KR102394000B1 - Phosphate positive electrode active material for lithium secondary battery and a method of manufacturing the same - Google Patents

Phosphate positive electrode active material for lithium secondary battery and a method of manufacturing the same Download PDF

Info

Publication number
KR102394000B1
KR102394000B1 KR1020150051537A KR20150051537A KR102394000B1 KR 102394000 B1 KR102394000 B1 KR 102394000B1 KR 1020150051537 A KR1020150051537 A KR 1020150051537A KR 20150051537 A KR20150051537 A KR 20150051537A KR 102394000 B1 KR102394000 B1 KR 102394000B1
Authority
KR
South Korea
Prior art keywords
carbon
active material
secondary battery
lithium secondary
iron
Prior art date
Application number
KR1020150051537A
Other languages
Korean (ko)
Other versions
KR20160121833A (en
Inventor
진봉수
김현수
정민찬
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020150051537A priority Critical patent/KR102394000B1/en
Publication of KR20160121833A publication Critical patent/KR20160121833A/en
Application granted granted Critical
Publication of KR102394000B1 publication Critical patent/KR102394000B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은, 리튬 이차 전지용 인산염계 양극활물질 및 그 제조방법에 있어서, 단사정계 Li3V2(PO4)3에 철 및 티타늄이 코-도핑(co-doping)된 Li3V2 -2 xFexTix(PO4)3(x≥0.015)를 포함하는 것을 기술적 요지로 한다. 이에 의해 Li3V2(PO4)3에 철(Fe) 및 티타늄(Ti)을 코-도핑(co-doping)하여 Li3V2 -2 xFexTix(PO4)3를 리튬 이차 전지용 양극활물질로 적용하여 리튬 이차 전지의 방전용량을 증가, 고출력 특성, 사이클 특성과 같은 제반 전기화학적 특성이 향상되어 저가, 고안전성, 고용량, 장수명 이차전지를 제조가능한 효과를 얻을 수 있다.The present invention relates to a phosphate-based positive electrode active material for a lithium secondary battery and a method for manufacturing the same, wherein iron and titanium are co-doped in monoclinic Li 3 V 2 (PO 4 ) 3 Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 (x≥0.015) to include the technical gist. Accordingly, by co-doping Li 3 V 2 (PO 4 ) 3 with iron (Fe) and titanium (Ti), Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 Lithium secondary By applying it as a positive electrode active material for a battery, the discharge capacity of a lithium secondary battery is increased, and various electrochemical properties such as high output characteristics and cycle characteristics are improved.

Description

리튬 이차 전지용 인산염계 양극활물질 및 그 제조방법 {Phosphate positive electrode active material for lithium secondary battery and a method of manufacturing the same}Phosphate positive electrode active material for lithium secondary battery and a method of manufacturing the same}

본 발명은 리튬 이차 전지용 인산염계 양극활물질 및 그 제조방법에 관한 것으로, 더욱 상세하게는 Li3V2(PO4)3에 철(Fe) 및 티타늄(Ti)을 코-도핑(co-doping)하고, 그래핀(Graphene)을 첨가하여 Li3V2 -2 xFexTix(PO4)3/graphene을 리튬 이차 전지에 적용하는 리튬 이차 전지용 인산염계 양극활물질 및 그 제조방법에 관한 것이다.The present invention relates to a phosphate-based positive electrode active material for a lithium secondary battery and a method for manufacturing the same, and more particularly, to Li 3 V 2 (PO 4 ) 3 iron (Fe) and titanium (Ti) are co-doped (co-doping) And, Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 /graphene is applied to a lithium secondary battery by adding graphene, and relates to a phosphate-based positive electrode active material for a lithium secondary battery and a method for manufacturing the same.

산업발전 및 생활수준 향상에 맞춰 휴대 전자기기의 소형화와 장시간 연속 사용을 목표로 부품의 경량화와 저소비 전력화에 대한 연구와 더불어 소형이면서 고용량을 실현할 수 있는 고성능 에너지 저장소자가 요구되고 있다. 이에 최근에는 리튬 이차 전지(Lithium secondary battery)가 전기자동차, 전지전력 저장시스템 등 대용량 전력저장전지와 휴대전화, 캠코더, 노트북 등의 휴대전자기기 등과 같은 소형의 고성능 에너지원으로 사용되고 있다.In line with industrial development and improvement of living standards, a high-performance energy storage device capable of realizing small size and high capacity along with research on weight reduction and low power consumption for the purpose of miniaturization and long-term continuous use of portable electronic devices is required. Accordingly, recently, lithium secondary batteries have been used as large-capacity power storage batteries such as electric vehicles and battery power storage systems, and small, high-performance energy sources such as portable electronic devices such as mobile phones, camcorders, and notebook computers.

특히, 리튬 이차 전지는 높은 에너지 밀도, 면적당 큰 용량, 낮은 자기방전율이 및 긴 수명의 장점을 가지고 있다. 또한, 메모리 효과가 없기 때문에 사용자가 사용하는 데 편리하며, 수명이 길다는 특성을 지니고 있다. 리튬 이차 전지의 구조는 리튬 이온을 삽입, 탈리 가능한 음극(Anode)과 양극(Cathode), 리튬염(Lithium salt) 및 비수계 전해액(Electrolyte)으로 구성되어 있다. 비수계 전해액을 사용하는 이유는 리튬(Li)이 물에 대해 반응성이 높아서 수계 전해액을 사용할 경우 안정하게 존재할 수 없기 때문이다. In particular, the lithium secondary battery has advantages of high energy density, large capacity per area, low self-discharge rate, and long lifespan. In addition, since there is no memory effect, it is convenient for users to use and has a long lifespan. The structure of a lithium secondary battery is composed of an anode, a cathode, a lithium salt, and a non-aqueous electrolyte solution capable of inserting and deintercalating lithium ions. The reason for using a non-aqueous electrolyte is that lithium (Li) cannot stably exist when an aqueous electrolyte is used because lithium (Li) has high reactivity with water.

리튬 이차 전지의 대표적인 양극활물질은 LiCoO2, LiNiO2, LiMn2O4 등이 있는데, 그 중 LiCoO2는 우수한 전도성, 우수한 고율방전특성, 안정된 충방전 거동에 의해 수명특성 및 전위 평탄성이 우수하다. 하지만 코발트(Co)의 가격이 다른 재료들에 비해 고가라는 점과 리튬 이차 전지의 오사용시 충전된 상태에서 열적안정성이 떨어져 전지의 내부온도가 급격이 상승하며, 이에 의해 격자산소가 탈리되는 문제점이 있다. LiNiO2의 경우 LiCoO2에 비해 가격이 저렴하고 비용량이 높으며 낮은 방전전압을 보이기 때문에 전해액의 산화가 적다는 장점이 있지만, 분말의 합성이 어렵고 충전상태에서 열적안정성이 좋지 못하여 본격적인 상품화가 진행되지 못하는 상황이다. 또한, LiMn2O4는 다른 양극활물질에 비해 가격이 싸고 합성이 용이하여 저가격 제품에 사용되고 있으나, 스피넬(Spinel) 구조의 3차원 터널구조를 갖는 LiMn2O4는 이론 용량이 148mAh/g으로 다른 재료에 비해 비용량 및 랩밀도가 낮아 고에너지 밀도의 전지제조가 용이하지 못하다. 뿐만 아니라 이차 전지의 충방전시 이온의 확산저항이 클 뿐만 아니라 작동전압 구간에서 망간(Mn) 산화수가 3.5 미만으로 떨어지면 잔-텔러 효과(Jahn-Heller effect)에 의해 입방체에서 정방체로 상전이가 일어나 수명특성이 떨어진다. 특히 60℃이상에서 충,방전시 전해액의 부반응에 따른 망간의 용출로 전지특성이 급격히 저하되는 문제점이 있다.Representative cathode active materials of lithium secondary batteries include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , and the like. Among them, LiCoO 2 has excellent lifespan characteristics and potential flatness due to excellent conductivity, excellent high-rate discharge characteristics, and stable charge/discharge behavior. However, the fact that the price of cobalt (Co) is expensive compared to other materials and that the internal temperature of the battery rapidly rises due to poor thermal stability in the charged state when a lithium secondary battery is misused, thereby desorbing lattice oxygen there is. In the case of LiNiO 2 , compared to LiCoO 2 , the price is low, the specific capacity is high, and the oxidation of the electrolyte is low because it shows a low discharge voltage. situation. In addition, LiMn 2 O 4 is cheaper and easier to synthesize than other cathode active materials, so it is used in low-cost products . It is difficult to manufacture high energy density batteries due to low specific capacity and wrap density compared to materials. In addition, not only the diffusion resistance of ions during charging and discharging of the secondary battery is large, but when the manganese (Mn) oxidation number falls below 3.5 in the operating voltage range, a phase transition occurs from a cube to a square due to the Jahn-Heller effect, resulting in a lifespan characteristics are lowered. In particular, there is a problem in that the battery characteristics are rapidly deteriorated due to the elution of manganese according to the side reaction of the electrolyte during charging and discharging at 60°C or higher.

이러한 소재의 단점들을 해결하기 위해 종래기술 '미국등록특허 제6808848호'에서는 LiNiCoMnO2와 LiMn2O4로 이루어진 이종 양극활물질을 적용하여 출력특성 향상에 대한 제안을 하고 있으나, 아직까지 출력특성이 충분히 개선되었다는 보고는 발표되지 않고 있다. 또한 감람석(Olivine) 구조를 지니는 Li1 - xFexPO4 및 큐빅(Cubic) 구조를 갖는 Li[Mn20xMx]O4의 낮은 전도성 문제를 해결하기 위해 '미국공개특허 제2004/0157126호'에서는 아세틸렌(Acetylene), 부탄(Butane) 등 탄소원료 기체를 이용하여 LiFePO4 및 Li[Mn2 - xMx]O4 등을 코팅하는 방법이 개시되어 있으나, 제조시 분위기 제어가 어렵고 공정 중 리튬(Li)의 휘발을 유도할 수 있으며, 균일한 코팅 활물질을 제조하기 어려워 만족스러운 전지특성을 실현할 수 없다. 이 이외에도 층상계-층상계 복합구조인 Li2MnO3-LiMO2 (여기서, M은 Ni, Co, Mn 및 이의 혼합으로 이루어진 군) 양극활물질이 연구되어 보고되고 있다. 하지만 이러한 소재는 초기 충방전시에 비가역용량이 매우 크고, 산소 발생으로 인한 스웰링(Swelling) 문제도 심각하다. 이를 해결하기 위해 질산, 황산 등과 같은 강산을 이용한 산처리를 통하여 리튬과 산소를 제거하는 방법이 보고되고 있으나, 산처리에 의하여 활물질 표면이 손상을 입거나 결정구조가 변하여 전기화학적 특성이 저하되는 단점을 가지고 있다.In order to solve the disadvantages of these materials, the prior art 'US Patent No. 6808848' proposes to improve the output characteristics by applying a heterogeneous positive electrode active material composed of LiNiCoMnO 2 and LiMn 2 O 4 . There are no reports of improvement. In addition, in order to solve the low conductivity problem of Li 1 - x Fe x PO 4 having an olivine structure and Li[Mn 2 0 x M x ]O 4 having a cubic structure, 'US Patent Publication No. 2004/ No. 0157126 discloses a method of coating LiFePO 4 and Li[Mn 2 - x M x ]O 4 using a carbon raw material gas such as acetylene and butane, but it is difficult to control the atmosphere during manufacturing It can induce volatilization of lithium (Li) during the process, and it is difficult to prepare a uniform coating active material, so satisfactory battery characteristics cannot be realized. In addition to this, a layered-layered composite structure of Li 2 MnO 3 -LiMO 2 (where M is a group consisting of Ni, Co, Mn, and mixtures thereof) has been studied and reported. However, these materials have a very large irreversible capacity during initial charging and discharging, and the problem of swelling due to oxygen generation is also serious. In order to solve this problem, a method of removing lithium and oxygen through acid treatment using strong acids such as nitric acid or sulfuric acid has been reported, however, the surface of the active material is damaged or the crystal structure is changed due to acid treatment, and the electrochemical properties are deteriorated. has a

미국등록특허 제6808848호US Patent No. 6808848 미국공개특허 제2004/0157126호US Patent Publication No. 2004/0157126

따라서 본 발명의 목적은 Li3V2(PO4)3에 철(Fe) 및 티타늄(Ti)을 코-도핑(co-doping)하고 그래핀(Graphene)을 첨가하여 Li3V2 -2 xFexTix(PO4)3/graphene을 리튬 이차 전지에 적용하는 리튬 이차 전지용 인산염계 양극활물질 및 그 제조방법을 제공하는 것이다.Accordingly, an object of the present invention is to co-doping iron (Fe) and titanium (Ti) to Li 3 V 2 (PO 4 ) 3 and adding graphene to Li 3 V 2 -2 x To provide a phosphate-based positive electrode active material for a lithium secondary battery in which Fe x Ti x (PO 4 ) 3 /graphene is applied to a lithium secondary battery and a method for manufacturing the same.

상기한 목적은, 단사정계 Li3V2(PO4)3에 철 및 티타늄이 코-도핑(co-doping)된 Li3V2 -2 xFexTix(PO4)3(x≥0.015)를 포함하는 것을 특징으로 하는 인산염계 리튬 이차 전지용 양극활물질에 의해 달성된다.The above object is, the monoclinic Li 3 V 2 (PO 4 ) 3 iron and titanium co-doped (co-doped) Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 (x≥0.015) ) is achieved by a positive electrode active material for a phosphate-based lithium secondary battery, characterized in that it contains.

상기 Li3V2 -2 xFexTix(PO4)3는 카본소재(Carbon material)와 혼합된 Li3V2 -2xFexTix(PO4)3/C를 포함하는 것이 바람직하다.The Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 preferably includes Li 3 V 2 -2x Fe x Ti x (PO 4 ) 3 /C mixed with a carbon material. .

상기한 목적은 또한, 단사정계 Li3V2(PO4)3를 준비하는 단계와; 상기 Li3V2(PO4)3에 철 및 티타늄을 졸-겔(Sol-gel) 방법을 통해 코-도핑(co-doping)하여 Li3V2-2xFexTix(PO4)3(x≥0.015)를 제조하는 단계를 포함하는 리튬 이차 전지용 양극활물질 제조방법에 의해서도 달성된다.The above object also includes the steps of preparing a monoclinic Li 3 V 2 (PO 4 ) 3 ; The Li 3 V 2 (PO 4 ) 3 by co-doping with iron and titanium through a sol-gel method, Li 3 V 2-2x Fe x Ti x (PO 4 ) 3 (x ≥ 0.015) is also achieved by a method for manufacturing a positive electrode active material for a lithium secondary battery comprising the step of preparing.

상기 단사정계 Li3V2(PO4)3를 준비하는 단계는, 산화바나듐(Vanadium oxide, V2O3) 및 옥살산(Oxalic acid, C2H2O4)을 증류수 또는 물에 용해시켜 교반하는 단계와; 탄산리튬(Lithium carbonate, Li2CO3) 및 인산암모늄(Ammonium phosphate, NH4H2PO4)을 혼합 및 교반하여 Li3V2(PO4)3 혼합용액을 형성하는 단계를 포함하는 것이 바람직하며, 상기 철 및 티타늄을 코-도핑하는 단계는, 상기 혼합용액에 질산철(Iron nitrate, Fe(NO3)3) 및 산화티타늄(Titanium dioxide, TiO2)을 혼합 및 교반하는 단계를 포함하는 것이 바람직하다.The step of preparing the monoclinic Li 3 V 2 (PO 4 ) 3 is by dissolving vanadium oxide (V 2 O 3 ) and oxalic acid (C 2 H 2 O 4 ) in distilled water or water and stirring. step of; Lithium carbonate (Li 2 CO 3 ) and ammonium phosphate (Ammonium phosphate, NH 4 H 2 PO 4 ) are mixed and stirred to form a Li 3 V 2 (PO 4 ) 3 mixed solution. and the co-doping of iron and titanium includes mixing and stirring iron nitrate (Fe(NO 3 ) 3 ) and titanium dioxide (TiO 2 ) in the mixed solution. it is preferable

또한, 상기 철 및 티타늄을 코-도핑하는 단계 이후에, 카본소재(Carbon material) 용액을 혼합 및 교반하는 단계와; 상기 용액을 건조시켜 Li3V2 -2xFexTix(PO4)3/C 전구체를 형성하는 단계와; 상기 Li3V2 -2 xFexTix(PO4)3/C 전구체를 열처리하여 Li3V2 -2 xFexTix(PO4)3/C를 형성하는 단계를 포함하는 것이 바람직하다.In addition, after the step of co-doping the iron and titanium, mixing and stirring a carbon material (Carbon material) solution; drying the solution to form a Li 3 V 2 -2x Fe x Ti x (PO 4 ) 3 /C precursor; It is preferable to heat-treat the Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 /C precursor to form Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 /C Do.

상술한 본 발명의 구성에 따르면 Li3V2(PO4)3에 철(Fe) 및 티타늄(Ti)을 코-도핑(co-doping)하고 그래핀을 첨가하여 Li3V2 -2 xFexTix(PO4)3/graphene을 리튬 이차 전지용 인산염계 양극활물질로 적용하여 리튬 이차 전지의 방전용량을 증가, 고출력 특성, 사이클 특성과 같은 제반 전기화학적 특성이 향상되어 저가, 고안전성, 고용량, 장수명 이차전지를 제조가능한 효과를 얻을 수 있다.According to the configuration of the present invention described above, by co-doping iron (Fe) and titanium (Ti) to Li 3 V 2 (PO 4 ) 3 and adding graphene, Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 /graphene is applied as a phosphate-based positive electrode active material for lithium secondary batteries to increase the discharge capacity of lithium secondary batteries, and overall electrochemical properties such as high output characteristics and cycle characteristics are improved, resulting in low cost, high safety and high capacity , it is possible to obtain the effect of manufacturing a long-life secondary battery.

도 1은 본 발명의 실시예에 따른 리튬 이차 전지용 인산염계 양극활물질 제조방법의 순서도이고,
도 2는 양극활물질인 Li3V2 -2 xFexTix(PO4)3의 XRD 패턴 그래프이고,
도 3은 Li3V2 -2 xFexTix(PO4)3의 FE-SEM 사진이고,
도 4는 Li3V2 -2 xFexTix(PO4)3의 TEM 사진이고,
도 5는 Li3V2 -2 xFexTix(PO4)3의 TEM elemetal mapping 사진이고,
도 6은 Li3V2 -2 xFexTix(PO4)3의 XPS 스펙트럼이고,
도 7은 Li3V2 -2 xFexTix(PO4)3의 초기 충방전 곡선이고,
도 8은 Li3V2 -2 xFexTix(PO4)3의 전류율에 따른 방전 곡선이고,
도 9는 Li3V2 -2 xFexTix(PO4)3의 사이클 특성이고,
도 10은 Li3V2 -2 xFexTix(PO4)3의 사이클릭 볼타메트리 곡선이고,
도 11은 Li3V2 -2 xFexTix(PO4)3의 임피던스 곡선이다.
1 is a flowchart of a method for manufacturing a phosphate-based positive electrode active material for a lithium secondary battery according to an embodiment of the present invention;
Figure 2 is a positive electrode active material Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 XRD pattern graph of,
3 is a FE-SEM photograph of Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 ,
4 is a TEM photograph of Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 ,
5 is a TEM elemetal mapping photograph of Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 ,
6 is an XPS spectrum of Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 ,
7 is an initial charge-discharge curve of Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 ,
8 is a discharge curve according to the current rate of Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 ,
9 is a cycle characteristic of Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 ,
10 is a cyclic voltammetry curve of Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 ,
11 is an impedance curve of Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 .

이하 본 발명의 실시예에 따른 리튬 이차 전지용 인산염계 양극활물질 및 그 제조방법을 상세히 설명한다.Hereinafter, a phosphate-based positive electrode active material for a lithium secondary battery and a manufacturing method thereof according to an embodiment of the present invention will be described in detail.

도 1에 도시된 바와 같이, 리튬 이차 전지용 인산염계 양극활물질인 Li3V2 -2xFexTix(PO4)3를 제조하기 위해서는 먼저 단사정계 Li3V2(PO4)3를 준비하는 데, 산화바나듐(Vanadium oxide, V2O3) 및 옥살산(Oxalic acid, C2H2O4)을 증류수 또는 물에 용해시켜 교반하는 단계와, 탄산리튬(Lithium carbonate, Li2CO3) 및 인산암모늄(Ammonium phosphate, NH4H2PO4)을 혼합 및 교반을 통해 얻는다. 이후 Li3V2(PO4)3에 졸-겔(Sol-gel) 방법을 통해 철 및 티타늄을 코-도핑(co-doping)하는데, 이는 질산철(Iron nitrate, Fe(NO3)3) 및 산화티타늄(Titanium dioxide, TiO2)을 이용하여 이루어진다. 최종적으로 Li3V2 -2 xFexTix(PO4)3이 얻어지며, 경우에 따라서 카본소재(Carbon material)를 함께 혼합한 Li3V2 -2 xFexTix(PO4)3/C을 형성할 수도 있다. 여기서 카본소재는 활성탄(Activated carbon), 그라파이트(Graphite), 그래핀(Graphene), 소프트카본(Soft carbon), 하드카본(Hard carbon), 카본블랙(Carbon black), 탄소나노튜브(Carbon nano tube, CNT), 탄소나노섬유(Carbon nano fiber, CNF), 변형탄소(Modified carbon), 탄소복합소재(Carbon composite) 및 이의 혼합으로 이루어진 군으로부터 선택되는 데, 그 중 그래핀이 가장 바람직하다.1, in order to prepare Li 3 V 2 -2x Fe x Ti x (PO 4 ) 3 , which is a phosphate-based positive electrode active material for a lithium secondary battery, first monoclinic Li 3 V 2 (PO 4 ) 3 is prepared. The step of dissolving vanadium oxide (V 2 O 3 ) and oxalic acid (C 2 H 2 O 4 ) in distilled water or water and stirring, and lithium carbonate (Li 2 CO 3 ) and Ammonium phosphate (Ammonium phosphate, NH 4 H 2 PO 4 ) is obtained through mixing and stirring. After that, Li 3 V 2 (PO 4 ) 3 to co-doping iron and titanium through a sol-gel method, which is iron nitrate (Iron nitrate, Fe(NO 3 ) 3 ) and titanium dioxide (TiO 2 ). Finally, Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 is obtained, and in some cases, a carbon material is mixed with Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 /C can also be formed. Here, the carbon material is activated carbon, graphite, graphene, soft carbon, hard carbon, carbon black, carbon nano tube, CNT), carbon nanofiber (CNF), modified carbon (Modified carbon), carbon composite material (Carbon composite) and selected from the group consisting of mixtures thereof, among them, graphene is most preferable.

이는 다음과 같은 실시예를 통해 더욱 상세하게 설명한다.
This will be described in more detail through the following examples.

<실시예><Example>

본 실시예에서는 산화바나듐(Vanadium oxide, V2O3), 옥살산(Oxalic acid, C2H2O4), 탄산리튬(Lithium carbonate, Li2CO3), 인산암모늄(Ammonium phosphate, NH4H2PO4), 산화티타늄(Titanium dioxide, TiO2), 질산철(Iron nitrate, Fe(NO3)3), 산화그래핀(Graphene oxide)를 이용하여 Li3V2 -2 xFexTix(PO4)3/graphene을 합성하였다.In this embodiment, vanadium oxide (V 2 O 3 ), oxalic acid (C 2 H 2 O 4 ), lithium carbonate (Li 2 CO 3 ), ammonium phosphate (Ammonium phosphate, NH 4 H) Li 3 V 2 -2 x Fe x Ti x using 2 PO 4 ), titanium dioxide (TiO 2 ), iron nitrate (Fe(NO 3 ) 3 ), and graphene oxide (PO 4 ) 3 /graphene was synthesized.

먼저, 1:3의 화학양론(Stoichiometry) 조성비율로 산화바나듐과 옥살산을 증류수에 용해시켜 혼합용액을 형성하고, 혼합용액이 푸른색을 가질 때까지 교반하였다. 교반된 혼합용액에 탄화리튬, 인산암모늄, 산화티타늄, 질산철을 차례대로 넣고 이들이 혼합용액에 완전히 용해될 때까지 1시간 동안 교반하였다. 여기에 그래핀을 포함하는 용액(Graphene solution)을 첨가한 후 실온에서 24시간 교반하였다. 이후의 용액을 100℃에서 건조하여 Li3V2 -2 xFexTix(PO4)3/graphene 전구체(Precursor)를 합성하였다.First, a mixed solution was formed by dissolving vanadium oxide and oxalic acid in distilled water at a stoichiometry composition ratio of 1:3, and stirred until the mixed solution had a blue color. Lithium carbide, ammonium phosphate, titanium oxide, and iron nitrate were sequentially added to the stirred mixed solution and stirred for 1 hour until they were completely dissolved in the mixed solution. A solution containing graphene was added thereto, followed by stirring at room temperature for 24 hours. After the solution was dried at 100° C., Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 /graphene precursor (Precursor) was synthesized.

상기의 방법을 통해 얻어진 Li3V2 -2 xFexTix(PO4)3/graphene 전구체를 튜브형 소결로(Sintering furnace)에서 아르곤(Ar) 분위기로 350℃에서 4시간 동안 열처리한 후, 800℃에서 8시간 동안 열처리하여 최종물질인 Li3V2 -2 xFexTix(PO4)3/graphene을 합성하였다.
After heat-treating the Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 /graphene precursor obtained through the above method in an argon (Ar) atmosphere in a tubular sintering furnace at 350° C. for 4 hours, The final material, Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 /graphene was synthesized by heat treatment at 800° C. for 8 hours.

합성된 Li3V2 -2 xFexTix(PO4)3/graphene 양극활물질의 결정구조와 불순물을 관찰하기 위하여 X선 회절분석(Philips Co., X-pert PW3710)을 하였다. Cu-kα선을 사용하여 40kV, 30mA의 조건에서, 주사속도 0.04°/sec, 주사범위 10 내지 80°(2θ)에서 측정하였다. 또한 입자크기 및 표면형상을 측정하기 위해 FE-SEM(Field emission scanning electron microscope, Hitachi Co., S-4800) 분석과 TEM(Transition electron microscopy, TF30ST) 분석을 하였다. 산화물의 산화수를 관찰하기 위해서는 XPS(X-ray photoelectron spectroscopic, VG Multilab ESCA 2000 system, ThermoVG Scientific)을 이용하였다. 또한 카본의 함량은 CHNS Elemental Analyzer(EA, 2400 series 2, PerkinElmer)을 이용하여 측정하였다.
X-ray diffraction analysis (Philips Co., X-pert PW3710) was performed to observe the crystal structure and impurities of the synthesized Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 /graphene cathode active material. Measurements were made using Cu-kα rays at a scanning speed of 0.04°/sec and a scanning range of 10 to 80° (2θ) under the conditions of 40 kV and 30 mA. In addition, FE-SEM (Field emission scanning electron microscope, Hitachi Co., S-4800) analysis and TEM (Transition electron microscopy, TF30ST) analysis were performed to measure the particle size and surface shape. In order to observe the oxidation number of the oxide, XPS (X-ray photoelectron spectroscopic, VG Multilab ESCA 2000 system, ThermoVG Scientific) was used. In addition, the carbon content was measured using a CHNS Elemental Analyzer (EA, 2400 series 2, PerkinElmer).

Li3V2 -2 xFexTix(PO4)3/graphene 양극활물질의 전기화학적 특성을 조사하기 위하여 양극활물질과 도전재인 Super P Black, 결합제인 PVDF(Polyvinylidene fluoride)를 양극활물질:도전재:결합제=70:20:10의 중량비로 NMP(n-Methyl pyrrolidone)에 분산시켜 슬러리(Slurry)를 제조하였다. 이 슬러리를 알루미늄박에 얇게 도포하고, 100℃에서 12시간 동안 건조하여 전극을 제조하였다. 건조된 전극은 핫롤 프레스(Hot roll press)를 이용하여 110℃에서 압착이 이루어졌다. 압착된 전극을 양극으로 사용하고, 리튬 음극과 분리막(Celguard 3501)을 적층하여 코인 전지(CR2032)를 완성하였다. 전해액으로는 1M의 LiPF6염이 용해된 EC(Ethylene carbonate):DMC(Dimethyl carbonate)=1:1 부피비로 혼합한 용액을 사용하였다.
Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 /graphene In order to investigate the electrochemical properties of the positive electrode active material, the positive electrode active material, Super P Black, a conductive material, and PVDF (Polyvinylidene fluoride) as a binder, positive electrode active material: conductive material :Binder=70:20:10 A slurry was prepared by dispersing it in NMP (n-Methyl pyrrolidone) in a weight ratio of 10. This slurry was thinly applied to an aluminum foil and dried at 100° C. for 12 hours to prepare an electrode. The dried electrode was compressed at 110° C. using a hot roll press. A coin battery (CR2032) was completed by using the compressed electrode as a positive electrode, and stacking a lithium negative electrode and a separator (Celguard 3501). As the electrolyte, a solution in which 1M LiPF 6 salt was dissolved in EC (Ethylene carbonate):DMC (Dimethyl carbonate) = 1:1 by volume was used.

합성된 양극활물질의 전기화학적 특성은 충방전시험기(TOYO system, TOCAT-3100)를 사용하여 측정하였다. 방전용량, 방전 율특성, 사이클 수명 등의 전지 특성 실험은 3.0 내지 4.8V의 전압 구간에서 정전류-정전압 조건으로 충전하였다. 임피던스 거동은 VMP3(Biologic사)를 이용하여 100kHz 내지 10mHz(amplitude 5 mV) 조건에서 측정하였다.
The electrochemical properties of the synthesized cathode active material were measured using a charge/discharge tester (TOYO system, TOCAT-3100). Battery characteristics such as discharge capacity, discharge rate characteristics, cycle life, etc. were charged under a constant current-constant voltage condition in a voltage range of 3.0 to 4.8V. Impedance behavior was measured at 100 kHz to 10 mHz (amplitude 5 mV) using VMP3 (Biologic).

도 2는 Li3V2 -2 xFexTix(PO4)3 샘플의 XRD 분석결과를 나타낸 것이다. 얻어진 분말은 p21/n 공간그룹을 갖는 단사정계 구조(Monoclinic structure)를 나타내었고, 카본(C)이나 그래핀(Graphene)에 의한 피크는 관찰되지 않았다. 이는 카본이 비정질로 존재하며, 또한 양이 소량이기 때문인 것으로 판단된다. 더구나 원료로 사용한 옥살산은 열처리과정 중에서 V5 +에서 V3 +으로 환원되는 환원제 역할을 한 것으로 기대된다. 도핑원소를 첨가하지 않은 샘플의 XRD 패턴과 비교하면, 철 및 티타늄이 함께 도핑된 샘플은 불순물 피크가 없으며 도핑 원소가 모두 Li3V2(PO4)3의 바나듐자리에 들어간 것으로 추측된다. 이러한 결과는 Liu (H. Liu, P. Gao, J. Fang and G. Yang, Chem. Commun., 47, 9110 (2011)) 및 Fei (L. Fei, W. Lu, Li Sun, J. Wang, J. Wei, H.L.W. Chan and Y. Wang, RSC Adv., 3, 1297 (2013))가 발표한 논문과도 일치한다.Figure 2 shows the XRD analysis results of the Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 sample. The obtained powder exhibited a monoclinic structure having a p2 1 /n space group, and no peak due to carbon (C) or graphene was observed. It is considered that this is because carbon exists in an amorphous form and is also present in a small amount. Moreover, oxalic acid used as a raw material is expected to act as a reducing agent that is reduced from V 5 + to V 3 + during the heat treatment process. Comparing with the XRD pattern of the sample to which no doping element was added, the sample doped with iron and titanium does not have an impurity peak, and it is assumed that all of the doping elements entered the vanadium site of Li 3 V 2 (PO 4 ) 3 . These results are consistent with Liu (H. Liu, P. Gao, J. Fang and G. Yang, Chem. Commun., 47, 9110 (2011)) and Fei (L. Fei, W. Lu, Li Sun, J. Wang). , J. Wei, HLW Chan and Y. Wang, RSC Adv., 3, 1297 (2013)).

도 3은 Li3V2 -2 xFexTix(PO4)3 샘플의 표면형상을 FE-SEM으로 관찰한 결과이다. 상부에 배치된 사진은 철 및 티타늄이 도핑된 샘플들을 촬영한 사진이고, 하부에 배치된 사진은 도핑이 이루어지지 않은 샘플의 사진으로, 도핑하지 않은 샘플과 철 및 티타늄이 도핑된 샘플은 서로 다른 형상을 보이고 있다. 도핑하지 않은 샘플은 불규칙한 형상을 보이고, 일정하지 않은 크기의 입자들이 서로 응집된 상태이다. 그에 비해 철 및 티타늄이 도핑된 샘플은 입자크기가 작고 균일한 것을 확인할 수 있다. 예를 들어 Li3V1 .98Fe0 .01Ti0 .01(PO4)3 샘플은 1 내지 2㎛의 입자크기 분포를 나타내며, 이러한 작고 균일한 입자는 전극 반응에서 표면적이 크고 리튬 이온의 확산 경로가 짧아 전기화학적 특성을 향상시키는 요인으로 작용한다. 즉, 본 발명에서 도핑원소는 Li3V2 -2 xFexTix(PO4)3 입자의 성장을 제한하는 계면활성제 역할을 하며, Li3V2 -2 xFexTix(PO4)3의 전기화학적 특성을 향상시키는 표면형상 제어에서 중요한 역할을 한다.3 is a result of observing the surface shape of the Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 sample by FE-SEM. The upper photo is a photo of samples doped with iron and titanium, the lower photo is a photo of an undoped sample, and the undoped sample and the iron and titanium doped sample are different from each other. showing shape. The undoped sample shows an irregular shape, and particles of non-uniform size are agglomerated with each other. In contrast, it can be seen that the sample doped with iron and titanium has a small and uniform particle size. For example, the Li 3 V 1.98 Fe 0.01 Ti 0.01 ( PO 4 ) 3 sample shows a particle size distribution of 1 to 2 μm, and these small and uniform particles have a large surface area in the electrode reaction and the Because the diffusion path is short, it acts as a factor to improve the electrochemical properties. That is, in the present invention, the doping element serves as a surfactant to limit the growth of Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 particles, and Li 3 V 2 -2 x Fe x Ti x (PO 4 ) ) 3 plays an important role in controlling the surface shape to improve the electrochemical properties.

도 4는 Li3V2 -2 xFexTix(PO4)3/graphene (x=0.01) 샘플을 TEM으로 관찰한 결과이다. HR-TEM 사진을 보면 그래핀은 약 100nm 두께로 Li3V2 -2 xFexTix(PO4)3 표면을 덮고 있다. 따라서 전기전도성이 높은 그래핀과 도핑물질이 전지 충, 방전 중에 전자의 이동을 용이하게 해줄 것으로 예상된다. 더구나 도 4b 에서도 볼 수 있듯이 단사정 Li3V2-2xFexTix(PO4)3 입자가 단결정 특성을 보여주고 있다.4 is a Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 /graphene (x=0.01) sample was observed by TEM. Looking at the HR-TEM picture, graphene is about 100 nm thick and covers the surface of Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 . Therefore, graphene and doping materials with high electrical conductivity are expected to facilitate the movement of electrons during battery charging and discharging. Moreover, as can be seen in FIG. 4b , the monoclinic Li 3 V 2-2x Fe x Ti x (PO 4 ) 3 grains exhibit single crystal characteristics.

각 구성원소의 분포상태를 확인하기 위하여 EDS elemetal mapping을 한 결과를 도 5에서 확인할 수 있다. 이를 통해 Li3V1 .98Fe0 .01Ti0 .01(PO4)3 샘플 내에 철 및 티타늄이 골고루 균일하게 도핑되어 있다는 것이 확인되었다.The result of EDS elemetal mapping in order to confirm the distribution state of each element can be confirmed in FIG. 5 . Through this, it was confirmed that iron and titanium were uniformly and uniformly doped in the Li 3 V 1.98 Fe 0.01 Ti 0.01 ( PO 4 ) 3 sample .

도 6은 Li3V2(PO4)3에 철 및 티타늄이 도핑된 Li3V1 .98Fe0 .01Ti0 .01(PO4)3 샘플의 산화상태를 확인하기 위해 분석한 XPS spectra를 나타낸 것이다. V2p의 XPS spectra가 spin-orbit coupling에 의해 두 개의 피크가 나타났다. 516.5eV에서 관찰되는 주피크와 522.7eV에서 보이는 위성피크는 V2p에 의한 것이다. 두 피크의 결합에너지는 바나듐이 +3 산화상태임을 나타내고 있다. 454.2eV에서 보이는 Ti2p 피크는 논문에서 보고되는 TiO2 피크와 동일하기 때문에 티타늄은 +4 산화상태인 것을 확인할 수 있다. 또한 710.5eV에서 보이는 Fe2p3 /2 피크는 LiFePO4에서 보고되는 것과 동일하여 +2의 산화상태인 것으로 추측된다. 따라서 Li3V1 .98Fe0 .01Ti0 .01(PO4)3에서 바나듐, 철, 티타늄은 각각 +3, +2, +4의 산화상태로 존재한다. 여기서 Fe2 +의 이온직경은 0.78Å으로 V3 +의 이온직경 0.64Å보다 크며, Ti4 +의 이온직경은 0.61Å으로 V3 +의 이온직경보다 조금 작다. 따라서 Li3V2 -2 xFexTix(PO4)3는 Fe2 +의 도입으로 결정격자가 더 커지는 것으로 추측된다. 6 is an XPS spectra analyzed to confirm the oxidation state of the Li 3 V 2 (PO 4 ) 3 Li 3 V 1.98 Fe 0.01 Ti 0.01 (PO 4 ) 3 sample doped with iron and titanium . is shown. The XPS spectra of V2p showed two peaks due to spin-orbit coupling. The main peak observed at 516.5 eV and the satellite peak observed at 522.7 eV are due to V2p. The binding energy of the two peaks indicates that vanadium is in the +3 oxidation state. Since the Ti2p peak seen at 454.2eV is the same as the TiO 2 peak reported in the paper, it can be confirmed that titanium is in the +4 oxidation state. In addition, the Fe2p 3 /2 peak seen at 710.5 eV is the same as that reported for LiFePO 4 , so it is assumed to be an oxidation state of +2. Accordingly, in Li 3 V 1.98 Fe 0.01 Ti 0.01 ( PO 4 ) 3 , vanadium, iron, and titanium exist in oxidation states of +3 , +2, and +4, respectively. Here, the ionic diameter of Fe 2+ is 0.78 Å, which is larger than that of V 3 + , 0.64 Å, and the ionic diameter of Ti 4+ is 0.61 Å, which is slightly smaller than the ionic diameter of V 3+ . Therefore, it is assumed that Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 has a larger crystal lattice due to the introduction of Fe 2+ .

도 7은 Li3V2 -2 xFexTix(PO4)3 샘플의 초기 충,방전 곡선을 나타낸 그래프로, (a)는 x=0, (b)는 x=0.005, (c)는 x=0.010, (d)는 x=0.015인 경우에 각 샘플의 곡선을 나타낸 것이다. 철 및 티타늄 도핑에 관계없이 모든 샘플의 충,방전 곡선은 Li3V2(PO4)3의 전형적인 충,방전 거동을 나타내었다. 4.8V까지 충전하는 동안 Li3V2-2xFexTix(PO4)3 샘플에서 3개의 리튬 이온이 빠져나오며, 3.60V, 3.68v, 4.08V, 4.58V의 전압에서 전압평탄구역을 확인할 수 있었다. 3.60V 및 3.68V 부근에서 보이는 첫 번째 산화피크는 첫 번째 리튬 이온이 2단계로 빠져나오는 것을 나타내는 것이다. 4.08V 부근에서 두 번째 리튬 이온이 빠져나오면서 보이는 피크는 V3 +에서 V4 +로의 산화에 의한 것이다. 4.58V 부근에서 보이는 산화피크는 세 번째 리튬 이온이 빠져나오는 것에 의한 것이며, 이때 LiV2(PO4)3에서 V2(PO4)3로 상전이(Phase transition)가 일어나게 된다. 이러한 기본적인 거동은 도핑에 관계없이 거의 일정하지만, 도핑한 샘플들의 경우 방전용량이 더 높은 것을 알 수 있다. 또한 철 및 티타늄을 도핑한 샘플의 충,방전 곡선에 약간의 차이를 보였다. 즉, 도핑량 x가 증가하면 3.60V 및 3.68V에서의 평탄부가 약간 경사지면서 두 개의 평탄부가 하나로 합쳐지는 거동을 보였다. 이는 불활성인 Ti4 +가 증가하면서 V3 +가 감소하기 때문인 것으로 추측된다. 또한 도핑한 샘플의 충,방전 전압의 차가 더 감소하였다. x=0.01 샘플의 방전용량은 188.8mAh/g으로 가장 높은 값을 나타내었다. 도핑한 샘플의 경우 세 번째 리튬 이온이 나오는 구간이 더 길어지면서 방전용량이 증가하였다.7 is a graph showing the initial charge and discharge curves of the Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 sample, (a) is x=0, (b) is x=0.005, (c) is x = 0.010, (d) shows the curve of each sample in the case of x = 0.015. The charge and discharge curves of all samples regardless of iron and titanium doping showed typical charge and discharge behavior of Li 3 V 2 (PO 4 ) 3 . Three lithium ions escape from the Li 3 V 2-2x Fe x Ti x (PO 4 ) 3 sample during charging to 4.8V, and voltage flatness can be confirmed at voltages of 3.60V, 3.68v, 4.08V, and 4.58V. could The first oxide peaks seen around 3.60V and 3.68V indicate that the first lithium ion escapes in the second stage. The peak seen as the second lithium ion escapes around 4.08V is due to oxidation from V 3 + to V 4 + . The oxide peak seen near 4.58V is due to the escape of the third lithium ion, and at this time, a phase transition occurs from LiV 2 (PO 4 ) 3 to V 2 (PO 4 ) 3 . Although this basic behavior is almost constant regardless of doping, it can be seen that the doped samples have a higher discharge capacity. In addition, there was a slight difference in the charge and discharge curves of the samples doped with iron and titanium. That is, when the doping amount x was increased, the flat portions at 3.60 V and 3.68 V were slightly inclined, and the two flat portions merged into one. This is presumed to be because V 3 + decreases while inactive Ti 4 + increases. In addition, the difference between the charge and discharge voltages of the doped sample was further reduced. The discharge capacity of the x=0.01 sample was 188.8 mAh/g, showing the highest value. In the case of the doped sample, the discharge capacity increased as the period in which the third lithium ion was emitted became longer.

도 8은 Li3V2 -2 xFexTix(PO4)3 샘플의 방전 율특성을 나타낸 것이다. 모든 샘플은 0.1C로 충전하였고, 0.1C, 0.2C, 0.5C, 1C, 2C, 5C, 10C에서 방전하였을 경우의 결과를 나타낸 것이다. 전류율이 높아지면서 전극의 분극으로 인한 방전용량이 감소하였다. x=0.01인 샘플의 경우 0.1C, 0.2C, 0.5C, 1C, 2C, 5C, 10C에서 188.8mAh/g, 179.6mAh/g, 171.0mAh/g, 161.3mAh/g, 150.5mAh/g, 138.9mAh/g, 124.6mAh/g을 나타내었다. 이는 도핑하지 않은 샘플에 비해 출력특성이 매우 향상된 결과이며, 이는 전술한 바와 같이 철 및 티타늄의 co-doping으로 인하여 결정격자가 팽창되고 입자의 크기가 감소하였기 때문이다.8 shows the discharge rate characteristics of the Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 sample. All samples were charged at 0.1C, and the results are shown when discharging at 0.1C, 0.2C, 0.5C, 1C, 2C, 5C, and 10C. As the current rate increased, the discharge capacity due to the polarization of the electrode decreased. 188.8 mAh/g, 179.6 mAh/g, 171.0 mAh/g, 161.3 mAh/g, 150.5 mAh/g, 138.9 at 0.1C, 0.2C, 0.5C, 1C, 2C, 5C, 10C for samples with x=0.01 mAh/g, and 124.6 mAh/g. This is a result of greatly improved output characteristics compared to the undoped sample, because, as described above, the crystal lattice expands and the particle size decreases due to co-doping of iron and titanium.

도 9는 Li3V2 -2 xFexTix(PO4)3 샘플의 충,방전 사이클 특성을 나타낸 것이다. 100사이클 후 x=0.01의 샘플은 130.9mAh/g이라는 높은 방전용량을 나타내었다. 이는 초기용량인 170.2mAh/g의 약 77%의 용량 유지율이다. 한편 도핑하지 않는 x=0 샘플의 경우 100사이클 후의 방전용량은 106.5mAh/g이며, 이는 초기용량인 150.1mAh/g과 비교하면 70%의 용량유지율을 보여주었다. 이러한 결과는 x=0.010 샘플의 우수한 사이클 성능은 철 및 티타늄 co-doping에 의해 구조가 리튬 이온의 삽입과 탈리가 잘 이루어지도록 변하였기 때문이다. V3 +, V4 +, V5 +의 이온 직경은 각각 0.64Å, 0.58Å, 0.335Å이다. 충,방전 과정에서 바나듐의 산화상태는 증가와 감소가 반복되고 결정 격자는 팽창과 수축을 반복하게 된다. Fe2 +와 Fe3 +는 전기화학적으로 비활성이고, 이온 직경이 각각 0.78Å, 0.645Å이다. Fe2 +와 Fe3 + 사이의 변화는 V3+와 V5 + 사이의 변화에 비하여 구조변화가 더 작다. 또한 Ti4 +의 이온 직경은 충,방전 과정에서 변화가 없는 것으로 알려져 있다. 따라서 철 및 티타늄 co-doping은 충,방전 과정에서 결정격자의 팽창 및 수축 변화를 감소시키고 이에 따라 구조가 안정하게 유지되면서 충,방전 특성이 향상되는 것으로 유추된다.9 shows the charge and discharge cycle characteristics of the Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 sample. After 100 cycles, the sample of x=0.01 showed a high discharge capacity of 130.9 mAh/g. This is a capacity retention rate of about 77% of the initial capacity of 170.2 mAh/g. Meanwhile, in the case of the undoped x=0 sample, the discharge capacity after 100 cycles was 106.5 mAh/g, which showed a 70% capacity retention rate compared to the initial capacity of 150.1 mAh/g. These results are because the excellent cycle performance of the x=0.010 sample was changed to facilitate insertion and desorption of lithium ions by iron and titanium co-doping. The ion diameters of V 3 + , V 4 + , and V 5 + are 0.64 Å, 0.58 Å, and 0.335 Å, respectively. During the charging and discharging process, the oxidation state of vanadium repeatedly increases and decreases, and the crystal lattice repeats expansion and contraction. Fe 2+ and Fe 3+ are electrochemically inert and have ionic diameters of 0.78 Å and 0.645 Å, respectively. The change between Fe 2+ and Fe 3+ has a smaller structural change than the change between V 3+ and V 5+ . In addition, it is known that the ion diameter of Ti 4+ does not change during the charging and discharging process. Therefore, it is inferred that iron and titanium co-doping reduces the expansion and contraction changes of the crystal lattice during the charging and discharging process, and thus the charging and discharging characteristics are improved while the structure is maintained stably.

도 10은 Li3V2 -2 xFexTix(PO4)3 샘플의 사이클릭 볼타메트리(Cyclic voltammetry, CV) 결과를 나타낸 것이다. CV 곡선은 전해액이 충분히 전극 내로 침투하고 고체 전해질 계면(Solid electrolyte interface, SEI) 층이 형성되도록 2번째 사이클에서 측정하였다. 모든 샘플은 3.0 내지 4.8V 전압 범위에서 네 개의 양극 전류 피크(Aodic current peak)와 세 개의 음극 전극 피크(Cathodic current peak)를 나타내었고, 이는 도 3의 충,방전 곡선의 결과와 일치한다. 충전과 방전시의 피크 전압은 철 및 티타늄 co-doping으로 감소하였으며 이는 도 6에 나타낸 초기 충,방전 곡선 결과와 일치한다. 도 10에서도 x=0.01 샘플이 가장 전압차이가 적은 것을 보여주고 있다.10 is a Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 Cyclic voltammetry (CV) of the sample shows the results. The CV curve was measured in the second cycle so that the electrolyte sufficiently penetrated into the electrode and a solid electrolyte interface (SEI) layer was formed. All samples exhibited four anode current peaks and three cathode electrode peaks in a voltage range of 3.0 to 4.8V, which is consistent with the results of the charge and discharge curves of FIG. 3 . The peak voltages during charging and discharging were reduced with iron and titanium co-doping, which is consistent with the results of the initial charging and discharging curves shown in FIG. 6 . 10 also shows that the x=0.01 sample has the smallest voltage difference.

도 11은 Li3V2 -2 xFexTix(PO4)3 샘플의 EIS(Electrochemical impedance spectroscopy) 측정 결과를 나타낸 것이다. 모든 샘플은 동일하게 준비되었으며, EIS 측정 이전에 20회의 충,방전을 거친 전지를 사용하였다. 모든 Nyquist plot은 반원과 경사선을 보여주고 있다. 반원은 전하이동반응에 의한 것이고, 경사선은 고상에서 리튬 이온의 확산에 의한 것을 나타낸다. 측정 결과 모든 co-doping 샘플은 낮은 Rct(Charge transfer resistance) 값을 보여주었고, 특히 x=0.010 샘플이 12.0Ω으로 가장 낮은 값을 나타내었다. 이는 도 7 내지 도 10에서 나타낸 충,방전 특성 결과와도 일치한다.
11 is a Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 EIS (Electrochemical impedance spectroscopy) measurement results of the sample is shown. All samples were prepared identically, and batteries that were charged and discharged 20 times before EIS measurement were used. All Nyquist plots show semicircles and sloped lines. The semicircle represents the charge transfer reaction, and the slanted line represents the diffusion of lithium ions in the solid phase. As a result of the measurement, all of the co-doping samples showed a low Rct (Charge Transfer Resistance) value, and in particular, the x=0.010 sample showed the lowest value at 12.0Ω. This is also consistent with the results of the charging and discharging characteristics shown in FIGS. 7 to 10 .

본 발명의 Li3V2 -2 xFexTix(PO4)3는 철 및 티타늄이 코-도핑되어 계면활성제 역할을 하기 때문에 코-도핑되지 않은 샘플보다 작고 균일한 입자로 형성되며, 이와 같은 입자 크기는 표면적이 크고 리튬 이온의 확산 경로가 짧기 때문에 전기화학적 특성이 향상된다. 뿐만 아니라 철 및 티타늄은 전기전도성이 높아 전지의 충,방전 중에 전자의 이동을 용이하게 하며, 함께 혼합되는 카본소재와 혼합될 경우에는 전카본소재의 전기전도성에 의해 더욱 높은 전지의 충,방전 효율을 얻을 수 있다.
Li 3 V 2 -2 x Fe x Ti x (PO 4 ) 3 of the present invention is co-doped with iron and titanium to act as a surfactant, so it is formed into smaller and more uniform particles than the non-co-doped sample, and The same particle size improves the electrochemical properties because the surface area is large and the diffusion path of lithium ions is short. In addition, iron and titanium have high electrical conductivity, which facilitates the movement of electrons during charging and discharging of the battery. can get

Claims (10)

리튬 이차 전지용 양극활물질에 있어서,
단사정계 Li3V2(PO4)3에 철 및 티타늄이 코-도핑(co-doping)되고, 입자크기가 1~2μm인 Li3V2-2xFexTix(PO4)3(x=0.005~0.015);
활성탄(Activated carbon), 그라파이트(Graphite), 그래핀(Graphene), 소프트카본(Soft carbon), 하드카본(Hard carbon), 카본블랙(Carbon black), 탄소나노튜브(Carbon nano tube, CNT), 탄소나노섬유(Carbon nano fiber, CNF), 변형탄소(Modified carbon), 탄소복합소재(Carbon composite) 및 이의 혼합으로 이루어진 군으로 부터 선택된 카본소재;를 포함하고,
상기 카본소재가 상기 Li3V2-2xFexTix(PO4)3의 표면을 덮는 구조이며,
방전용량이 175~190mAh/g이고, Rct(Charge transfer resistance) 값이 10 ~ 30Ω인 것을 특징으로 하는 리튬 이차 전지용 양극활물질.
In the cathode active material for a lithium secondary battery,
Monoclinic Li 3 V 2 (PO 4 ) 3 is co-doped with iron and titanium, and the particle size is 1 to 2 μm Li 3 V 2-2x Fe x Ti x (PO 4 ) 3 (x =0.005~0.015);
Activated carbon, graphite, graphene, soft carbon, hard carbon, carbon black, carbon nanotube (CNT), carbon Nanofiber (Carbon nano fiber, CNF), modified carbon (Modified carbon), carbon composite material (Carbon composite), and a carbon material selected from the group consisting of mixtures thereof;
The carbon material has a structure that covers the surface of the Li 3 V 2-2x Fe x Ti x (PO 4 ) 3 ,
A cathode active material for a lithium secondary battery, characterized in that the discharge capacity is 175 to 190 mAh/g, and the Rct (Charge transfer resistance) value is 10 to 30 Ω.
삭제delete 삭제delete 제 1항에 있어서,
상기 Li3V2(PO4)3는 산화바나듐(Vanadium oxide, V2O3), 옥살산(Oxalic acid, C2H2O4), 탄산리튬(Lithium carbonate, Li2CO3) 및 인산암모늄(Ammonium phosphate, NH4H2PO4)을 혼합하여 형성되는 것을 특징으로 하는 리튬 이차 전지용 양극활물질.
The method of claim 1,
The Li 3 V 2 (PO 4 ) 3 is vanadium oxide (V 2 O 3 ), oxalic acid (C 2 H 2 O 4 ), lithium carbonate (Li 2 CO 3 ) and ammonium phosphate. (Ammonium phosphate, NH 4 H 2 PO 4 ) A cathode active material for a lithium secondary battery, characterized in that it is formed by mixing.
제 1항에 있어서,
상기 철은 질산철(Iron nitrate, Fe(NO3)3)을, 상기 티타늄은 산화티타늄(Titanium dioxide, TiO2)을 이용하여 코-도핑되는 것을 특징으로 하는 리튬 이차 전지용 양극활물질.
The method of claim 1,
The iron is iron nitrate (Iron nitrate, Fe(NO 3 ) 3 ), and the titanium is a cathode active material for a lithium secondary battery, characterized in that it is co-doped using titanium dioxide (TiO 2 ).
리튬 이차 전지용 양극활물질 제조방법에 있어서,
산화바나듐(Vanadium oxide, V2O3) 및 옥살산(Oxalic acid, C2H2O4)을 증류수 또는 물에 용해시켜 교반한 혼합물을 제조하는 단계;
상기 혼합물에 탄산리튬(Lithium carbonate, Li2CO3) 및 인산암모늄(Ammonium phosphate, NH4H2PO4)을 혼합 및 교반하여 단사정계 Li3V2(PO4)3를 제조하는 단계;
상기 Li3V2(PO4)3에 철 및 티타늄을 졸-겔(Sol-gel) 방법을 통해 코-도핑(co-doping)하여 입자크기가 1~2μm인 Li3V2-2xFexTix(PO4)3(x=0.005~0.015)를 제조하는 단계;
상기 Li3V2-2xFexTix(PO4)3를 카본소재(Carbon material) 용액과 혼합 및 교반하는 단계;
상기 카본소재가 혼합된 용액을 건조시켜 Li3V2-2xFexTix(PO4)3/C 전구체를 형성하는 단계; 및
상기 Li3V2-2xFexTix(PO4)3/C 전구체를 열처리하여 상기 카본소재가 상기 Li3V2-2xFexTix(PO4)3의 표면을 덮는 구조를 형성하는 단계;를 포함하며,
방전용량이 175~190mAh/g이고, Rct(Charge transfer resistance) 값이 10 ~ 30Ω인 리튬 이차 전지용 양극활물질을 제공하는,
리튬 이차 전지용 양극활물질 제조방법.
In the method for manufacturing a cathode active material for a lithium secondary battery,
Dissolving vanadium oxide (V 2 O 3 ) and oxalic acid (C 2 H 2 O 4 ) in distilled water or water to prepare a stirred mixture;
Lithium carbonate (Li 2 CO 3 ) and ammonium phosphate (Ammonium phosphate, NH 4 H 2 PO 4 ) in the mixture were mixed and stirred to prepare monoclinic Li 3 V 2 (PO 4 ) 3 ;
The Li 3 V 2 (PO 4 ) 3 is co-doped with iron and titanium through a sol-gel method to have a particle size of 1 to 2 μm Li 3 V 2-2x Fe x Ti x (PO 4 ) 3 (x = 0.005 ~ 0.015) to prepare;
mixing and stirring the Li 3 V 2-2x Fe x Ti x (PO 4 ) 3 with a carbon material solution;
drying the solution in which the carbon material is mixed to form a Li 3 V 2-2x Fe x Ti x (PO 4 ) 3 /C precursor; and
Heat treatment of the Li 3 V 2-2x Fe x Ti x (PO 4 ) 3 /C precursor to form a structure in which the carbon material covers the surface of the Li 3 V 2-2x Fe x Ti x (PO 4 ) 3 step; including,
Discharge capacity is 175 ~ 190 mAh / g, Rct (Charge transfer resistance) to provide a positive electrode active material for a secondary battery of 10 ~ 30Ω,
A method for manufacturing a cathode active material for a lithium secondary battery.
삭제delete 제 6항에 있어서,
상기 철 및 티타늄을 코-도핑하는 단계는,
상기 Li3V2(PO4)3에 질산철(Iron nitrate, Fe(NO3)3) 및 산화티타늄(Titanium dioxide, TiO2)을 혼합 및 교반하는 단계를 포함하는 것을 특징으로 하는 리튬 이차 전지용 양극활물질 제조방법.
7. The method of claim 6,
The co-doping of iron and titanium comprises:
The Li 3 V 2 (PO 4 ) 3 for a lithium secondary battery comprising the step of mixing and stirring iron nitrate (Iron nitrate, Fe(NO 3 ) 3 ) and titanium dioxide (TiO 2 ) A method for manufacturing a cathode active material.
삭제delete 제 6항에 있어서,
상기 Li3V2-2xFexTix(PO4)3/C 전구체를 열처리하는 단계는,
아르곤(Ar) 분위기에서 350 내지 800℃로 열처리하는 것을 특징으로 하는 리튬 이차 전지용 양극활물질 제조방법.
7. The method of claim 6,
Heating the Li 3 V 2-2x Fe x Ti x (PO 4 ) 3 /C precursor is,
A method of manufacturing a cathode active material for a lithium secondary battery, characterized in that heat treatment is performed at 350 to 800° C. in an argon (Ar) atmosphere.
KR1020150051537A 2015-04-13 2015-04-13 Phosphate positive electrode active material for lithium secondary battery and a method of manufacturing the same KR102394000B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150051537A KR102394000B1 (en) 2015-04-13 2015-04-13 Phosphate positive electrode active material for lithium secondary battery and a method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150051537A KR102394000B1 (en) 2015-04-13 2015-04-13 Phosphate positive electrode active material for lithium secondary battery and a method of manufacturing the same

Publications (2)

Publication Number Publication Date
KR20160121833A KR20160121833A (en) 2016-10-21
KR102394000B1 true KR102394000B1 (en) 2022-05-02

Family

ID=57257281

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150051537A KR102394000B1 (en) 2015-04-13 2015-04-13 Phosphate positive electrode active material for lithium secondary battery and a method of manufacturing the same

Country Status (1)

Country Link
KR (1) KR102394000B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017004899T5 (en) * 2016-09-29 2019-06-13 Tdk Corporation SOLID STATE LITHIUM SECONDARY BATTERY ION
WO2020013482A1 (en) 2018-07-10 2020-01-16 주식회사 엘지화학 Method for preparing iron nitrate oxyhydroxide, cathode containing iron nitrate oxyhydroxide prepared thereby for lithium secondary battery, and lithium secondary battery comprising same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102358A1 (en) 2010-02-17 2011-08-25 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN102509792A (en) 2011-10-22 2012-06-20 山东轻工业学院 Biomimetic synthesis method of lithium vanadium phosphate/carbon nanometer composite mesoporous microspheres as positive electrode material of lithium ion battery
JP2013077424A (en) 2011-09-30 2013-04-25 Fuji Heavy Ind Ltd Lithium ion secondary battery
JP2014123559A (en) 2012-11-20 2014-07-03 Nippon Electric Glass Co Ltd Cathode active material for lithium ion secondary battery and method of manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4183374B2 (en) 2000-09-29 2008-11-19 三洋電機株式会社 Nonaqueous electrolyte secondary battery
US7632317B2 (en) 2002-11-04 2009-12-15 Quallion Llc Method for making a battery
JP6104245B2 (en) * 2012-06-28 2017-03-29 富士重工業株式会社 Lithium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102358A1 (en) 2010-02-17 2011-08-25 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2013077424A (en) 2011-09-30 2013-04-25 Fuji Heavy Ind Ltd Lithium ion secondary battery
CN102509792A (en) 2011-10-22 2012-06-20 山东轻工业学院 Biomimetic synthesis method of lithium vanadium phosphate/carbon nanometer composite mesoporous microspheres as positive electrode material of lithium ion battery
JP2014123559A (en) 2012-11-20 2014-07-03 Nippon Electric Glass Co Ltd Cathode active material for lithium ion secondary battery and method of manufacturing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
(in1)Journal of Power Sources(이태릭). ELSEVIER. 2012.6.26., vol.218(제56면 내지 제64면) 1부.*
(in2)Journal of Materials Chemistry(이탤릭). The Royal Society of Chemistry. 2012.3.30., vol.22(제11039면 내지 제11047면) 1부.*

Also Published As

Publication number Publication date
KR20160121833A (en) 2016-10-21

Similar Documents

Publication Publication Date Title
JP7369157B2 (en) Prelithiated electrode materials and cells using the electrode materials
US9160031B2 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery comprising the same
EP2541654B1 (en) High-capacity positive electrode active material and lithium secondary battery comprising same
KR101256641B1 (en) Positive active material for lithium secondary battery and method for thereof
EP2203948B1 (en) Positive electrode active material, lithium secondary battery, and manufacture methods therefore
WO2007034823A1 (en) Method for producing positive electrode active material and nonaqueous electrolyte battery using same
KR20020077555A (en) Positive electrode for lithium secondary battery and method of preparing same
KR101497946B1 (en) Cathode active material having core-shell structure and manufacturing method therof
KR20140048456A (en) Positive active material, method for preparation thereof and lithium battery comprising the same
KR20150090963A (en) Positive electrode active material for rechargable lithium battery, method for synthesis the same, and rechargable lithium battery including the same
JP2016076496A (en) Method of producing anode material for large output lithium ion battery
KR20110021711A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
Zhang et al. Synthesis and characterization of mono-dispersion LiNi0. 8Co0. 1Mn0. 1O2 micrometer particles for lithium-ion batteries
Yanwen et al. Research on cathode material of Li-ion battery by yttrium doping
Du et al. A three volt lithium ion battery with LiCoPO4 and zero-strain Li4Ti5O12 as insertion material
US20190157660A1 (en) Cathode Active Material of Lithium Secondary Battery
KR101657142B1 (en) Method for manufacturing positive electrode active material for rechargable lithium battery and rechargable lithium battery including the positive electrode active material
KR102394000B1 (en) Phosphate positive electrode active material for lithium secondary battery and a method of manufacturing the same
US20230231125A1 (en) Method for activating electrochemical property of cathode active material for lithium secondary battery and cathode active material for lithium secondary battery
CN105895875B (en) Lithium ion battery positive electrode active material, preparation method thereof and lithium ion battery
KR20090108964A (en) Manufacturing method of active electrode materials nano carbon coated with humic acid for lithium batteries
KR20120096251A (en) Method for preparing cathode active material for lithium ion secondary battery
KR101701415B1 (en) Anode active material, method of preparing the same, and anode and lithium battery containing the material
Akhilash et al. A comparative study of aqueous-and non-aqueous-processed Li-rich Li 1.5 Ni 0.25 Mn 0.75 O 2.5 cathodes for advanced lithium-ion cells
KR101693711B1 (en) Preparation method of lithium titanium oxide particles coated with carbon and nitrogen, electrode active material and lithium secondary batteries

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant