KR100785638B1 - Cu 환원 반응을 이용한 저 저항 SWNT 버키페이퍼 및 이의 제조방법과 복합재료 - Google Patents

Cu 환원 반응을 이용한 저 저항 SWNT 버키페이퍼 및 이의 제조방법과 복합재료 Download PDF

Info

Publication number
KR100785638B1
KR100785638B1 KR1020060002595A KR20060002595A KR100785638B1 KR 100785638 B1 KR100785638 B1 KR 100785638B1 KR 1020060002595 A KR1020060002595 A KR 1020060002595A KR 20060002595 A KR20060002595 A KR 20060002595A KR 100785638 B1 KR100785638 B1 KR 100785638B1
Authority
KR
South Korea
Prior art keywords
swnt
bucky paper
reduction reaction
resistance
bucky
Prior art date
Application number
KR1020060002595A
Other languages
English (en)
Other versions
KR20070074713A (ko
Inventor
김영진
최재붕
백승현
오영석
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to KR1020060002595A priority Critical patent/KR100785638B1/ko
Publication of KR20070074713A publication Critical patent/KR20070074713A/ko
Application granted granted Critical
Publication of KR100785638B1 publication Critical patent/KR100785638B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 Cu 환원 반응을 이용한 저 저항 SWNT 버키페이퍼 제조방법에 관한 것으로서, SWNT 버키페이퍼의 전기 저항을 낮추기 위해, SWNT 버키페이퍼에 대해 구리염 용액 안에서 전기 분해를 실시하여 SWNT 버키페이퍼에 Cu 분자를 결합시킨다. 이와 같이, 비교적 간단한 방법으로 SWNT 버키페이퍼의 전기 저항 특성을 향상시킬 수 있으므로 비용 절감 및 대량 생산이 가능할 뿐만 아니라, 미세 인공 근육 및 초 저항 복합재료에 적용이 가능하다.
환원 반응, 버키페이퍼, SWNT

Description

Cu 환원 반응을 이용한 저 저항 SWNT 버키페이퍼 및 이의 제조방법과 복합재료{Method for Single walled carbon nanotube Bucky Paper by Cu reduction reaction}
도 1은 본 발명의 일실시예에 의한 SWNT 버키페이퍼에 구리를 환원시키는 방법의 개념도,
도 2는 환원 공정 시간에 따른 SWNT 버키페이퍼의 표면저항의 변화를 나타낸 그래프이다.
< 도면의 주요 부분에 대한 부호의 설명 >
1: 초산동(Copper Acetate)
2: SWNT 버키페이퍼
본 발명은 저 저항 SWNT 버키페이퍼 제조방법에 관한 것으로, 전기 분해 방법에 의해 환원된 Cu를 SWNT 버키페이퍼(Single walled carbon nanotube buckypaper)와 결합시켜 SWNT 버키페이퍼의 저항을 감소시키는 Cu 환원 반응을 이용한 저 저항 SWNT 버키페이퍼 및 이의 제조방법과 복합재료에 관한 것이다.
나노미터 크기의 극미세 영역에 관한 관심이 증가하면서, 특히 탄소나노튜브 (Carbon Nanotube; CNT)에 대한 연구 또한 활발해지고 있다.
탄소나노튜브는 하나의 탄소가 다른 탄소원자와 육각형 벌집무늬로 결합되어 튜브형태를 이루고 있는 물질로서, 그 직경이 나노미터 수준으로 극히 작은 영역의 물질이다. 탄소나노튜브는 외형상 독특한 모양을 가지고 있고, 그 구조에 따라 금속과 같은 도체의 성질을 가지기도 하고, 반도체와 같은 성질을 가지기도 한다.
또한, 구조적으로 안정하고 강철보다 가벼우면서도 강한 인장력을 갖고 있기 때문에, 차세대 신소재로서 각광을 받고 있다.
상기 탄소나노튜브는 벽을 이루고 있는 결합 수에 따라 하나의 벽으로만 구성된 단일벽 탄소나노튜브(single walled carbon nanotube; SWNT)와 둘 이상의 벽으로 구성된 다중벽 탄소나노튜브(multiwalled carbon nanotube; MWNT)로 구분된다. 다중벽 탄소나노튜브에 비해 단일벽 탄소나노튜브는 좀 더 유연성이 있다.
탄소나노튜브는 열 및 전기 전도도가 매우 높은 특성을 갖고, 다른 화합물과 반응을 잘 하지 않는 매우 안정적인 화학적 특성을 갖는다. 특히 SWNT는 강철보다 10-100배 견고하고 물리적인 충격에 강하다.
따라서, 상기와 같은 탄소나노튜브의 높은 전기 전도도의 특성을 인공 근육 및 초저항 재료로서 이용하는 경우 관련 분야에서 큰 이점이 될 수 있을 것이다.
최근 SWNT 버키페이퍼의 전기저항을 낮추기 위해 HNO3나 H2SO4와 같은 산을 이용하여 SWNT를 고르게 분산하고 기능화시키는 방법이 제안되고 있다.
하지만, 이 과정에서 SWNT에 많은 결함이 유발되고, 또한 제조시 펌프(Pump) 를 이용한 여과(Filtration) 과정을 거치게 됨에 따라 SWNT 버키페이퍼에 많은 기공이 유발되는 문제점이 있었다. 이러한 문제점으로 인해 각각의 SWNT에 대한 전기적 특성이 떨어질 뿐만 아니라, SWNT들 사이의 접촉저항 또한 커지게 되는 결함이 발생하게 되었다.
따라서, 본 발명의 목적은 상기한 종래 기술의 문제점을 해결하기 위한 것으로서, 전도성이 뛰어난 Cu 분자를 SWNT 버키페이퍼의 기공 및 SWNT 결함 부위에 대치시켜 전기 저항 특성을 향상시킨 저 저항 SWNT Bucky Paper 제조방법을 제공하는데 있다.
상기한 본 발명의 목적을 달성하기 위한 바람직한 일실시예로서, Cu 환원 반응을 이용한 저 저항 SWNT 버키페이퍼 제조방법은 SWNT 버키페이퍼에 대한 Cu 환원 공정을 통해 SWNT 버키페이퍼에 Cu 분자를 결합시켜 전기 저항을 낮추는 것을 특징으로 한다.
본 발명에 따른 바람직한 다른 실시예로서, 상기 Cu 환원 공정은 구리염 용액에 전기 분해를 실시하여 이루어지는 것을 특징으로 한다.
본 발명에 따른 바람직한 또다른 실시예로서, 상기 전기 분해는, 구리염을 준비하는 단계; 상기 구리염에 양극에 연결된 전도체 및 음극에 연결된 SWNT 버키페이퍼를 침지시키는 단계; 및 상기 양극 및 음극에 전압을 인가하는 단계;를 포함하는 것을 특징으로 한다.
본 발명에 따른 바람직한 또다른 실시예로서, 상기 구리염은 초산동(Copper Acetate)인 것을 특징으로 한다.
본 발명에 따른 바람직한 또다른 실시예로서, 상기 SWNT는 HipCo(High Pressure Carbon Monoxide) 방법으로 제작된 탄소나노튜브인 것을 특징으로 한다.
또한 본 발명은 상기와 같은 방법으로 제작된 SWNT 버키페이퍼 또는 SWNT 복합재료를 포함한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 대해 더욱 상세하게 설명한다.
도 1은 본 발명의 일실시예에 의한 SWNT 버키페이퍼에 구리(Copper)가 환원되어 결합되는 방법의 개념도이다.
도 1에 도시된 바와 같이, 본 발명에 따른 구리 분자가 결합된 SWNT 버키페이퍼 제조는 전기분해법을 이용하는 것으로, 구리염 용액(1)에 SWNT 버키페이퍼(2)를 침지하고 음극과 양극에 전기를 가하여 SWNT 버키페이퍼(2)에 구리(Copper)를 결합시켜 제조하게 된다. 전기 분해에 관한 일반적인 이론이 본 발명에 적용된다.
본 발명의 SWNT는 HipCo(High Pressure Carbon Monoxide) 방법으로 제작된 탄소나노튜브인 것이 바람직하다. 탄소나노튜브 제작에 사용되는 HipCo 방법은 공지의 방법으로서 본 출원서에서는 상세한 설명을 생략한다.
도 1을 참고하면, 기존의 산처리를 이용하여 제조된 SWNT 버키페이퍼의 전기저항 특성을 더욱 향상시키기 위해 SWNT가 침지된 구리염 용액 내에 전압을 가하여 SWNT 버키페이퍼(2)에 구리를 환원시켜 Cu-SWNT를 제조하게 된다. 보다 구체적인 공정은 다음과 같다.
사용되는 구리염 용액의 농도 및 인가되는 전압의 크기와 반응 시간은 제조되는 버키페이퍼의 순도 및 양 등이 고려되어 사전에 결정된다.
먼저 SWNT 버키페이퍼에 전도성이 뛰어난 구리 분자를 결합시키기 위해 전해질 용액으로서 구리염 용액을 미리결정된 농도로 제조한다. 이 때 구리염의 농도가 0.1M 보다 너무 큰 경우 다음 환원 반응 후 건조과정에서 환원되지 않은 구리염 용액이 엉켜 붙어 버키페이퍼의 전기 저항이 커지는 문제점이 발생할 수 있다. 따라서, 제조하고자 하는 버키페이퍼에 적절한 농도를 미리 결정하여야 하며, 본 발명의 경우 구리염의 농도는 0.1M 정도가 바람직하다.
SWNT 버키페이퍼(2)를 (-)극에 연결하고 나머지 (+)극은 전기가 잘 통하는 전도체에 연결하여 제조된 구리염 용액(1)에 침지시킨다.
다음으로 양 극에 일정 전압을 일정 시간 동안 인가한다. 인가되는 전압의 크기 및 반응 시간은 산처리를 통해 (-)극을 띠고 있는 SWNT 버키페이퍼가 (+)극으로 끌려가 버키페이퍼 자체가 분해되지 않을 정도의 전압 및 반응 시간이 적절하며, 본 발명에서는 약 5V 이하의 전압에서 약 20~30분 정도가 바람직하다.
시간이 경과할 수록 (-)극이 연결된 SWNT 버키페이퍼(2)에는 수용액 내의 구리 원자가 환원되면서 버키페이퍼에 결합하게 된다.
반응이 모두 완료되면 Cu-SWNT 버키페이퍼를 건조한다.
본 발명자는 상기와 같은 방법으로 제조되는 Cu-SWNT 버키페이퍼의 표면 저항 테스트를 다음과 같이 샘플에 대해 수행하였다.
1) SWNT 버키페이퍼 제조
- HNO3과 H2SO4이 3:1 비율로 이뤄진 용액에 HipCo(High Pressure Carbon Monoxide) SWNT를 섞는다.
- HipCo SWNT용액을 40∼60℃에서 3시간∼5시간 30분 정도 40∼70kHz 초음파로 분산 및 기능화 시킨다.
- DI Water로 용액을 중화시키면서 필터링(Filtering) 시킨다.
- 필터 페이퍼(Filter Paper) 위에 형성된 SWNT 버키페이퍼를 핫 플레이트(Hot Plate)에서 약 30∼50℃로 4∼6시간 정도 건조시킨다.
- 필터 페이퍼(Filter Paper)와 SWNT 버키페이퍼를 분리시킨다.
2) Cu 환원 공정을 통한 Cu분자 결합
- 초산동(Copper Acetate; ((C2H3O2)2Cu·H2O)) 0.1M 용액을 제조한다.
- (-)극에는 SWNT 버키페이퍼를 연결하고, 나머지 (+)극에는 전도체를 연결하여 상기 용액에 담가 놓는다.
- 양 극에 일정 전압을 일정 시간 동안 걸어준다.
- (-)극이 연결된 SWNT 버키페이퍼에서 다음과 같은 과정에 의해 구리가 환원되면서 SWNT 버키페이퍼와 결합한다:
Cu2 + + 2e- → Cu
- Cu-SWNT 버키페이퍼를 건조한다.
상기 과정을 토대로 제조된 Cu-SWNT 버키페이퍼 샘플의 표면 저항의 변화를 관찰한 결과가 도 2에 잘 도시되어 있다. 여기서, 저항 측정에는 표면 저항 측정기(CMT-SR1000N)를 사용하였다.
도 2에 도시된 바와 같이, 초산동 용액 안에서 Cu가 환원되는 반응 시간이 길수록 버키페이퍼의 표면저항값이 감소하여 0에 가까워지고 있음을 알 수 있다.
이는, 기존의 산처리를 이용하여 제조됨으로써 형성된 결함 및 기공에 의해 불량해진 전기적 저항 특성을 갖는 SWNT 버키페이퍼가 본 발명에 따라 Cu 분자가 SWNT의 결함 부위 및 기공에 위치됨으로써 전기적 저항 특성이 양호하고 전도성이 뛰어난 SWNT 버키페이퍼로 제조되었기 때문이다.
전술한 바와 같이, 본 발명에 따른 Cu 환원 반응을 이용한 저 저항 SWNT 버키페이퍼 제조방법에 의해 제조된 Cu-SWNT 버키페이퍼는 종래의 산처리를 이용하여 제조된 SWNT에 비해 표면 저항값이 대폭 감소되어 저저항을 요구하는 미세 인공 근육에 효과적으로 적용할 수 있다.
본 발명에서는 SWNT 버키페이퍼에 대해 설명되었으나, 본 발명의 원리는 그 외에 SWNT 복합 재료 및 다른 탄소나노튜브에도 적용될 수 있음은 당업자에게 자명하다.
본 발명은 상술한 실시예에 한정되지 않으며, 본 발명의 기술적 사상을 벗어나지 않고 당 분야의 통상의 지식을 가진 자에 의하여 다양한 수정 및 변형이 가능함은 명백할 것이다.
본 발명에 따른 방법은 SWNT 버키페이퍼 뿐만 아니라 SWNT 복합재료의 전기 전도성을 향상시킴으로써, 탄소나노튜브 초저항 복합재료의 개발을 가능케 하여 차후 고성능 신부품 소재로서 이용될 수 있다.
또한, 본 발명의 버키페이퍼 제조 방법은 공정이 비교적 간단하여, 제조 비용이 적게 들뿐만 아니라 대량 생산이 가능하다. 따라서, 본 발명을 통해 제조된 초저항 SWNT 복합재료는 기존의 고가의 초저항 재료에 대해 저렴하게 제공될 수 있다.

Claims (7)

  1. SWNT 버키페이퍼에 대한 Cu 환원 공정을 통해 SWNT 버키페이퍼에 Cu 분자를 결합시켜 전기 저항을 낮추는 것을 특징으로 하는 Cu 환원 반응을 이용한 저 저항 SWNT 버키페이퍼 제조방법.
  2. 제1항에 있어서, 상기 Cu 환원 공정은 구리염 용액에 전기 분해를 실시하여 이루어지는 것을 특징으로 하는 Cu 환원 반응을 이용한 저 저항 SWNT 버키페이퍼 제조방법.
  3. 제2항에 있어서, 상기 전기 분해는,
    구리염을 준비하는 단계,
    상기 구리염에 (+)극에 연결된 전도체 및 (-)극에 연결된 SWNT 버키페이퍼를 침지시키는 단계; 및
    상기 (+)극 및 (-)극에 전압을 인가하는 단계;를 포함하는 것을 특징으로 하는 Cu 환원 반응을 이용한 저 저항 SWNT 버키페이퍼 제조방법.
  4. 제3항에 있어서, 상기 구리염은 초산동(Copper Acetate)인 것을 특징으로 하는 Cu 환원 반응을 이용한 저 저항 SWNT 버키페이퍼 제조방법.
  5. 제1항에 있어서, 상기 SWNT는 HipCo(High Pressure Carbon Monoxide) 방법으로 제작된 탄소나노튜브인 것을 특징으로 하는 Cu 환원 반응을 이용한 저 저항 SWNT 버키페이퍼 제조방법.
  6. 제1항 내지 제5항 중 어느 하나의 항에 의한 방법으로 제조되어 Cu 분자가 결합된 탄소나노튜브로 구성된 저 저항의 SWNT 버키페이퍼.
  7. 삭제
KR1020060002595A 2006-01-10 2006-01-10 Cu 환원 반응을 이용한 저 저항 SWNT 버키페이퍼 및 이의 제조방법과 복합재료 KR100785638B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060002595A KR100785638B1 (ko) 2006-01-10 2006-01-10 Cu 환원 반응을 이용한 저 저항 SWNT 버키페이퍼 및 이의 제조방법과 복합재료

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060002595A KR100785638B1 (ko) 2006-01-10 2006-01-10 Cu 환원 반응을 이용한 저 저항 SWNT 버키페이퍼 및 이의 제조방법과 복합재료

Publications (2)

Publication Number Publication Date
KR20070074713A KR20070074713A (ko) 2007-07-18
KR100785638B1 true KR100785638B1 (ko) 2007-12-12

Family

ID=38499970

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060002595A KR100785638B1 (ko) 2006-01-10 2006-01-10 Cu 환원 반응을 이용한 저 저항 SWNT 버키페이퍼 및 이의 제조방법과 복합재료

Country Status (1)

Country Link
KR (1) KR100785638B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220152417A (ko) * 2021-05-06 2022-11-16 주식회사 한국폴리머 전기 저항 특성이 제어된 탄소나노튜브 복합재, 그 제조 방법 및 이를 포함하는 방열 조성물

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105219999B (zh) * 2015-10-21 2017-05-24 云南大学 一种碳纳米纸纳米铜复合材料及其制备方法
RU181978U1 (ru) * 2017-12-01 2018-07-31 МСД Текнолоджис С.а.р.л. Бумага из углеродных нанотрубок с электрическими выводами

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020082816A (ko) * 2002-09-13 2002-10-31 김기동 알칼리 금속의 전기화학적 표면처리에 의한 고기능성 탄소나노소재 및 이의 제조 방법
KR20050012556A (ko) * 2003-07-25 2005-02-02 한국과학기술원 탄소나노튜브가 강화된 금속 나노복합분말 및 그 제조방법
KR100593907B1 (ko) 2004-05-21 2006-06-30 삼성전기주식회사 전계방출 에미터전극 제조방법 및 이를 이용하여 제조된전계방출장치
KR20060098225A (ko) * 2005-03-11 2006-09-18 재단법인서울대학교산학협력재단 탄소나노튜브와 구리의 복합도금법으로 형성된 전자방출팁의 형성방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020082816A (ko) * 2002-09-13 2002-10-31 김기동 알칼리 금속의 전기화학적 표면처리에 의한 고기능성 탄소나노소재 및 이의 제조 방법
KR20050012556A (ko) * 2003-07-25 2005-02-02 한국과학기술원 탄소나노튜브가 강화된 금속 나노복합분말 및 그 제조방법
KR100593907B1 (ko) 2004-05-21 2006-06-30 삼성전기주식회사 전계방출 에미터전극 제조방법 및 이를 이용하여 제조된전계방출장치
KR20060098225A (ko) * 2005-03-11 2006-09-18 재단법인서울대학교산학협력재단 탄소나노튜브와 구리의 복합도금법으로 형성된 전자방출팁의 형성방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220152417A (ko) * 2021-05-06 2022-11-16 주식회사 한국폴리머 전기 저항 특성이 제어된 탄소나노튜브 복합재, 그 제조 방법 및 이를 포함하는 방열 조성물
KR102491885B1 (ko) 2021-05-06 2023-01-26 주식회사 한국폴리머 전기 저항 특성이 제어된 탄소나노튜브 복합재, 그 제조 방법 및 이를 포함하는 방열 조성물

Also Published As

Publication number Publication date
KR20070074713A (ko) 2007-07-18

Similar Documents

Publication Publication Date Title
Merkoçi Carbon nanotubes in analytical sciences
Mohapatra et al. Enzymatic and non-enzymatic electrochemical glucose sensor based on carbon nano-onions
Merkoçi et al. New materials for electrochemical sensing VI: carbon nanotubes
Antiochia et al. Single‐wall carbon nanotube paste electrodes: a comparison with carbon paste, platinum and glassy carbon electrodes via cyclic voltammetric data
Liu et al. Organizing single-walled carbon nanotubes on gold using a wet chemical self-assembling technique
Du et al. Immobilization-free direct electrochemical detection for DNA specific sequences based on electrochemically converted gold nanoparticles/graphene composite film
Xie et al. Cu metal-organic framework-derived Cu Nanospheres@ Porous carbon/macroporous carbon for electrochemical sensing glucose
Liu et al. Carbon nanotube powder microelectrodes for nitrite detection
Stoner et al. Selected topics on the synthesis, properties and applications of multiwalled carbon nanotubes
Chen et al. Synthesis of aligned carbon nanotube composite fibers with high performances by electrochemical deposition
Hodge et al. Electrochemical processing of discrete single-walled carbon nanotube anions
Elrouby Electrochemical applications of carbon nanotube
Tiwari Graphene bioelectronics
Chen et al. Graphene quantum dots derived from carbon fibers for oxidation of dopamine
Shariatinia Applications of carbon nanotubes
KR100785638B1 (ko) Cu 환원 반응을 이용한 저 저항 SWNT 버키페이퍼 및 이의 제조방법과 복합재료
Zhang et al. A corrugated graphene–carbon nanotube composite as electrode material
Wei et al. Selective Electrochemical Etching of Single‐Walled Carbon Nanotubes
Fang et al. Microwave-assisted preparation of a carbon nanotube/La (OH) 3 nanocomposite, and its application to electrochemical determination of adenine and guanine
Shabbir et al. Electrophoretic deposition of uniform carbon nanotubes for nickel nanocomposites based nonenzymatic glucose sensor
Zhang et al. Fabrication of a vertically aligned carbon nanotube electrode and its modification by nanostructured MnO2 for supercapacitors
Esplandiu et al. Carbon nanotubes and electrochemistry
Vichchulada et al. Incorporation of single-walled carbon nanotubes into functional sensor applications
Muhlbauer et al. A review on the synthesis of carbon nanotube thin films
Mutyala et al. Functionalized carbon nanomaterials in electrochemical detection

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110930

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20121101

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee