KR100781335B1 - Method for increasing the hardness and erosion resistance of vitreous enamel coatings applied to carbon steels - Google Patents

Method for increasing the hardness and erosion resistance of vitreous enamel coatings applied to carbon steels Download PDF

Info

Publication number
KR100781335B1
KR100781335B1 KR1020060065936A KR20060065936A KR100781335B1 KR 100781335 B1 KR100781335 B1 KR 100781335B1 KR 1020060065936 A KR1020060065936 A KR 1020060065936A KR 20060065936 A KR20060065936 A KR 20060065936A KR 100781335 B1 KR100781335 B1 KR 100781335B1
Authority
KR
South Korea
Prior art keywords
carbon steel
enamel coating
coating layer
oxide
hardness
Prior art date
Application number
KR1020060065936A
Other languages
Korean (ko)
Inventor
김민태
장성용
오원영
원종범
유근봉
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to KR1020060065936A priority Critical patent/KR100781335B1/en
Application granted granted Critical
Publication of KR100781335B1 publication Critical patent/KR100781335B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/56Manufacture of steel by other methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
    • C22C33/0271Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5% with only C, Mn, Si, P, S, As as alloying elements, e.g. carbon steel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

A method for improving hardness and erosion resistance of a vitreous enamel coating layer applied to carbon steel is provided to stably and effectively remove air-bubbles generated from an enamel coating of carbon steel manufactured by a conventional method, and a carbon steel thermal element with improved hardness and erosion resistance treated by the method is provided. A method for improving hardness and erosion resistance of a vitreous enamel coating layer applied to carbon steel comprises the following steps of: forming a vitreous enamel coating layer on a surface of the carbon steel by a conventional method comprising the steps of preparing an enamel coating solution by mixing silica, borax, sodium oxide, potassium oxide, aluminum oxide, nickel oxide, copper oxide and manganese oxide to improve corrosion resistance and erosion resistance(or wear resistance) of the carbon steel, dipping the carbon steel into the enamel coating solution, drying the carbon steel coated with the enamel coating solution, and firing the enamel coating solution-dried carbon steel; and treating the vitreous enamel coating layer under an argon atmosphere having a high temperature of 500 to 727 deg.C and a high pressure of 1000 to 1500 atmospheric pressures.

Description

탄소강의 유리질 에나멜 코팅층의 경도 및 내침식 특성 향상 방법{Method for increasing the hardness and erosion resistance of vitreous enamel coatings applied to carbon steels}Method for increasing the hardness and erosion resistance of vitreous enamel coatings applied to carbon steels}

도 1은 배연탈황설비의 열교환 장치인 GGH(Gas-Gas Heater)의 모식도이며,1 is a schematic diagram of a GGH (Gas-Gas Heater) that is a heat exchanger of a flue gas desulfurization facility,

도 2는 심하게 손상된 GGH의 열소자이며,2 is a severely damaged thermal element of GGH,

도 3은 실시예 1의 에나멜 코팅층의 단면형상이며,3 is a cross-sectional shape of the enamel coating layer of Example 1,

도 4는 실시예 1의 에나멜 코팅층-모재간 계면 형상과 EDS로 측정한 주요성분의 분포지도이며,4 is a distribution map of the main component measured by the interface shape between the enamel coating layer and the base material of Example 1 and EDS,

도 5는 실시예 2의 에나멜 코팅층의 단면형상이며,5 is a cross-sectional shape of the enamel coating layer of Example 2,

도 6은 실시예 2의 에나멜 코팅층-모재간 계면 형상과 EDS로 측정한 주요성분의 분포지도이며,6 is a distribution map of the main component measured by the interface shape between the enamel coating layer and the base material of Example 2 and EDS,

도 7는 실시예 3의 에나멜 코팅층의 단면형상이며,7 is a cross-sectional shape of the enamel coating layer of Example 3,

도 8은 실시예 3의 에나멜 코팅층-모재간 계면 형상과 EDS로 측정한 주요성분의 분포지도이며,8 is a distribution map of the main component measured by the interface shape between the enamel coating layer-base metal and EDS of Example 3,

도 9는은 실시예 4에 사용된 열소자 코팅층 침식시험기이며,9 is a thermal element coating layer erosion tester used in Example 4,

도 10은 실시예 4에 의한 침식시험의 (a) 사용된 SiC 입자 및 (b) 시험후의 코팅층 형상이며,10 is a shape of the coating layer after (a) the used SiC particles and (b) the test of the erosion test according to Example 4,

도 11은 실시예 4에 의한 침식시험 후의 실시예 1과 실시예 2의 시편에 대한 침식속도를 나타내는 그래프이다. 11 is a graph showing the erosion rate for the specimen of Example 1 and Example 2 after the erosion test according to Example 4.

본 발명은 탄소강 (주로 SPP급의 극저탄소강, SPP= special purpose for porcelain)의 내식성, 내침식성(또는 내마모성)을 향상시키기 위해서 적용되는 유리질 에나멜 코팅층의 물성, 즉 내침식성을 향상시키는 방법으로서, 통상적인 방법으로 탄소강 모재에 유리질 에나멜 코팅층을 형성시킨 후, 고온과 고압의 조건에서 처리하여 유리질 코팅층을 치밀화시켜 그 경도 및 내침식성을 향상시키는 방법에 관한 것이다.The present invention is a method of improving the physical properties, ie erosion resistance of the glass enamel coating layer is applied to improve the corrosion resistance, erosion resistance (or wear resistance) of carbon steel (mainly SPP grade ultra-low carbon steel, SPP = special purpose for porcelain), After forming a glass enamel coating layer on a carbon steel base material by a conventional method, and processing under conditions of high temperature and high pressure to densify the glass coating layer to improve its hardness and erosion resistance.

유리질 에나멜 코팅이라 함은 금속의 표면에 얇게 형성된 유리층을 의미하며 기저 금속을 주로 부식 환경으로부터 보호할 목적으로 적용된다. 이러한 이유로 유리질 에나멜 코팅은 식기류에 오랫동안 사용되어왔다. 이 경우에는 제품의 강도가 낮아도 되기 때문에 사용되는 모재는 탄소의 함량이 매우 낮은 (<0.005 wt.%) 냉간압연된 극저탄소강을 사용한다. 한편 물이나 연료저장고 등의 구조재에 적용하기 위해서는 어느 정도의 강도가 필요하며 이때의 모재는 열간 압연된 고탄소강을 사용한다. By vitreous enamel coating is meant a thin layer of glass on the surface of the metal and is applied primarily to protect the underlying metal from corrosive environments. For this reason, glass enamel coatings have long been used in tableware. In this case, because the strength of the product may be low, the base metal used is cold rolled ultra low carbon steel having a very low carbon content (<0.005 wt.%). On the other hand, some strength is required to apply to structural materials such as water or fuel storage, and the base metal is hot rolled high carbon steel.

국내 화력발전소의 배연탈황설비는 이산화황이 포함된 배연과 탈황된 배연간의 열교환을 위해 열교환기(gas-gas heaters, GGH)를 사용하고 있다. 이 열교환기 의 열소자(heating elements)는 판상의 극저 탄소강을 사용하고 있으며, 배연탈황설비의 열악한 부식 환경으로부터 보호하기 위하여 양면에 유리질의 에나멜 코팅층이 형성되어 있다. 배연탈황설비는 배연에 포함된 이산화황을 석회석을 이용하여 석고형태로 제거한다. 이러한 과정에서 배연탈황설비의 흡수탑(absorber)에서 생성된 석고가 도 1에서 화살표로 나타낸 바와 같이 배연과 함께 GGH로 일부 유입되기도 한다. 이러한 석고의 유입에 의한 에나멜 코팅층의 손상이 보고 되고 있다 (도 2 참조). Flue gas desulfurization facilities in domestic thermal power plants use gas-gas heaters (GGH) to exchange heat between flue gas containing sulfur dioxide and desulfurized flue gas. The heat elements of the heat exchanger are made of plate-like ultra-low carbon steel, and a glass enamel coating layer is formed on both sides in order to protect against the poor corrosive environment of the flue gas desulfurization plant. Flue gas desulfurization equipment removes sulfur dioxide contained in flue gas in the form of gypsum using limestone. In this process, the gypsum produced in the absorber of the flue gas desulfurization facility is partially introduced into the GGH together with the flue gas as indicated by the arrow in FIG. 1. Damage of the enamel coating layer due to the inflow of gypsum has been reported (see FIG. 2).

따라서 배연탈황설비와 같이 열악한 부식 환경과 더불어 석고에 의한 침식환경이 대응하기 위해서는 기존의 에나멜 코팅보다는 경도가 높고 내마모 및 내침식특성이 좋은 코팅 물성이 요구되고 있다. Therefore, in order to cope with poor corrosive environment such as flue gas desulfurization equipment and erosion environment by gypsum, it is required to have a coating property having higher hardness and better wear resistance and erosion resistance than conventional enamel coating.

배연탈황설비에 사용되는 에나멜 코팅은 대한민국공개특허공보 제1999-0071044호에 의하면 표 1에 나타낸 바와 같이 실리카(SiO2)가 주성분이고 고온소성 시 그 유동성을 증가시키기 위해 붕사(B2O3), 산화나트륨(Na2O), 산화칼륨(CaO) 등이, 내열성을 높이기 위해 산화알루미늄(Al2O3)이, 모재와의 계면밀착성을 높이기 위해 산화니켈(NiO), 산화구리(CuO), 산화망간(MnO) 등이 혼합되어 있다. 이러한 조성을 가진 에나멜 코팅은 담금, 건조 및 소성공정을 거쳐 모재에 입혀지며 최종 공정후의 코팅층에는 도 3에 나타낸 바와 같이 다량의 기포가 포함되어 있다. 이 기포들은 GGH의 열전달특성과 코팅층의 물성을 감소시켜 궁극적으로는 열소자의 내산부식성, 내열충격성 및 내마모성을 저하시키는 요인이 된다. According to Korean Patent Publication No. 1999-0071044, the enamel coating used in the flue gas desulfurization facility is made of borax (B 2 O 3 ) in order to increase the fluidity at the time of high temperature firing as silica (SiO 2 ) is the main component. , Sodium oxide (Na 2 O), potassium oxide (CaO) and the like, aluminum oxide (Al 2 O 3 ) to increase the heat resistance, nickel oxide (NiO), copper oxide (CuO) to increase the interfacial adhesion with the base material And manganese oxide (MnO) are mixed. The enamel coating having such a composition is applied to the base material through a immersion, drying and firing process, and the coating layer after the final process contains a large amount of bubbles as shown in FIG. 3. These bubbles reduce the heat transfer characteristics of the GGH and the properties of the coating layer, which ultimately degrades the acid corrosion resistance, thermal shock resistance and abrasion resistance of the thermal element.

표 1. 에나멜 코팅층의 조성분석(단위 : 중량%)Table 1. Composition Analysis of Enamel Coating Layer (Unit: Weight%)

SiO2 SiO 2 LiOLiO K2OK 2 O TiO2 TiO 2 Na2ONa 2 O Al2O3 Al 2 O 3 B2O3 B 2 O 3 NiONiO CaOCaO MnOMnO BaOBaO CuOCuO 50-5550-55 2.5-52.5-5 8-108-10 5-105-10 6-106-10 3-53-5 7.5-107.5-10 1.5-51.5-5 4.5-54.5-5 1.5-51.5-5 3.8-43.8-4 1.5-51.5-5

따라서 본 발명은 종래의 기술적 문제를 해결하고자 하는 것으로 본 발명의 첫 번째 목적은 통상적인 방법으로 제조된 탄소강의 에나멜 코팅에 생성된 기포를 안정적이고, 효과적으로 제거할 수 있는 탄소강의 유리질 에나멜 코팅층의 경도 및 내침식 특성 향상 방법을 제공하는데 있다. Therefore, the present invention is to solve the conventional technical problem, the first object of the present invention is to provide a stable and effective removal of the bubbles generated in the enamel coating of carbon steel produced by a conventional method, the hardness of the glass enamel coating layer of carbon steel And to provide a method for improving the corrosion resistance characteristics.

본 발명의 두 번째 목적은 통상적으로 제조된 탄소강의 에나멜 코팅층을 고온과 고압에서 처리하여 코팅층 내 기포가 효과적으로 제거되고 경도 및 내침식 특성이 향상된 탄소강 열소자를 제공하는데 있다. The second object of the present invention is to provide a carbon steel heating element which is effectively removed from the air bubbles in the coating layer by improving the enamel coating layer of a conventionally manufactured carbon steel at high temperature and high pressure.

상기 목적을 달성하기 위한 본 발명의 통상적인 방법으로 제조된 탄소강의 에나멜 코팅에 생성된 기포를 안정적이고, 효과적으로 제거하고 코팅층의 경도 및 내침식 특성을 향상시키는 방법은 배연탈황설비의 GGH와 같이 열악한 부식 및 침식 환경에서 운전되는 에나멜 코팅된 탄소강 열소자를 기존의 방법으로 제조한 후 상기 부품을 고온 등압 압축 장치를 이용하여 고온과 고압에서 처리하는 것으로 이루어지는 것을 특징으로 한다. In order to achieve the above object, a method for stably and effectively removing bubbles generated in an enamel coating of carbon steel prepared by the conventional method of the present invention and improving the hardness and corrosion resistance of the coating layer is poor, such as GGH of flue gas desulfurization equipment. An enamel coated carbon steel thermal element operated in a corrosive and eroded environment is manufactured by a conventional method, and then the parts are treated at a high temperature and a high pressure using a high temperature isostatic compression device.

상기 고온 고압 처리 시의 온도는 500℃ 내지 727℃이며, 압력은 1,000기압 내지 1.500기압인 것이 바람직하다. 온도가 너무 낮을 경우 처리하고자하는 소재가 충분한 연성을 확보하지 못하고 압력이 너무 낮을 경우 코팅층 기공을 접합할 수 있는 충분한 응력을 확보하지 못한다. 또한 온도가 727℃를 초과할 경우 탄소강의 상변태로 부피변화(부피감소)가 발생하며 냉각 시 이 온도에서 다시 부피팽창되어 코팅층의 균열이나 이탈 가능성이 높으며 압력이 너무 높을 경우 효과가 증대가 미미하다. It is preferable that the temperature at the time of the high temperature high pressure process is 500 degreeC-727 degreeC, and the pressure is 1,000 atmospheres-1.500 atmospheres. If the temperature is too low, the material to be treated does not have sufficient ductility, and if the pressure is too low, it will not secure enough stress to bond the pores of the coating layer. In addition, if the temperature exceeds 727 ℃, volume change (volume reduction) occurs due to the phase transformation of carbon steel, and when it cools, it expands again at this temperature, so that there is a high possibility of cracking or detachment of the coating layer, and the effect is small when the pressure is too high. .

상기 모재는 냉간 압연된 탄소강으로 C < 0.008%, Mn < 0.5%, P < 0.03%, S < 0.03 % 및 잔여량 철로 이루어진 극저탄소강인 것이 바람직하다.The base material is a cold rolled carbon steel, C <0.008%, Mn <0.5%, P <0.03%, S <0.03% and is a very low carbon steel consisting of a residual amount of iron.

이하 본 발명을 더욱 상세히 설명하기로 한다. Hereinafter, the present invention will be described in more detail.

본 발명은 배연탈황설비와 같이 열악한 부식 환경에서 사용되는 유리질 에나멜 코팅된 탄소강 열소자의 제작공정 중에 생성된 기포를 제거하고 코팅층 조직을 치밀화하는 방법으로서, 에나멜 코팅의 원료의 배합, 담금, 건조 및 소성공정으로 에나멜 코팅층을 제조한 다음, 고온 등압 압축 장치를 이용하여 고온과 고압에서 처리하여 소성공정 시 생성된 기포를 제거하고 유리질 조직을 치밀화하는 방법이다.The present invention is a method for removing bubbles generated during the fabrication process of glass enamel coated carbon steel thermal elements used in harsh corrosive environments such as flue gas desulfurization equipment and densifying the coating layer structure. After the enamel coating layer is manufactured by the firing process, the enamel coating layer is treated at a high temperature and high pressure using a high temperature isostatic compression device to remove bubbles generated during the firing process and to densify the glassy structure.

기존의 제조방법으로 실리카, 붕사, 산화나트륨, 산화칼륨, 산화알루미늄, 산화니켈, 산화구리, 산화망간이 주로 혼합된 에나멜 코팅액을 담금, 건조 및 소성 하여서 탄소강 모재에 에나멜 코팅층을 입힐 경우 기공의 생성을 억제하기 위해서는 고온소성 시 코팅층의 유동성을 높여야 한다. 이를 위해 표 1에 나타낸 바와 같이 붕사나 산화나트륨과 같은 산화물을 첨가한다. 그러나 이러한 산화물의 첨가로 코팅층의 유동성은 높아지나 코팅의 물성, 즉 경도가 저하하기 때문에 첨가량이 제한된다. 따라서 일정 수준의 물성을 확보하기 위해서는 내부에 기공의 생성은 불가피하다. 기공은 문자 그대로 기체를 함유하고 있기 때문에 열전도도가 고체에 비해 아주 낮으며 앞서 언급한 바와 같이 코팅층 자체의 물성을 저하시킨다. Formation of pores when the enamel coating layer is coated on the carbon steel base material by dipping, drying and firing an enamel coating solution mainly containing silica, borax, sodium oxide, potassium oxide, aluminum oxide, nickel oxide, copper oxide, and manganese oxide by the conventional manufacturing method. In order to suppress the increase of fluidity of the coating layer at high temperature firing. For this purpose, an oxide such as borax or sodium oxide is added as shown in Table 1. However, the addition amount is limited because the fluidity of the coating layer is increased by the addition of the oxide, but the physical properties of the coating, that is, the hardness decreases. Therefore, in order to secure a certain level of physical properties, the creation of pores is inevitable. Since the pores literally contain gas, the thermal conductivity is very low compared to the solid and, as mentioned above, deteriorates the physical properties of the coating layer itself.

순수한 부식 환경에서는 이러한 기공이 큰 문제가 되지는 않지만 배연탈황설비의 GGH와 같이 석고에 의한 침식이 우려될 경우 기공의 존재는 GGH의 열소자의 수명에 큰 영향을 미친다고 할 수 있다. 그러나 본 발명에 따라 통상적인 방법으로 제조된 에나멜 코팅층을 고온 고압에서 처리하면 미세 기공이 제거되고 조직이 치밀화된 에나멜 코팅층을 얻을 수 있다.In a purely corrosive environment, these pores are not a big problem, but if the erosion by gypsum, such as GGH in flue gas desulfurization facilities, is concerned, the presence of pores greatly affects the lifetime of the GGH thermal element. However, when the enamel coating layer prepared according to the present invention is treated at a high temperature and high pressure, fine pores are removed and a densified enamel coating layer can be obtained.

이하의 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 단, 실시예는 본 발명을 예시하기 위한 것으로 본 발명이 이들 실시예에 한정되는 것은 아니다. The present invention will be described in more detail with reference to the following examples. However, an Example is for illustrating this invention and this invention is not limited to these Examples.

실시예Example 1 One

본 실시예에서 사용된 열소자는 현재 국내 영흥화력의 배연탈황설비 GGH용으로 납품된 에나멜 코팅된 탄소강이다. 모재와 코팅에 대한 성분은 제작사에서 제공된 바가 없기 때문에 일본 JEOL사의 주사전자현미경(scanning electron microscopy, SEM)에 부착된 EDS(energy dispersive x-ray spectroscopy)를 이용하여 코팅층 성분을 개략적으로 측정하였고 그 결과를 표 2에 나타내었다. 붕사(B2O3)의 경우 EDS 분석이 불가능하기 때문에 붕사는 코팅 시료를 110℃에서 건조하고 일정량을 취한 다음 왕수(염산과 질산의 혼산)로 용해하여 일정량으로 만들고, 유도결합 플라즈마 발광분광기(Perkin Elmer Optima 4300DV)로 분석을 하였다. 에나멜 코팅층의 산화물로 이루어져 있기 때문에 시료의 일부분만 용해되기 때문에 붕사의 정량 분석은 불가능하였고 정성분석으로 통하여 그 존재만 확인하였다. 모재는 이 분석법으로 정량 분석하여 표 3과 같은 결과를 얻었으며 사용된 모재는 SPP강으로 확인되었다. The heat element used in the present example is enamel coated carbon steel which is currently supplied for the GGH flue gas desulfurization plant in Korea. Since the components for the base material and the coating were not provided by the manufacturer, the coating layer components were roughly measured using energy dispersive x-ray spectroscopy (EDS) attached to the scanning electron microscopy (SEM) of JEOL, Japan. Is shown in Table 2. In the case of borax (B 2 O 3 ), EDS analysis is not possible, so that borax is dried at 110 ° C, takes a certain amount, dissolved in aqua regia (mixture of hydrochloric acid and nitric acid) to a certain amount, and an inductively coupled plasma emission spectrometer ( Perkin Elmer Optima 4300DV). Since only part of the sample was dissolved because the oxide of the enamel coating layer was dissolved, the quantitative analysis of borax was impossible and only the presence was confirmed by qualitative analysis. The base material was quantitatively analyzed by this method to obtain the results shown in Table 3, and the used base material was identified as SPP steel.

표 2. 실시예 1에 사용된 에나멜 코팅층의 조성: 중량 비(%)Table 2. Composition of enamel coating layer used in Example 1: weight ratio (%)

SiO2 SiO 2 LiOLiO K2OK 2 O TiO2 TiO 2 Na2ONa 2 O Al2O3 Al 2 O 3 B2O3 B 2 O 3 NiONiO CaOCaO MnOMnO BaOBaO CuOCuO 69.469.4 -- -- 3.33.3 10.410.4 2.22.2 ?? 3.33.3 1.51.5 -- -- --

표 3. 실시예 1에 사용된 탄소강 모재의 조성: 중량 비(%)Table 3. Composition of carbon steel base material used in Example 1: weight ratio (%)

CC BB AlAl MnMn TiTi FeFe 0.010.01 0.080.08 0.080.08 0.160.16 0.110.11 나머지Remainder

상기의 에나멜 코팅된 탄소강을 절단하여 단면을 광학현미경과 SEM으로 관찰한 결과, 모재 두께는 0.8mm, 코팅층의 두께는 200 μm 정도이며 도 3에서 보는 바와 같이 그 크기가 60 μm 정도 되는 큰 기포를 포함하여 코팅층에는 다량의 기포가 관찰되었다. 또한 도 4과 같이 EDS로 모재와의 계면부위를 성분지도 분석을 한 결과 철분이 모재 표면에서 코팅층으로 돌출되어 있음을 알 수 있다. As a result of cutting the enamel coated carbon steel and observing the cross section with an optical microscope and SEM, the base material thickness was 0.8 mm, the thickness of the coating layer was about 200 μm, and as shown in FIG. Including a large amount of bubbles were observed in the coating layer. In addition, as a result of component map analysis of the interface area with the base material by EDS as shown in Figure 4 it can be seen that the iron protrudes from the surface of the base material to the coating layer.

표 4Table 4

항목Item 내용Contents 제작사producer ABB(스웨덴)ABB (Sweden) 용기크기Container size 1124(O.D)×700(I.D)×3,285(O.H)×2,171(I.H)1124 (O.D) × 700 (I.D) × 3,285 (O.H) × 2,171 (I.H) 작업크기(최대)Work size (maximum) 75(외경)×890(높이)75 (outer diameter) * 890 (height) 작업온도(최대)Working temperature 2,000℃2,000 ℃ 압력(최대)Pressure (max) 200 Mpa200 Mpa 작업유체Working fluid ArAr 가열요소Heating element SiC Heater 21ea(3 Zone)SiC Heater 21ea (3 Zone) 하중형식Load type Top Loading and ClosureTop Loading and Closure

실시예Example 2 2

실시예 1과 동일한 시편을 준비한 후, 고온과 고압의 아르곤 분위기에서 처리하였다. 고온고압 처리는 다음 표 4와 같은 제원을 가진 장비를 사용하여 700℃, 120MPa에서 2시간 동안 수행하였으며, 승온속도는 150℃/분으로 하였고, 고온고압 처리 후 노냉(냉각속도는 약 10℃/분)하였다. After preparing the same specimen as in Example 1, it was treated in an argon atmosphere of high temperature and high pressure. The high temperature and high pressure treatment was performed at 700 ° C. and 120 MPa for 2 hours using equipment having the specifications as shown in Table 4 below. Minutes).

고온 고압 처리된 시편을 실시예 1과 같이 광학현미경과 SEM을 이용하여 단면관찰 하였다. 도 5에 광학 및 SEM 사진을 나타내었다. 실시예 1의 고온고압처리전의 에나멜 코팅층 단면사진과 비교하면, 우선 두께가 170μm로 약 15% 감소했으며 내부기공도 거의 소멸되어 코팅층이 치밀화 되었음을 알 수 있다. 또한 모재와의 계면에 처리 전에 관찰되지 않았던 침상(針狀)의 상(相)이 관찰되었다. 도 6은 이러한 계면을 확대한 SEM 사진과 X-선 매핑(mapping)을 이용한 주요성분의 분포도를 나타내었다. 도 6의 SEM 사진에서 주위보다 어둡게 보이는 알갱이는 실리콘이 농축되고 나트륨이 결핍된 실리콘 산화물임을 알 수 있다. 이 알갱이에 대한 EDS 성분 분석 결과 이 알갱이는 산소가 결핍된 이산화 실리콘 (SiO2-x, x= 0.38)임을 알 수 있었다. 또한 계면 근방의 침상의 입자는 탄소강 모재의 표면에서 성장한 것처럼 보이는데, EDS 성분 분석 결과를 표 5에 나타내었다. 이 입자는 실시예 1의 결과에서는 관찰되지 않았던 것으로 미루어 실시예 2의 처리로 생성된 것임을 알 수 있다. 표 5의 원소 성분비에 의거, 이 상은 실리콘 산화물에 철산화물이 상당량 포함된 복합 산화물의 일종으로 추정되었다. 따라서 모재 표면에 철산화물이 독립적으로 존재하지 않고 실리콘산화물과 복합물을 형성함으로써 모재와의 접착성에 좋은 영향을 미칠 것으로 예상된다. Specimens subjected to high temperature and high pressure were observed in a cross section using an optical microscope and SEM as in Example 1. 5 shows optical and SEM photographs. Compared with the cross-sectional photograph of the enamel coating layer before the high temperature and high pressure treatment of Example 1, it can be seen that the thickness was first reduced to about 15% to 170 μm and the internal pores were almost disappeared to densify the coating layer. Moreover, the acicular phase which was not observed before the process was observed at the interface with a base material. 6 shows an enlarged SEM photograph of the interface and distribution of main components using X-ray mapping. In the SEM photograph of FIG. 6, the grains appearing darker than the surroundings can be seen that silicon oxide is concentrated and sodium deficient. The results of the EDS analysis on the grains revealed that the grains were oxygen-deficient silicon dioxide (SiO 2-x , x = 0.38). In addition, needle-like particles near the interface appear to grow on the surface of the carbon steel base material, and the results of the EDS component analysis are shown in Table 5. This particle was not observed in the result of Example 1, and it can be seen that it was produced by the treatment of Example 2. Based on the elemental component ratios in Table 5, this phase was estimated to be a kind of complex oxide in which silicon oxide contains a considerable amount of iron oxide. Therefore, iron oxide is not independently present on the surface of the base material, and it is expected to have a good effect on the adhesion with the base material by forming a composite with silicon oxide.

표 5. 실시예 2의 코팅층-모재 계면에 존재하는 침상 입자의 조성 원소 성분비(%)Table 5. Composition Element Composition Ratio (%) of Acicular Particles Present at Coating Layer-Material Interface of Example 2

OO SiSi FeFe NaNa AlAl CaCa TiTi 65.365.3 18.518.5 7.17.1 6.66.6 1.01.0 0.450.45 1.01.0

실시예Example 3 3

실시예 1과 동일한 시편을 준비한 후, 온도만 727℃로 하여 실시예 2와 같이 처리하였다. 처리된 시편을 실시예 1에 따라 광학현미경과 SEM을 이용하여 단면관찰 하였다. 도 7에 광학 및 SEM 사진을 나타내었다. 실시예 2의 결과와 마찬가지로 처리전의 에나멜 코팅층과 비교하여 두께가 170μm로 약 15% 감소했으며 내부기공도 거의 소멸되어 코팅층이 치밀화되었다. 또한 실시예 2의 결과와 마찬가지로 모재와의 계면에는 침상(針狀)의 상(相)이 관찰되었다. 도 8은 이러한 계면을 확대한 SEM 사진과 X-선 매핑(mapping)을 이용한 주요성분의 분포도를 나타내었다. 실시예 2의 결과와 동일하게 도 8의 SEM 사진에서 주위보다 어둡게 보이는 알갱이는 실리콘이 농축되고 나트륨이 결핍된 실리콘 산화물임을 알 수 있다. 또한 계면 근방의 침상의 입자를 뚜렷이 확인할 수 있었다. After preparing the same specimen as in Example 1, only the temperature was set to 727 ℃ and was treated as in Example 2. The treated specimens were observed in section using an optical microscope and SEM in accordance with Example 1. 7 shows optical and SEM photographs. As in the result of Example 2, compared to the enamel coating layer before the treatment, the thickness was reduced by about 15% to 170 μm, and the internal pores were almost disappeared to densify the coating layer. In addition, a needle-like phase was observed at the interface with the base material as in the result of Example 2. 8 shows an enlarged SEM photograph of the interface and distribution of main components using X-ray mapping. As in the result of Example 2, the grains darker than the surroundings in the SEM photograph of FIG. 8 can be seen that silicon oxide is concentrated and sodium deficient. In addition, the needle-like particles near the interface were clearly identified.

하지만 이 경우 SEM사진에서 보는 바와 같이 표면에서 모재와의 계면까지 균열이 발생해 있음을 알 수 있다. 실시예 3에서 선택한 온도 727℃는 탄소강 모재의 결정구조가 체심입방구조(BCC, body centered cubic)에서 면심입방구조(FCC, face centered cubic)으로 상변태하는 온도이며, 이 변태로 상당한 부피변화가 있다. 따라서 727℃나 그 이상의 온도에서 시편을 처리할 경우 상변태에 의한 부피변화로 코팅층에 응력의 발생을 유도하여 도7과 같은 균열을 발생시킬 우려가 있다. 따라서 처리온도는 727℃이하로 하는 것이 바람직하다. However, in this case, it can be seen that the crack occurs from the surface to the interface with the base material as shown in the SEM photograph. The temperature of 727 DEG C selected in Example 3 is a temperature at which the crystal structure of the carbon steel base material phase transforms from the body centered cubic (BCC) to the face centered cubic (FCC). . Therefore, when the specimen is treated at a temperature of 727 ° C. or higher, there is a concern that a crack may be generated as shown in FIG. 7 by inducing stress in the coating layer due to volume change due to phase transformation. Therefore, the treatment temperature is preferably set to 727 占 폚 or lower.

실시예Example 4 4

실시예 1, 실시예 2에 따른 시편에 대한 침식시험을 수행하였다. 침식시험은 도 9와 같은 침식시험기를 이용하였다. 침식시험 시 침식매체로 SiC 분말을 사용하였고 (도 10의 (a) 참조) SiC 분말을 상부 주입구에 채워 (부피 약 2000cm3) 내부직경이 17mm인 스테인리스강 파이프를 통해 910mm 자유 낙하하도록 하여 하부에 시편 상에 45도의 각도로 충돌하게 하였다. 한번의 침식시험이 끝나면 시편을 채취하여 전자저울로 무게를 측정하였다. 이와 같은 과정을 5번 이상 반복하여 무게감소를 측정하였고 매 침식시험 시 새로운 SiC 분말을 사용하여 침식조건을 동일하게 유지하였다. Erosion tests were performed on the specimens according to Examples 1 and 2. Erosion test was used for the erosion tester as shown in FIG. In the erosion test, SiC powder was used as the erosion medium (see (a) of FIG. 10). The SiC powder was filled in the upper inlet (about 2000 cm 3 in volume) to allow 910 mm free fall through a stainless steel pipe having an internal diameter of 17 mm. The specimen was allowed to collide at an angle of 45 degrees. After one erosion test, the specimens were taken and weighed using an electronic balance. This process was repeated five times or more to measure the weight loss. In each erosion test, new SiC powder was used to maintain the same erosion conditions.

경도측정은 실시예 1와 실시예 2에 따른 시편에 대해 측정하여 비교하였다. 경도는 Matsuzawa사의 Vickers 경도기(모델명: AMT-7FS)를 이용하여 하중 50g, 시간 15초의 조건으로 10번 측정하여 그 평균값을 산출하였다. Hardness measurement was measured and compared for the specimens according to Example 1 and Example 2. The hardness was measured 10 times under a load of 50 g and a time of 15 seconds using a Vickers hardness tester (model name: AMT-7FS) of Matsuzawa, and the average value was calculated.

도 10의 (b)는 실시예 4에 의한 침식시험 후 시편의 표면을 보여주는 사진이며, 도 11은 침식시험 후 무게 감소량을 도식화한 그래프이다. 이 그래프에서 알 수 있듯이 실시예 2에 의해 고온고압에서 처리한 시편의 경우 내침식 특성이 처리하지 않은 실시예 1의 시편에 비해 약 2배가량 증가되었음을 알 수 있다. 또한 경도 측정 결과 실시예 1의 시편은 486 Hv, 실시예 2의 시편은 664 Hv로 약 37% 증가한 것으로 나타났다. Figure 10 (b) is a photograph showing the surface of the specimen after the erosion test according to Example 4, Figure 11 is a graph showing the weight loss after the erosion test. As can be seen from this graph, in the case of the specimen treated at high temperature and high pressure according to Example 2, it can be seen that the corrosion resistance property is increased by about 2 times compared to the specimen of Example 1 not treated. As a result of the hardness measurement, the specimen of Example 1 was increased by about 37% to 486 Hv and the specimen of Example 2 was 664 Hv.

본 발명은 상기 결과에서 알 수 있는 것처럼, 합금강 (주로 탄소강)의 내식성, 내침식성(또는 내마모성)을 향상시키기 위해서 적용되는 유리질 에나멜 코팅층의 기포를 제거하여 열소자의 열교환 효율을 높임과 동시에 에나멜 코팅층을 치밀화하여 코팅층의 물성, 즉 경도 및 내침식성을 효과적으로 향상시킬 수 있어 제품의 수명을 2배 이상 연장할 수 있다. As can be seen from the above results, the present invention removes air bubbles in the glass enamel coating layer, which is applied to improve corrosion resistance and erosion resistance (or wear resistance) of alloy steel (mainly carbon steel), thereby increasing heat exchange efficiency of the thermal element and simultaneously enamel coating layer. By densifying and effectively improving the physical properties of the coating layer, that is, hardness and erosion resistance can extend the life of the product more than two times.

또한, 본 발명은 코팅층-모재간 계면의 특성을 변화시켜 종래의 코팅층에 비해 보다 향상된 접착성을 기대할 수 있어 제품의 수명을 보다 연장할 수 있다. In addition, the present invention can be expected to improve the adhesiveness compared to the conventional coating layer by changing the characteristics of the coating layer-base material interface can further extend the life of the product.

Claims (2)

탄소강의 내식성, 내침식성(또는 내마모성)을 향상시키기 위해 실리카, 붕사, 산화나트륨, 산화칼륨, 산화알루미늄, 산화니켈, 산화구리, 산화망간이 주로 혼합된 에나멜 코팅액을 담금, 건조 및 소성 하여서 되는 통상적인 방법으로 탄소강의 표면에 유리질 에나멜 코팅층을 입힌 후 500℃ ~ 727℃인의 고온과 1,000 ~ 1,500 기압의 고압의 아르곤 분위기하에서 처리하는 것을 특징으로 하는 탄소강의 유리질 에나멜 코팅층의 경도 및 내침식 특성 향상 방법.In order to improve the corrosion resistance and corrosion resistance (or wear resistance) of carbon steel, a conventional enamel coating liquid mainly containing silica, borax, sodium oxide, potassium oxide, aluminum oxide, nickel oxide, copper oxide, and manganese oxide is immersed, dried and calcined. Method of improving the hardness and corrosion resistance of the glass enamel coating layer of carbon steel, characterized by coating the glass enamel coating layer on the surface of the carbon steel by phosphorus method, and then treating it under a high temperature of 500 ° C to 727 ° C phosphorus and a high pressure argon of 1,000 to 1,500 atm. . 제 1항에 따른 유리질 에나멜 코팅층의 경도 및 내침식 특성 향상 방법으로 처리된 배연탈황설비용 탄소강 열소자.Carbon steel thermal element for the flue gas desulfurization facility treated by the method of improving the hardness and corrosion resistance of the glass enamel coating layer according to claim 1.
KR1020060065936A 2006-07-13 2006-07-13 Method for increasing the hardness and erosion resistance of vitreous enamel coatings applied to carbon steels KR100781335B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060065936A KR100781335B1 (en) 2006-07-13 2006-07-13 Method for increasing the hardness and erosion resistance of vitreous enamel coatings applied to carbon steels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060065936A KR100781335B1 (en) 2006-07-13 2006-07-13 Method for increasing the hardness and erosion resistance of vitreous enamel coatings applied to carbon steels

Publications (1)

Publication Number Publication Date
KR100781335B1 true KR100781335B1 (en) 2007-11-30

Family

ID=39081531

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060065936A KR100781335B1 (en) 2006-07-13 2006-07-13 Method for increasing the hardness and erosion resistance of vitreous enamel coatings applied to carbon steels

Country Status (1)

Country Link
KR (1) KR100781335B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101175321B1 (en) 2011-11-09 2012-08-23 주식회사 코펙 Composition for heating elements coating of gas to gas heater
KR101985315B1 (en) * 2018-11-20 2019-06-05 주식회사 에코전력 Panel board for Solar photovoltaic power station with salt damage-tolerance and Manufacturing method of Panel board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900004876A (en) * 1988-09-28 1990-04-13 베르너 발데크 Glass enamel coating composition
KR960029261A (en) * 1995-01-28 1996-08-17 볼프강 메르크, 폴커 빈더 Lead-free glass compositions and uses thereof
KR19990071044A (en) * 1998-02-26 1999-09-15 윤영석 Method of coating enamel layer on the surface of cold rolled steel sheet
KR20010090790A (en) * 1998-10-14 2001-10-19 므나르드 쟝-가브리엘 Use of an enamelling composition, enabling to avoid fish-scales and resulting enamelled sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900004876A (en) * 1988-09-28 1990-04-13 베르너 발데크 Glass enamel coating composition
KR960029261A (en) * 1995-01-28 1996-08-17 볼프강 메르크, 폴커 빈더 Lead-free glass compositions and uses thereof
KR19990071044A (en) * 1998-02-26 1999-09-15 윤영석 Method of coating enamel layer on the surface of cold rolled steel sheet
KR20010090790A (en) * 1998-10-14 2001-10-19 므나르드 쟝-가브리엘 Use of an enamelling composition, enabling to avoid fish-scales and resulting enamelled sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101175321B1 (en) 2011-11-09 2012-08-23 주식회사 코펙 Composition for heating elements coating of gas to gas heater
KR101985315B1 (en) * 2018-11-20 2019-06-05 주식회사 에코전력 Panel board for Solar photovoltaic power station with salt damage-tolerance and Manufacturing method of Panel board

Similar Documents

Publication Publication Date Title
Xu et al. Solid-state cold spraying of FeCoCrNiMn high-entropy alloy: an insight into microstructure evolution and oxidation behavior at 700-900° C
Encinas-Sánchez et al. Corrosion resistance of protective coatings against molten nitrate salts for thermal energy storage and their environmental impact in CSP technology
CN102703850B (en) Ternary boride ceramic coating with cerium oxide and preparation method thereof
US7553517B1 (en) Method of applying a cerium diffusion coating to a metallic alloy
CN109988958A (en) Co-based alloy powder, corresponding corrosion-resistant finishes and preparation method thereof
Wang et al. High-temperature sulfur corrosion behavior of h-BN-based ceramic coating prepared by slurry method
CN114411145B (en) Method for reducing cracks of cladding coating on stainless steel surface under high-temperature service
CN108610680A (en) High temperature resistance chlorine corrosion coating and preparation method thereof
CN111020571A (en) Alloy powder for laser cladding of stainless steel surface and application thereof
Shan et al. A protective ceramic coating to improve oxidation and thermal shock resistance on CrMn alloy at elevated temperatures
KR100781335B1 (en) Method for increasing the hardness and erosion resistance of vitreous enamel coatings applied to carbon steels
CN109913868B (en) Hole array steel surface composite coating and preparation method thereof
Jing et al. Study on intrinsic mechanical behavior and erosion resistance of multi-rare earth doped La2Zr2O7 coating
Kim et al. Interaction of Gd2Si2O7 with CMAS melts for environmental barrier coatings
CN104120425A (en) Process for laser cladding of rare earth yttrium oxide, aluminum and iron-based alloy composite coating layer on surface of aluminum alloy
Tao et al. Effect of process temperature on the microstructures and properties of enamels coated on Ti-bearing substrate RT360
Grzesik et al. The behavior of valve materials utilized in Diesel engines under thermal shock conditions
Xue et al. Thermal aging and CMAS corrosion behaviors of Y2SiO5 ceramic for environmental barrier coatings
CN112760545A (en) Aluminum liquid corrosion resistant metal ceramic composite material, powder, coating of powder and sink roller
Kim et al. Effect of hot isostatic pressing on the microstructure and mechanical properties of vitreous enamel coatings on low carbon steel
JPS61110758A (en) Method for carburizing wc-co sintered hard alloy at low temperature
CN107099796B (en) A kind of titanium-based laser cladding coating and preparation method thereof
CN116288115A (en) Zirconia-based thermal barrier coating with high thermal stability and low thermal conductivity and preparation method thereof
CN102260086B (en) Ceramic coating capable of resisting high-temperature corrosion for protecting hanging part in tin bath of float glass and preparation method thereof
CN115612911B (en) Preparation method of wear-resistant metal framework ceramic

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121119

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131118

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141114

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151117

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161115

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20181101

Year of fee payment: 12