섬유는 세포와 매우 적합한 반응을 하는 것으로 판단할 수 있다. Since the cells adhere well to the nanofiber strands, the cytoplasm is well spread, and many cells are proliferated, the bioactive glass nanofibers can be judged to be very suitable reactions with the cells.

도 5는 생체활성 유리 나노섬유 (테트라에틸 오르토실리케이트(TEOS): 질산칼슘: 트리에틸 포스페이트 = 0.7:0.25:0.05)(몰 대비율) 위에서 자란 성체줄기세포가 10일 후 발현하는 Alkaline Phosphatase (ALP) 활성도를 나타내는 그래프로서 이는 줄기세포가 골세포로의 분화를 잘 하는지에 대한 초기단계의 지표로서, 골 형성 능력을 보여주게 된다.FIG. 5 shows Alkaline Phosphatase (ALP) expressing adult stem cells grown on bioactive glass nanofibers (tetraethyl orthosilicate (TEOS): calcium nitrate: triethyl phosphate = 0.7: 0.25: 0.05) (molar contrast ratio) after 10 days. A graph showing activity, which is an early stage indicator of whether stem cells differentiate into osteocytes, showing bone formation ability.

실험결과는 생체활성유리 나노섬유의 우수성을 알아보면,Experimental results show the superiority of the bioactive glass nanofibers,

1) 같은 조성을 지녔지만 형태가 나노섬유가 아닌 일반적 생체활성유리기판 및1) general bioactive glass substrates having the same composition but not in nanofiber form;

2)형태는 나노섬유지만 조성이 생체활성을 나타내지 않는 대표적 생체고분자인 polycaprolactone(PCL)과 비교하여 나타내었다. 생체활성유리 나노섬유는 대조군들에 비해 월등히 우수한 ALP활성도를 나타냄을 알 수 있었다. 2) The form is shown in comparison with polycaprolactone (PCL), a representative biopolymer whose nanofibers do not show bioactivity in composition. Bioactive glass nanofibers were found to show significantly better ALP activity than the control groups.

특히, 생체고분자인 PCL과의 비교에서 특히 월등히 우수한 결과를 보여주고 있는데, 이는 생체활성 유리의 조성이 골세포의 분화 및 골형성을 위해 매우 적절한 조성이기 때문으로 판단된다. 또한 동일한 조성이지만 나노섬유형태가 아닌 생체활성유리 기판과의 비교에서도 우위를 나타냄으로서 나노섬유의 형태가 골세포로의 분화에 매우 중요하며, 우수한 골형성능력을 지니고 있다는 것을 잘 설명해 주고 있다고 할 수 있다. In particular, it shows a particularly excellent result compared with PCL, a biopolymer, because the composition of the bioactive glass is very suitable for differentiation and bone formation of bone cells. In addition, the same composition, but not in nanofiber form, compared with bioactive glass substrates, the advantage of the nanofiber form is very important for differentiation into osteocytes, and it can be said that it has a good bone formation ability. have.

상기와 같은 본 발명은 The present invention as described above

1) 생체활성을 지닌 유리 조성은 졸-겔 용액과 전기방사장치를 이용하여 나노섬유 형태로 성공적으로 얻을 수 있으며, 1) Bioactive glass compositions can be successfully obtained in the form of nanofibers using sol-gel solutions and electrospinning devices.

2) 나노섬유의 크기는 솔-젤 용액의 농도와 전기나노방사 조건을 제어함으로서 수십 나노에서 수백 나노미터까지 얻을 수 있으며 (실시예 1의 평균직경이 86 nm 섬유), 2) The size of the nanofibers can be obtained from several tens of nanometers to several hundred nanometers by controlling the concentration of the sol-gel solution and the electro-nano spinning conditions (average diameter of Example 1 is 86 nm fiber),

3) 제조된 생체활성 유리 나노섬유 (실시예 1의 평균직경이 86 nm 섬유)는 생체모방용액 내에서 빠른 수산화아파타이트의 표면 침착을 보임으로서 우수한 in vitro 생체활성도를 지님을 확인하였으며, 3) It was confirmed that the prepared bioactive glass nanofibers (average diameter of 86 nm fiber in Example 1) showed excellent in vitro bioactivity by showing surface deposition of fast apatite hydroxide in the biomimetic solution.

4) 생체활성 유리 나노섬유 (실시예 1의 평균직경이 86 nm 섬유) 위에서 성체줄기세포는 잘 부착하고 성장하며, 우수한 골세포로의 분화율(ALP활성도)을 보임으로서 탁월한 골형성 능력을 갖고 있는 바, 4) Adult stem cells adhere well and grow on bioactive glass nanofibers (average diameter of 86 nm fiber), and have excellent bone formation ability by showing differentiation rate (ALP activity) into excellent bone cells. Bar,

이러한 본 발명은 기존에 마이크로 단위의 생체활성유리로 된 이식용 생체재료와는 달리 나노 단위의 형상을 지닌다는 점에서 골대체물질 분야에서 새로운 유형에 대한 길을 연 것으로 판단되며, 향 후 조직재생용 생체재료로서 치과, 정형외과, 성형외과 및 신경외과 분야 등의 쓰임에 큰 역할을 할 것으로 기대된다. The present invention is believed to have opened the way for a new type in the field of bone substitute material, unlike the conventional bio-material for implantation made of micro-active bioactive glass, in the form of nano-units. Biomaterials are expected to play a major role in the fields of dentistry, orthopedics, plastic surgery and neurosurgery.

Claims (3)

생체활성 유리 나노섬유(BGNF)에 있어서, 생체모방용액 (simulated body fluid: SBF) 내에서 수산화아파타이트를 침착시킬 수 있는 능력인 생체활성을 나타내도록 실리카계 유리로서, SiO2의 기본골격에 CaO, 또는 CaO와 P2O5가 함께 첨가되어 SiO2-CaO 또는 SiO2-CaO-P2O5의 기본적 유리 구조로 이루어져 있으며, 그 형태가 나노섬유형인 (통상 직경이 수십~수백 나노미터 크기) 부직포 (nanofiber nonwoven matrix)임을 특징으로 하는 생체활성 유리 나노섬유(BGNF). In the bioactive glass nanofibers (BGNF), biomimetic solution (simulated body fluid: SBF) as a silica-based glass to indicate the ability of biological activity which can be deposited hydroxide apatite in, the basic skeleton of SiO 2 CaO, Or CaO and P 2 O 5 added together to form a basic glass structure of SiO 2 -CaO or SiO 2 -CaO-P 2 O 5 , which is nanofiber-shaped (usually tens to hundreds of nanometers in diameter) Bioactive glass nanofibers (BGNF), characterized in that they are a nonfiber nonwoven matrix. 생체활성 유리 나노섬유 BGNF)의 제조방법에 있어서,In the method of producing bioactive glass nanofibers BGNF), SiO2 원료로 테트라에틸 오르토실리케이트(TEOS), Ca원료로 질산칼슘, P 원료로 트리에틸 포스페이트를 몰수대비 0.58:0.36:0.06 내지 0.7:0.25:0.05 혼합한 원료를 각각 1-100g 씩 사용하여 적정비율로 섞어서,Tetraethyl orthosilicate (TEOS) as SiO2 raw material, calcium nitrate as Ca raw material, and triethyl phosphate as mole number P1 from 0.58: 0.36: 0.06 to 0.7: 0.25: 0.05 By mixing 0.1NHCl, 0.1NHNO3에서 선택된 어느 하나의 화합물 0.01~1g을 포함하는 물-에탄올 혼합물 (몰수 대비 = 100:1~1:100) 10~1000ml 에 첨가하여 제조된 졸 혼합물 10~1000ml를 제조한 후, 10-1000 ml of a sol mixture prepared by adding 10-1000 ml of a water-ethanol mixture (relative to the number of moles = 100: 1-1: 100) containing 0.01-1 g of any one compound selected from 0.1NHCl and 0.1NHNO3 , 제조된 졸 혼합물 10~1000ml를 6~24시간 교반한 후 25℃에서 6~24시간 및 추가로 40~70℃에서 12~48시간 동안 숙성한 다음, 숙성된 졸을 전기 방사중의 섬유 생성에 적합하도록 졸의 유동학적 성질을 조절하기 위하여, 10% 폴리비닐-부티랄 (PVB) 10~1000ml와 졸:PVB = 1:2~2:1의 중량대비로 혼합한 후, 졸 혼합물 1~10ml를 취해 주사기에 넣고, 0.5~2 kV/㎝의 DC 전기장 강도 및 0.01~1 ㎖/h의 주입 속도하에서 금속컬렉터에 주입하여 전기방사시켜 형성된 나노섬유 부직포를 600~900 ℃에서 1~6 시간 동안 공기중에서 열 처리하여 유기 공급원을 완전 제거된 생체활성 유리 나노섬유(BGNF)를 제조하는 방법. 10 to 1000 ml of the prepared sol mixture was stirred for 6 to 24 hours and then aged at 25 ° C. for 6 to 24 hours and further at 40 to 70 ° C. for 12 to 48 hours. In order to suitably adjust the rheological properties of the sol, 10 to 1000 ml of 10% polyvinyl-butyral (PVB) is mixed with the weight of sol: PVB = 1: 2 to 2: 1, and then 1 to 10 ml of the sol mixture. The nanofiber nonwoven fabric formed by injecting into a metal collector under a DC electric field strength of 0.5 to 2 kV / cm and an injection rate of 0.01 to 1 ml / h was electrospun for 1 to 6 hours at 600 to 900 ° C. A method of producing bioactive glass nanofibers (BGNF) in which the organic source is completely removed by heat treatment in air. 청구항 2에 있어서 유리의 초기 전구체는 SiO2 원료로서 트리메틸 오크토실리케이트 (Trimethyl orthosilicate : TMOS), CaO 원료로서 염화칼슘 (CaCl2), 수산화칼슘 (Ca(OH)2), 칼슘아세테이트 (calcium acetate), 칼슘-알콕사이드 계통 (calcium alkoxides)에서 선택된 어느 하나의 화합물과, P2O5 원료로서 인산 (H3PO4), P2O5에서 중에서 선택된 어느 하나의 화합물임을 특징으로 하는 생체활성 유리 나노섬유(BGNF)를 제조하는 방법. The initial precursor of glass according to claim 2 is trimethyl orthosilicate (TMOS) as SiO2 raw material, calcium chloride (CaCl2), calcium hydroxide (Ca (OH) 2), calcium acetate (calcium acetate), calcium-alkoxide as CaO raw material A method for producing a bioactive glass nanofiber (BGNF), characterized in that any one selected from the group (calcium alkoxides), and any one selected from phosphoric acid (H3PO4), P2O5 as a P2O5 raw material.
KR1020060131749A 2006-12-21 2006-12-21 Production and potential of bioactive glass nanofibers as a next-generation biomaterial KR100791518B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020060131749A KR100791518B1 (en) 2006-12-21 2006-12-21 Production and potential of bioactive glass nanofibers as a next-generation biomaterial
PCT/KR2007/003453 WO2008075824A1 (en) 2006-12-21 2007-07-16 Bioactive glass nanofibers and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060131749A KR100791518B1 (en) 2006-12-21 2006-12-21 Production and potential of bioactive glass nanofibers as a next-generation biomaterial

Publications (1)

Publication Number Publication Date
KR100791518B1 true KR100791518B1 (en) 2008-01-04

Family

ID=39216656

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060131749A KR100791518B1 (en) 2006-12-21 2006-12-21 Production and potential of bioactive glass nanofibers as a next-generation biomaterial

Country Status (2)

Country Link
KR (1) KR100791518B1 (en)
WO (1) WO2008075824A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100853816B1 (en) 2007-02-23 2008-08-22 재단법인서울대학교산학협력재단 Method for preparing membrane type bioactive non-woven ceramic fabrics
KR101142853B1 (en) 2010-05-03 2012-05-08 한국과학기술연구원 Ultrafine polymeric fiber-based filter with improved heat resistance and preparation method thereof
KR101854163B1 (en) * 2011-07-15 2018-05-04 단국대학교 산학협력단 Bioactive glass nanofiber having modified surface and a preparation method thereof
CN114163134A (en) * 2021-12-30 2022-03-11 西安交通大学 Bioactive glass and preparation method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2013142684A (en) 2011-02-22 2015-03-27 Реджентс Оф Юниверсити Оф Миннесота (Сша) SILICON DIOXIDE Encapsulated Biomaterials
US9534236B2 (en) 2013-03-08 2017-01-03 Regents Of The University Of Minnesota Membranes for wastewater-generated energy and gas
WO2014182799A1 (en) * 2013-05-07 2014-11-13 Tong Ho-Wang Bioactive substance-containing nanofibers and uses thereof
US10035719B2 (en) 2014-10-15 2018-07-31 Regents Of The University Of Minnesota System and membrane for wastewater-generated energy and gas
CN106565080A (en) * 2016-10-17 2017-04-19 浙江大学 Bioglass fiber and method for loading and releasing protein
CN106565081A (en) * 2016-10-17 2017-04-19 浙江大学 Near infrared response biological glass fiber, and method for monitoring mineralization degree thereof
CN113481630B (en) * 2021-08-12 2023-04-14 浙江理工大学绍兴柯桥研究院有限公司 Conductive glass fiber and preparation method thereof
CN114293283B (en) * 2021-12-15 2024-01-02 五邑大学 Composite inorganic nanofiber, preparation method thereof and application thereof in photo-thermal conversion film
CN115748239B (en) * 2022-12-08 2024-05-14 山东大学 Preparation method of high-strength and flexible hydroxyapatite-coated silica composite fiber membrane

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6517857B2 (en) 1998-12-11 2003-02-11 Ylaenen Heimo Bioactive product and its use

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61135671A (en) * 1984-12-04 1986-06-23 三菱鉱業セメント株式会社 Implant material
US6993406B1 (en) * 2003-04-24 2006-01-31 Sandia Corporation Method for making a bio-compatible scaffold

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6517857B2 (en) 1998-12-11 2003-02-11 Ylaenen Heimo Bioactive product and its use

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100853816B1 (en) 2007-02-23 2008-08-22 재단법인서울대학교산학협력재단 Method for preparing membrane type bioactive non-woven ceramic fabrics
KR101142853B1 (en) 2010-05-03 2012-05-08 한국과학기술연구원 Ultrafine polymeric fiber-based filter with improved heat resistance and preparation method thereof
KR101854163B1 (en) * 2011-07-15 2018-05-04 단국대학교 산학협력단 Bioactive glass nanofiber having modified surface and a preparation method thereof
CN114163134A (en) * 2021-12-30 2022-03-11 西安交通大学 Bioactive glass and preparation method thereof
CN114163134B (en) * 2021-12-30 2022-12-27 西安交通大学 Bioactive glass and preparation method thereof

Also Published As

Publication number Publication date
WO2008075824A1 (en) 2008-06-26

Similar Documents

Publication Publication Date Title
KR100791518B1 (en) Production and potential of bioactive glass nanofibers as a next-generation biomaterial
Amudha et al. Enhanced mechanical and biocompatible properties of strontium ions doped mesoporous bioactive glass
Kim et al. Production and potential of bioactive glass nanofibers as a next‐generation biomaterial
Zhang et al. Amorphous calcium phosphate, hydroxyapatite and poly (D, L-lactic acid) composite nanofibers: electrospinning preparation, mineralization and in vivo bone defect repair
Wang et al. Experimental and simulation studies of strontium/zinc-codoped hydroxyapatite porous scaffolds with excellent osteoinductivity and antibacterial activity
Salinas et al. Bioactive ceramics: from bone grafts to tissue engineering
Dejob et al. Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review
Gandolfi et al. Highly porous polycaprolactone scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for bone regeneration
Salinas et al. Evolution of ceramics with medical applications
KR100791512B1 (en) Bioactive glass nanofiber-collagen nanocomposite as a novel bone regeneration matrix
Daraei Production and characterization of PCL (Polycaprolactone) coated TCP/nanoBG composite scaffolds by sponge foam method for orthopedic applications
CN103585677B (en) A kind of HA micro-nano whisker reinforcement calcium phosphate ceramic material and its preparation method and application
KR101271721B1 (en) The coated scaffold for regeneration of hard tissue with hydroxyapatite and/or collagen containing mesoporous bioactive glass and the method thereof
CN108404203B (en) Preparation method of reduced graphene oxide/biological glass nanofiber scaffold
Chen et al. Nanosized HCA-coated borate bioactive glass with improved wound healing effects on rodent model
Zhu et al. Ultrafast bone-like apatite formation on highly porous poly (l-lactic acid)-hydroxyapatite fibres
CN114452439B (en) Hydroxyapatite/whitlockite bioactive ceramic scaffold consisting of bionic natural bone minerals and preparation method thereof
Zheng et al. Bioceramic fibrous scaffolds built with calcium silicate/hydroxyapatite nanofibers showing advantages for bone regeneration
Das et al. Porous SiO2 nanofiber grafted novel bioactive glass–ceramic coating: A structural scaffold for uniform apatite precipitation and oriented cell proliferation on inert implant
Shams et al. Electrospun poly-l-lactic acid nanofibers decorated with melt-derived S53P4 bioactive glass nanoparticles: the effect of nanoparticles on proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells in vitro
FU et al. Zirconia incorporation in 3D printed β-Ca2SiO4 scaffolds on their physicochemical and biological property
Seol et al. Osteoconductive and degradable electrospun nonwoven poly (ε‐caprolactone)/CaO‐SiO2 gel composite fabric
TW201417848A (en) Porous bone filling material
KR101047897B1 (en) Protein-bound bioactive glass nanofibers and preparation method thereof
Rama et al. Influence of silk fibroin on the preparation of nanofibrous scaffolds for the effective use in osteoregenerative applications

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111031

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20121025

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee