KR100784588B1 - Method for producing positive electrode material for lithium-ion secondary battery - Google Patents

Method for producing positive electrode material for lithium-ion secondary battery Download PDF

Info

Publication number
KR100784588B1
KR100784588B1 KR1020060003149A KR20060003149A KR100784588B1 KR 100784588 B1 KR100784588 B1 KR 100784588B1 KR 1020060003149 A KR1020060003149 A KR 1020060003149A KR 20060003149 A KR20060003149 A KR 20060003149A KR 100784588 B1 KR100784588 B1 KR 100784588B1
Authority
KR
South Korea
Prior art keywords
active material
molar ratio
secondary battery
ion secondary
licoo
Prior art date
Application number
KR1020060003149A
Other languages
Korean (ko)
Other versions
KR20070087876A (en
Inventor
한경희
서영범
오정훈
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Priority to KR1020060003149A priority Critical patent/KR100784588B1/en
Publication of KR20070087876A publication Critical patent/KR20070087876A/en
Application granted granted Critical
Publication of KR100784588B1 publication Critical patent/KR100784588B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D15/00Printed matter of special format or style not otherwise provided for
    • B42D15/0053Forms specially designed for commercial use, e.g. bills, receipts, offer or order sheets, coupons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F23/00Advertising on or in specific articles, e.g. ashtrays, letter-boxes
    • G09F23/10Advertising on or in specific articles, e.g. ashtrays, letter-boxes on paper articles, e.g. booklets, newspapers

Abstract

본 발명에 따른 리튬이온 이차전지용 양극재의 제조방법은, Li과 Co 소스를 혼합 및 열처리하여 LiCoO2 활물질을 합성하는 제1단계; 구조적으로 안정화된 상기 LiCoO2에 Ni, Mn 및 Li 소스를 소정 몰비로 첨가하여 혼합하는 제2단계; 및 혼합물을 다시 열처리하여 Li(NiCoMn)O2 활물질을 합성하는 제3단계;를 포함한다.Lithium ion secondary battery positive electrode material manufacturing method according to the invention, by mixing and heat treatment of Li and Co source LiCoO 2 A first step of synthesizing an active material; A second step of adding Ni, Mn and Li sources to the structurally stabilized LiCoO 2 at a predetermined molar ratio to mix them; And again heating the mixture a third step for synthesizing the electrode active material O 2 Li (Ni Co Mn ⅓); and a.

양극재, 지르코니아 볼, 탭 밀도, 층상 구조 Cathode, Zirconia Ball, Tap Density, Layered Structure

Description

리튬이온 이차전지용 양극재의 제조방법{METHOD FOR PRODUCING POSITIVE ELECTRODE MATERIAL FOR LITHIUM-ION SECONDARY BATTERY}Manufacturing method of positive electrode material for lithium ion secondary battery {METHOD FOR PRODUCING POSITIVE ELECTRODE MATERIAL FOR LITHIUM-ION SECONDARY BATTERY}

본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.The following drawings attached to this specification are illustrative of preferred embodiments of the present invention, and together with the detailed description of the invention to serve to further understand the technical spirit of the present invention, the present invention is a matter described in such drawings It should not be construed as limited to

도 1은 본 발명에 따른 리튬이온 이차전지용 양극재의 제조방법이 수행되는 과정을 도시하는 흐름도.1 is a flow chart illustrating a process performed a method of manufacturing a cathode material for a lithium ion secondary battery according to the present invention.

도 2는 본 발명과 종래기술에 따라 제조된 리튬이온 이차전지용 양극재의 특성을 비교한 테이블.Figure 2 is a table comparing the characteristics of the cathode material for a lithium ion secondary battery prepared according to the present invention and the prior art.

본 발명은 리튬이온 이차전지용 양극재의 제조방법에 관한 것으로서, 특히 리튬(Li)-니켈(Ni)-코발트(Co)-망간(Mn)계 산화물을 합성하여 양극 활물질을 제조함에 있어, 활물질의 탭 밀도(Tap density)와 충방전 특성을 향상시킬 수 있도록 공정이 개선된 리튬이온 이차전지용 양극재의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a cathode material for a lithium ion secondary battery, and in particular, to prepare a cathode active material by synthesizing a lithium (Li) -nickel (Ni) -cobalt (Co) -manganese (Mn) -based oxide, the tab of the active material The present invention relates to a method for manufacturing a cathode material for a lithium ion secondary battery, in which a process is improved to improve a tap density and charge / discharge characteristics.

리튬이온 이차전지는 여타의 이차전지에 비해 상대적으로 에너지 밀도가 높고, 작동전압이 높을 뿐만 아니라 우수한 보존 및 수명특성을 보이는 등 많은 장점이 있어 개인용 컴퓨터, 캠코더, 휴대용 전화기, 휴대용 CD 플레이어, PDA 등 각종 휴대용 전자기기에 널리 사용되고 있다.Lithium-ion secondary batteries have many advantages over other secondary batteries such as relatively high energy density, high operating voltage and excellent retention and lifespan characteristics, such as personal computers, camcorders, portable phones, portable CD players, PDAs, etc. Widely used in various portable electronic devices.

이러한 리튬이온 이차전지는 소정의 전지 케이스와, 활물질을 구비한 양극 및 음극과, 집전기능을 수행하는 양극 집전체 및 음극 집전체와, 양극과 음극 간의 접촉을 방지하고 리튬이온을 선택적으로 통과시키는 분리막을 포함하고, 양극과 음극 간에 가역적으로 리튬이온을 전달함으로써 충/방전 동작을 수행한다.The lithium ion secondary battery has a predetermined battery case, a positive electrode and a negative electrode having an active material, a positive electrode current collector and a negative electrode current collector to perform a current collecting function, and prevents contact between the positive electrode and the negative electrode and selectively passes lithium ions. It includes a separator, and performs the charge / discharge operation by reversibly transferring lithium ions between the positive electrode and the negative electrode.

리튬이온 이차전지의 양극재로는 LiCoO2 활물질이 상용화되어 있으며, 최근에는 LiCoO2 활물질에 비해 용량면에서 동등하거나 유리하고 가격도 저렴한 Li(NiCoMn)O2 활물질을 양극재로 사용하는 기술도 사용되고 있다. 이와 관련된 기술로는 Li(NiCoMn)O2 활물질을 고상법으로 합성하는 방법을 개시하고 있는 대한민국 특허출원 제2003-16798호와, 액상법으로 합성하는 방법을 개시하고 있는 대한민국 특허출원 제2005-44771호를 들 수 있다.LiCoO 2 as a cathode material of a lithium ion secondary battery Active materials are commercialized, and recently LiCoO 2 Equal or glass surface in the capacity compared to the active material, and there is used a technique of using cheap price Li (Ni Co Mn) O 2 as the positive electrode active material. A related technique of the Republic of Korea Patent Application which discloses a method of synthesis as the Republic of Korea Patent Application No. 2003-16798 and No. that the Li (Ni Co Mn) O 2 active material is disclosed a method of synthesizing a conventional method, liquid phase method No. 2005-44771.

그러나, 종래기술에 따라 제조된 Li(NiCoMn)O2 활물질은 이미 상용화되어 있는 LiCoO2 활물질에 비해 부피밀도가 현저히 낮은 단점이 있어 상용화되기 어려운 문제가 있고, 특히 액상법의 경우 수율이 매우 낮아 대량생산에 부적합한 측면이 있다.However, the Li (Ni Co Mn ⅓) prepared according to the prior art O 2 active material is LiCoO 2, which is already commercially available There is a disadvantage that the bulk density is significantly lower than that of the active material, which makes it difficult to be commercialized. In particular, in the case of the liquid phase method, the yield is very low, which is unsuitable for mass production.

본 발명은 상기와 같은 점을 고려하여 창안된 것으로서, 미리 LiCoO2을 구조적으로 안정화시킨 상태에서 첨가물을 첨가하여 Li(NiCoMn)O2 활물질을 합성함으로써 탭 밀도와 충방전 특성을 보다 개선하게 되는 리튬이온 이차전지용 양극재의 제조방법을 제공하는 데 목적이 있다.The present invention was devised in consideration of the above-mentioned points, and by adding an additive in a state where LiCoO 2 was structurally stabilized in advance, a Li (Ni Co Mn ) O 2 active material was synthesized to improve tap density and charge / discharge characteristics. An object of the present invention is to provide a method for manufacturing a cathode material for a lithium ion secondary battery, which is to be further improved.

상기와 같은 목적을 달성하기 위해 본 발명에 따른 리튬이온 이차전지용 양극재의 제조방법은, Li과 Co 소스를 혼합 및 열처리하여 LiCoO2 활물질을 합성하는 제1단계; 구조적으로 안정화된 상기 LiCoO2에 Ni, Mn 및 Li 소스를 소정 몰비로 첨가하여 혼합하는 제2단계; 및 혼합물을 다시 열처리하여 Li(NiCoMn)O2 활물질을 합성하는 제3단계;를 포함한다.In order to achieve the above object, a method of manufacturing a cathode material for a lithium ion secondary battery according to the present invention is a LiCoO 2 by mixing and heat-treating a Li and Co source. A first step of synthesizing an active material; A second step of adding Ni, Mn and Li sources to the structurally stabilized LiCoO 2 at a predetermined molar ratio to mix them; And again heating the mixture a third step for synthesizing the electrode active material O 2 Li (Ni Co Mn ⅓); and a.

바람직하게, 상기 제1단계에서는 Li과 Co의 몰비가 1.025:1이 되도록 볼밀을 이용해 Li2CO3, Co3O4 및 지르코니아 볼을 혼합하는 공정이 수행된다.Preferably, in the first step using a ball mill so that the molar ratio of Li and Co is 1.025: 1 Li 2 CO 3 , Co 3 O 4 And a process of mixing the zirconia balls.

상기 제2단계에서는 Co:Ni:Mn=1:1:1의 몰비가 되도록 Ni(OH)2, 및 MnO2를 첨가하고, Li:(NiCoMn)=1.025:1의 몰비를 갖도록 LiOH.H2O를 첨가한 후, 볼밀을 이용해 지르코니아 볼과 함께 혼합하는 공정이 수행된다.In the first step 2 Co: Ni: Mn = 1 : 1: 1 such that the molar ratio of Ni (OH) 2, and the addition of MnO 2 and, Li: the molar ratio of 1: (Ni ⅓ Co ⅓ Mn ⅓) = 1.025 After adding LiOH.H 2 O, the process of mixing with zirconia balls using a ball mill is performed.

본 발명의 다른 실시예에 따르면, 상기 제2단계에서는 Co:Ni:Mn=1:1:1의 몰 비가 되도록 Ni(OH)2, 및 MnO2를 첨가하고, Li:(NiCoMn)=1:1의 몰비를 갖도록 LiOH.H2O를 첨가한 후, 볼밀을 이용해 지르코니아 볼과 함께 혼합하는 공정이 수행된다.In accordance with another embodiment of the invention, in the second step 2 Co: Ni: Mn = 1 : 1: 1 such that the molar ratio of the addition of Ni (OH) 2, and MnO 2, and Li: (Ni Co Mn ⅓) = 1: the step of mixing together with zirconia balls is done after the first addition of LiOH.H 2 O so as to have a molar ratio of, using a ball mill.

본 발명의 또 다른 실시예에 따르면, 상기 제2단계에서는 Co:Ni:Mn=1:1:1의 몰비가 되도록 Ni(OH)2, 및 MnO2를 첨가하고, Li:(NiCoMn)=1.05:1의 몰비를 갖도록 LiOH.H2O를 첨가한 후, 볼밀을 이용해 지르코니아 볼과 함께 혼합하는 공정이 수행된다.According to a further embodiment of the present invention, wherein in step 2 Co: Ni: Mn = 1 : 1: 1 was added to Ni (OH) 2, and MnO 2 such that the molar ratio of to, Li: (Ni Co LiOH.H 2 O is added to have a molar ratio of Mn ) = 1.05: 1, followed by mixing with zirconia balls using a ball mill.

상기 열처리는, 450℃에서 1시간 동안 1차 열처리를 수행하고, 이어서 950℃에서 4시간 동안 2차 열처리를 수행하는 것이 바람직하다.In the heat treatment, the first heat treatment is performed at 450 ° C. for 1 hour, and then the second heat treatment is performed at 950 ° C. for 4 hours.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the specification and claims should not be construed as having a conventional or dictionary meaning, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention. Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.

도 1에는 본 발명에 따른 리튬이온 이차전지용 양극재의 제조방법이 수행되 는 과정이 개략적으로 도시되어 있다.1 schematically shows a process in which a method of manufacturing a cathode material for a lithium ion secondary battery according to the present invention is performed.

도 1에 나타난 바와 같이, 본 발명에 따른 양극재 제조방법은 미리 LiCoO2 활물질을 합성하고, 구조적으로 안정화된 LiCoO2 활물질에 첨가제를 첨가하여 Li(NiCoMn)O2 활물질을 합성하는 이중의 합성공정을 포함한다.As shown in Figure 1, the cathode material manufacturing method according to the present invention is previously LiCoO 2 Synthesizing Active Material and Structurally Stabilized LiCoO 2 Adding additives to the active material includes a dual synthetic process for synthesizing the electrode active material O 2 Li (Ni Co Mn ⅓).

일차적으로, Li 소스(Source)와 Co 소스를 혼합 및 열처리하여 LiCoO2 활물질을 합성하는 과정이 수행된다(단계 S100).First, LiCoO 2 is mixed and heat treated with Li source and Co source. A process of synthesizing the active material is performed (step S100).

상기 Li 소스와 Co 소스로는 각각 Li2CO3과 Co3O4 가 채택되는 것이 바람직하며, 그 혼합처리는 지르코니아 볼을 투입한 상태에서 볼밀(Ball mill)을 이용해 수행하는 것이 바람직하다. 여기서, Li과 Co의 양은, 혼합공정중 리튬이 휘발하는 점을 감안하여 몰비로 Li:Co=1:1, Li:Co=1.025:1, Li:Co=1.05:1 등으로 선정되는 것이 바람직하다. 또한, 볼밀을 이용한 혼합처리는 100RPM의 속도로 1시간 내지 4시간 동안 수행하는 것이 바람직하다.As the Li source and Co source, Li 2 CO 3 and Co 3 O 4 Is preferably adopted, and the mixing treatment is preferably performed using a ball mill in a state in which zirconia balls are added. Herein, the amount of Li and Co is preferably selected to be Li: Co = 1: 1, Li: Co = 1.025: 1, Li: Co = 1.05: 1, etc. in molar ratio in consideration of the volatilization of lithium during the mixing process. Do. In addition, the mixing treatment using a ball mill is preferably performed for 1 to 4 hours at a rate of 100 RPM.

상기 혼합처리가 완료된 후에는 450℃에서 1시간 동안 1차 열처리를 수행하고, 이어서 950℃에서 4시간 동안 2차 열처리를 수행하여 LiCoO2 활물질을 합성하게 된다. 이때, 급격한 온도변화에 의한 구조적 불안정을 예방하도록 승온속도는 7℃/min으로 설정되는 것이 바람직하다.After the mixing treatment is completed, the first heat treatment is performed at 450 ° C. for 1 hour, and then the second heat treatment is performed at 950 ° C. for 4 hours to form LiCoO 2. The active material is synthesized. At this time, the temperature increase rate is preferably set to 7 ℃ / min to prevent structural instability due to rapid temperature changes.

이후, 층상 구조(Layered structure)로 안정화된 LiCoO2 활물질에 Ni, Mn 및 Li 소스를 첨가하여 혼합하는 과정이 수행된다(단계 S110).Thereafter, LiCoO 2 stabilized with a layered structure The process of adding and mixing Ni, Mn and Li sources to the active material is performed (step S110).

상기 Ni 소스와 Mn 소스로는 각각 Ni(OH)2와 MnO2가 채용되는 것이 바람직하며, 상기 Li 소스로는 수화물 구조인 LiOH.H2O이 채택되는 것이 바람직하다. 또한, 그 혼합처리는 지르코니아 볼을 투입한 상태에서 볼밀을 이용해 수행하는 것이 바람직하다. 여기서, Li과 (NiCoMn)의 몰비는, 혼합공정중 리튬이 휘발하는 점을 감안하여 Li:(NiCoMn)=1:1, Li:(NiCoMn)=1.025:1, Li:(NiCoMn)=1.05:1 등으로 선정되는 것이 바람직하다. 또한, 볼밀을 이용한 혼합처리는 100RPM의 속도로 1시간 내지 4시간 동안 수행될 수 있다.Ni (OH) 2 and MnO 2 are preferably used as the Ni source and Mn source, respectively, and LiOH.H 2 O, which is a hydrate structure, is adopted as the Li source. Moreover, it is preferable to perform the mixing process using a ball mill in the state which injected the zirconia ball. Here, the molar ratio of Li and (Ni Co Mn ) is Li: (Ni Co Mn ) = 1: 1, Li: (Ni Co Mn ⅓) = 1.025: 1, Li : is preferably selected as one such as: (Ni ⅓ Co ⅓ Mn ⅓ ) = 1.05. In addition, the mixing process using a ball mill may be performed for 1 to 4 hours at a rate of 100 RPM.

Ni, Mn 및 Li 소스를 상기 LiCoO2 활물질에 첨가한 후에는 전술한 LiCoO2 합성공정과 마찬가지로 두 차례의 열처리를 수행하여 Li(NiCoMn)O2 활물질 합성공정을 완료한다(단계 S120).Ni, Mn, and Li sources are the LiCoO 2 After addition to the active material described above LiCoO 2 And performing a heat treatment of two times the synthesis process, to complete the synthesis Li (Ni Co Mn) O 2 active material (step S120).

이하, 본 발명의 이해를 돕기 위하여 본 발명의 구체적인 실시예들과 종래의 Li(NiCoMn)O2 활물질 제조방법(비교예)을 상호 비교하여 설명하기로 한다.Or less, and are compared to a particular embodiment and the conventional Li (Ni Co Mn) O 2 active material production process (Comparative Example) of the present invention to aid in the understanding of the present invention will be described.

실시예Example 1 One

Li과 Co의 몰비가 1.025:1이 되도록 Li2CO3과 Co3O4를 지르코니아 볼과 함께 볼밀로 혼합하고, 상술한 바와 같은 열처리 조건으로 1, 2차 열처리를 진행하여 LiCoO2 활물질을 합성하였다.Li 2 CO 3 and Co 3 O 4 are mixed in a ball mill with zirconia balls so that the molar ratio of Li and Co is 1.025: 1, and LiCoO 2 is subjected to the first and second heat treatment under the above-described heat treatment conditions. An active material was synthesized.

이후, 층상 구조로 안정화된 LiCoO2 활물질에 Co:Ni:Mn=1:1:1의 몰비가 되도 록 Ni(OH)2와 MnO2를 첨가하고, Li:(NiCoMn)=1.025:1의 몰비가 되도록 LiOH.H2O를 첨가하여 지르코니아 볼과 함께 볼밀을 이용해 혼합한 후, 다시 1, 2차 열처리를 수행하여 Li(NiCoMn)O2 활물질을 합성하였다.Then, LiCoO 2 stabilized in a layered structure The active material is Co: Ni: Mn = 1: 1: 1 was added to the lock Ni (OH) 2 and MnO 2 doedo the molar ratio of the Li: (Ni ⅓ Co ⅓ Mn ⅓) = 1.025: LiOH such that the molar ratio of 1. by the addition of H 2 O were mixed using a ball mill with zirconia balls, and again 1, performing a second heat treatment by combining the active O 2 Li (Ni Co Mn ⅓).

Li(NiCoMn)O2 활물질을 합성한 후에는 밀도 특성의 측정을 위해, 합성된 Li(NiCoMn)O2 활물질을 분쇄, 분급하여 건조시킨 후 탭 밀도(Tap density), 즉 일정한 조건으로 다져진 상태의 밀도를 측정하였다.After synthesizing a Li (Ni Co Mn ⅓) O 2 active material for the measurement of the density characteristic, and then the synthesized Li (Ni Co Mn ⅓) O 2 active material was pulverized, classified to dry tap density (Tap density), ie, the density of the compacted state under constant conditions was measured.

또한, 충방전 특성의 측정을 위해, Li(NiCoMn)O2 활물질 100g을 500ml의 반응기에 넣고 소량의 N-메틸피톨리돈(NMP)과 바인더(PVDF)를 투입, 믹서(Mixer)를 이용하여 혼련하고, 알루미늄 호일상에 압착 건조하여 전극을 제작하여 임의의 코인 셀(Coin cell)에 대한 충,방전 효율을 산출하였다.In order to measure the charge and discharge characteristics, 100 g of Li (Ni Co Mn ) O 2 active material was placed in a 500 ml reactor, and a small amount of N-methyl pitolidon (NMP) and a binder (PVDF) were added to the mixer (Mixer). ) Was kneaded, pressed and dried on aluminum foil to prepare electrodes, and the charging and discharging efficiency of any coin cell was calculated.

실시예Example 2 2

Li과 (NiCoMn)의 몰비가 1:1이 되도록 Ni(OH)2와 MnO2를 첨가하였으며, 나머지 조건은 실시예 1과 동일하게 하였다.Ni (OH) 2 and MnO 2 were added so that the molar ratio of Li and (Ni Co Mn ) was 1: 1, and the remaining conditions were the same as in Example 1.

실시예Example 3 3

Li과 (NiCoMn)의 몰비가 1.05:1이 되도록 Ni(OH)2와 MnO2를 첨가하였으며, 나머지 조건은 실시예 1과 동일하게 하였다.Ni (OH) 2 and MnO 2 were added so that the molar ratio of Li and (Ni Co Mn ) was 1.05: 1, and the remaining conditions were the same as in Example 1.

비교예Comparative example 1 One

Li과 (NiCoMn)의 몰비가 1:1이 되도록 LiOH.H2O, Co3O4, Ni(OH)2 및 MnO2 를 지르코니아 볼과 함께 볼밀로 혼합하고, 상술한 바와 같은 열처리 조건으로 1, 2차 열처리를 진행하여 Li(NiCoMn)O2 활물질을 합성하였다.LiOH.H 2 O, Co 3 O 4 , Ni (OH) 2 and MnO 2 are mixed with a zirconia ball in a ball mill so that the molar ratio of Li and (Ni Co Mn ) is 1: 1, as described above. Due to such heat treatment conditions, proceed with the first and second heat-treating the active material was synthesized in the O 2 Li (Ni Co Mn ⅓).

다음, 밀도 특성의 측정을 위해, 합성된 Li(NiCoMn)O2 활물질을 분쇄, 분급하여 건조시킨 후 탭 밀도(Tap density), 즉 일정한 조건으로 다져진 상태의 밀도를 측정하였다.Next, in order to measure the density characteristics, the synthesized Li (Ni Co Mn ) O 2 active material was pulverized, classified and dried, and then the tap density, that is, the density of the compacted state under a constant condition was measured.

또한, 충방전 특성의 측정을 위해, Li(NiCoMn)O2 활물질 100g을 500ml의 반응기에 넣고 소량의 N-메틸피톨리돈(NMP)과 바인더(PVDF)를 투입, 믹서(Mixer)를 이용하여 혼련하고, 알루미늄 호일상에 압착 건조하여 전극을 제작하여 상기 코인 셀(Coin cell)에 대한 충,방전 효율을 산출하였다.In order to measure the charge and discharge characteristics, 100 g of Li (Ni Co Mn ) O 2 active material was placed in a 500 ml reactor, and a small amount of N-methyl pitolidon (NMP) and a binder (PVDF) were added to the mixer (Mixer). ) Was kneaded, pressed and dried on aluminum foil to fabricate an electrode to calculate charge and discharge efficiency for the coin cell.

비교예Comparative example 2 2

Li과 (NiCoMn)의 몰비가 1.025:1이 되도록 LiOH.H2O, Co3O4, Ni(OH)2 및 MnO2를 첨가하였으며, 나머지 조건은 비교예 1과 동일하게 하였다.LiOH.H 2 O, Co 3 O 4 , Ni (OH) 2 and MnO 2 were added so that the molar ratio of Li and (Ni Co Mn ) was 1.025: 1, and the remaining conditions were the same as in Comparative Example 1 It was.

비교예Comparative example 3 3

Li과 (NiCoMn)의 몰비가 1.05:1이 되도록 LiOH.H2O, Co3O4, Ni(OH)2 및 MnO2를 첨가하였으며, 나머지 조건은 비교예 1과 동일하게 하였다.LiOH.H 2 O, Co 3 O 4 , Ni (OH) 2 and MnO 2 were added so that the molar ratio of Li and (Ni Co Mn ) was 1.05: 1, and the remaining conditions were the same as in Comparative Example 1 It was.

비교예Comparative example 4 4

Li과 Co의 몰비가 1.025:1이 되도록 Li2CO3과 Co3O4를 지르코니아 볼과 함께 볼밀로 혼합하고, 상술한 바와 같은 열처리 조건으로 1, 2차 열처리를 진행하여 LiCoO2 활물질을 합성하였다.Li 2 CO 3 and Co 3 O 4 are ball-mixed together with zirconia balls so that the molar ratio of Li and Co is 1.025: 1, and the LiCoO 2 active material is synthesized by performing the first and second heat treatment under the heat treatment conditions as described above. It was.

LiCoO2 활물질을 합성한 후에는 밀도 특성의 측정을 위해, 합성된 LiCoO2 활물질을 분쇄, 분급하여 건조시킨 후 탭 밀도(Tap density), 즉 일정한 조건으로 다져진 상태의 밀도를 측정하였다.LiCoO 2 After synthesizing the active material, the synthesized LiCoO 2 for the measurement of density characteristics After pulverizing, classifying and drying the active material, the tap density, that is, the density of the compacted state under a predetermined condition was measured.

또한, 충방전 특성의 측정을 위해, LiCoO2 활물질 100g을 500ml의 반응기에 넣고 소량의 N-메틸피톨리돈(NMP)과 바인더(PVDF)를 투입, 믹서(Mixer)를 이용하여 혼련하고, 알루미늄 호일상에 압착 건조하여 전극을 제작하여 임의의 코인 셀(Coin cell)에 대한 충,방전 효율을 산출하였다.In addition, in order to measure the charge and discharge characteristics, LiCoO 2 100 g of the active material was placed in a 500 ml reactor, a small amount of N-methyl pitolidon (NMP) and a binder (PVDF) were added, kneaded using a mixer, and pressed and dried on an aluminum foil to prepare an electrode. Charge and discharge efficiency for the cell (Coin cell) was calculated.

이상과 같은 실시예 1 내지 실시예 3과, 비교예 1 내지 비교예 4에 따라 제조된 양극재에 대하여 밀도 및 충방전 특성을 시험한 결과가 도 2에 나타나 있다. 여기서, 밀도 특성은 15ml의 메스실린더에 약 15g 정도의 건조된 활물질을 넣은 후 미국 QUANTACHROME사의 HT2를 이용하여 3000회 탭핑한 후 그 밀도를 측정하는 방법으로 시험하였다. 충전 특성 시험의 경우, 전위를 0 ~ 1.5V의 범위로 규제한 상태에서, 충전전류 0.5mA/㎠로 0.01V가 될 때까지 충전하고, 또한 0.01V의 전압을 유지하면서 충전전류가 0.02mA/㎠로 될 때까지 충전을 계속하였다. 또한, 방전 특성 시험의 경우, 방전전류 0.5mA/㎠로 1.5V가 될 때까지 방전을 수행하였다. 도 2에서 충방전이 진행되는 초기 사이클(1stcycle) 동안의 충방전 효율은 충전 전기용량에 대한 방전 전기용량의 비율을 나타낸다.Test results of the density and charge and discharge characteristics of the cathode materials prepared according to Examples 1 to 3 and Comparative Examples 1 to 4 as described above are shown in FIG. 2. Here, the density characteristics were tested by a method of measuring the density after putting about 15 g of the dried active material into a 15 ml measuring cylinder and tapping 3,000 times using HT2 of QUANTACHROME of the United States. In the case of the charging characteristic test, the charging current is charged at a charge current of 0.5 mA / cm 2 until it becomes 0.01 V while the potential is regulated in the range of 0 to 1.5 V, and the charging current is 0.02 mA / while maintaining the voltage of 0.01 V. Charging was continued until it became 2 cm <2>. In addition, in the discharge characteristic test, discharge was performed until it became 1.5V with a discharge current of 0.5 mA / cm <2>. In FIG. 2, the charging and discharging efficiency during an initial cycle (1 st cycle) during which charging and discharging is performed represents the ratio of the discharge capacitance to the charging capacitance.

도 2를 참조하면, 실시예 1 내지 실시예 3이 비교예 1 내지 비교예 3에 비해 탭 밀도가 높아졌으며 충방전 효율도 높아졌음을 알 수 있다. 특히, 탭 밀도 특성의 경우 비교예 4, 즉 LiCoO2 활물질의 탭 밀도 특성에 근접하게 됨을 알 수 있다.Referring to FIG. 2, it can be seen that Examples 1 to 3 have a higher tap density and a higher charge / discharge efficiency than Comparative Examples 1 to 3. In particular, in the case of tap density characteristics, Comparative Example 4, that is, LiCoO 2 It can be seen that the tap density characteristics of the active material are approached.

이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.Although the present invention has been described above by means of limited embodiments and drawings, the present invention is not limited thereto and will be described below by the person skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of the claims.

본 발명에 따르면 Li(NiCoMn)O2 활물질 합성시 모든 소스들을 일괄적으로 첨가하는 방식에 비해 탭 밀도와 충방전 효율을 향상시킬 수 있으며, 상용화되어 있는 LiCoO2 활물질과 대비했을 때 동등하거나 우수한 탭 밀도 및 충방전 효율을 가지면서도 상대적으로 가격이 저렴한 리튬이온 이차전지용 양극재를 제공할 수 있는 장점이 있다.According to the present invention, it is possible to improve the tap density and the charge / discharge efficiency compared to the method of adding all the sources in the synthesis of the Li (Ni Co Mn ) O 2 active material, and commercialized LiCoO 2 Compared with the active material, there is an advantage in that it is possible to provide a cathode material for a lithium ion secondary battery having a relatively low price while having an equivalent or superior tap density and charge / discharge efficiency.

Claims (6)

Li과 Co 소스를 혼합 및 열처리하여 LiCoO2 활물질을 합성하는 제1단계;A first step of synthesizing a LiCoO 2 active material by mixing and heat treating a Li and Co source; 층상 구조(Layered structure)로 안정화된 LiCoO2 활물질에 Ni, Mn 및 Li 소스를 소정 몰비로 첨가하여 혼합하는 제2단계; 및A second step of adding Ni, Mn, and Li sources in a predetermined molar ratio to the LiCoO 2 active material stabilized in a layered structure and mixing the mixture; And 혼합물을 다시 열처리하여 Li(NiCoMn)O2 활물질을 합성하는 제3단계;를 포함하는 리튬이온 이차전지용 양극재의 제조방법.A third step of synthesizing the Li (Ni Co Mn ) O 2 active material by heat-treating the mixture; Method of manufacturing a cathode material for a lithium ion secondary battery comprising a. 제1항에 있어서, 상기 제1단계에서,The method of claim 1, wherein in the first step, Li과 Co의 몰비가 1.025:1이 되도록 볼밀을 이용해 Li2CO3, Co3O4 및 지르코니아 볼을 혼합하는 것을 특징으로 하는 리튬이온 이차전지용 양극재의 제조방법.Li 2 CO 3 , Co 3 O 4 using a ball mill so that the molar ratio of Li and Co is 1.025: 1 And a zirconia ball, wherein the cathode material for a lithium ion secondary battery is mixed. 제2항에 있어서, 상기 제2단계에서,The method of claim 2, wherein in the second step, Co:Ni:Mn=1:1:1의 몰비가 되도록 Ni(OH)2, 및 MnO2를 첨가하고,Ni (OH) 2 and MnO 2 were added so that a molar ratio of Co: Ni: Mn = 1: 1: 1, Li:(NiCoMn)=1.025:1의 몰비를 갖도록 LiOH.H2O를 첨가한 후, Li: (Ni ⅓ Co ⅓ Mn ⅓) = 1.025: 1 after the addition of LiOH.H 2 O so as to have a molar ratio of, 볼밀을 이용해 지르코니아 볼과 함께 혼합하는 것을 특징으로 하는 리튬이온 이차전지용 양극재의 제조방법.A method for producing a cathode material for a lithium ion secondary battery, characterized in that it is mixed with a zirconia ball using a ball mill. 제2항에 있어서, 상기 제2단계에서,The method of claim 2, wherein in the second step, Co:Ni:Mn=1:1:1의 몰비가 되도록 Ni(OH)2, 및 MnO2를 첨가하고,Ni (OH) 2 and MnO 2 were added so that a molar ratio of Co: Ni: Mn = 1: 1: 1, Li:(NiCoMn)=1:1의 몰비를 갖도록 LiOH.H2O를 첨가한 후, Li: (Ni ⅓ Co ⅓ Mn ⅓) = 1: 1 and then to have a molar ratio of the addition of LiOH.H 2 O, 볼밀을 이용해 지르코니아 볼과 함께 혼합하는 것을 특징으로 하는 리튬이온 이차전지용 양극재의 제조방법.A method for producing a cathode material for a lithium ion secondary battery, characterized in that it is mixed with a zirconia ball using a ball mill. 제2항에 있어서, 상기 제2단계에서,The method of claim 2, wherein in the second step, Co:Ni:Mn=1:1:1의 몰비가 되도록 Ni(OH)2, 및 MnO2를 첨가하고,Ni (OH) 2 and MnO 2 were added so that a molar ratio of Co: Ni: Mn = 1: 1: 1, Li:(NiCoMn)=1.05:1의 몰비를 갖도록 LiOH.H2O를 첨가한 후, Li: (Ni ⅓ Co ⅓ Mn ⅓) = 1.05: After the addition of LiOH.H 2 O so as to have a molar ratio of 1, 볼밀을 이용해 지르코니아 볼과 함께 혼합하는 것을 특징으로 하는 리튬이온 이차전지용 양극재의 제조방법.A method for producing a cathode material for a lithium ion secondary battery, characterized in that it is mixed with a zirconia ball using a ball mill. 제1항에 있어서,The method of claim 1, 상기 열처리로서, 450℃에서 1시간 동안 1차 열처리를 수행하고, 이어서 950℃에서 4시간 동안 2차 열처리를 수행하는 것을 특징으로 하는 리튬이온 이차전지용 양극재의 제조방법.As the heat treatment, the primary heat treatment for 1 hour at 450 ℃, and then the secondary heat treatment for 4 hours at 950 ℃ characterized in that the manufacturing method of the positive electrode material for a lithium ion secondary battery.
KR1020060003149A 2006-01-11 2006-01-11 Method for producing positive electrode material for lithium-ion secondary battery KR100784588B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060003149A KR100784588B1 (en) 2006-01-11 2006-01-11 Method for producing positive electrode material for lithium-ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060003149A KR100784588B1 (en) 2006-01-11 2006-01-11 Method for producing positive electrode material for lithium-ion secondary battery

Publications (2)

Publication Number Publication Date
KR20070087876A KR20070087876A (en) 2007-08-29
KR100784588B1 true KR100784588B1 (en) 2007-12-10

Family

ID=38613654

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060003149A KR100784588B1 (en) 2006-01-11 2006-01-11 Method for producing positive electrode material for lithium-ion secondary battery

Country Status (1)

Country Link
KR (1) KR100784588B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101430616B1 (en) * 2007-12-18 2014-08-14 삼성에스디아이 주식회사 Cathode and lithium battery using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012022A (en) * 1998-06-23 2000-01-14 Seimi Chem Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
JP2003331843A (en) * 2002-05-16 2003-11-21 Sumitomo Metal Mining Co Ltd Positive active material for nonaqueous electrolyte secondary battery and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012022A (en) * 1998-06-23 2000-01-14 Seimi Chem Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
JP2003331843A (en) * 2002-05-16 2003-11-21 Sumitomo Metal Mining Co Ltd Positive active material for nonaqueous electrolyte secondary battery and its manufacturing method

Also Published As

Publication number Publication date
KR20070087876A (en) 2007-08-29

Similar Documents

Publication Publication Date Title
JP7271053B2 (en) Nitrogen-added sulfide-boundary solid electrolyte for all-solid-state batteries
Liu et al. Poly (2, 5-dihydroxy-1, 4-benzoquinonyl sulfide)(PDBS) as a cathode material for lithium ion batteries
JP7158595B2 (en) Positive electrode additive and manufacturing method thereof, positive electrode and manufacturing method thereof, and lithium ion battery
CN102511094B (en) Cathode active material and the lithium secondary battery comprising it
KR102186729B1 (en) Lithium titanium sulfide, lithium niobium sulfide, and lithium titanium niobium sulfide
KR101941869B1 (en) Control method of residual lithium compounds in cathode active materials
Jeong et al. Stabilizing dimensional changes in Si-based composite electrodes by controlling the electrode porosity: An in situ electrochemical dilatometric study
KR101488043B1 (en) Method for activating high capacity lithium secondary battery
TW201125197A (en) Positive electrode active material for a lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
KR102044735B1 (en) Layered lithium nickel oxide, process for producing the same and lithium secondary cell employing it
WO2003069701A1 (en) Production methods for positive electrode active matter and non-aqueous electrolytic battery
Tang et al. Insights into solid-electrolyte interphase induced Li-ion degradation from in situ auger electron spectroscopy
Xu et al. Elevated electrochemical performance of (NH4) 3AlF6-coated 0.5 Li2MnO3· 0.5 LiNi1/3Co1/3Mn1/3O2 cathode material via a novel wet coating method
TW523954B (en) Method for producing cathode active material and method for manufacturing nonaqueous electrolyte battery
Hu et al. Revisiting the initial irreversible capacity loss of LiNi0. 6Co0. 2Mn0. 2O2 cathode material batteries
KR101520118B1 (en) Method for improving cycle performance of lithium secondary battery
Zhang et al. Revealing the different effects of VIB transition metals X (X= Cr, Mo, W) on the electrochemical performance of Li-rich cathode Li 2 MnO 3 by first-principles calculations
US9966782B2 (en) Battery pack and method of controlling charging and discharging of the battery pack
KR100784588B1 (en) Method for producing positive electrode material for lithium-ion secondary battery
Hong et al. Nail penetration-safe LiNi0. 6Co0. 2Mn0. 2O2 pouch cells enabled by LiMn0. 7Fe0. 3PO4 cathode safety additive
Xue et al. Synthesis and performance of hollow LiNi 0.5 Mn 1.5 O 4 with different particle sizes for lithium-ion batteries
CN102637876A (en) Lithium battery anode material and method for improving cycle performance of battery
KR101091546B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
KR20070074963A (en) Method for producing positive electrode material for secondary battery
KR102394000B1 (en) Phosphate positive electrode active material for lithium secondary battery and a method of manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20121004

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130906

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141030

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151005

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee