KR100782473B1 - Non-contacting method in measuring the tire internal transformation - Google Patents

Non-contacting method in measuring the tire internal transformation Download PDF

Info

Publication number
KR100782473B1
KR100782473B1 KR1020060114514A KR20060114514A KR100782473B1 KR 100782473 B1 KR100782473 B1 KR 100782473B1 KR 1020060114514 A KR1020060114514 A KR 1020060114514A KR 20060114514 A KR20060114514 A KR 20060114514A KR 100782473 B1 KR100782473 B1 KR 100782473B1
Authority
KR
South Korea
Prior art keywords
tire
belt
measuring
steel cord
transformation
Prior art date
Application number
KR1020060114514A
Other languages
Korean (ko)
Inventor
이원혁
Original Assignee
한국타이어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국타이어 주식회사 filed Critical 한국타이어 주식회사
Priority to KR1020060114514A priority Critical patent/KR100782473B1/en
Priority to CN200710187309A priority patent/CN100585326C/en
Application granted granted Critical
Publication of KR100782473B1 publication Critical patent/KR100782473B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/22Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/28Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tires In General (AREA)

Abstract

A non-contacting method for measuring internal transformation of a tire is provided to exactly measure the internal transformation using the difference between the resonance frequency before transformation and the resonance frequency after transformation by forming a resonance circuit in a belt. A non-contacting method for measuring internal transformation of a tire includes the steps of: flowing a current into a steel cord(2) by adding a magnetic field to the steel cord in a belt(1) through a magnet placed to the outside; forming a resonance circuit over all by flowing the current into the belt by creating magnetic dipole on both ends of the belt; and measuring the internal transformation of a tire using a usual calculation formula in the resonance circuit.

Description

비접촉식 타이어 내부 변형량 측정방법{Non-contacting method in measuring the tire internal transformation}Non-contacting method in measuring the tire internal transformation

도 1은 본 발명의 일 실시예에 의한 타이어 벨트에 스틸 코드를 나타낸 도면이다.1 is a view showing a steel cord in a tire belt according to an embodiment of the present invention.

도 2는 본 발명의 일실시예에 의한 스틸 코드 내부에 전류가 흘러 구성하는 전체적인 공진회로를 나타낸 도면이다.2 is a view showing the entire resonant circuit configured by the current flows inside the steel cord according to an embodiment of the present invention.

도 3은 도 2를 나타낸 회로도이다.3 is a circuit diagram of FIG. 2.

도 4는 본 발명의 일실시예에 의한 마그네틱 필드에 의해 전류가 생성되는 이론적 모델을 나타낸 도면이다.4 is a diagram illustrating a theoretical model in which current is generated by a magnetic field according to an embodiment of the present invention.

-도면의 주요부분에 대한 부호의 설명-Explanation of symbols on the main parts of the drawing

1 : 스틸 코드(steel cord) 2 : 타이어 벨트1: steel cord 2: tire belt

d : 스틸 코드 사이의 거리

Figure 112006084777698-pat00001
: 마그네틱 필드d: distance between steel cords
Figure 112006084777698-pat00001
Magnetic Field

본 발명은 타이어 변형량 측정방법에 관한 것으로, 특히 타이어 외부에 위치한 자석을 통해서 타이어 벨트 내부 스틸 코드(steel cord)에 마그네틱 필드를 가해서 스틸 코드 내부에 전류가 흐르게 하여 비접촉식으로 타이어 내부 변형량을 측정하기에 적당하도록 한 비접촉식 타이어 내부 변형량 측정방법에 관한 것이다.The present invention relates to a method for measuring a tire deformation amount, and in particular, a magnetic field is applied to a steel cord inside a tire belt through a magnet located outside the tire so that a current flows inside the steel cord, thereby measuring the internal deformation amount of the tire in a non-contact manner. It relates to a method for measuring the amount of internal deformation of a non-contact tire to be suitable.

종래에는 타이어의 변형 측정장치를 이용해 실하중에 따른 타이어의 변형을 측정하거나, 레이저나 센서를 이용해 타이어의 변형 상태를 검출하는 방법들이 있었다.Conventionally, there have been methods for measuring a deformation of a tire according to actual load by using a deformation measurement apparatus of a tire, or detecting a deformation state of a tire using a laser or a sensor.

하지만, 이러한 방법들은 타이어의 변형량을 측정하기 위한 장비가 고가이거나, 측정시에 주위 환경에 따라 결과 값에 많은 오차가 생기는 문제점들이 있었다.However, these methods have a problem that the equipment for measuring the amount of deformation of the tire is expensive, or a large error occurs in the result value depending on the surrounding environment during the measurement.

이에 본 발명은 상기와 같은 종래 문제점을 해결하기 위해 발명된 것으로, 외부에 위치한 자석을 통해서 타이어 벨트 내부 스틸 코드에 마그네틱 필드를 가하여 벨트 내부에 공진 회로를 구성하게 만들어 변형 전후의 공진 주파수 차를 이용해 타이어 내부 변형량을 측정하는 비접촉식 타이어 내부 변형량 측정 방법을 제공함에 그 목적이 있다.Therefore, the present invention was invented to solve the above-described problems, by applying a magnetic field to the steel cord inside the tire belt through a magnet located outside to form a resonant circuit inside the belt, and using the resonant frequency difference before and after deformation. An object of the present invention is to provide a non-contact tire internal deformation measurement method for measuring the internal deformation amount of a tire.

상기한 목적을 달성하기 위한 본 발명은, 외부에 위치한 자석을 통해서 타이어 벨트 내부 스틸 코드에 마그네틱 필드를 가하여 스틸 코드 내부에 전류가 흐르게 한 후, 벨트 양 끝단에 자기 쌍극자(Magnetic Dipole)를 형성하여 벨트 내부는 전류가 흐르게 되어 전체적으로 공진 회로를 구성하고, 상기 공진 회로에서 통상적인 공진주파수 계산식을 이용하여 타이어 내부 변형량을 측정하는 것을 특징으로 한다.The present invention for achieving the above object, by applying a magnetic field to the steel cord inside the tire belt through a magnet located outside to allow a current to flow inside the steel cord, to form a magnetic dipole on both ends of the belt An electric current flows in the belt to form a resonant circuit as a whole, and the internal strain of the tire is measured by using a conventional resonant frequency calculation formula in the resonant circuit.

이하 본 발명의 실시예를 첨부된 도면에 의하여 상세히 설명하면 다음과 같 다.Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 일 실시예에 의한 타이어 벨트에 스틸 코드를 나타낸 도면이며, 도 2는 본 발명의 일실시예에 의한 스틸 코드 내부에 전류가 흘러 구성하는 전체적인 공진회로를 나타낸 도면이다.1 is a view showing a steel cord in a tire belt according to an embodiment of the present invention, Figure 2 is a view showing an overall resonant circuit configured to flow the current inside the steel cord according to an embodiment of the present invention.

도 1에 도시된 바와 같이, 스틸 코드(1)가 타이어를 보강하기 위해 타이어 벨트(2) 내부에 삽입되어 있는 것을 알 수 있다.As shown in FIG. 1, it can be seen that the steel cord 1 is inserted inside the tire belt 2 to reinforce the tire.

또한, 도 2에 도시한 바와 같이, 외부에 위치한 자석(도시하지 않음)을 통해서 타이어 벨트(1) 내부 스틸 코드(2)에 마그네틱 필드(

Figure 112007082019157-pat00002
)를 가하게 되면 스틸 코드(2) 내부에 전류가 흐르고 벨트 양 끝단에 자기 쌍극자를 형성하여 벨트 내부는 전류가 흐르게 되어 전체적으로 공진 회로를 구성하게 된다.
상기 마그네틱 필드는 타이어 외부에 위치한 자석을 통해서 자동으로 N극에서 S극으로 형성된다.
즉, 타이어 폭 방향주변에 자석을 위치시키면 자동으로 타이어 벨트 내부 스틸 코드에 마그네틱 필드가 형성되게 되는 것이다.
도 3은 도 2를 나타낸 공진 회로의 회로도이다.In addition, as shown in FIG. 2, the magnetic field (not shown) is attached to the steel cord 2 inside the tire belt 1 through a magnet (not shown) located outside.
Figure 112007082019157-pat00002
The current flows inside the steel cord 2 and forms a magnetic dipole at both ends of the belt, so that the current flows inside the belt to form a resonant circuit as a whole.
The magnetic field is automatically formed from the north pole to the south pole through a magnet located outside the tire.
That is, when the magnet is positioned around the tire width direction, the magnetic field is automatically formed in the steel cord inside the tire belt.
3 is a circuit diagram of the resonant circuit of FIG. 2.

삭제delete

도 3에 도시된 바와 같이 스틸 코드(2)에 전류가 흐르게 되면 내부 토핑 고무는 유전체(dielectric), 전기적 저항 물질(electrically resistive material)이 되며, 그렇게 되면 콘덴서(Condenser)-저항(resistance) 병렬 모델이 된다.As shown in FIG. 3, when current flows through the steel cord 2, the internal topping rubber becomes a dielectric, electrically resistive material, and then a condenser-resistance parallel model. Becomes

여기서 단위 길이당 전기 캐패시턴스(electric capacitance) C 는 하기의 나타내어진 [식 1]에 의해 결정된다.Wherein the electric capacitance C per unit length is determined by Equation 1 shown below.

Figure 112006084777698-pat00003
식 1
Figure 112006084777698-pat00003
Equation 1

상기의 [식 1]에서 π는 정해진 상수, ε은 유전상수, d는 스틸 코드(2) 사 이의 거리, a는 마그네틱 필드(

Figure 112006084777698-pat00004
)의 반지름을 나타낸 인자들이다.In Equation 1, π is a predetermined constant, ε is a dielectric constant, d is a distance between steel codes (2), and a is a magnetic field (
Figure 112006084777698-pat00004
Are the factors of the radius.

또한, 두 스틸 코드(1) 사이의 고무 저항

Figure 112006084777698-pat00005
은 하기의 나타내어진 [식 2]에 의해 결정된다.Also, rubber resistance between two steel cords (1)
Figure 112006084777698-pat00005
Is determined by [Formula 2] shown below.

Figure 112006084777698-pat00006
식 2
Figure 112006084777698-pat00006
Equation 2

상기의 [식 2]에서 ρ는 정해진 상수, π는 정해진 상수, d는 스틸 코드(2) 사이의 거리,

Figure 112006084777698-pat00007
은 스틸 코드(2)의 길이를 나타내는 인자들이다.In Equation 2, ρ is a constant, π is a constant, d is the distance between the steel cord (2),
Figure 112006084777698-pat00007
Are factors representing the length of the steel cord 2.

또한, 스틸 코드(2)의 인덕턴스(Inductance) L과 스틸 코드의 길이

Figure 112006084777698-pat00008
은 실제 측정에 의해 구한다.In addition, the inductance L of the steel cord 2 and the length of the steel cord
Figure 112006084777698-pat00008
Is obtained by actual measurement.

상기의 [식 1], [식 2]와 실제 측정을 통해서

Figure 112006084777698-pat00009
,
Figure 112006084777698-pat00010
,
Figure 112006084777698-pat00011
값이 결정되면 실제적인 RLC병렬 회로가 구성되고, 이 때 공진주파수
Figure 112006084777698-pat00012
는 하기에 나타내어진 [식 3]에 의해 결정된다.Through the above [Equation 1], [Equation 2] and the actual measurement
Figure 112006084777698-pat00009
,
Figure 112006084777698-pat00010
,
Figure 112006084777698-pat00011
Once the value is determined, an actual RLC parallel circuit is constructed, at which the resonant frequency
Figure 112006084777698-pat00012
Is determined by [Equation 3] shown below.

Figure 112006084777698-pat00013
식 3
Figure 112006084777698-pat00013
Expression 3

실제적으로 타이어 변형 전 공진 주파수는 외부에서 주파수 탐지기를 이용하여 감지하여 측정한다.In practice, the resonant frequency before tire deformation is detected and measured using a frequency detector from outside.

타이어가 내압이나 하중에 의해 토핑 고무 층이 변형되게 되면

Figure 112006084777698-pat00014
,
Figure 112006084777698-pat00015
값이 변하게 되어 공진 주파수
Figure 112006084777698-pat00016
가 달라지게 된다.When the tire deforms the topping rubber layer by internal pressure or load
Figure 112006084777698-pat00014
,
Figure 112006084777698-pat00015
Resonance Frequency as Value Changes
Figure 112006084777698-pat00016
Will be different.

이때, 변형 후의

Figure 112006084777698-pat00017
,
Figure 112006084777698-pat00018
,
Figure 112006084777698-pat00019
값을 [식 1], [식 2], [식 3]과 실제 측정을 통 해서 구하고, 변형 전 후의 공진 주파수 차를 이용하여 타이어 내부 변형량을 측정한다.At this time, after deformation
Figure 112006084777698-pat00017
,
Figure 112006084777698-pat00018
,
Figure 112006084777698-pat00019
The value is obtained through [Equation 1], [Equation 2], [Equation 3] and the actual measurement, and the internal deformation amount of the tire is measured using the resonant frequency difference before and after deformation.

도 4는 본 발명의 일실시예에 의한 마그네틱 필드에 의해 전류가 생성되는 이론적 모델을 나타낸 도면이다.4 is a diagram illustrating a theoretical model in which current is generated by a magnetic field according to an embodiment of the present invention.

도 4에 나타낸 이론적 모델은 전류와 자기 마당의 관계를 나타내는 법칙으로서 닫힌 원형 회로에서의 전류가 이루는 자기 마당에서 어떤 경로를 따라 단위 자극을 일주시키는 데에 필요한 일의 양은, 그 경로를 가장자리로 하는 임의의 면을 관통하는 전류의 총량에 비례한다는 암페르의 법칙(Ampere's Law)을 나타낸다.The theoretical model shown in FIG. 4 is a law representing the relationship between the current and the magnetic field, and the amount of work required to round the unit stimulus along a path in the magnetic field of the current in the closed circular circuit is the edge of the path. Ampere's Law states that it is proportional to the total amount of current through any plane.

이상에서와 같이 본 발명은 타이어 내부 변형량 측정을 비접촉식 방법을 사용함으로서, 매우 빠른 측정이 가능하며 환경변수에서 발생하는 측정 오차를 최소화 할 수 있는 효과가 있다.As described above, the present invention uses a non-contact method to measure the internal strain of a tire, thereby enabling very fast measurement and minimizing a measurement error occurring in an environmental variable.

이상에서 본 발명의 바람직한 실시예에 한정하여 설명하였으나, 본 발명은 이에 한정되지 않고 다양한 변화와 변경 및 균등물을 사용할 수 있다. 따라서 본 발명은 상기 실시예를 적절히 변경하여 응용할 수 있고, 이러한 응용도 하기 특허청구범위에 기재된 기술적 사상을 바탕으로 하는 한 본 발명의 권리범위에 속하게 됨은 당연하다 할 것이다.Although the above has been described as being limited to the preferred embodiment of the present invention, the present invention is not limited thereto and various changes, modifications, and equivalents may be used. Therefore, the present invention can be applied by appropriately changing the above embodiment, it will be obvious that such application also belongs to the scope of the present invention based on the technical idea described in the claims.

Claims (1)

타이어 변형량 측정방법에 있어서,In the tire deformation measurement method, 외부에 위치한 자석을 통해서 타이어 벨트(1) 내부 스틸 코드(2)에 마그네틱 필드(
Figure 112007082019157-pat00020
)를 가하여 스틸 코드(2) 내부에 전류가 흐르게 한 후, 벨트 양 끝단에 자기 쌍극자(Magnetic Dipole)를 형성하여 벨트 내부는 전류가 흐르게 되어 전체적으로 공진 회로를 구성하고, 상기 공진 회로에서 통상적인 공진주파수 계산식을 이용하여 타이어 내부 변형량을 측정하는 것을 특징으로 하는 비접촉식 타이어 내부 변형량 측정방법.
Magnetic field on the steel belt (2) inside the tire belt (1) through an externally located magnet.
Figure 112007082019157-pat00020
After the current flows inside the steel cord 2, magnetic dipoles are formed at both ends of the belt, and the current flows inside the belt to form a resonant circuit as a whole. Non-contact tire internal strain measurement method characterized in that for measuring the internal strain amount of the tire using a frequency calculation formula.
KR1020060114514A 2006-11-20 2006-11-20 Non-contacting method in measuring the tire internal transformation KR100782473B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020060114514A KR100782473B1 (en) 2006-11-20 2006-11-20 Non-contacting method in measuring the tire internal transformation
CN200710187309A CN100585326C (en) 2006-11-20 2007-11-19 Non-contacting method for measuring the tire internal transformation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060114514A KR100782473B1 (en) 2006-11-20 2006-11-20 Non-contacting method in measuring the tire internal transformation

Publications (1)

Publication Number Publication Date
KR100782473B1 true KR100782473B1 (en) 2007-12-05

Family

ID=39139734

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060114514A KR100782473B1 (en) 2006-11-20 2006-11-20 Non-contacting method in measuring the tire internal transformation

Country Status (2)

Country Link
KR (1) KR100782473B1 (en)
CN (1) CN100585326C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101973186B (en) * 2010-09-20 2012-08-22 北京化工大学 Elastic unit integral intelligent safety tire and manufacturing method thereof
US9076272B2 (en) * 2013-05-28 2015-07-07 Infineon Technologies Ag Wheel speed sensor and interface systems and methods
CN109579673A (en) * 2019-01-24 2019-04-05 青岛双星轮胎工业有限公司 Tire belt angle measurement unit and measurement method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287725A (en) 1998-04-02 1999-10-19 Akebono Brake Res & Dev Center Ltd Pressure sensor unit and tire pressure detector employing it
KR20020037782A (en) * 2000-11-15 2002-05-23 조충환 Detecting method for modification of a tire
KR20040000770A (en) * 2002-06-25 2004-01-07 한국타이어 주식회사 Detection equipment of tire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287725A (en) 1998-04-02 1999-10-19 Akebono Brake Res & Dev Center Ltd Pressure sensor unit and tire pressure detector employing it
KR20020037782A (en) * 2000-11-15 2002-05-23 조충환 Detecting method for modification of a tire
KR20040000770A (en) * 2002-06-25 2004-01-07 한국타이어 주식회사 Detection equipment of tire

Also Published As

Publication number Publication date
CN100585326C (en) 2010-01-27
CN101187545A (en) 2008-05-28

Similar Documents

Publication Publication Date Title
EP2338032B1 (en) Position sensor
US11002765B1 (en) Non-contact voltage sensing method and apparatus
BR112014019546B1 (en) APPARATUS AND METHOD FOR MEASURING MATERIAL PROPERTIES OF A FERROMAGNETIC MATERIAL OBJECT
KR100782473B1 (en) Non-contacting method in measuring the tire internal transformation
US6910384B2 (en) Stress or magnetic field sensor with spatially varying bias
CN107832488B (en) Parameter extraction method and device for equivalent model of saturable reactor
US6747449B1 (en) Elongate GMI integrating magnetic sensor
US20070220947A1 (en) Method for regulating and monitoring a measuring system, and measuring system itself
US20160238646A1 (en) Device for measuring an electric field in a conducting medium and method of calibrating such a device
CN203164408U (en) Current transformer error testing circuit
JP2019524269A5 (en)
CN103868622B (en) Non-contact method for measuring temperature of pumping medium
CN103940860B (en) A kind of method of series resonant circuit capacitance detecting nonmetallic materials discontinuity
CN108051648B (en) A kind of material electromagnetic attributes measurement method based on DC potential and detection method of eddy
WO2005059576A3 (en) Loop resistance tester
CN104165714B (en) A kind of ferromagnetism slender member axle power detection method and device
CN205718820U (en) The probe of a kind of current vortex sensor and current vortex sensor
KR101188161B1 (en) Electronic device measuring method and electronic device measuring apparatus
CN103940859B (en) A kind of method of antiresonant circuit capacitance detecting nonmetallic materials discontinuity
CN202033466U (en) Weak magnetic field measuring device
Sauer et al. Detection coil independent frequency domain measurements for an inductively coupled resonant magnetoelastic bending sensor
CN205619868U (en) Current vortex sensor's probe and current vortex sensor
CN107945533A (en) A kind of earth magnetism wagon detector sensitivity and the detection method of stability
Estévez et al. Magnetoinductance and magnetoimpedance response of Co-based multi-wire arrays
CN103954682A (en) Method for detecting discontinuity of nonmetal material by virtue of inductance of shunt-resonant circuit

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20101029

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131031

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee